• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
4  * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
5  * Copyright (C) 2009 Jaswinder Singh Rajput
6  * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
7  * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
8  * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
9  * Copyright (C) 2009 Google, Inc., Stephane Eranian
10  * Copyright 2014 Tilera Corporation. All Rights Reserved.
11  * Copyright (C) 2018 Andes Technology Corporation
12  *
13  * Perf_events support for RISC-V platforms.
14  *
15  * Since the spec. (as of now, Priv-Spec 1.10) does not provide enough
16  * functionality for perf event to fully work, this file provides
17  * the very basic framework only.
18  *
19  * For platform portings, please check Documentations/riscv/pmu.txt.
20  *
21  * The Copyright line includes x86 and tile ones.
22  */
23 
24 #include <linux/kprobes.h>
25 #include <linux/kernel.h>
26 #include <linux/kdebug.h>
27 #include <linux/mutex.h>
28 #include <linux/bitmap.h>
29 #include <linux/irq.h>
30 #include <linux/perf_event.h>
31 #include <linux/atomic.h>
32 #include <linux/of.h>
33 #include <asm/perf_event.h>
34 
35 static const struct riscv_pmu *riscv_pmu __read_mostly;
36 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
37 
38 /*
39  * Hardware & cache maps and their methods
40  */
41 
42 static const int riscv_hw_event_map[] = {
43 	[PERF_COUNT_HW_CPU_CYCLES]		= RISCV_PMU_CYCLE,
44 	[PERF_COUNT_HW_INSTRUCTIONS]		= RISCV_PMU_INSTRET,
45 	[PERF_COUNT_HW_CACHE_REFERENCES]	= RISCV_OP_UNSUPP,
46 	[PERF_COUNT_HW_CACHE_MISSES]		= RISCV_OP_UNSUPP,
47 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= RISCV_OP_UNSUPP,
48 	[PERF_COUNT_HW_BRANCH_MISSES]		= RISCV_OP_UNSUPP,
49 	[PERF_COUNT_HW_BUS_CYCLES]		= RISCV_OP_UNSUPP,
50 };
51 
52 #define C(x) PERF_COUNT_HW_CACHE_##x
53 static const int riscv_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
54 [PERF_COUNT_HW_CACHE_OP_MAX]
55 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
56 	[C(L1D)] = {
57 		[C(OP_READ)] = {
58 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
59 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
60 		},
61 		[C(OP_WRITE)] = {
62 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
63 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
64 		},
65 		[C(OP_PREFETCH)] = {
66 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
67 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
68 		},
69 	},
70 	[C(L1I)] = {
71 		[C(OP_READ)] = {
72 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
73 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
74 		},
75 		[C(OP_WRITE)] = {
76 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
77 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
78 		},
79 		[C(OP_PREFETCH)] = {
80 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
81 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
82 		},
83 	},
84 	[C(LL)] = {
85 		[C(OP_READ)] = {
86 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
87 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
88 		},
89 		[C(OP_WRITE)] = {
90 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
91 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
92 		},
93 		[C(OP_PREFETCH)] = {
94 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
95 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
96 		},
97 	},
98 	[C(DTLB)] = {
99 		[C(OP_READ)] = {
100 			[C(RESULT_ACCESS)] =  RISCV_OP_UNSUPP,
101 			[C(RESULT_MISS)] =  RISCV_OP_UNSUPP,
102 		},
103 		[C(OP_WRITE)] = {
104 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
105 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
106 		},
107 		[C(OP_PREFETCH)] = {
108 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
109 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
110 		},
111 	},
112 	[C(ITLB)] = {
113 		[C(OP_READ)] = {
114 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
115 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
116 		},
117 		[C(OP_WRITE)] = {
118 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
119 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
