1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
6
7 #include <linux/errno.h>
8 #include <linux/percpu.h>
9 #include <linux/spinlock.h>
10
11 #include <asm/mips-cps.h>
12 #include <asm/mipsregs.h>
13
14 void __iomem *mips_gcr_base;
15 void __iomem *mips_cm_l2sync_base;
16 int mips_cm_is64;
17
18 static char *cm2_tr[8] = {
19 "mem", "gcr", "gic", "mmio",
20 "0x04", "cpc", "0x06", "0x07"
21 };
22
23 /* CM3 Tag ECC transaction type */
24 static char *cm3_tr[16] = {
25 [0x0] = "ReqNoData",
26 [0x1] = "0x1",
27 [0x2] = "ReqWData",
28 [0x3] = "0x3",
29 [0x4] = "IReqNoResp",
30 [0x5] = "IReqWResp",
31 [0x6] = "IReqNoRespDat",
32 [0x7] = "IReqWRespDat",
33 [0x8] = "RespNoData",
34 [0x9] = "RespDataFol",
35 [0xa] = "RespWData",
36 [0xb] = "RespDataOnly",
37 [0xc] = "IRespNoData",
38 [0xd] = "IRespDataFol",
39 [0xe] = "IRespWData",
40 [0xf] = "IRespDataOnly"
41 };
42
43 static char *cm2_cmd[32] = {
44 [0x00] = "0x00",
45 [0x01] = "Legacy Write",
46 [0x02] = "Legacy Read",
47 [0x03] = "0x03",
48 [0x04] = "0x04",
49 [0x05] = "0x05",
50 [0x06] = "0x06",
51 [0x07] = "0x07",
52 [0x08] = "Coherent Read Own",
53 [0x09] = "Coherent Read Share",
54 [0x0a] = "Coherent Read Discard",
55 [0x0b] = "Coherent Ready Share Always",
56 [0x0c] = "Coherent Upgrade",
57 [0x0d] = "Coherent Writeback",
58 [0x0e] = "0x0e",
59 [0x0f] = "0x0f",
60 [0x10] = "Coherent Copyback",
61 [0x11] = "Coherent Copyback Invalidate",
62 [0x12] = "Coherent Invalidate",
63 [0x13] = "Coherent Write Invalidate",
64 [0x14] = "Coherent Completion Sync",
65 [0x15] = "0x15",
66 [0x16] = "0x16",
67 [0x17] = "0x17",
68 [0x18] = "0x18",
69 [0x19] = "0x19",
70 [0x1a] = "0x1a",
71 [0x1b] = "0x1b",
72 [0x1c] = "0x1c",
73 [0x1d] = "0x1d",
74 [0x1e] = "0x1e",
75 [0x1f] = "0x1f"
76 };
77
78 /* CM3 Tag ECC command type */
79 static char *cm3_cmd[16] = {
80 [0x0] = "Legacy Read",
81 [0x1] = "Legacy Write",
82 [0x2] = "Coherent Read Own",
83 [0x3] = "Coherent Read Share",
84 [0x4] = "Coherent Read Discard",
85 [0x5] = "Coherent Evicted",
86 [0x6] = "Coherent Upgrade",
87 [0x7] = "Coherent Upgrade for Store Conditional",
88 [0x8] = "Coherent Writeback",
89 [0x9] = "Coherent Write Invalidate",
90 [0xa] = "0xa",
91 [0xb] = "0xb",
92 [0xc] = "0xc",
93 [0xd] = "0xd",
94 [0xe] = "0xe",
95 [0xf] = "0xf"
96 };
97
98 /* CM3 Tag ECC command group */
99 static char *cm3_cmd_group[8] = {
100 [0x0] = "Normal",
101 [0x1] = "Registers",
102 [0x2] = "TLB",
103 [0x3] = "0x3",
104 [0x4] = "L1I",
105 [0x5] = "L1D",
106 [0x6] = "L3",
107 [0x7] = "L2"
108 };
109
110 static char *cm2_core[8] = {
111 "Invalid/OK", "Invalid/Data",
112 "Shared/OK", "Shared/Data",
113 "Modified/OK", "Modified/Data",
114 "Exclusive/OK", "Exclusive/Data"
115 };
116
117 static char *cm2_causes[32] = {
118 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
119 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
120 "0x08", "0x09", "0x0a", "0x0b",
121 "0x0c", "0x0d", "0x0e", "0x0f",
122 "0x10", "0x11", "0x12", "0x13",
123 "0x14", "0x15", "0x16", "INTVN_WR_ERR",
124 "INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
125 "0x1c", "0x1d", "0x1e", "0x1f"
126 };
127
128 static char *cm3_causes[32] = {
129 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
130 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
131 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
132 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
133 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
134 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
135 };
136
137 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
138 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
139
__mips_cm_phys_base(void)140 phys_addr_t __mips_cm_phys_base(void)
141 {
142 u32 config3 = read_c0_config3();
143 unsigned long cmgcr;
144
145 /* Check the CMGCRBase register is implemented */
146 if (!(config3 & MIPS_CONF3_CMGCR))
147 return 0;
148
149 /* Read the address from CMGCRBase */
150 cmgcr = read_c0_cmgcrbase();
151 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
152 }
153
154 phys_addr_t mips_cm_phys_base(void)
155 __attribute__((weak, alias("__mips_cm_phys_base")));
156
__mips_cm_l2sync_phys_base(void)157 phys_addr_t __mips_cm_l2sync_phys_base(void)
158 {
159 u32 base_reg;
160
161 /*
162 * If the L2-only sync region is already enabled then leave it at it's
163 * current location.
