1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Cell Broadband Engine OProfile Support
4 *
5 * (C) Copyright IBM Corporation 2006
6 *
7 * Author: David Erb (djerb@us.ibm.com)
8 * Modifications:
9 * Carl Love <carll@us.ibm.com>
10 * Maynard Johnson <maynardj@us.ibm.com>
11 */
12
13 #include <linux/cpufreq.h>
14 #include <linux/delay.h>
15 #include <linux/jiffies.h>
16 #include <linux/kthread.h>
17 #include <linux/oprofile.h>
18 #include <linux/percpu.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/timer.h>
22 #include <asm/cell-pmu.h>
23 #include <asm/cputable.h>
24 #include <asm/firmware.h>
25 #include <asm/io.h>
26 #include <asm/oprofile_impl.h>
27 #include <asm/processor.h>
28 #include <asm/prom.h>
29 #include <asm/ptrace.h>
30 #include <asm/reg.h>
31 #include <asm/rtas.h>
32 #include <asm/cell-regs.h>
33
34 #include "../platforms/cell/interrupt.h"
35 #include "cell/pr_util.h"
36
37 #define PPU_PROFILING 0
38 #define SPU_PROFILING_CYCLES 1
39 #define SPU_PROFILING_EVENTS 2
40
41 #define SPU_EVENT_NUM_START 4100
42 #define SPU_EVENT_NUM_STOP 4399
43 #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
44 #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
45 #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
46
47 #define NUM_SPUS_PER_NODE 8
48 #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
49
50 #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
51 #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
52 * PPU_CYCLES event
53 */
54 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
55
56 #define NUM_THREADS 2 /* number of physical threads in
57 * physical processor
58 */
59 #define NUM_DEBUG_BUS_WORDS 4
60 #define NUM_INPUT_BUS_WORDS 2
61
62 #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
63
64 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
65 * To configure counter to send value every N cycles set counter to
66 * 2^32 - 1 - N.
67 */
68 #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
69
70 /*
71 * spu_cycle_reset is the number of cycles between samples.
72 * This variable is used for SPU profiling and should ONLY be set
73 * at the beginning of cell_reg_setup; otherwise, it's read-only.
74 */
75 static unsigned int spu_cycle_reset;
76 static unsigned int profiling_mode;
77 static int spu_evnt_phys_spu_indx;
78
79 struct pmc_cntrl_data {
80 unsigned long vcntr;
81 unsigned long evnts;
82 unsigned long masks;
83 unsigned long enabled;
84 };
85
86 /*
87 * ibm,cbe-perftools rtas parameters
88 */
89 struct pm_signal {
90 u16 cpu; /* Processor to modify */
91 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
92 short int signal_group; /* Signal Group to Enable/Disable */
93 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
94 * Bus Word(s) (bitmask)
95 */
96 u8 bit; /* Trigger/Event bit (if applicable) */
97 };
98
99 /*
100 * rtas call arguments
101 */
102 enum {
103 SUBFUNC_RESET = 1,
104 SUBFUNC_ACTIVATE = 2,
105 SUBFUNC_DEACTIVATE = 3,
106
107 PASSTHRU_IGNORE = 0,
108 PASSTHRU_ENABLE = 1,
109 PASSTHRU_DISABLE = 2,
110 };
111
112 struct pm_cntrl {
113 u16 enable;
114 u16 stop_at_max;
115 u16 trace_mode;
116 u16 freeze;
117 u16 count_mode;
118 u16 spu_addr_trace;
119 u8 trace_buf_ovflw;
120 };
121
122 static struct {
123 u32 group_control;
124 u32 debug_bus_control;
125 struct pm_cntrl pm_cntrl;
126 u32 pm07_cntrl[NR_PHYS_CTRS];
127 } pm_regs;
128
129 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
130 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
131 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
132 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
133 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
134 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
135
136 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
137 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
138 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
139
140 /*
141 * The CELL profiling code makes rtas calls to setup the debug bus to
142 * route the performance signals. Additionally, SPU profiling requires
143 * a second rtas call to setup the hardware to capture the SPU PCs.
144 * The EIO error value is returned if the token lookups or the rtas
145 * call fail. The EIO error number is the best choice of the existing
146 * error numbers. The probability of rtas related error is very low. But
147 * by returning EIO and printing additional information to dmsg the user
148 * will know that OProfile did not start and dmesg will tell them why.
149 * OProfile does not support returning errors on Stop. Not a huge issue
150 * since failure to reset the debug bus or stop the SPU PC collection is
151 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
152 * either.
153 */
154
155 /*
156 * Interpetation of hdw_thread:
157 * 0 - even virtual cpus 0, 2, 4,...
158 * 1 - odd virtual cpus 1, 3, 5, ...
159 *
160 * FIXME: this is strictly wrong, we need to clean this up in a number
161 * of places. It works for now. -arnd
162 */
163 static u32 hdw_thread;
164
165 static u32 virt_cntr_inter_mask;
166 static struct timer_list timer_virt_cntr;
167 static struct timer_list timer_spu_event_swap;
168
169 /*
170 * pm_signal needs to be global since it is initialized in
171 * cell_reg_setup at the time when the necessary information
172 * is available.
173 */
174 static struct pm_signal pm_signal[NR_PHYS_CTRS];
175 static int pm_rtas_token; /* token for debug bus setup call */
176 static int spu_rtas_token; /* token for SPU cycle profiling */
177
178 static u32 reset_value[NR_PHYS_CTRS];
179 static int num_counters;
180 static int oprofile_running;
181 static DEFINE_SPINLOCK(cntr_lock);
182
183 static u32 ctr_enabled;
184
185 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
186
187 /*
188 * Firmware interface functions
189 */
190 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)191 rtas_ibm_cbe_perftools(int subfunc, int passthru,
192 void *address, unsigned long length)
193 {
194 u64 paddr = __pa(address);
195
196 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
197 passthru, paddr >> 32, paddr & 0xffffffff, length);
198 }
199
pm_rtas_reset_signals(u32 node)200 static void pm_rtas_reset_signals(u32 node)
201 {
202 int ret;
203 struct pm_signal pm_signal_local;
204
205 /*
206 * The debug bus is being set to the passthru disable state.
207 * However, the FW still expects at least one legal signal routing
208 * entry or it will return an error on the arguments. If we don't
209 * supply a valid entry, we must ignore all return values. Ignoring
210 * all return values means we might miss an error we should be
211 * concerned about.