120 		},
121 		[C(OP_PREFETCH)] = {
122 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
123 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
124 		},
125 	},
126 	[C(BPU)] = {
127 		[C(OP_READ)] = {
128 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
129 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
130 		},
131 		[C(OP_WRITE)] = {
132 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
133 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
134 		},
135 		[C(OP_PREFETCH)] = {
136 			[C(RESULT_ACCESS)] = RISCV_OP_UNSUPP,
137 			[C(RESULT_MISS)] = RISCV_OP_UNSUPP,
138 		},
139 	},
140 };
141 
riscv_map_hw_event(u64 config)142 static int riscv_map_hw_event(u64 config)
143 {
144 	if (config >= riscv_pmu->max_events)
145 		return -EINVAL;
146 
147 	return riscv_pmu->hw_events[config];
148 }
149 
riscv_map_cache_decode(u64 config,unsigned int * type,unsigned int * op,unsigned int * result)150 int riscv_map_cache_decode(u64 config, unsigned int *type,
151 			   unsigned int *op, unsigned int *result)
152 {
153 	return -ENOENT;
154 }
155 
riscv_map_cache_event(u64 config)156 static int riscv_map_cache_event(u64 config)
157 {
158 	unsigned int type, op, result;
159 	int err = -ENOENT;
160 		int code;
161 
162 	err = riscv_map_cache_decode(config, &type, &op, &result);
163 	if (!riscv_pmu->cache_events || err)
164 		return err;
165 
166 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
167 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
168 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
169 		return -EINVAL;
170 
171 	code = (*riscv_pmu->cache_events)[type][op][result];
172 	if (code == RISCV_OP_UNSUPP)
173 		return -EINVAL;
174 
175 	return code;
176 }
177 
178 /*
179  * Low-level functions: reading/writing counters
180  */
181 
read_counter(int idx)182 static inline u64 read_counter(int idx)
183 {
184 	u64 val = 0;
185 
186 	switch (idx) {
187 	case RISCV_PMU_CYCLE:
188 		val = csr_read(CSR_CYCLE);
189 		break;
190 	case RISCV_PMU_INSTRET:
191 		val = csr_read(CSR_INSTRET);
192 		break;
193 	default:
194 		WARN_ON_ONCE(idx < 0 ||	idx > RISCV_MAX_COUNTERS);
195 		return -EINVAL;
196 	}
197 
198 	return val;
199 }
200 
write_counter(int idx,u64 value)201 static inline void write_counter(int idx, u64 value)
202 {
203 	/* currently not supported */
204 	WARN_ON_ONCE(1);
205 }
206 
207 /*
208  * pmu->read: read and update the counter
209  *
210  * Other architectures' implementation often have a xxx_perf_event_update
211  * routine, which can return counter values when called in the IRQ, but
212  * return void when being called by the pmu->read method.
213  */
riscv_pmu_read(struct perf_event * event)214 static void riscv_pmu_read(struct perf_event *event)
215 {
216 	struct hw_perf_event *hwc = &event->hw;
217 	u64 prev_raw_count, new_raw_count;
218 	u64 oldval;
219 	int idx = hwc->idx;
220 	u64 delta;
221 
222 	do {
223 		prev_raw_count = local64_read(&hwc->prev_count);
224 		new_raw_count = read_counter(idx);
225 
226 		oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
227 					 new_raw_count);
228 	} while (oldval != prev_raw_count);
229 
230 	/*
231 	 * delta is the value to update the counter we maintain in the kernel.
232 	 */
233 	delta = (new_raw_count - prev_raw_count) &
234 		((1ULL << riscv_pmu->counter_width) - 1);
235 	local64_add(delta, &event->count);
236 	/*
237 	 * Something like local64_sub(delta, &hwc->period_left) here is
238 	 * needed if there is an interrupt for perf.
239 	 */
240 }
241 
242 /*
243  * State transition functions:
244  *
245  * stop()/start() & add()/del()
246  */
247 
248 /*
249  * pmu->stop: stop the counter
250  */
riscv_pmu_stop(struct perf_event * event,int flags)251 static void riscv_pmu_stop(struct perf_event *event, int flags)
252 {
253 	struct hw_perf_event *hwc = &event->hw;
254 
255 	WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
256 	hwc->state |= PERF_HES_STOPPED;
257 
258 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
259 		riscv_pmu->pmu->read(event);
260 		hwc->state |= PERF_HES_UPTODATE;
261 	}
262 }
263 
264 /*
265  * pmu->start: start the event.
