• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NUMA support for s390
4  *
5  * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
6  * without using real topology information about the physical memory of the
7  * machine.
8  *
9  * It distributes the available CPUs to nodes while respecting the original
10  * machine topology information. This is done by trying to avoid to separate
11  * CPUs which reside on the same book or even on the same MC.
12  *
13  * Because the current Linux scheduler code requires a stable cpu to node
14  * mapping, cores are pinned to nodes when the first CPU thread is set online.
15  *
16  * Copyright IBM Corp. 2015
17  */
18 
19 #define KMSG_COMPONENT "numa_emu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/cpumask.h>
24 #include <linux/memblock.h>
25 #include <linux/node.h>
26 #include <linux/memory.h>
27 #include <linux/slab.h>
28 #include <asm/smp.h>
29 #include <asm/topology.h>
30 #include "numa_mode.h"
31 #include "toptree.h"
32 
33 /* Distances between the different system components */
34 #define DIST_EMPTY	0
35 #define DIST_CORE	1
36 #define DIST_MC		2
37 #define DIST_BOOK	3
38 #define DIST_DRAWER	4
39 #define DIST_MAX	5
40 
41 /* Node distance reported to common code */
42 #define EMU_NODE_DIST	10
43 
44 /* Node ID for free (not yet pinned) cores */
45 #define NODE_ID_FREE	-1
46 
47 /* Different levels of toptree */
48 enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
49 
50 /* The two toptree IDs */
51 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
52 
53 /* Number of NUMA nodes */
54 static int emu_nodes = 1;
55 /* NUMA stripe size */
56 static unsigned long emu_size;
57 
58 /*
59  * Node to core pinning information updates are protected by
60  * "sched_domains_mutex".
61  */
62 static struct {
63 	s32 to_node_id[CONFIG_NR_CPUS];	/* Pinned core to node mapping */
64 	int total;			/* Total number of pinned cores */
65 	int per_node_target;		/* Cores per node without extra cores */
66 	int per_node[MAX_NUMNODES];	/* Number of cores pinned to node */
67 } *emu_cores;
68 
69 /*
70  * Pin a core to a node
71  */
pin_core_to_node(int core_id,int node_id)72 static void pin_core_to_node(int core_id, int node_id)
73 {
74 	if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
75 		emu_cores->per_node[node_id]++;
76 		emu_cores->to_node_id[core_id] = node_id;
77 		emu_cores->total++;
78 	} else {
79 		WARN_ON(emu_cores->to_node_id[core_id] != node_id);
80 	}
81 }
82 
83 /*
84  * Number of pinned cores of a node
85  */
cores_pinned(struct toptree * node)86 static int cores_pinned(struct toptree *node)
87 {
88 	return emu_cores->per_node[node->id];
89 }
90 
91 /*
92  * ID of the node where the core is pinned (or NODE_ID_FREE)
93  */
core_pinned_to_node_id(struct toptree * core)94 static int core_pinned_to_node_id(struct toptree *core)
95 {
96 	return emu_cores->to_node_id[core->id];
97 }
98 
99 /*
100  * Number of cores in the tree that are not yet pinned
101  */
cores_free(struct toptree * tree)102 static int cores_free(struct toptree *tree)
103 {
104 	struct toptree *core;
105 	int count = 0;
106 
107 	toptree_for_each(core, tree, CORE) {
108 		if (core_pinned_to_node_id(core) == NODE_ID_FREE)
109 			count++;
110 	}
111 	return count;
112 }
113 
114 /*
115  * Return node of core
116  */
core_node(struct toptree * core)117 static struct toptree *core_node(struct toptree *core)
118 {
119 	return core->parent->parent->parent->parent;
120 }
121 
122 /*
123  * Return drawer of core
124  */
core_drawer(struct toptree * core)125 static struct toptree *core_drawer(struct toptree *core)
126 {
127 	return core->parent->parent->parent;
128 }
129 
130 /*
131  * Return book of core
132  */
core_book(struct toptree * core)133 static struct toptree *core_book(struct toptree *core)
134 {
135 	return core->parent->parent;
136 }
137 
138 /*
139  * Return mc of core
140  */
core_mc(struct toptree * core)141 static struct toptree *core_mc(struct toptree *core)
142 {
143 	return core->parent;
144 }
145 
146 /*
147  * Distance between two cores
148  */
dist_core_to_core(struct toptree * core1,struct toptree * core2)149 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
150 {
151 	if (core_drawer(core1)->id != core_drawer(core2)->id)
152 		return DIST_DRAWER;
153 	if (core_book(core1)->id != core_book(core2)->id)
154 		return DIST_BOOK;
155 	if (core_mc(core1)->id != core_mc(core2)->id)
156 		return DIST_MC;
157 	/* Same core or sibling on same MC */
158 	return DIST_CORE;
159 }
160 
161 /*
162  * Distance of a node to a core
163  */
dist_node_to_core(struct toptree * node,struct toptree * core)164 static int dist_node_to_core(struct toptree *node, struct toptree *core)
165 {
166 	struct toptree *core_node;
167 	int dist_min = DIST_MAX;
168 
169 	toptree_for_each(core_node, node, CORE)
170 		dist_min = min(dist_min, dist_core_to_core(core_node, core));
171 	return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
172 }
173 
174 /*
175  * Unify will delete empty nodes, therefore recreate nodes.