164 */
165 base_reg = read_gcr_l2_only_sync_base();
166 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
167 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
168
169 /* Default to following the CM */
170 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
171 }
172
173 phys_addr_t mips_cm_l2sync_phys_base(void)
174 __attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
175
mips_cm_probe_l2sync(void)176 static void mips_cm_probe_l2sync(void)
177 {
178 unsigned major_rev;
179 phys_addr_t addr;
180
181 /* L2-only sync was introduced with CM major revision 6 */
182 major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >>
183 __ffs(CM_GCR_REV_MAJOR);
184 if (major_rev < 6)
185 return;
186
187 /* Find a location for the L2 sync region */
188 addr = mips_cm_l2sync_phys_base();
189 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
190 if (!addr)
191 return;
192
193 /* Set the region base address & enable it */
194 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
195
196 /* Map the region */
197 mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE);
198 }
199
mips_cm_probe(void)200 int mips_cm_probe(void)
201 {
202 phys_addr_t addr;
203 u32 base_reg;
204 unsigned cpu;
205
206 /*
207 * No need to probe again if we have already been
208 * here before.
209 */
210 if (mips_gcr_base)
211 return 0;
212
213 addr = mips_cm_phys_base();
214 BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
215 if (!addr)
216 return -ENODEV;
217
218 mips_gcr_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE);
219 if (!mips_gcr_base)
220 return -ENXIO;
221
222 /* sanity check that we're looking at a CM */
223 base_reg = read_gcr_base();
224 if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
225 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
226 (unsigned long)addr);
227 mips_gcr_base = NULL;
228 return -ENODEV;
229 }
230
231 /* set default target to memory */
232 change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
233
234 /* disable CM regions */
235 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
236 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
237 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
238 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
239 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
240 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
241 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
242 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
243
244 /* probe for an L2-only sync region */
245 mips_cm_probe_l2sync();
246
247 /* determine register width for this CM */
248 mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
249
250 for_each_possible_cpu(cpu)
251 spin_lock_init(&per_cpu(cm_core_lock, cpu));
252
253 return 0;
254 }
255
mips_cm_lock_other(unsigned int cluster,unsigned int core,unsigned int vp,unsigned int block)256 void mips_cm_lock_other(unsigned int cluster, unsigned int core,
257 unsigned int vp, unsigned int block)
258 {
259 unsigned int curr_core, cm_rev;
260 u32 val;
261
262 cm_rev = mips_cm_revision();
263 preempt_disable();
264
265 if (cm_rev >= CM_REV_CM3) {
266 val = core << __ffs(CM3_GCR_Cx_OTHER_CORE);
267 val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP);
268
269 if (cm_rev >= CM_REV_CM3_5) {
270 val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
271 val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER);
272 val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK);
273 } else {
274 WARN_ON(cluster != 0);
275 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
276 }
277
278 /*
279 * We need to disable interrupts in SMP systems in order to
280 * ensure that we don't interrupt the caller with code which
281 * may modify the redirect register. We do so here in a
282 * slightly obscure way by using a spin lock, since this has
283 * the neat property of also catching any nested uses of
284 * mips_cm_lock_other() leading to a deadlock or a nice warning
285 * with lockdep enabled.
286 */
287 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
288 *this_cpu_ptr(&cm_core_lock_flags));
289 } else {
290 WARN_ON(cluster != 0);
291 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
292
293 /*
294 * We only have a GCR_CL_OTHER per core in systems with
295 * CM 2.5 & older, so have to ensure other VP(E)s don't
296 * race with us.
297 */
298 curr_core = cpu_core(¤t_cpu_data);
299 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
300 per_cpu(cm_core_lock_flags, curr_core));
301
302 val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM);
303 }
304
305 write_gcr_cl_other(val);
306
307 /*
308 * Ensure the core-other region reflects the appropriate core &
309 * VP before any accesses to it occur.