266  */
riscv_pmu_start(struct perf_event * event,int flags)267 static void riscv_pmu_start(struct perf_event *event, int flags)
268 {
269 	struct hw_perf_event *hwc = &event->hw;
270 
271 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
272 		return;
273 
274 	if (flags & PERF_EF_RELOAD) {
275 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
276 
277 		/*
278 		 * Set the counter to the period to the next interrupt here,
279 		 * if you have any.
280 		 */
281 	}
282 
283 	hwc->state = 0;
284 	perf_event_update_userpage(event);
285 
286 	/*
287 	 * Since we cannot write to counters, this serves as an initialization
288 	 * to the delta-mechanism in pmu->read(); otherwise, the delta would be
289 	 * wrong when pmu->read is called for the first time.
290 	 */
291 	local64_set(&hwc->prev_count, read_counter(hwc->idx));
292 }
293 
294 /*
295  * pmu->add: add the event to PMU.
296  */
riscv_pmu_add(struct perf_event * event,int flags)297 static int riscv_pmu_add(struct perf_event *event, int flags)
298 {
299 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
300 	struct hw_perf_event *hwc = &event->hw;
301 
302 	if (cpuc->n_events == riscv_pmu->num_counters)
303 		return -ENOSPC;
304 
305 	/*
306 	 * We don't have general conunters, so no binding-event-to-counter
307 	 * process here.
308 	 *
309 	 * Indexing using hwc->config generally not works, since config may
310 	 * contain extra information, but here the only info we have in
311 	 * hwc->config is the event index.
312 	 */
313 	hwc->idx = hwc->config;
314 	cpuc->events[hwc->idx] = event;
315 	cpuc->n_events++;
316 
317 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
318 
319 	if (flags & PERF_EF_START)
320 		riscv_pmu->pmu->start(event, PERF_EF_RELOAD);
321 
322 	return 0;
323 }
324 
325 /*
326  * pmu->del: delete the event from PMU.
327  */
riscv_pmu_del(struct perf_event * event,int flags)328 static void riscv_pmu_del(struct perf_event *event, int flags)
329 {
330 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
331 	struct hw_perf_event *hwc = &event->hw;
332 
333 	cpuc->events[hwc->idx] = NULL;
334 	cpuc->n_events--;
335 	riscv_pmu->pmu->stop(event, PERF_EF_UPDATE);
336 	perf_event_update_userpage(event);
337 }
338 
339 /*
340  * Interrupt: a skeletion for reference.
341  */
342 
343 static DEFINE_MUTEX(pmc_reserve_mutex);
344 
riscv_base_pmu_handle_irq(int irq_num,void * dev)345 irqreturn_t riscv_base_pmu_handle_irq(int irq_num, void *dev)
346 {
347 	return IRQ_NONE;
348 }
349 
reserve_pmc_hardware(void)350 static int reserve_pmc_hardware(void)
351 {
352 	int err = 0;
353 
354 	mutex_lock(&pmc_reserve_mutex);
355 	if (riscv_pmu->irq >= 0 && riscv_pmu->handle_irq) {
356 		err = request_irq(riscv_pmu->irq, riscv_pmu->handle_irq,
357 				  IRQF_PERCPU, "riscv-base-perf", NULL);
358 	}
359 	mutex_unlock(&pmc_reserve_mutex);
360 
361 	return err;
362 }
363 
release_pmc_hardware(void)364 void release_pmc_hardware(void)
365 {
366 	mutex_lock(&pmc_reserve_mutex);
367 	if (riscv_pmu->irq >= 0)
368 		free_irq(riscv_pmu->irq, NULL);
369 	mutex_unlock(&pmc_reserve_mutex);