176  */
toptree_unify_tree(struct toptree * tree)177 static void toptree_unify_tree(struct toptree *tree)
178 {
179 	int nid;
180 
181 	toptree_unify(tree);
182 	for (nid = 0; nid < emu_nodes; nid++)
183 		toptree_get_child(tree, nid);
184 }
185 
186 /*
187  * Find the best/nearest node for a given core and ensure that no node
188  * gets more than "emu_cores->per_node_target + extra" cores.
189  */
node_for_core(struct toptree * numa,struct toptree * core,int extra)190 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
191 				     int extra)
192 {
193 	struct toptree *node, *node_best = NULL;
194 	int dist_cur, dist_best, cores_target;
195 
196 	cores_target = emu_cores->per_node_target + extra;
197 	dist_best = DIST_MAX;
198 	node_best = NULL;
199 	toptree_for_each(node, numa, NODE) {
200 		/* Already pinned cores must use their nodes */
201 		if (core_pinned_to_node_id(core) == node->id) {
202 			node_best = node;
203 			break;
204 		}
205 		/* Skip nodes that already have enough cores */
206 		if (cores_pinned(node) >= cores_target)
207 			continue;
208 		dist_cur = dist_node_to_core(node, core);
209 		if (dist_cur < dist_best) {
210 			dist_best = dist_cur;
211 			node_best = node;
212 		}
213 	}
214 	return node_best;
215 }
216 
217 /*
218  * Find the best node for each core with respect to "extra" core count
219  */
toptree_to_numa_single(struct toptree * numa,struct toptree * phys,int extra)220 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
221 				   int extra)
222 {
223 	struct toptree *node, *core, *tmp;
224 
225 	toptree_for_each_safe(core, tmp, phys, CORE) {
226 		node = node_for_core(numa, core, extra);
227 		if (!node)
228 			return;
229 		toptree_move(core, node);
230 		pin_core_to_node(core->id, node->id);
231 	}
232 }
233 
234 /*
235  * Move structures of given level to specified NUMA node
236  */
move_level_to_numa_node(struct toptree * node,struct toptree * phys,enum toptree_level level,bool perfect)237 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
238 				    enum toptree_level level, bool perfect)
239 {
240 	int cores_free, cores_target = emu_cores->per_node_target;
241 	struct toptree *cur, *tmp;
242 
243 	toptree_for_each_safe(cur, tmp, phys, level) {
244 		cores_free = cores_target - toptree_count(node, CORE);
245 		if (perfect) {
246 			if (cores_free == toptree_count(cur, CORE))
247 				toptree_move(cur, node);
248 		} else {
249 			if (cores_free >= toptree_count(cur, CORE))
250 				toptree_move(cur, node);
251 		}
252 	}
253 }
254 
255 /*
256  * Move structures of a given level to NUMA nodes. If "perfect" is specified
257  * move only perfectly fitting structures. Otherwise move also smaller
258  * than needed structures.
259  */
move_level_to_numa(struct toptree * numa,struct toptree * phys,enum toptree_level level,bool perfect)260 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
261 			       enum toptree_level level, bool perfect)
262 {
263 	struct toptree *node;
264 
265 	toptree_for_each(node, numa, NODE)
266 		move_level_to_numa_node(node, phys, level, perfect);
267 }
268 
269 /*
270  * For the first run try to move the big structures
271  */
toptree_to_numa_first(struct toptree * numa,struct toptree * phys)272 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
273 {
274 	struct toptree *core;
275 
276 	/* Always try to move perfectly fitting structures first */
277 	move_level_to_numa(numa, phys, DRAWER, true);
278 	move_level_to_numa(numa, phys, DRAWER, false);
279 	move_level_to_numa(numa, phys, BOOK, true);
280 	move_level_to_numa(numa, phys, BOOK, false);
281 	move_level_to_numa(numa, phys, MC, true);
282 	move_level_to_numa(numa, phys, MC, false);
283 	/* Now pin all the moved cores */
284 	toptree_for_each(core, numa, CORE)
285 		pin_core_to_node(core->id, core_node(core)->id);
286 }
287 
288 /*
289  * Allocate new topology and create required nodes
290  */
toptree_new(int id,int nodes)291 static struct toptree *toptree_new(int id, int nodes)
292 {
293 	struct toptree *tree;
294 	int nid;
295 
296 	tree = toptree_alloc(TOPOLOGY, id);
297 	if (!tree)
298 		goto fail;
299 	for (nid = 0; nid < nodes; nid++) {
300 		if (!toptree_get_child(tree, nid))
301 			goto fail;
302 	}
303 	return tree;
304 fail:
305 	panic("NUMA emulation could not allocate topology");
306 }
307 
308 /*
309  * Allocate and initialize core to node mapping
310  */
create_core_to_node_map(void)311 static void __ref create_core_to_node_map(void)
312 {
313 	int i;
314 
315 	emu_cores = memblock_alloc(sizeof(*emu_cores), 8);
316 	if (!emu_cores)
317 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
318 		      __func__, sizeof(*emu_cores), 8);
319 	for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
320 		emu_cores->to_node_id[i] = NODE_ID_FREE;
321 }
322 
323 /*
324  * Move cores from physical topology into NUMA target topology
325  * and try to keep as much of the physical topology as possible.