212 */
213
214 /* fw expects physical cpu #. */
215 pm_signal_local.cpu = node;
216 pm_signal_local.signal_group = 21;
217 pm_signal_local.bus_word = 1;
218 pm_signal_local.sub_unit = 0;
219 pm_signal_local.bit = 0;
220
221 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
222 &pm_signal_local,
223 sizeof(struct pm_signal));
224
225 if (unlikely(ret))
226 /*
227 * Not a fatal error. For Oprofile stop, the oprofile
228 * functions do not support returning an error for
229 * failure to stop OProfile.
230 */
231 printk(KERN_WARNING "%s: rtas returned: %d\n",
232 __func__, ret);
233 }
234
pm_rtas_activate_signals(u32 node,u32 count)235 static int pm_rtas_activate_signals(u32 node, u32 count)
236 {
237 int ret;
238 int i, j;
239 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
240
241 /*
242 * There is no debug setup required for the cycles event.
243 * Note that only events in the same group can be used.
244 * Otherwise, there will be conflicts in correctly routing
245 * the signals on the debug bus. It is the responsibility
246 * of the OProfile user tool to check the events are in
247 * the same group.
248 */
249 i = 0;
250 for (j = 0; j < count; j++) {
251 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
252
253 /* fw expects physical cpu # */
254 pm_signal_local[i].cpu = node;
255 pm_signal_local[i].signal_group
256 = pm_signal[j].signal_group;
257 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
258 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
259 pm_signal_local[i].bit = pm_signal[j].bit;
260 i++;
261 }
262 }
263
264 if (i != 0) {
265 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
266 pm_signal_local,
267 i * sizeof(struct pm_signal));
268
269 if (unlikely(ret)) {
270 printk(KERN_WARNING "%s: rtas returned: %d\n",
271 __func__, ret);
272 return -EIO;
273 }
274 }
275
276 return 0;
277 }
278
279 /*
280 * PM Signal functions
281 */
set_pm_event(u32 ctr,int event,u32 unit_mask)282 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
283 {
284 struct pm_signal *p;
285 u32 signal_bit;
286 u32 bus_word, bus_type, count_cycles, polarity, input_control;
287 int j, i;
288
289 if (event == PPU_CYCLES_EVENT_NUM) {
290 /* Special Event: Count all cpu cycles */
291 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
292 p = &(pm_signal[ctr]);
293 p->signal_group = PPU_CYCLES_GRP_NUM;
294 p->bus_word = 1;
295 p->sub_unit = 0;
296 p->bit = 0;
297 goto out;
298 } else {
299 pm_regs.pm07_cntrl[ctr] = 0;
300 }
301
302 bus_word = GET_BUS_WORD(unit_mask);
303 bus_type = GET_BUS_TYPE(unit_mask);
304 count_cycles = GET_COUNT_CYCLES(unit_mask);
305 polarity = GET_POLARITY(unit_mask);
306 input_control = GET_INPUT_CONTROL(unit_mask);
307 signal_bit = (event % 100);
308
309 p = &(pm_signal[ctr]);
310
311 p->signal_group = event / 100;
312 p->bus_word = bus_word;
313 p->sub_unit = GET_SUB_UNIT(unit_mask);
314
315 pm_regs.pm07_cntrl[ctr] = 0;
316 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
317 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
318 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
319
320 /*
321 * Some of the islands signal selection is based on 64 bit words.
322 * The debug bus words are 32 bits, the input words to the performance
323 * counters are defined as 32 bits. Need to convert the 64 bit island
324 * specification to the appropriate 32 input bit and bus word for the
325 * performance counter event selection. See the CELL Performance
326 * monitoring signals manual and the Perf cntr hardware descriptions
327 * for the details.
328 */
329 if (input_control == 0) {
330 if (signal_bit > 31) {
331 signal_bit -= 32;
332 if (bus_word == 0x3)
333 bus_word = 0x2;
334 else if (bus_word == 0xc)
335 bus_word = 0x8;
336 }
337
338 if ((bus_type == 0) && p->signal_group >= 60)
339 bus_type = 2;
340 if ((bus_type == 1) && p->signal_group >= 50)
341 bus_type = 0;
342
343 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
344 } else {
345 pm_regs.pm07_cntrl[ctr] = 0;
346 p->bit = signal_bit;
347 }
348
349 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
350 if (bus_word & (1 << i)) {
351 pm_regs.debug_bus_control |=
352 (bus_type << (30 - (2 * i)));
353
354 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
355 if (input_bus[j] == 0xff) {
356 input_bus[j] = i;
357 pm_regs.group_control |=
358 (i << (30 - (2 * j)));
359
360 break;
361 }
362 }
363 }
364 }
365 out:
366 ;
367 }
368
write_pm_cntrl(int cpu)369 static void write_pm_cntrl(int cpu)
370 {
371 /*
372 * Oprofile will use 32 bit counters, set bits 7:10 to 0
373 * pmregs.pm_cntrl is a global
374 */
375
376 u32 val = 0;
377 if (pm_regs.pm_cntrl.enable == 1)
378 val |= CBE_PM_ENABLE_PERF_MON;
379
380 if (pm_regs.pm_cntrl.stop_at_max == 1)
381 val |= CBE_PM_STOP_AT_MAX;
382
383 if (pm_regs.pm_cntrl.trace_mode != 0)
384 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
385
386 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
387 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
388 if (pm_regs.pm_cntrl.freeze == 1)
389 val |= CBE_PM_FREEZE_ALL_CTRS;
390
391 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
392
393 /*
394 * Routine set_count_mode must be called previously to set
395 * the count mode based on the user selection of user and kernel.
396 */
397 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
398 cbe_write_pm(cpu, pm_control, val);
399 }
400
401 static inline void
set_count_mode(u32 kernel,u32 user)402 set_count_mode(u32 kernel, u32 user)
403 {
404 /*
405 * The user must specify user and kernel if they want them. If
406 * neither is specified, OProfile will count in hypervisor mode.
407 * pm_regs.pm_cntrl is a global
408 */
409 if (kernel) {
410 if (user)
411 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
412 else
413 pm_regs.pm_cntrl.count_mode =
414 CBE_COUNT_SUPERVISOR_MODE;
415 } else {
416 if (user)
417 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
418 else
419 pm_regs.pm_cntrl.count_mode =
420 CBE_COUNT_HYPERVISOR_MODE;
421 }
422 }
423
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)424 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
425 {
426
427 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
428 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
429 }
430
431 /*
432 * Oprofile is expected to collect data on all CPUs simultaneously.
433 * However, there is one set of performance counters per node. There are
434 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
435 * multiplex in time the performance counter collection on the two virtual
436 * CPUs. The multiplexing of the performance counters is done by this
437 * virtual counter routine.
