1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * MCE grading rules.
4 * Copyright 2008, 2009 Intel Corporation.
5 *
6 * Author: Andi Kleen
7 */
8 #include <linux/kernel.h>
9 #include <linux/seq_file.h>
10 #include <linux/init.h>
11 #include <linux/debugfs.h>
12 #include <asm/mce.h>
13 #include <linux/uaccess.h>
14
15 #include "internal.h"
16
17 /*
18 * Grade an mce by severity. In general the most severe ones are processed
19 * first. Since there are quite a lot of combinations test the bits in a
20 * table-driven way. The rules are simply processed in order, first
21 * match wins.
22 *
23 * Note this is only used for machine check exceptions, the corrected
24 * errors use much simpler rules. The exceptions still check for the corrected
25 * errors, but only to leave them alone for the CMCI handler (except for
26 * panic situations)
27 */
28
29 enum context { IN_KERNEL = 1, IN_USER = 2, IN_KERNEL_RECOV = 3 };
30 enum ser { SER_REQUIRED = 1, NO_SER = 2 };
31 enum exception { EXCP_CONTEXT = 1, NO_EXCP = 2 };
32
33 static struct severity {
34 u64 mask;
35 u64 result;
36 unsigned char sev;
37 unsigned char mcgmask;
38 unsigned char mcgres;
39 unsigned char ser;
40 unsigned char context;
41 unsigned char excp;
42 unsigned char covered;
43 char *msg;
44 } severities[] = {
45 #define MCESEV(s, m, c...) { .sev = MCE_ ## s ## _SEVERITY, .msg = m, ## c }
46 #define KERNEL .context = IN_KERNEL
47 #define USER .context = IN_USER
48 #define KERNEL_RECOV .context = IN_KERNEL_RECOV
49 #define SER .ser = SER_REQUIRED
50 #define NOSER .ser = NO_SER
51 #define EXCP .excp = EXCP_CONTEXT
52 #define NOEXCP .excp = NO_EXCP
53 #define BITCLR(x) .mask = x, .result = 0
54 #define BITSET(x) .mask = x, .result = x
55 #define MCGMASK(x, y) .mcgmask = x, .mcgres = y
56 #define MASK(x, y) .mask = x, .result = y
57 #define MCI_UC_S (MCI_STATUS_UC|MCI_STATUS_S)
58 #define MCI_UC_AR (MCI_STATUS_UC|MCI_STATUS_AR)
59 #define MCI_UC_SAR (MCI_STATUS_UC|MCI_STATUS_S|MCI_STATUS_AR)
60 #define MCI_ADDR (MCI_STATUS_ADDRV|MCI_STATUS_MISCV)
61
62 MCESEV(
63 NO, "Invalid",
64 BITCLR(MCI_STATUS_VAL)
65 ),
66 MCESEV(
67 NO, "Not enabled",
68 EXCP, BITCLR(MCI_STATUS_EN)
69 ),
70 MCESEV(
71 PANIC, "Processor context corrupt",
72 BITSET(MCI_STATUS_PCC)
73 ),
74 /* When MCIP is not set something is very confused */
75 MCESEV(
76 PANIC, "MCIP not set in MCA handler",
77 EXCP, MCGMASK(MCG_STATUS_MCIP, 0)
78 ),
79 /* Neither return not error IP -- no chance to recover -> PANIC */
80 MCESEV(
81 PANIC, "Neither restart nor error IP",
82 EXCP, MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, 0)
83 ),
84 MCESEV(
85 PANIC, "In kernel and no restart IP",
86 EXCP, KERNEL, MCGMASK(MCG_STATUS_RIPV, 0)
87 ),
88 MCESEV(
89 PANIC, "In kernel and no restart IP",
90 EXCP, KERNEL_RECOV, MCGMASK(MCG_STATUS_RIPV, 0)
91 ),
92 MCESEV(
93 DEFERRED, "Deferred error",
94 NOSER, MASK(MCI_STATUS_UC|MCI_STATUS_DEFERRED|MCI_STATUS_POISON, MCI_STATUS_DEFERRED)
95 ),
96 MCESEV(
97 KEEP, "Corrected error",
98 NOSER, BITCLR(MCI_STATUS_UC)
99 ),
100
101 /*
102 * known AO MCACODs reported via MCE or CMC:
103 *
104 * SRAO could be signaled either via a machine check exception or
105 * CMCI with the corresponding bit S 1 or 0. So we don't need to
106 * check bit S for SRAO.