326  */
toptree_to_numa(struct toptree * phys)327 static struct toptree *toptree_to_numa(struct toptree *phys)
328 {
329 	static int first = 1;
330 	struct toptree *numa;
331 	int cores_total;
332 
333 	cores_total = emu_cores->total + cores_free(phys);
334 	emu_cores->per_node_target = cores_total / emu_nodes;
335 	numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
336 	if (first) {
337 		toptree_to_numa_first(numa, phys);
338 		first = 0;
339 	}
340 	toptree_to_numa_single(numa, phys, 0);
341 	toptree_to_numa_single(numa, phys, 1);
342 	toptree_unify_tree(numa);
343 
344 	WARN_ON(cpumask_weight(&phys->mask));
345 	return numa;
346 }
347 
348 /*
349  * Create a toptree out of the physical topology that we got from the hypervisor
350  */
toptree_from_topology(void)351 static struct toptree *toptree_from_topology(void)
352 {
353 	struct toptree *phys, *node, *drawer, *book, *mc, *core;
354 	struct cpu_topology_s390 *top;
355 	int cpu;
356 
357 	phys = toptree_new(TOPTREE_ID_PHYS, 1);
358 
359 	for_each_cpu(cpu, &cpus_with_topology) {
360 		top = &cpu_topology[cpu];
361 		node = toptree_get_child(phys, 0);
362 		drawer = toptree_get_child(node, top->drawer_id);
363 		book = toptree_get_child(drawer, top->book_id);
364 		mc = toptree_get_child(book, top->socket_id);
365 		core = toptree_get_child(mc, smp_get_base_cpu(cpu));
366 		if (!drawer || !book || !mc || !core)
367 			panic("NUMA emulation could not allocate memory");
368 		cpumask_set_cpu(cpu, &core->mask);
369 		toptree_update_mask(mc);
370 	}
371 	return phys;
372 }
373 
374 /*
375  * Add toptree core to topology and create correct CPU masks
376  */
topology_add_core(struct toptree * core)377 static void topology_add_core(struct toptree *core)
378 {
379 	struct cpu_topology_s390 *top;
380 	int cpu;
381 
382 	for_each_cpu(cpu, &core->mask) {
383 		top = &cpu_topology[cpu];
384 		cpumask_copy(&top->thread_mask, &core->mask);
385 		cpumask_copy(&top->core_mask, &core_mc(core)->mask);
386 		cpumask_copy(&top->book_mask, &core_book(core)->mask);
387 		cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
388 		cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
389 		top->node_id = core_node(core)->id;
390 	}
391 }
392 
393 /*
394  * Apply toptree to topology and create CPU masks
395  */
toptree_to_topology(struct toptree * numa)396 static void toptree_to_topology(struct toptree *numa)
397 {
398 	struct toptree *core;
399 	int i;
400 
401 	/* Clear all node masks */
402 	for (i = 0; i < MAX_NUMNODES; i++)
403 		cpumask_clear(&node_to_cpumask_map[i]);
404 
405 	/* Rebuild all masks */
406 	toptree_for_each(core, numa, CORE)
407 		topology_add_core(core);
408 }
409 
410 /*
411  * Show the node to core mapping
412  */
print_node_to_core_map(void)413 static void print_node_to_core_map(void)
414 {
415 	int nid, cid;
416 
417 	if (!numa_debug_enabled)
418 		return;
419 	printk(KERN_DEBUG "NUMA node to core mapping\n");
420 	for (nid = 0; nid < emu_nodes; nid++) {
421 		printk(KERN_DEBUG "  node %3d: ", nid);
422 		for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
423 			if (emu_cores->to_node_id[cid] == nid)
424 				printk(KERN_CONT "%d ", cid);
425 		}
426 		printk(KERN_CONT "\n");
427 	}
428 }
429 
pin_all_possible_cpus(void)430 static void pin_all_possible_cpus(void)
431 {
432 	int core_id, node_id, cpu;
433 	static int initialized;
434 
435 	if (initialized)
436 		return;
437 	print_node_to_core_map();
438 	node_id = 0;
439 	for_each_possible_cpu(cpu) {
440 		core_id = smp_get_base_cpu(cpu);
441 		if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
442 			continue;
443 		pin_core_to_node(core_id, node_id);
444 		cpu_topology[cpu].node_id = node_id;
445 		node_id = (node_id + 1) % emu_nodes;
446 	}
447 	print_node_to_core_map();
448 	initialized = 1;
449 }
450 
451 /*
452  * Transfer physical topology into a NUMA topology and modify CPU masks
453  * according to the NUMA topology.