438 *
439 * The pmc_values used below is defined as 'per-cpu' but its use is
440 * more akin to 'per-node'. We need to store two sets of counter
441 * values per node -- one for the previous run and one for the next.
442 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
443 * pair of per-cpu arrays is used for storing the previous and next
444 * pmc values for a given node.
445 * NOTE: We use the per-cpu variable to improve cache performance.
446 *
447 * This routine will alternate loading the virtual counters for
448 * virtual CPUs
449 */
cell_virtual_cntr(struct timer_list * unused)450 static void cell_virtual_cntr(struct timer_list *unused)
451 {
452 int i, prev_hdw_thread, next_hdw_thread;
453 u32 cpu;
454 unsigned long flags;
455
456 /*
457 * Make sure that the interrupt_hander and the virt counter are
458 * not both playing with the counters on the same node.
459 */
460
461 spin_lock_irqsave(&cntr_lock, flags);
462
463 prev_hdw_thread = hdw_thread;
464
465 /* switch the cpu handling the interrupts */
466 hdw_thread = 1 ^ hdw_thread;
467 next_hdw_thread = hdw_thread;
468
469 pm_regs.group_control = 0;
470 pm_regs.debug_bus_control = 0;
471
472 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
473 input_bus[i] = 0xff;
474
475 /*
476 * There are some per thread events. Must do the
477 * set event, for the thread that is being started
478 */
479 for (i = 0; i < num_counters; i++)
480 set_pm_event(i,
481 pmc_cntrl[next_hdw_thread][i].evnts,
482 pmc_cntrl[next_hdw_thread][i].masks);
483
484 /*
485 * The following is done only once per each node, but
486 * we need cpu #, not node #, to pass to the cbe_xxx functions.
487 */
488 for_each_online_cpu(cpu) {
489 if (cbe_get_hw_thread_id(cpu))
490 continue;
491
492 /*
493 * stop counters, save counter values, restore counts
494 * for previous thread
495 */
496 cbe_disable_pm(cpu);
497 cbe_disable_pm_interrupts(cpu);
498 for (i = 0; i < num_counters; i++) {
499 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
500 = cbe_read_ctr(cpu, i);
501
502 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
503 == 0xFFFFFFFF)
504 /* If the cntr value is 0xffffffff, we must
505 * reset that to 0xfffffff0 when the current
506 * thread is restarted. This will generate a
507 * new interrupt and make sure that we never
508 * restore the counters to the max value. If
509 * the counters were restored to the max value,
510 * they do not increment and no interrupts are
511 * generated. Hence no more samples will be
512 * collected on that cpu.
513 */
514 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
515 else
516 cbe_write_ctr(cpu, i,
517 per_cpu(pmc_values,
518 cpu +
519 next_hdw_thread)[i]);
520 }
521
522 /*
523 * Switch to the other thread. Change the interrupt
524 * and control regs to be scheduled on the CPU
525 * corresponding to the thread to execute.
526 */
527 for (i = 0; i < num_counters; i++) {
528 if (pmc_cntrl[next_hdw_thread][i].enabled) {
529 /*
530 * There are some per thread events.
531 * Must do the set event, enable_cntr
532 * for each cpu.
533 */
534 enable_ctr(cpu, i,
535 pm_regs.pm07_cntrl);
536 } else {
537 cbe_write_pm07_control(cpu, i, 0);
538 }
539 }
540
541 /* Enable interrupts on the CPU thread that is starting */
542 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
543 virt_cntr_inter_mask);
544 cbe_enable_pm(cpu);
545 }
546
547 spin_unlock_irqrestore(&cntr_lock, flags);
548
549 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
550 }
551
start_virt_cntrs(void)552 static void start_virt_cntrs(void)
553 {
554 timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
555 timer_virt_cntr.expires = jiffies + HZ / 10;
556 add_timer(&timer_virt_cntr);
557 }
558
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)559 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
560 struct op_system_config *sys, int num_ctrs)
561 {
562 spu_cycle_reset = ctr[0].count;
563
564 /*
565 * Each node will need to make the rtas call to start
566 * and stop SPU profiling. Get the token once and store it.
567 */
568 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
569
570 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
571 printk(KERN_ERR
572 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
573 __func__);
574 return -EIO;
575 }
576 return 0;
577 }
578
579 /* Unfortunately, the hardware will only support event profiling
580 * on one SPU per node at a time. Therefore, we must time slice
581 * the profiling across all SPUs in the node. Note, we do this
582 * in parallel for each node. The following routine is called
583 * periodically based on kernel timer to switch which SPU is
584 * being monitored in a round robbin fashion.
585 */
spu_evnt_swap(struct timer_list * unused)586 static void spu_evnt_swap(struct timer_list *unused)
587 {
588 int node;
589 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
590 unsigned long flags;
591 int cpu;
592 int ret;
593 u32 interrupt_mask;
594
595
596 /* enable interrupts on cntr 0 */
597 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
598
599 hdw_thread = 0;
600
601 /* Make sure spu event interrupt handler and spu event swap
602 * don't access the counters simultaneously.
603 */
604 spin_lock_irqsave(&cntr_lock, flags);
605
606 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
607
608 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
609 spu_evnt_phys_spu_indx = 0;
610
611 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
612 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
613 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
614
615 /* switch the SPU being profiled on each node */
616 for_each_online_cpu(cpu) {
617 if (cbe_get_hw_thread_id(cpu))
618 continue;
619
620 node = cbe_cpu_to_node(cpu);
621 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
622 + cur_spu_evnt_phys_spu_indx;
623 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
624 + spu_evnt_phys_spu_indx;
625
626 /*
627 * stop counters, save counter values, restore counts
628 * for previous physical SPU
629 */
630 cbe_disable_pm(cpu);
631 cbe_disable_pm_interrupts(cpu);
632
633 spu_pm_cnt[cur_phys_spu]
634 = cbe_read_ctr(cpu, 0);
635
636 /* restore previous count for the next spu to sample */
637 /* NOTE, hardware issue, counter will not start if the
638 * counter value is at max (0xFFFFFFFF).