107 */
108 MCESEV(
109 AO, "Action optional: memory scrubbing error",
110 SER, MASK(MCI_UC_AR|MCACOD_SCRUBMSK, MCI_STATUS_UC|MCACOD_SCRUB)
111 ),
112 MCESEV(
113 AO, "Action optional: last level cache writeback error",
114 SER, MASK(MCI_UC_AR|MCACOD, MCI_STATUS_UC|MCACOD_L3WB)
115 ),
116
117 /* ignore OVER for UCNA */
118 MCESEV(
119 UCNA, "Uncorrected no action required",
120 SER, MASK(MCI_UC_SAR, MCI_STATUS_UC)
121 ),
122 MCESEV(
123 PANIC, "Illegal combination (UCNA with AR=1)",
124 SER,
125 MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_UC|MCI_STATUS_AR)
126 ),
127 MCESEV(
128 KEEP, "Non signalled machine check",
129 SER, BITCLR(MCI_STATUS_S)
130 ),
131
132 MCESEV(
133 PANIC, "Action required with lost events",
134 SER, BITSET(MCI_STATUS_OVER|MCI_UC_SAR)
135 ),
136
137 /* known AR MCACODs: */
138 #ifdef CONFIG_MEMORY_FAILURE
139 MCESEV(
140 KEEP, "Action required but unaffected thread is continuable",
141 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR, MCI_UC_SAR|MCI_ADDR),
142 MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, MCG_STATUS_RIPV)
143 ),
144 MCESEV(
145 AR, "Action required: data load in error recoverable area of kernel",
146 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
147 KERNEL_RECOV
148 ),
149 MCESEV(
150 AR, "Action required: data load error in a user process",
151 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
152 USER
153 ),
154 MCESEV(
155 AR, "Action required: instruction fetch error in a user process",
156 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
157 USER
158 ),
159 MCESEV(
160 PANIC, "Data load in unrecoverable area of kernel",
161 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
162 KERNEL
163 ),
164 MCESEV(
165 PANIC, "Instruction fetch error in kernel",
166 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
167 KERNEL
168 ),
169 #endif
170 MCESEV(
171 PANIC, "Action required: unknown MCACOD",
172 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_SAR)
173 ),
174
175 MCESEV(
176 SOME, "Action optional: unknown MCACOD",
177 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_S)
178 ),
179 MCESEV(
180 SOME, "Action optional with lost events",
181 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_OVER|MCI_UC_S)
182 ),
183
184 MCESEV(
185 PANIC, "Overflowed uncorrected",
186 BITSET(MCI_STATUS_OVER|MCI_STATUS_UC)
187 ),
188 MCESEV(
189 UC, "Uncorrected",
190 BITSET(MCI_STATUS_UC)
191 ),
192 MCESEV(
193 SOME, "No match",
194 BITSET(0)
195 ) /* always matches. keep at end */
196 };
197
198 #define mc_recoverable(mcg) (((mcg) & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) == \
199 (MCG_STATUS_RIPV|MCG_STATUS_EIPV))
200
201 /*
202 * If mcgstatus indicated that ip/cs on the stack were
203 * no good, then "m->cs" will be zero and we will have
204 * to assume the worst case (IN_KERNEL) as we actually
205 * have no idea what we were executing when the machine
206 * check hit.
207 * If we do have a good "m->cs" (or a faked one in the
208 * case we were executing in VM86 mode) we can use it to
209 * distinguish an exception taken in user from from one
210 * taken in the kernel.
211 */
error_context(struct mce * m)212 static int error_context(struct mce *m)
213 {
214 if ((m->cs & 3) == 3)
215 return IN_USER;
216 if (mc_recoverable(m->mcgstatus) && ex_has_fault_handler(m->ip))
217 return IN_KERNEL_RECOV;
218 return IN_KERNEL;
219 }
220
mce_severity_amd_smca(struct mce * m,enum context err_ctx)221 static int mce_severity_amd_smca(struct mce *m, enum context err_ctx)
222 {
223 u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank);
224 u32 low, high;
225
226 /*
227 * We need to look at the following bits:
228 * - "succor" bit (data poisoning support), and
229 * - TCC bit (Task Context Corrupt)
230 * in MCi_STATUS to determine error severity.
231 */
232 if (!mce_flags.succor)
233 return MCE_PANIC_SEVERITY;
234
235 if (rdmsr_safe(addr, &low, &high))
236 return MCE_PANIC_SEVERITY;
237
238 /* TCC (Task context corrupt). If set and if IN_KERNEL, panic. */
239 if ((low & MCI_CONFIG_MCAX) &&
240 (m->status & MCI_STATUS_TCC) &&
241 (err_ctx == IN_KERNEL))
242 return MCE_PANIC_SEVERITY;
243
244 /* ...otherwise invoke hwpoison handler. */
245 return MCE_AR_SEVERITY;
246 }
247
248 /*
249 * See AMD Error Scope Hierarchy table in a newer BKDG. For example
250 * 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features"
251 */
mce_severity_amd(struct mce * m,int tolerant,char ** msg,bool is_excp)252 static int mce_severity_amd(struct mce *m, int tolerant, char **msg, bool is_excp)
253 {
254 enum context ctx = error_context(m);
255
256 /* Processor Context Corrupt, no need to fumble too much, die! */
257 if (m->status & MCI_STATUS_PCC)
258 return MCE_PANIC_SEVERITY;
259
260 if (m->status & MCI_STATUS_UC) {
261
262 if (ctx == IN_KERNEL)
263 return MCE_PANIC_SEVERITY;
264
265 /*
266 * On older systems where overflow_recov flag is not present, we
267 * should simply panic if an error overflow occurs. If
268 * overflow_recov flag is present and set, then software can try
269 * to at least kill process to prolong system operation.
