1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NUMA support for s390
4 *
5 * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
6 * without using real topology information about the physical memory of the
7 * machine.
8 *
9 * It distributes the available CPUs to nodes while respecting the original
10 * machine topology information. This is done by trying to avoid to separate
11 * CPUs which reside on the same book or even on the same MC.
12 *
13 * Because the current Linux scheduler code requires a stable cpu to node
14 * mapping, cores are pinned to nodes when the first CPU thread is set online.
15 *
16 * Copyright IBM Corp. 2015
17 */
18
19 #define KMSG_COMPONENT "numa_emu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/cpumask.h>
24 #include <linux/memblock.h>
25 #include <linux/node.h>
26 #include <linux/memory.h>
27 #include <linux/slab.h>
28 #include <asm/smp.h>
29 #include <asm/topology.h>
30 #include "numa_mode.h"
31 #include "toptree.h"
32
33 /* Distances between the different system components */
34 #define DIST_EMPTY 0
35 #define DIST_CORE 1
36 #define DIST_MC 2
37 #define DIST_BOOK 3
38 #define DIST_DRAWER 4
39 #define DIST_MAX 5
40
41 /* Node distance reported to common code */
42 #define EMU_NODE_DIST 10
43
44 /* Node ID for free (not yet pinned) cores */
45 #define NODE_ID_FREE -1
46
47 /* Different levels of toptree */
48 enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
49
50 /* The two toptree IDs */
51 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
52
53 /* Number of NUMA nodes */
54 static int emu_nodes = 1;
55 /* NUMA stripe size */
56 static unsigned long emu_size;
57
58 /*
59 * Node to core pinning information updates are protected by
60 * "sched_domains_mutex".
61 */
62 static struct {
63 s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */
64 int total; /* Total number of pinned cores */
65 int per_node_target; /* Cores per node without extra cores */
66 int per_node[MAX_NUMNODES]; /* Number of cores pinned to node */
67 } *emu_cores;
68
69 /*
70 * Pin a core to a node
71 */
pin_core_to_node(int core_id,int node_id)72 static void pin_core_to_node(int core_id, int node_id)
73 {
74 if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
75 emu_cores->per_node[node_id]++;
76 emu_cores->to_node_id[core_id] = node_id;
77 emu_cores->total++;
78 } else {
79 WARN_ON(emu_cores->to_node_id[core_id] != node_id);
80 }
81 }
82
83 /*
84 * Number of pinned cores of a node
85 */
cores_pinned(struct toptree * node)86 static int cores_pinned(struct toptree *node)
87 {
88 return emu_cores->per_node[node->id];
89 }
90
91 /*
92 * ID of the node where the core is pinned (or NODE_ID_FREE)
93 */
core_pinned_to_node_id(struct toptree * core)94 static int core_pinned_to_node_id(struct toptree *core)
95 {
96 return emu_cores->to_node_id[core->id];
97 }
98
99 /*
100 * Number of cores in the tree that are not yet pinned
101 */
cores_free(struct toptree * tree)102 static int cores_free(struct toptree *tree)
103 {
104 struct toptree *core;
105 int count = 0;
106
107 toptree_for_each(core, tree, CORE) {
108 if (core_pinned_to_node_id(core) == NODE_ID_FREE)
109 count++;
110 }
111 return count;
112 }
113
114 /*
115 * Return node of core
116 */
core_node(struct toptree * core)117 static struct toptree *core_node(struct toptree *core)
118 {
119 return core->parent->parent->parent->parent;
120 }
121
122 /*
123 * Return drawer of core
124 */
core_drawer(struct toptree * core)125 static struct toptree *core_drawer(struct toptree *core)
126 {
127 return core->parent->parent->parent;
128 }
129
130 /*
131 * Return book of core
132 */
core_book(struct toptree * core)133 static struct toptree *core_book(struct toptree *core)
134 {
135 return core->parent->parent;
136 }
137
138 /*
139 * Return mc of core
140 */
core_mc(struct toptree * core)141 static struct toptree *core_mc(struct toptree *core)
142 {
143 return core->parent;
144 }
145
146 /*
147 * Distance between two cores
148 */
dist_core_to_core(struct toptree * core1,struct toptree * core2)149 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
150 {
151 if (core_drawer(core1)->id != core_drawer(core2)->id)
152 return DIST_DRAWER;
153 if (core_book(core1)->id != core_book(core2)->id)
154 return DIST_BOOK;
155 if (core_mc(core1)->id != core_mc(core2)->id)
156 return DIST_MC;
157 /* Same core or sibling on same MC */
158 return DIST_CORE;
159 }
160
161 /*
162 * Distance of a node to a core
163 */
dist_node_to_core(struct toptree * node,struct toptree * core)164 static int dist_node_to_core(struct toptree *node, struct toptree *core)
165 {
166 struct toptree *core_node;
167 int dist_min = DIST_MAX;
168
169 toptree_for_each(core_node, node, CORE)
170 dist_min = min(dist_min, dist_core_to_core(core_node, core));
171 return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
172 }
173
174 /*
175 * Unify will delete empty nodes, therefore recreate nodes.