454  *
455  * Must be called with "sched_domains_mutex" lock held.
456  */
emu_update_cpu_topology(void)457 static void emu_update_cpu_topology(void)
458 {
459 	struct toptree *phys, *numa;
460 
461 	if (emu_cores == NULL)
462 		create_core_to_node_map();
463 	phys = toptree_from_topology();
464 	numa = toptree_to_numa(phys);
465 	toptree_free(phys);
466 	toptree_to_topology(numa);
467 	toptree_free(numa);
468 	pin_all_possible_cpus();
469 }
470 
471 /*
472  * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
473  * alignment (needed for memory hotplug).
474  */
emu_setup_size_adjust(unsigned long size)475 static unsigned long emu_setup_size_adjust(unsigned long size)
476 {
477 	unsigned long size_new;
478 
479 	size = size ? : CONFIG_EMU_SIZE;
480 	size_new = roundup(size, memory_block_size_bytes());
481 	if (size_new == size)
482 		return size;
483 	pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
484 		size >> 20, size_new >> 20);
485 	return size_new;
486 }
487 
488 /*
489  * If we have not enough memory for the specified nodes, reduce the node count.
490  */
emu_setup_nodes_adjust(int nodes)491 static int emu_setup_nodes_adjust(int nodes)
492 {
493 	int nodes_max;
494 
495 	nodes_max = memblock.memory.total_size / emu_size;
496 	nodes_max = max(nodes_max, 1);
497 	if (nodes_max >= nodes)
498 		return nodes;
499 	pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
500 	return nodes_max;
501 }
502 
503 /*
504  * Early emu setup
505  */
emu_setup(void)506 static void emu_setup(void)
507 {
508 	int nid;
509 
510 	emu_size = emu_setup_size_adjust(emu_size);
511 	emu_nodes = emu_setup_nodes_adjust(emu_nodes);
512 	for (nid = 0; nid < emu_nodes; nid++)
513 		node_set(nid, node_possible_map);
514 	pr_info("Creating %d nodes with memory stripe size %ld MB\n",
515 		emu_nodes, emu_size >> 20);
516 }
517 
518 /*
519  * Return node id for given page number
520  */
emu_pfn_to_nid(unsigned long pfn)521 static int emu_pfn_to_nid(unsigned long pfn)
522 {
523 	return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
524 }
525 
526 /*
527  * Return stripe size
528  */
emu_align(void)529 static unsigned long emu_align(void)
530 {
531 	return emu_size;
532 }
533 
534 /*
535  * Return distance between two nodes
536  */
emu_distance(int node1,int node2)537 static int emu_distance(int node1, int node2)
538 {
539 	return (node1 != node2) * EMU_NODE_DIST;
540 }
541 
542 /*
543  * Define callbacks for generic s390 NUMA infrastructure
544  */
545 const struct numa_mode numa_mode_emu = {
546 	.name = "emu",
547 	.setup = emu_setup,
548 	.update_cpu_topology = emu_update_cpu_topology,
549 	.__pfn_to_nid = emu_pfn_to_nid,
550 	.align = emu_align,
551 	.distance = emu_distance,
552 };
553 
554 /*
555  * Kernel parameter: emu_nodes=<n>
556  */
early_parse_emu_nodes(char * p)557 static int __init early_parse_emu_nodes(char *p)
558 {
559 	int count;
560 
561 	if (!p || kstrtoint(p, 0, &count) != 0 || count <= 0)
562 		return 0;
563 	emu_nodes = min(count, MAX_NUMNODES);
564 	return 0;
565 }
566 early_param("emu_nodes", early_parse_emu_nodes);
567 
568 /*
569  * Kernel parameter: emu_size=[<n>[k|M|G|T]]
570  */
early_parse_emu_size(char * p)571 static int __init early_parse_emu_size(char *p)
572 {
573 	if (p)
574 		emu_size = memparse(p, NULL);
575 	return 0;
576 }
577 early_param("emu_size", early_parse_emu_size);
578