270 */
271 if (mce_flags.overflow_recov) {
272 if (mce_flags.smca)
273 return mce_severity_amd_smca(m, ctx);
274
275 /* kill current process */
276 return MCE_AR_SEVERITY;
277 } else {
278 /* at least one error was not logged */
279 if (m->status & MCI_STATUS_OVER)
280 return MCE_PANIC_SEVERITY;
281 }
282
283 /*
284 * For any other case, return MCE_UC_SEVERITY so that we log the
285 * error and exit #MC handler.
286 */
287 return MCE_UC_SEVERITY;
288 }
289
290 /*
291 * deferred error: poll handler catches these and adds to mce_ring so
292 * memory-failure can take recovery actions.
293 */
294 if (m->status & MCI_STATUS_DEFERRED)
295 return MCE_DEFERRED_SEVERITY;
296
297 /*
298 * corrected error: poll handler catches these and passes responsibility
299 * of decoding the error to EDAC
300 */
301 return MCE_KEEP_SEVERITY;
302 }
303
mce_severity_intel(struct mce * m,int tolerant,char ** msg,bool is_excp)304 static int mce_severity_intel(struct mce *m, int tolerant, char **msg, bool is_excp)
305 {
306 enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP);
307 enum context ctx = error_context(m);
308 struct severity *s;
309
310 for (s = severities;; s++) {
311 if ((m->status & s->mask) != s->result)
312 continue;
313 if ((m->mcgstatus & s->mcgmask) != s->mcgres)
314 continue;
315 if (s->ser == SER_REQUIRED && !mca_cfg.ser)
316 continue;
317 if (s->ser == NO_SER && mca_cfg.ser)
318 continue;
319 if (s->context && ctx != s->context)
320 continue;
321 if (s->excp && excp != s->excp)
322 continue;
323 if (msg)
324 *msg = s->msg;
325 s->covered = 1;
326 if (s->sev >= MCE_UC_SEVERITY && ctx == IN_KERNEL) {
327 if (tolerant < 1)
328 return MCE_PANIC_SEVERITY;
329 }
330 return s->sev;
331 }
332 }
333
334 /* Default to mce_severity_intel */
335 int (*mce_severity)(struct mce *m, int tolerant, char **msg, bool is_excp) =
336 mce_severity_intel;
337
mcheck_vendor_init_severity(void)338 void __init mcheck_vendor_init_severity(void)
339 {
340 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
341 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
342 mce_severity = mce_severity_amd;
343 }
344
345 #ifdef CONFIG_DEBUG_FS
s_start(struct seq_file * f,loff_t * pos)346 static void *s_start(struct seq_file *f, loff_t *pos)
347 {
348 if (*pos >= ARRAY_SIZE(severities))
349 return NULL;
350 return &severities[*pos];
351 }
352
s_next(struct seq_file * f,void * data,loff_t * pos)353 static void *s_next(struct seq_file *f, void *data, loff_t *pos)
354 {
355 if (++(*pos) >= ARRAY_SIZE(severities))
356 return NULL;
357 return &severities[*pos];
358 }
359
s_stop(struct seq_file * f,void * data)360 static void s_stop(struct seq_file *f, void *data)
361 {
362 }
363
s_show(struct seq_file * f,void * data)364 static int s_show(struct seq_file *f, void *data)
365 {
366 struct severity *ser = data;
367 seq_printf(f, "%d\t%s\n", ser->covered, ser->msg);
368 return 0;
369 }
370
371 static const struct seq_operations severities_seq_ops = {
372 .start = s_start,
373 .next = s_next,
374 .stop = s_stop,
375 .show = s_show,
376 };
377
severities_coverage_open(struct inode * inode,struct file * file)378 static int severities_coverage_open(struct inode *inode, struct file *file)
379 {
380 return seq_open(file, &severities_seq_ops);
381 }
382
severities_coverage_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)383 static ssize_t severities_coverage_write(struct file *file,
384 const char __user *ubuf,
385 size_t count, loff_t *ppos)
386 {
387 int i;
388 for (i = 0; i < ARRAY_SIZE(severities); i++)
389 severities[i].covered = 0;
390 return count;
391 }
392
393 static const struct file_operations severities_coverage_fops = {
394 .open = severities_coverage_open,
395 .release = seq_release,
396 .read = seq_read,
397 .write = severities_coverage_write,
398 .llseek = seq_lseek,
399 };
400
severities_debugfs_init(void)401 static int __init severities_debugfs_init(void)
402 {
403 struct dentry *dmce;
404
405 dmce = mce_get_debugfs_dir();
406
407 debugfs_create_file("severities-coverage", 0444, dmce, NULL,
408 &severities_coverage_fops);
409 return 0;
410 }
411 late_initcall(severities_debugfs_init);
412 #endif /* CONFIG_DEBUG_FS */
413