176 */
toptree_unify_tree(struct toptree * tree)177 static void toptree_unify_tree(struct toptree *tree)
178 {
179 int nid;
180
181 toptree_unify(tree);
182 for (nid = 0; nid < emu_nodes; nid++)
183 toptree_get_child(tree, nid);
184 }
185
186 /*
187 * Find the best/nearest node for a given core and ensure that no node
188 * gets more than "emu_cores->per_node_target + extra" cores.
189 */
node_for_core(struct toptree * numa,struct toptree * core,int extra)190 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
191 int extra)
192 {
193 struct toptree *node, *node_best = NULL;
194 int dist_cur, dist_best, cores_target;
195
196 cores_target = emu_cores->per_node_target + extra;
197 dist_best = DIST_MAX;
198 node_best = NULL;
199 toptree_for_each(node, numa, NODE) {
200 /* Already pinned cores must use their nodes */
201 if (core_pinned_to_node_id(core) == node->id) {
202 node_best = node;
203 break;
204 }
205 /* Skip nodes that already have enough cores */
206 if (cores_pinned(node) >= cores_target)
207 continue;
208 dist_cur = dist_node_to_core(node, core);
209 if (dist_cur < dist_best) {
210 dist_best = dist_cur;
211 node_best = node;
212 }
213 }
214 return node_best;
215 }
216
217 /*
218 * Find the best node for each core with respect to "extra" core count
219 */
toptree_to_numa_single(struct toptree * numa,struct toptree * phys,int extra)220 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
221 int extra)
222 {
223 struct toptree *node, *core, *tmp;
224
225 toptree_for_each_safe(core, tmp, phys, CORE) {
226 node = node_for_core(numa, core, extra);
227 if (!node)
228 return;
229 toptree_move(core, node);
230 pin_core_to_node(core->id, node->id);
231 }
232 }
233
234 /*
235 * Move structures of given level to specified NUMA node
236 */
move_level_to_numa_node(struct toptree * node,struct toptree * phys,enum toptree_level level,bool perfect)237 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
238 enum toptree_level level, bool perfect)
239 {
240 int cores_free, cores_target = emu_cores->per_node_target;
241 struct toptree *cur, *tmp;
242
243 toptree_for_each_safe(cur, tmp, phys, level) {
244 cores_free = cores_target - toptree_count(node, CORE);
245 if (perfect) {
246 if (cores_free == toptree_count(cur, CORE))
247 toptree_move(cur, node);
248 } else {
249 if (cores_free >= toptree_count(cur, CORE))
250 toptree_move(cur, node);
251 }
252 }
253 }
254
255 /*
256 * Move structures of a given level to NUMA nodes. If "perfect" is specified
257 * move only perfectly fitting structures. Otherwise move also smaller
258 * than needed structures.
259 */
move_level_to_numa(struct toptree * numa,struct toptree * phys,enum toptree_level level,bool perfect)260 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
261 enum toptree_level level, bool perfect)
262 {
263 struct toptree *node;
264
265 toptree_for_each(node, numa, NODE)
266 move_level_to_numa_node(node, phys, level, perfect);
267 }
268
269 /*
270 * For the first run try to move the big structures
271 */
toptree_to_numa_first(struct toptree * numa,struct toptree * phys)272 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
273 {
274 struct toptree *core;
275
276 /* Always try to move perfectly fitting structures first */
277 move_level_to_numa(numa, phys, DRAWER, true);
278 move_level_to_numa(numa, phys, DRAWER, false);
279 move_level_to_numa(numa, phys, BOOK, true);
280 move_level_to_numa(numa, phys, BOOK, false);
281 move_level_to_numa(numa, phys, MC, true);
282 move_level_to_numa(numa, phys, MC, false);
283 /* Now pin all the moved cores */
284 toptree_for_each(core, numa, CORE)
285 pin_core_to_node(core->id, core_node(core)->id);
286 }
287
288 /*
289 * Allocate new topology and create required nodes
290 */
toptree_new(int id,int nodes)291 static struct toptree *toptree_new(int id, int nodes)
292 {
293 struct toptree *tree;
294 int nid;
295
296 tree = toptree_alloc(TOPOLOGY, id);
297 if (!tree)
298 goto fail;
299 for (nid = 0; nid < nodes; nid++) {
300 if (!toptree_get_child(tree, nid))
301 goto fail;
302 }
303 return tree;
304 fail:
305 panic("NUMA emulation could not allocate topology");
306 }
307
308 /*
309 * Allocate and initialize core to node mapping
310 */
create_core_to_node_map(void)311 static void __ref create_core_to_node_map(void)
312 {
313 int i;
314
315 emu_cores = memblock_alloc(sizeof(*emu_cores), 8);
316 if (!emu_cores)
317 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
318 __func__, sizeof(*emu_cores), 8);
319 for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
320 emu_cores->to_node_id[i] = NODE_ID_FREE;
321 }
322
323 /*
324 * Move cores from physical topology into NUMA target topology
325 * and try to keep as much of the physical topology as possible.