639 */
640 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
641 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
642 else
643 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
644
645 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
646
647 /* setup the debug bus measure the one event and
648 * the two events to route the next SPU's PC on
649 * the debug bus
650 */
651 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
652 if (ret)
653 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
654 "SPU event swap\n", __func__);
655
656 /* clear the trace buffer, don't want to take PC for
657 * previous SPU*/
658 cbe_write_pm(cpu, trace_address, 0);
659
660 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
661
662 /* Enable interrupts on the CPU thread that is starting */
663 cbe_enable_pm_interrupts(cpu, hdw_thread,
664 interrupt_mask);
665 cbe_enable_pm(cpu);
666 }
667
668 spin_unlock_irqrestore(&cntr_lock, flags);
669
670 /* swap approximately every 0.1 seconds */
671 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
672 }
673
start_spu_event_swap(void)674 static void start_spu_event_swap(void)
675 {
676 timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
677 timer_spu_event_swap.expires = jiffies + HZ / 25;
678 add_timer(&timer_spu_event_swap);
679 }
680
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)681 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
682 struct op_system_config *sys, int num_ctrs)
683 {
684 int i;
685
686 /* routine is called once for all nodes */
687
688 spu_evnt_phys_spu_indx = 0;
689 /*
690 * For all events except PPU CYCLEs, each node will need to make
691 * the rtas cbe-perftools call to setup and reset the debug bus.
692 * Make the token lookup call once and store it in the global
693 * variable pm_rtas_token.
694 */
695 pm_rtas_token = rtas_token("ibm,cbe-perftools");
696
697 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
698 printk(KERN_ERR
699 "%s: rtas token ibm,cbe-perftools unknown\n",
700 __func__);
701 return -EIO;
702 }
703
704 /* setup the pm_control register settings,
705 * settings will be written per node by the
706 * cell_cpu_setup() function.
707 */
708 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
709
710 /* Use the occurrence trace mode to have SPU PC saved
711 * to the trace buffer. Occurrence data in trace buffer
712 * is not used. Bit 2 must be set to store SPU addresses.
713 */
714 pm_regs.pm_cntrl.trace_mode = 2;
715
716 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
717 event 2 & 3 */
718
719 /* setup the debug bus event array with the SPU PC routing events.
720 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
721 */
722 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
723 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
724 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
725 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
726
727 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
728 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
729 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
730 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
731
732 /* Set the user selected spu event to profile on,
733 * note, only one SPU profiling event is supported
734 */
735 num_counters = 1; /* Only support one SPU event at a time */
736 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
737
738 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
739
740 /* global, used by cell_cpu_setup */
741 ctr_enabled |= 1;
742
743 /* Initialize the count for each SPU to the reset value */
744 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
745 spu_pm_cnt[i] = reset_value[0];
746
747 return 0;
748 }
749
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)750 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
751 struct op_system_config *sys, int num_ctrs)
752 {
753 /* routine is called once for all nodes */
754 int i, j, cpu;
755
756 num_counters = num_ctrs;
757
758 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
759 printk(KERN_ERR
760 "%s: Oprofile, number of specified events " \
761 "exceeds number of physical counters\n",
762 __func__);
763 return -EIO;
764 }
765
766 set_count_mode(sys->enable_kernel, sys->enable_user);
767
768 /* Setup the thread 0 events */
769 for (i = 0; i < num_ctrs; ++i) {
770
771 pmc_cntrl[0][i].evnts = ctr[i].event;
772 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
773 pmc_cntrl[0][i].enabled = ctr[i].enabled;
774 pmc_cntrl[0][i].vcntr = i;
775
776 for_each_possible_cpu(j)
777 per_cpu(pmc_values, j)[i] = 0;
778 }
779
780 /*
781 * Setup the thread 1 events, map the thread 0 event to the
782 * equivalent thread 1 event.
783 */
784 for (i = 0; i < num_ctrs; ++i) {
785 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
786 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
787 else if (ctr[i].event == 2203)
788 pmc_cntrl[1][i].evnts = ctr[i].event;
789 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
790 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
791 else
792 pmc_cntrl[1][i].evnts = ctr[i].event;
793
794 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
795 pmc_cntrl[1][i].enabled = ctr[i].enabled;
796 pmc_cntrl[1][i].vcntr = i;
797 }
798
799 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
800 input_bus[i] = 0xff;
801
802 /*
803 * Our counters count up, and "count" refers to
804 * how much before the next interrupt, and we interrupt
805 * on overflow. So we calculate the starting value
806 * which will give us "count" until overflow.
807 * Then we set the events on the enabled counters.
808 */
809 for (i = 0; i < num_counters; ++i) {
810 /* start with virtual counter set 0 */
811 if (pmc_cntrl[0][i].enabled) {
812 /* Using 32bit counters, reset max - count */
813 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
814 set_pm_event(i,
815 pmc_cntrl[0][i].evnts,
816 pmc_cntrl[0][i].masks);
817
818 /* global, used by cell_cpu_setup */
819 ctr_enabled |= (1 << i);
820 }
821 }
822
823 /* initialize the previous counts for the virtual cntrs */
824 for_each_online_cpu(cpu)
825 for (i = 0; i < num_counters; ++i) {
826 per_cpu(pmc_values, cpu)[i] = reset_value[i];
827 }
828
829 return 0;
830 }
831
832
833 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)834 static int cell_reg_setup(struct op_counter_config *ctr,
835 struct op_system_config *sys, int num_ctrs)
836 {
837 int ret=0;
838 spu_cycle_reset = 0;
839
840 /* initialize the spu_arr_trace value, will be reset if
841 * doing spu event profiling.
842 */
843 pm_regs.group_control = 0;
844 pm_regs.debug_bus_control = 0;
845 pm_regs.pm_cntrl.stop_at_max = 1;
846 pm_regs.pm_cntrl.trace_mode = 0;
847 pm_regs.pm_cntrl.freeze = 1;
848 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
849 pm_regs.pm_cntrl.spu_addr_trace = 0;
850
851 /*
852 * For all events except PPU CYCLEs, each node will need to make
853 * the rtas cbe-perftools call to setup and reset the debug bus.
854 * Make the token lookup call once and store it in the global
855 * variable pm_rtas_token.
856 */
857 pm_rtas_token = rtas_token("ibm,cbe-perftools");
858
859 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
860 printk(KERN_ERR
861 "%s: rtas token ibm,cbe-perftools unknown\n",
862 __func__);
863 return -EIO;
864 }
865
866 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
867 profiling_mode = SPU_PROFILING_CYCLES;
868 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
869 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
870 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
871 profiling_mode = SPU_PROFILING_EVENTS;
872 spu_cycle_reset = ctr[0].count;
873
874 /* for SPU event profiling, need to setup the
875 * pm_signal array with the events to route the
876 * SPU PC before making the FW call. Note, only
877 * one SPU event for profiling can be specified
878 * at a time.