310 */
311 mb();
312 }
313
mips_cm_unlock_other(void)314 void mips_cm_unlock_other(void)
315 {
316 unsigned int curr_core;
317
318 if (mips_cm_revision() < CM_REV_CM3) {
319 curr_core = cpu_core(¤t_cpu_data);
320 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
321 per_cpu(cm_core_lock_flags, curr_core));
322 } else {
323 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
324 *this_cpu_ptr(&cm_core_lock_flags));
325 }
326
327 preempt_enable();
328 }
329
mips_cm_error_report(void)330 void mips_cm_error_report(void)
331 {
332 u64 cm_error, cm_addr, cm_other;
333 unsigned long revision;
334 int ocause, cause;
335 char buf[256];
336
337 if (!mips_cm_present())
338 return;
339
340 revision = mips_cm_revision();
341 cm_error = read_gcr_error_cause();
342 cm_addr = read_gcr_error_addr();
343 cm_other = read_gcr_error_mult();
344
345 if (revision < CM_REV_CM3) { /* CM2 */
346 cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE);
347 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
348
349 if (!cause)
350 return;
351
352 if (cause < 16) {
353 unsigned long cca_bits = (cm_error >> 15) & 7;
354 unsigned long tr_bits = (cm_error >> 12) & 7;
355 unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
356 unsigned long stag_bits = (cm_error >> 3) & 15;
357 unsigned long sport_bits = (cm_error >> 0) & 7;
358
359 snprintf(buf, sizeof(buf),
360 "CCA=%lu TR=%s MCmd=%s STag=%lu "
361 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
362 cm2_cmd[cmd_bits], stag_bits, sport_bits);
363 } else {
364 /* glob state & sresp together */
365 unsigned long c3_bits = (cm_error >> 18) & 7;
366 unsigned long c2_bits = (cm_error >> 15) & 7;
367 unsigned long c1_bits = (cm_error >> 12) & 7;
368 unsigned long c0_bits = (cm_error >> 9) & 7;
369 unsigned long sc_bit = (cm_error >> 8) & 1;
370 unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
371 unsigned long sport_bits = (cm_error >> 0) & 7;
372
373 snprintf(buf, sizeof(buf),
374 "C3=%s C2=%s C1=%s C0=%s SC=%s "
375 "MCmd=%s SPort=%lu\n",
376 cm2_core[c3_bits], cm2_core[c2_bits],
377 cm2_core[c1_bits], cm2_core[c0_bits],
378 sc_bit ? "True" : "False",
379 cm2_cmd[cmd_bits], sport_bits);
380 }
381 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
382 cm2_causes[cause], buf);
383 pr_err("CM_ADDR =%08llx\n", cm_addr);
384 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
385 } else { /* CM3 */
386 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
387 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
388
389 cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE);
390 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
391
392 if (!cause)
393 return;
394
395 /* Used by cause == {1,2,3} */
396 core_id_bits = (cm_error >> 22) & 0xf;
397 vp_id_bits = (cm_error >> 18) & 0xf;
398 cmd_bits = (cm_error >> 14) & 0xf;
399 cmd_group_bits = (cm_error >> 11) & 0xf;
400 cm3_cca_bits = (cm_error >> 8) & 7;
401 mcp_bits = (cm_error >> 5) & 0xf;
402 cm3_tr_bits = (cm_error >> 1) & 0xf;
403 sched_bit = cm_error & 0x1;
404
405 if (cause == 1 || cause == 3) { /* Tag ECC */
406 unsigned long tag_ecc = (cm_error >> 57) & 0x1;
407 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
408 unsigned long dword_bits = (cm_error >> 49) & 0xff;
409 unsigned long data_way_bits = (cm_error >> 45) & 0xf;
410 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
411 unsigned long bank_bit = (cm_error >> 28) & 0x1;
412 snprintf(buf, sizeof(buf),
413 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
414 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
415 "Command Group=%s CCA=%lu MCP=%d"
416 "Transaction type=%s Scheduler=%lu\n",
417 tag_ecc ? "TAG" : "DATA",
418 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
419 data_way_bits, bank_bit, dword_bits,
420 data_sets_bits,
421 core_id_bits, vp_id_bits,
422 cm3_cmd[cmd_bits],
423 cm3_cmd_group[cmd_group_bits],
424 cm3_cca_bits, 1 << mcp_bits,
425 cm3_tr[cm3_tr_bits], sched_bit);
426 } else if (cause == 2) {
427 unsigned long data_error_type = (cm_error >> 41) & 0xfff;
428 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
429 unsigned long data_decode_group = (cm_error >> 34) & 0x7;
430 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
431
432 snprintf(buf, sizeof(buf),
433 "Decode Request Error: Type=%lu, Command=%lu"
434 "Command Group=%lu Destination ID=%lu"
435 "CoreID=%lu VPID=%lu Command=%s"
436 "Command Group=%s CCA=%lu MCP=%d"
437 "Transaction type=%s Scheduler=%lu\n",
438 data_error_type, data_decode_cmd,
439 data_decode_group, data_decode_destination_id,
440 core_id_bits, vp_id_bits,
441 cm3_cmd[cmd_bits],
442 cm3_cmd_group[cmd_group_bits],
443 cm3_cca_bits, 1 << mcp_bits,
444 cm3_tr[cm3_tr_bits], sched_bit);
445 } else {
446 buf[0] = 0;
447 }
448
449 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
450 cm3_causes[cause], buf);
451 pr_err("CM_ADDR =%llx\n", cm_addr);
452 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
453 }
454
455 /* reprime cause register */
456 write_gcr_error_cause(cm_error);
457 }
458