370 }
371 
372 /*
373  * Event Initialization/Finalization
374  */
375 
376 static atomic_t riscv_active_events = ATOMIC_INIT(0);
377 
riscv_event_destroy(struct perf_event * event)378 static void riscv_event_destroy(struct perf_event *event)
379 {
380 	if (atomic_dec_return(&riscv_active_events) == 0)
381 		release_pmc_hardware();
382 }
383 
riscv_event_init(struct perf_event * event)384 static int riscv_event_init(struct perf_event *event)
385 {
386 	struct perf_event_attr *attr = &event->attr;
387 	struct hw_perf_event *hwc = &event->hw;
388 	int err;
389 	int code;
390 
391 	if (atomic_inc_return(&riscv_active_events) == 1) {
392 		err = reserve_pmc_hardware();
393 
394 		if (err) {
395 			pr_warn("PMC hardware not available\n");
396 			atomic_dec(&riscv_active_events);
397 			return -EBUSY;
398 		}
399 	}
400 
401 	switch (event->attr.type) {
402 	case PERF_TYPE_HARDWARE:
403 		code = riscv_pmu->map_hw_event(attr->config);
404 		break;
405 	case PERF_TYPE_HW_CACHE:
406 		code = riscv_pmu->map_cache_event(attr->config);
407 		break;
408 	case PERF_TYPE_RAW:
409 		return -EOPNOTSUPP;
410 	default:
411 		return -ENOENT;
412 	}
413 
414 	event->destroy = riscv_event_destroy;
415 	if (code < 0) {
416 		event->destroy(event);
417 		return code;
418 	}
419 
420 	/*
421 	 * idx is set to -1 because the index of a general event should not be
422 	 * decided until binding to some counter in pmu->add().
423 	 *
424 	 * But since we don't have such support, later in pmu->add(), we just
425 	 * use hwc->config as the index instead.
426 	 */
427 	hwc->config = code;
428 	hwc->idx = -1;
429 
430 	return 0;
431 }
432 
433 /*
434  * Initialization
435  */
436 
437 static struct pmu min_pmu = {
438 	.name		= "riscv-base",
439 	.event_init	= riscv_event_init,
440 	.add		= riscv_pmu_add,
441 	.del		= riscv_pmu_del,
442 	.start		= riscv_pmu_start,
443 	.stop		= riscv_pmu_stop,
444 	.read		= riscv_pmu_read,
445 };
446 
447 static const struct riscv_pmu riscv_base_pmu = {
448 	.pmu = &min_pmu,
449 	.max_events = ARRAY_SIZE(riscv_hw_event_map),
450 	.map_hw_event = riscv_map_hw_event,
451 	.hw_events = riscv_hw_event_map,
452 	.map_cache_event = riscv_map_cache_event,
453 	.cache_events = &riscv_cache_event_map,
454 	.counter_width = 63,
455 	.num_counters = RISCV_BASE_COUNTERS + 0,
456 	.handle_irq = &riscv_base_pmu_handle_irq,
457 
458 	/* This means this PMU has no IRQ. */
459 	.irq = -1,
460 };
461 
462 static const struct of_device_id riscv_pmu_of_ids[] = {
463 	{.compatible = "riscv,base-pmu",	.data = &riscv_base_pmu},
464 	{ /* sentinel value */ }
465 };
466 
init_hw_perf_events(void)467 int __init init_hw_perf_events(void)
468 {
469 	struct device_node *node = of_find_node_by_type(NULL, "pmu");
470 	const struct of_device_id *of_id;
471 
472 	riscv_pmu = &riscv_base_pmu;
473 
474 	if (node) {
475 		of_id = of_match_node(riscv_pmu_of_ids, node);
476 
477 		if (of_id)
478 			riscv_pmu = of_id->data;
479 		of_node_put(node);
480 	}
481 
482 	perf_pmu_register(riscv_pmu->pmu, "cpu", PERF_TYPE_RAW);
483 	return 0;
484 }
485 arch_initcall(init_hw_perf_events);
486