879 */
880 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
881 } else {
882 profiling_mode = PPU_PROFILING;
883 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
884 }
885
886 return ret;
887 }
888
889
890
891 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)892 static int cell_cpu_setup(struct op_counter_config *cntr)
893 {
894 u32 cpu = smp_processor_id();
895 u32 num_enabled = 0;
896 int i;
897 int ret;
898
899 /* Cycle based SPU profiling does not use the performance
900 * counters. The trace array is configured to collect
901 * the data.
902 */
903 if (profiling_mode == SPU_PROFILING_CYCLES)
904 return 0;
905
906 /* There is one performance monitor per processor chip (i.e. node),
907 * so we only need to perform this function once per node.
908 */
909 if (cbe_get_hw_thread_id(cpu))
910 return 0;
911
912 /* Stop all counters */
913 cbe_disable_pm(cpu);
914 cbe_disable_pm_interrupts(cpu);
915
916 cbe_write_pm(cpu, pm_start_stop, 0);
917 cbe_write_pm(cpu, group_control, pm_regs.group_control);
918 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
919 write_pm_cntrl(cpu);
920
921 for (i = 0; i < num_counters; ++i) {
922 if (ctr_enabled & (1 << i)) {
923 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
924 num_enabled++;
925 }
926 }
927
928 /*
929 * The pm_rtas_activate_signals will return -EIO if the FW
930 * call failed.
931 */
932 if (profiling_mode == SPU_PROFILING_EVENTS) {
933 /* For SPU event profiling also need to setup the
934 * pm interval timer
935 */
936 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
937 num_enabled+2);
938 /* store PC from debug bus to Trace buffer as often
939 * as possible (every 10 cycles)
940 */
941 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
942 return ret;
943 } else
944 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
945 num_enabled);
946 }
947
948 #define ENTRIES 303
949 #define MAXLFSR 0xFFFFFF
950
951 /* precomputed table of 24 bit LFSR values */
952 static int initial_lfsr[] = {
953 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
954 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
955 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
956 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
957 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
958 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
959 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
960 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
961 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
962 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
963 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
964 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
965 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
966 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
967 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
968 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
969 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
970 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
971 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
972 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
973 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
974 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
975 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
976 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
977 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
978 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
979 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
980 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
981 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
982 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
983 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
984 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
985 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
986 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
987 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
988 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
989 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
990 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
991 };
992
993 /*
994 * The hardware uses an LFSR counting sequence to determine when to capture
995 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
996 * where each number occurs once in the sequence but the sequence is not in
997 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
998 * the last value in the sequence. Hence the user specified value N
999 * corresponds to the LFSR number that is N from the end of the sequence.
1000 *
1001 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1002 * LFSR sequence is broken into four ranges. The spacing of the precomputed
1003 * values is adjusted in each range so the error between the user specified
1004 * number (N) of events between samples and the actual number of events based
1005 * on the precomputed value will be les then about 6.2%. Note, if the user
1006 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1007 * This is to prevent the loss of samples because the trace buffer is full.
1008 *
1009 * User specified N Step between Index in
1010 * precomputed values precomputed
1011 * table
1012 * 0 to 2^16-1 ---- 0
1013 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1014 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1015 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1016 *
1017 *
1018 * For example, the LFSR values in the second range are computed for 2^16,
1019 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1020 * 1, 2,..., 127, 128.
1021 *
1022 * The 24 bit LFSR value for the nth number in the sequence can be
1023 * calculated using the following code:
1024 *
1025 * #define size 24
1026 * int calculate_lfsr(int n)
1027 * {
1028 * int i;
1029 * unsigned int newlfsr0;
1030 * unsigned int lfsr = 0xFFFFFF;
1031 * unsigned int howmany = n;
1032 *
1033 * for (i = 2; i < howmany + 2; i++) {
1034 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1035 * ((lfsr >> (size - 1 - 1)) & 1) ^
1036 * (((lfsr >> (size - 1 - 6)) & 1) ^
1037 * ((lfsr >> (size - 1 - 23)) & 1)));
1038 *
1039 * lfsr >>= 1;
1040 * lfsr = lfsr | (newlfsr0 << (size - 1));
1041 * }
1042 * return lfsr;
1043 * }
1044 */
1045
1046 #define V2_16 (0x1 << 16)
1047 #define V2_19 (0x1 << 19)
1048 #define V2_22 (0x1 << 22)
1049
calculate_lfsr(int n)1050 static int calculate_lfsr(int n)
1051 {
1052 /*
1053 * The ranges and steps are in powers of 2 so the calculations
1054 * can be done using shifts rather then divide.
1055 */
1056 int index;
1057
1058 if ((n >> 16) == 0)
1059 index = 0;
1060 else if (((n - V2_16) >> 19) == 0)
1061 index = ((n - V2_16) >> 12) + 1;
1062 else if (((n - V2_16 - V2_19) >> 22) == 0)
1063 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1064 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1065 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1066 else
1067 index = ENTRIES-1;
1068
1069 /* make sure index is valid */
1070 if ((index >= ENTRIES) || (index < 0))
1071 index = ENTRIES-1;
1072
1073 return initial_lfsr[index];
1074 }
1075
pm_rtas_activate_spu_profiling(u32 node)1076 static int pm_rtas_activate_spu_profiling(u32 node)
1077 {
1078 int ret, i;
1079 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1080
1081 /*
1082 * Set up the rtas call to configure the debug bus to
1083 * route the SPU PCs. Setup the pm_signal for each SPU
1084 */
1085 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1086 pm_signal_local[i].cpu = node;
1087 pm_signal_local[i].signal_group = 41;
1088 /* spu i on word (i/2) */
1089 pm_signal_local[i].bus_word = 1 << i / 2;
1090 /* spu i */
1091 pm_signal_local[i].sub_unit = i;
1092 pm_signal_local[i].bit = 63;
1093 }
1094
1095 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1096 PASSTHRU_ENABLE, pm_signal_local,
1097 (ARRAY_SIZE(pm_signal_local)
1098 * sizeof(struct pm_signal)));
1099
1100 if (unlikely(ret)) {
1101 printk(KERN_WARNING "%s: rtas returned: %d\n",
1102 __func__, ret);
1103 return -EIO;
1104 }
1105
1106 return 0;
1107 }
1108
1109 #ifdef CONFIG_CPU_FREQ
1110 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1111 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1112 {
1113 int ret = 0;
1114 struct cpufreq_freqs *frq = data;
1115 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1116 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1117 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1118 return ret;
1119 }
1120
1121 static struct notifier_block cpu_freq_notifier_block = {
1122 .notifier_call = oprof_cpufreq_notify
1123 };
1124 #endif
1125
1126 /*
1127 * Note the generic OProfile stop calls do not support returning
1128 * an error on stop. Hence, will not return an error if the FW
1129 * calls fail on stop. Failure to reset the debug bus is not an issue.