326 */
toptree_to_numa(struct toptree * phys)327 static struct toptree *toptree_to_numa(struct toptree *phys)
328 {
329 static int first = 1;
330 struct toptree *numa;
331 int cores_total;
332
333 cores_total = emu_cores->total + cores_free(phys);
334 emu_cores->per_node_target = cores_total / emu_nodes;
335 numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
336 if (first) {
337 toptree_to_numa_first(numa, phys);
338 first = 0;
339 }
340 toptree_to_numa_single(numa, phys, 0);
341 toptree_to_numa_single(numa, phys, 1);
342 toptree_unify_tree(numa);
343
344 WARN_ON(cpumask_weight(&phys->mask));
345 return numa;
346 }
347
348 /*
349 * Create a toptree out of the physical topology that we got from the hypervisor
350 */
toptree_from_topology(void)351 static struct toptree *toptree_from_topology(void)
352 {
353 struct toptree *phys, *node, *drawer, *book, *mc, *core;
354 struct cpu_topology_s390 *top;
355 int cpu;
356
357 phys = toptree_new(TOPTREE_ID_PHYS, 1);
358
359 for_each_cpu(cpu, &cpus_with_topology) {
360 top = &cpu_topology[cpu];
361 node = toptree_get_child(phys, 0);
362 drawer = toptree_get_child(node, top->drawer_id);
363 book = toptree_get_child(drawer, top->book_id);
364 mc = toptree_get_child(book, top->socket_id);
365 core = toptree_get_child(mc, smp_get_base_cpu(cpu));
366 if (!drawer || !book || !mc || !core)
367 panic("NUMA emulation could not allocate memory");
368 cpumask_set_cpu(cpu, &core->mask);
369 toptree_update_mask(mc);
370 }
371 return phys;
372 }
373
374 /*
375 * Add toptree core to topology and create correct CPU masks
376 */
topology_add_core(struct toptree * core)377 static void topology_add_core(struct toptree *core)
378 {
379 struct cpu_topology_s390 *top;
380 int cpu;
381
382 for_each_cpu(cpu, &core->mask) {
383 top = &cpu_topology[cpu];
384 cpumask_copy(&top->thread_mask, &core->mask);
385 cpumask_copy(&top->core_mask, &core_mc(core)->mask);
386 cpumask_copy(&top->book_mask, &core_book(core)->mask);
387 cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
388 cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
389 top->node_id = core_node(core)->id;
390 }
391 }
392
393 /*
394 * Apply toptree to topology and create CPU masks
395 */
toptree_to_topology(struct toptree * numa)396 static void toptree_to_topology(struct toptree *numa)
397 {
398 struct toptree *core;
399 int i;
400
401 /* Clear all node masks */
402 for (i = 0; i < MAX_NUMNODES; i++)
403 cpumask_clear(&node_to_cpumask_map[i]);
404
405 /* Rebuild all masks */
406 toptree_for_each(core, numa, CORE)
407 topology_add_core(core);
408 }
409
410 /*
411 * Show the node to core mapping
412 */
print_node_to_core_map(void)413 static void print_node_to_core_map(void)
414 {
415 int nid, cid;
416
417 if (!numa_debug_enabled)
418 return;
419 printk(KERN_DEBUG "NUMA node to core mapping\n");
420 for (nid = 0; nid < emu_nodes; nid++) {
421 printk(KERN_DEBUG " node %3d: ", nid);
422 for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
423 if (emu_cores->to_node_id[cid] == nid)
424 printk(KERN_CONT "%d ", cid);
425 }
426 printk(KERN_CONT "\n");
427 }
428 }
429
pin_all_possible_cpus(void)430 static void pin_all_possible_cpus(void)
431 {
432 int core_id, node_id, cpu;
433 static int initialized;
434
435 if (initialized)
436 return;
437 print_node_to_core_map();
438 node_id = 0;
439 for_each_possible_cpu(cpu) {
440 core_id = smp_get_base_cpu(cpu);
441 if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
442 continue;
443 pin_core_to_node(core_id, node_id);
444 cpu_topology[cpu].node_id = node_id;
445 node_id = (node_id + 1) % emu_nodes;
446 }
447 print_node_to_core_map();
448 initialized = 1;
449 }
450
451 /*
452 * Transfer physical topology into a NUMA topology and modify CPU masks
453 * according to the NUMA topology.