1130 * Failure to disable the SPU profiling is not an issue. The FW calls
1131 * to enable the performance counters and debug bus will work even if
1132 * the hardware was not cleanly reset.
1133 */
cell_global_stop_spu_cycles(void)1134 static void cell_global_stop_spu_cycles(void)
1135 {
1136 int subfunc, rtn_value;
1137 unsigned int lfsr_value;
1138 int cpu;
1139
1140 oprofile_running = 0;
1141 smp_wmb();
1142
1143 #ifdef CONFIG_CPU_FREQ
1144 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1145 CPUFREQ_TRANSITION_NOTIFIER);
1146 #endif
1147
1148 for_each_online_cpu(cpu) {
1149 if (cbe_get_hw_thread_id(cpu))
1150 continue;
1151
1152 subfunc = 3; /*
1153 * 2 - activate SPU tracing,
1154 * 3 - deactivate
1155 */
1156 lfsr_value = 0x8f100000;
1157
1158 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1159 subfunc, cbe_cpu_to_node(cpu),
1160 lfsr_value);
1161
1162 if (unlikely(rtn_value != 0)) {
1163 printk(KERN_ERR
1164 "%s: rtas call ibm,cbe-spu-perftools " \
1165 "failed, return = %d\n",
1166 __func__, rtn_value);
1167 }
1168
1169 /* Deactivate the signals */
1170 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1171 }
1172
1173 stop_spu_profiling_cycles();
1174 }
1175
cell_global_stop_spu_events(void)1176 static void cell_global_stop_spu_events(void)
1177 {
1178 int cpu;
1179 oprofile_running = 0;
1180
1181 stop_spu_profiling_events();
1182 smp_wmb();
1183
1184 for_each_online_cpu(cpu) {
1185 if (cbe_get_hw_thread_id(cpu))
1186 continue;
1187
1188 cbe_sync_irq(cbe_cpu_to_node(cpu));
1189 /* Stop the counters */
1190 cbe_disable_pm(cpu);
1191 cbe_write_pm07_control(cpu, 0, 0);
1192
1193 /* Deactivate the signals */
1194 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1195
1196 /* Deactivate interrupts */
1197 cbe_disable_pm_interrupts(cpu);
1198 }
1199 del_timer_sync(&timer_spu_event_swap);
1200 }
1201
cell_global_stop_ppu(void)1202 static void cell_global_stop_ppu(void)
1203 {
1204 int cpu;
1205
1206 /*
1207 * This routine will be called once for the system.
1208 * There is one performance monitor per node, so we
1209 * only need to perform this function once per node.
1210 */
1211 del_timer_sync(&timer_virt_cntr);
1212 oprofile_running = 0;
1213 smp_wmb();
1214
1215 for_each_online_cpu(cpu) {
1216 if (cbe_get_hw_thread_id(cpu))
1217 continue;
1218
1219 cbe_sync_irq(cbe_cpu_to_node(cpu));
1220 /* Stop the counters */
1221 cbe_disable_pm(cpu);
1222
1223 /* Deactivate the signals */
1224 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1225
1226 /* Deactivate interrupts */
1227 cbe_disable_pm_interrupts(cpu);
1228 }
1229 }
1230
cell_global_stop(void)1231 static void cell_global_stop(void)
1232 {
1233 if (profiling_mode == PPU_PROFILING)
1234 cell_global_stop_ppu();
1235 else if (profiling_mode == SPU_PROFILING_EVENTS)
1236 cell_global_stop_spu_events();
1237 else
1238 cell_global_stop_spu_cycles();
1239 }
1240
cell_global_start_spu_cycles(struct op_counter_config * ctr)1241 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1242 {
1243 int subfunc;
1244 unsigned int lfsr_value;
1245 int cpu;
1246 int ret;
1247 int rtas_error;
1248 unsigned int cpu_khzfreq = 0;
1249
1250 /* The SPU profiling uses time-based profiling based on
1251 * cpu frequency, so if configured with the CPU_FREQ
1252 * option, we should detect frequency changes and react
1253 * accordingly.
1254 */
1255 #ifdef CONFIG_CPU_FREQ
1256 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1257 CPUFREQ_TRANSITION_NOTIFIER);
1258 if (ret < 0)
1259 /* this is not a fatal error */
1260 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1261 ret);
1262
1263 else
1264 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1265 #endif
1266
1267 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1268
1269 for_each_online_cpu(cpu) {
1270 if (cbe_get_hw_thread_id(cpu))
1271 continue;
1272
1273 /*
1274 * Setup SPU cycle-based profiling.
1275 * Set perf_mon_control bit 0 to a zero before
1276 * enabling spu collection hardware.
1277 */
1278 cbe_write_pm(cpu, pm_control, 0);
1279
1280 if (spu_cycle_reset > MAX_SPU_COUNT)
1281 /* use largest possible value */
1282 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1283 else
1284 lfsr_value = calculate_lfsr(spu_cycle_reset);
1285
1286 /* must use a non zero value. Zero disables data collection. */
1287 if (lfsr_value == 0)
1288 lfsr_value = calculate_lfsr(1);
1289
1290 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1291 * register location
1292 */
1293
1294 /* debug bus setup */
1295 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1296
1297 if (unlikely(ret)) {
1298 rtas_error = ret;
1299 goto out;
1300 }
1301
1302
1303 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1304
1305 /* start profiling */
1306 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1307 cbe_cpu_to_node(cpu), lfsr_value);
1308
1309 if (unlikely(ret != 0)) {
1310 printk(KERN_ERR
1311 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1312 "return = %d\n", __func__, ret);
1313 rtas_error = -EIO;
1314 goto out;
1315 }
1316 }
1317
1318 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1319 if (rtas_error)
1320 goto out_stop;
1321
1322 oprofile_running = 1;
1323 return 0;
1324
1325 out_stop:
1326 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
1327 out:
1328 return rtas_error;
1329 }
1330
cell_global_start_spu_events(struct op_counter_config * ctr)1331 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1332 {
1333 int cpu;
1334 u32 interrupt_mask = 0;
1335 int rtn = 0;
1336
1337 hdw_thread = 0;
1338
1339 /* spu event profiling, uses the performance counters to generate
1340 * an interrupt. The hardware is setup to store the SPU program
1341 * counter into the trace array. The occurrence mode is used to
1342 * enable storing data to the trace buffer. The bits are set
1343 * to send/store the SPU address in the trace buffer. The debug
1344 * bus must be setup to route the SPU program counter onto the
1345 * debug bus. The occurrence data in the trace buffer is not used.
1346 */
1347
1348 /* This routine gets called once for the system.
1349 * There is one performance monitor per node, so we
1350 * only need to perform this function once per node.
1351 */
1352
1353 for_each_online_cpu(cpu) {
1354 if (cbe_get_hw_thread_id(cpu))
1355 continue;
1356
1357 /*
1358 * Setup SPU event-based profiling.
1359 * Set perf_mon_control bit 0 to a zero before
1360 * enabling spu collection hardware.
1361 *
1362 * Only support one SPU event on one SPU per node.
1363 */
1364 if (ctr_enabled & 1) {
1365 cbe_write_ctr(cpu, 0, reset_value[0]);
1366 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1367 interrupt_mask |=
1368 CBE_PM_CTR_OVERFLOW_INTR(0);
1369 } else {
1370 /* Disable counter */
1371 cbe_write_pm07_control(cpu, 0, 0);
1372 }
1373
1374 cbe_get_and_clear_pm_interrupts(cpu);
1375 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1376 cbe_enable_pm(cpu);
1377
1378 /* clear the trace buffer */
1379 cbe_write_pm(cpu, trace_address, 0);
1380 }
1381
1382 /* Start the timer to time slice collecting the event profile
1383 * on each of the SPUs. Note, can collect profile on one SPU
1384 * per node at a time.
1385 */
1386 start_spu_event_swap();
1387 start_spu_profiling_events();
1388 oprofile_running = 1;
1389 smp_wmb();
1390
1391 return rtn;
1392 }
1393
cell_global_start_ppu(struct op_counter_config * ctr)1394 static int cell_global_start_ppu(struct op_counter_config *ctr)
1395 {
1396 u32 cpu, i;
1397 u32 interrupt_mask = 0;
1398
1399 /* This routine gets called once for the system.
1400 * There is one performance monitor per node, so we
1401 * only need to perform this function once per node.
1402 */
1403 for_each_online_cpu(cpu) {
1404 if (cbe_get_hw_thread_id(cpu))
1405 continue;
1406
1407 interrupt_mask = 0;
1408
1409 for (i = 0; i < num_counters; ++i) {
1410 if (ctr_enabled & (1 << i)) {
1411 cbe_write_ctr(cpu, i, reset_value[i]);
1412 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1413 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1414 } else {
1415 /* Disable counter */
1416 cbe_write_pm07_control(cpu, i, 0);
1417 }
1418 }
1419
1420 cbe_get_and_clear_pm_interrupts(cpu);
1421 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1422 cbe_enable_pm(cpu);
1423 }
1424
1425 virt_cntr_inter_mask = interrupt_mask;
1426 oprofile_running = 1;
1427 smp_wmb();
1428
1429 /*
1430 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1431 * executed which manipulates the PMU. We start the "virtual counter"
1432 * here so that we do not need to synchronize access to the PMU in
1433 * the above for-loop.
1434 */
1435 start_virt_cntrs();
1436
1437 return 0;
1438 }
1439
cell_global_start(struct op_counter_config * ctr)1440 static int cell_global_start(struct op_counter_config *ctr)
1441 {
1442 if (profiling_mode == SPU_PROFILING_CYCLES)
1443 return cell_global_start_spu_cycles(ctr);
1444 else if (profiling_mode == SPU_PROFILING_EVENTS)
1445 return cell_global_start_spu_events(ctr);
1446 else
1447 return cell_global_start_ppu(ctr);
1448 }
1449
1450
1451 /* The SPU interrupt handler
1452 *
1453 * SPU event profiling works as follows:
1454 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1455 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1456 * pm_signal[2] contain the necessary events to route the SPU program
1457 * counter for the selected SPU onto the debug bus using words 2 and 3.
1458 * The pm_interval register is setup to write the SPU PC value into the
1459 * trace buffer at the maximum rate possible. The trace buffer is configured
1460 * to store the PCs, wrapping when it is full. The performance counter is
1461 * initialized to the max hardware count minus the number of events, N, between
1462 * samples. Once the N events have occurred, a HW counter overflow occurs
1463 * causing the generation of a HW counter interrupt which also stops the
1464 * writing of the SPU PC values to the trace buffer. Hence the last PC
1465 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1466 * we have to read from the beginning of the trace buffer to get to the
1467 * last value written. We just hope the PPU has nothing better to do then
1468 * service this interrupt. The PC for the specific SPU being profiled is
1469 * extracted from the trace buffer processed and stored. The trace buffer
1470 * is cleared, interrupts are cleared, the counter is reset to max - N.
1471 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1472 * to switch to the next physical SPU in the node to profile in round robbin
1473 * order. This way data is collected for all SPUs on the node. It does mean
1474 * that we need to use a relatively small value of N to ensure enough samples
1475 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1476 * It may also be necessary to use a longer sample collection period.
1477 */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1478 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1479 struct op_counter_config *ctr)
1480 {
1481 u32 cpu, cpu_tmp;
1482 u64 trace_entry;
1483 u32 interrupt_mask;
1484 u64 trace_buffer[2];
1485 u64 last_trace_buffer;
1486 u32 sample;
1487 u32 trace_addr;
1488 unsigned long sample_array_lock_flags;
1489 int spu_num;
1490 unsigned long flags;
1491
1492 /* Make sure spu event interrupt handler and spu event swap
1493 * don't access the counters simultaneously.
1494 */
1495 cpu = smp_processor_id();
1496 spin_lock_irqsave(&cntr_lock, flags);
1497
1498 cpu_tmp = cpu;
1499 cbe_disable_pm(cpu);
1500
1501 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1502
1503 sample = 0xABCDEF;
1504 trace_entry = 0xfedcba;
1505 last_trace_buffer = 0xdeadbeaf;
1506
1507 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1508 /* disable writes to trace buff */
1509 cbe_write_pm(cpu, pm_interval, 0);
1510
1511 /* only have one perf cntr being used, cntr 0 */
1512 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1513 && ctr[0].enabled)
1514 /* The SPU PC values will be read
1515 * from the trace buffer, reset counter
1516 */
1517
1518 cbe_write_ctr(cpu, 0, reset_value[0]);
1519
1520 trace_addr = cbe_read_pm(cpu, trace_address);
1521
1522 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1523 /* There is data in the trace buffer to process
1524 * Read the buffer until you get to the last
1525 * entry. This is the value we want.