454 *
455 * Must be called with "sched_domains_mutex" lock held.
456 */
emu_update_cpu_topology(void)457 static void emu_update_cpu_topology(void)
458 {
459 struct toptree *phys, *numa;
460
461 if (emu_cores == NULL)
462 create_core_to_node_map();
463 phys = toptree_from_topology();
464 numa = toptree_to_numa(phys);
465 toptree_free(phys);
466 toptree_to_topology(numa);
467 toptree_free(numa);
468 pin_all_possible_cpus();
469 }
470
471 /*
472 * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
473 * alignment (needed for memory hotplug).
474 */
emu_setup_size_adjust(unsigned long size)475 static unsigned long emu_setup_size_adjust(unsigned long size)
476 {
477 unsigned long size_new;
478
479 size = size ? : CONFIG_EMU_SIZE;
480 size_new = roundup(size, memory_block_size_bytes());
481 if (size_new == size)
482 return size;
483 pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
484 size >> 20, size_new >> 20);
485 return size_new;
486 }
487
488 /*
489 * If we have not enough memory for the specified nodes, reduce the node count.
490 */
emu_setup_nodes_adjust(int nodes)491 static int emu_setup_nodes_adjust(int nodes)
492 {
493 int nodes_max;
494
495 nodes_max = memblock.memory.total_size / emu_size;
496 nodes_max = max(nodes_max, 1);
497 if (nodes_max >= nodes)
498 return nodes;
499 pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
500 return nodes_max;
501 }
502
503 /*
504 * Early emu setup
505 */
emu_setup(void)506 static void emu_setup(void)
507 {
508 int nid;
509
510 emu_size = emu_setup_size_adjust(emu_size);
511 emu_nodes = emu_setup_nodes_adjust(emu_nodes);
512 for (nid = 0; nid < emu_nodes; nid++)
513 node_set(nid, node_possible_map);
514 pr_info("Creating %d nodes with memory stripe size %ld MB\n",
515 emu_nodes, emu_size >> 20);
516 }
517
518 /*
519 * Return node id for given page number
520 */
emu_pfn_to_nid(unsigned long pfn)521 static int emu_pfn_to_nid(unsigned long pfn)
522 {
523 return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
524 }
525
526 /*
527 * Return stripe size
528 */
emu_align(void)529 static unsigned long emu_align(void)
530 {
531 return emu_size;
532 }
533
534 /*
535 * Return distance between two nodes
536 */
emu_distance(int node1,int node2)537 static int emu_distance(int node1, int node2)
538 {
539 return (node1 != node2) * EMU_NODE_DIST;
540 }
541
542 /*
543 * Define callbacks for generic s390 NUMA infrastructure
544 */
545 const struct numa_mode numa_mode_emu = {
546 .name = "emu",
547 .setup = emu_setup,
548 .update_cpu_topology = emu_update_cpu_topology,
549 .__pfn_to_nid = emu_pfn_to_nid,
550 .align = emu_align,
551 .distance = emu_distance,
552 };
553
554 /*
555 * Kernel parameter: emu_nodes=<n>
556 */
early_parse_emu_nodes(char * p)557 static int __init early_parse_emu_nodes(char *p)
558 {
559 int count;
560
561 if (!p || kstrtoint(p, 0, &count) != 0 || count <= 0)
562 return 0;
563 emu_nodes = min(count, MAX_NUMNODES);
564 return 0;
565 }
566 early_param("emu_nodes", early_parse_emu_nodes);
567
568 /*
569 * Kernel parameter: emu_size=[<n>[k|M|G|T]]
570 */
early_parse_emu_size(char * p)571 static int __init early_parse_emu_size(char *p)
572 {
573 if (p)
574 emu_size = memparse(p, NULL);
575 return 0;
576 }
577 early_param("emu_size", early_parse_emu_size);
578