1526 */
1527
1528 cbe_read_trace_buffer(cpu, trace_buffer);
1529 trace_addr = cbe_read_pm(cpu, trace_address);
1530 }
1531
1532 /* SPU Address 16 bit count format for 128 bit
1533 * HW trace buffer is used for the SPU PC storage
1534 * HDR bits 0:15
1535 * SPU Addr 0 bits 16:31
1536 * SPU Addr 1 bits 32:47
1537 * unused bits 48:127
1538 *
1539 * HDR: bit4 = 1 SPU Address 0 valid
1540 * HDR: bit5 = 1 SPU Address 1 valid
1541 * - unfortunately, the valid bits don't seem to work
1542 *
1543 * Note trace_buffer[0] holds bits 0:63 of the HW
1544 * trace buffer, trace_buffer[1] holds bits 64:127
1545 */
1546
1547 trace_entry = trace_buffer[0]
1548 & 0x00000000FFFF0000;
1549
1550 /* only top 16 of the 18 bit SPU PC address
1551 * is stored in trace buffer, hence shift right
1552 * by 16 -2 bits */
1553 sample = trace_entry >> 14;
1554 last_trace_buffer = trace_buffer[0];
1555
1556 spu_num = spu_evnt_phys_spu_indx
1557 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1558
1559 /* make sure only one process at a time is calling
1560 * spu_sync_buffer()
1561 */
1562 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1563 sample_array_lock_flags);
1564 spu_sync_buffer(spu_num, &sample, 1);
1565 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1566 sample_array_lock_flags);
1567
1568 smp_wmb(); /* insure spu event buffer updates are written
1569 * don't want events intermingled... */
1570
1571 /* The counters were frozen by the interrupt.
1572 * Reenable the interrupt and restart the counters.
1573 */
1574 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1575 cbe_enable_pm_interrupts(cpu, hdw_thread,
1576 virt_cntr_inter_mask);
1577
1578 /* clear the trace buffer, re-enable writes to trace buff */
1579 cbe_write_pm(cpu, trace_address, 0);
1580 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1581
1582 /* The writes to the various performance counters only writes
1583 * to a latch. The new values (interrupt setting bits, reset
1584 * counter value etc.) are not copied to the actual registers
1585 * until the performance monitor is enabled. In order to get
1586 * this to work as desired, the performance monitor needs to
1587 * be disabled while writing to the latches. This is a
1588 * HW design issue.
1589 */
1590 write_pm_cntrl(cpu);
1591 cbe_enable_pm(cpu);
1592 }
1593 spin_unlock_irqrestore(&cntr_lock, flags);
1594 }
1595
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1596 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1597 struct op_counter_config *ctr)
1598 {
1599 u32 cpu;
1600 u64 pc;
1601 int is_kernel;
1602 unsigned long flags = 0;
1603 u32 interrupt_mask;
1604 int i;
1605
1606 cpu = smp_processor_id();
1607
1608 /*
1609 * Need to make sure the interrupt handler and the virt counter
1610 * routine are not running at the same time. See the
1611 * cell_virtual_cntr() routine for additional comments.
1612 */
1613 spin_lock_irqsave(&cntr_lock, flags);
1614
1615 /*
1616 * Need to disable and reenable the performance counters
1617 * to get the desired behavior from the hardware. This
1618 * is hardware specific.
1619 */
1620
1621 cbe_disable_pm(cpu);
1622
1623 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1624
1625 /*
1626 * If the interrupt mask has been cleared, then the virt cntr
1627 * has cleared the interrupt. When the thread that generated
1628 * the interrupt is restored, the data count will be restored to
1629 * 0xffffff0 to cause the interrupt to be regenerated.
1630 */
1631
1632 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1633 pc = regs->nip;
1634 is_kernel = is_kernel_addr(pc);
1635
1636 for (i = 0; i < num_counters; ++i) {
1637 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1638 && ctr[i].enabled) {
1639 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1640 cbe_write_ctr(cpu, i, reset_value[i]);
1641 }
1642 }
1643
1644 /*
1645 * The counters were frozen by the interrupt.
1646 * Reenable the interrupt and restart the counters.
1647 * If there was a race between the interrupt handler and
1648 * the virtual counter routine. The virtual counter
1649 * routine may have cleared the interrupts. Hence must
1650 * use the virt_cntr_inter_mask to re-enable the interrupts.
1651 */
1652 cbe_enable_pm_interrupts(cpu, hdw_thread,
1653 virt_cntr_inter_mask);
1654
1655 /*
1656 * The writes to the various performance counters only writes
1657 * to a latch. The new values (interrupt setting bits, reset
1658 * counter value etc.) are not copied to the actual registers
1659 * until the performance monitor is enabled. In order to get
1660 * this to work as desired, the performance monitor needs to
1661 * be disabled while writing to the latches. This is a
1662 * HW design issue.
1663 */
1664 cbe_enable_pm(cpu);
1665 }
1666 spin_unlock_irqrestore(&cntr_lock, flags);
1667 }
1668
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1669 static void cell_handle_interrupt(struct pt_regs *regs,
1670 struct op_counter_config *ctr)
1671 {
1672 if (profiling_mode == PPU_PROFILING)
1673 cell_handle_interrupt_ppu(regs, ctr);
1674 else
1675 cell_handle_interrupt_spu(regs, ctr);
1676 }
1677
1678 /*
1679 * This function is called from the generic OProfile
1680 * driver. When profiling PPUs, we need to do the
1681 * generic sync start; otherwise, do spu_sync_start.
1682 */
cell_sync_start(void)1683 static int cell_sync_start(void)
1684 {
1685 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1686 (profiling_mode == SPU_PROFILING_EVENTS))
1687 return spu_sync_start();
1688 else
1689 return DO_GENERIC_SYNC;
1690 }
1691
cell_sync_stop(void)1692 static int cell_sync_stop(void)
1693 {
1694 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1695 (profiling_mode == SPU_PROFILING_EVENTS))
1696 return spu_sync_stop();
1697 else
1698 return 1;
1699 }
1700
1701 struct op_powerpc_model op_model_cell = {
1702 .reg_setup = cell_reg_setup,
1703 .cpu_setup = cell_cpu_setup,
1704 .global_start = cell_global_start,
1705 .global_stop = cell_global_stop,
1706 .sync_start = cell_sync_start,
1707 .sync_stop = cell_sync_stop,
1708 .handle_interrupt = cell_handle_interrupt,
1709 };
1710