• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20  * so the code in this file is compiled twice, once per pte size.
21  */
22 
23 #if PTTYPE == 64
24 	#define pt_element_t u64
25 	#define guest_walker guest_walker64
26 	#define FNAME(name) paging##64_##name
27 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
28 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS 4
37 	#define CMPXCHG cmpxchg
38 	#else
39 	#define CMPXCHG cmpxchg64
40 	#define PT_MAX_FULL_LEVELS 2
41 	#endif
42 #elif PTTYPE == 32
43 	#define pt_element_t u32
44 	#define guest_walker guest_walker32
45 	#define FNAME(name) paging##32_##name
46 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
51 	#define PT_MAX_FULL_LEVELS 2
52 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
55 	#define CMPXCHG cmpxchg
56 #elif PTTYPE == PTTYPE_EPT
57 	#define pt_element_t u64
58 	#define guest_walker guest_walkerEPT
59 	#define FNAME(name) ept_##name
60 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
65 	#define PT_GUEST_DIRTY_SHIFT 9
66 	#define PT_GUEST_ACCESSED_SHIFT 8
67 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68 	#define CMPXCHG cmpxchg64
69 	#define PT_MAX_FULL_LEVELS 4
70 #else
71 	#error Invalid PTTYPE value
72 #endif
73 
74 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76 
77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
79 
80 /*
81  * The guest_walker structure emulates the behavior of the hardware page
82  * table walker.
83  */
84 struct guest_walker {
85 	int level;
86 	unsigned max_level;
87 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
89 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92 	bool pte_writable[PT_MAX_FULL_LEVELS];
93 	unsigned pt_access;
94 	unsigned pte_access;
95 	gfn_t gfn;
96 	struct x86_exception fault;
97 };
98 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
100 {
101 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
102 }
103 
FNAME(protect_clean_gpte)104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 					     unsigned gpte)
106 {
107 	unsigned mask;
108 
109 	/* dirty bit is not supported, so no need to track it */
110 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 		return;
112 
113 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114 
115 	mask = (unsigned)~ACC_WRITE_MASK;
116 	/* Allow write access to dirty gptes */
117 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 		PT_WRITABLE_MASK;
119 	*access &= mask;
120 }
121 
FNAME(is_present_gpte)122 static inline int FNAME(is_present_gpte)(unsigned long pte)
123 {
124 #if PTTYPE != PTTYPE_EPT
125 	return pte & PT_PRESENT_MASK;
126 #else
127 	return pte & 7;
128 #endif
129 }
130 
FNAME(cmpxchg_gpte)131 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
132 			       pt_element_t __user *ptep_user, unsigned index,
133 			       pt_element_t orig_pte, pt_element_t new_pte)
134 {
135 	int npages;
136 	pt_element_t ret;
137 	pt_element_t *table;
138 	struct page *page;
139 
140 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
141 	if (likely(npages == 1)) {
142 		table = kmap_atomic(page);
143 		ret = CMPXCHG(&table[index], orig_pte, new_pte);
144 		kunmap_atomic(table);
145 
146 		kvm_release_page_dirty(page);
147 	} else {
148 		struct vm_area_struct *vma;
149 		unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
150 		unsigned long pfn;
151 		unsigned long paddr;
152 
153 		down_read(&current->mm->mmap_sem);
154 		vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
155 		if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
156 			up_read(&current->mm->mmap_sem);
157 			return -EFAULT;
158 		}
159 		pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
160 		paddr = pfn << PAGE_SHIFT;
161 		table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
162 		if (!table) {
163 			up_read(&current->mm->mmap_sem);
164 			return -EFAULT;
165 		}
166 		ret = CMPXCHG(&table[index], orig_pte, new_pte);
167 		memunmap(table);
168 		up_read(&current->mm->mmap_sem);
169 	}
170 
171 	return (ret != orig_pte);
172 }
173 
FNAME(prefetch_invalid_gpte)174 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
175 				  struct kvm_mmu_page *sp, u64 *spte,
176 				  u64 gpte)
177 {
178 	if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
179 		goto no_present;
180 
181 	if (!FNAME(is_present_gpte)(gpte))
182 		goto no_present;
183 
184 	/* if accessed bit is not supported prefetch non accessed gpte */
185 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
186 	    !(gpte & PT_GUEST_ACCESSED_MASK))
187 		goto no_present;
188 
189 	return false;
190 
191 no_present:
192 	drop_spte(vcpu->kvm, spte);
193 	return true;
194 }
195 
196 /*
197  * For PTTYPE_EPT, a page table can be executable but not readable
198  * on supported processors. Therefore, set_spte does not automatically
199  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
200  * to signify readability since it isn't used in the EPT case
201  */
FNAME(gpte_access)202 static inline unsigned FNAME(gpte_access)(u64 gpte)
203 {
204 	unsigned access;
205 #if PTTYPE == PTTYPE_EPT
206 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
207 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
208 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
209 #else
210 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
211 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
212 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
213 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
214 	access ^= (gpte >> PT64_NX_SHIFT);
215 #endif
216 
217 	return access;
218 }
219 
FNAME(update_accessed_dirty_bits)220 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
221 					     struct kvm_mmu *mmu,
222 					     struct guest_walker *walker,
223 					     int write_fault)
224 {
225 	unsigned level, index;
226 	pt_element_t pte, orig_pte;
227 	pt_element_t __user *ptep_user;
228 	gfn_t table_gfn;
229 	int ret;
230 
231 	/* dirty/accessed bits are not supported, so no need to update them */
232 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
233 		return 0;
234 
235 	for (level = walker->max_level; level >= walker->level; --level) {
236 		pte = orig_pte = walker->ptes[level - 1];
237 		table_gfn = walker->table_gfn[level - 1];
238 		ptep_user = walker->ptep_user[level - 1];
239 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
240 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
241 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
242 			pte |= PT_GUEST_ACCESSED_MASK;
243 		}
244 		if (level == walker->level && write_fault &&
245 				!(pte & PT_GUEST_DIRTY_MASK)) {
246 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
247 #if PTTYPE == PTTYPE_EPT
248 			if (kvm_arch_write_log_dirty(vcpu))
249 				return -EINVAL;
250 #endif
251 			pte |= PT_GUEST_DIRTY_MASK;
252 		}
253 		if (pte == orig_pte)
254 			continue;
255 
256 		/*
257 		 * If the slot is read-only, simply do not process the accessed
258 		 * and dirty bits.  This is the correct thing to do if the slot
259 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
260 		 * are only supported if the accessed and dirty bits are already
261 		 * set in the ROM (so that MMIO writes are never needed).
262 		 *
263 		 * Note that NPT does not allow this at all and faults, since
264 		 * it always wants nested page table entries for the guest
265 		 * page tables to be writable.  And EPT works but will simply
266 		 * overwrite the read-only memory to set the accessed and dirty
267 		 * bits.
268 		 */
269 		if (unlikely(!walker->pte_writable[level - 1]))
270 			continue;
271 
272 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
273 		if (ret)
274 			return ret;
275 
276 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
277 		walker->ptes[level - 1] = pte;
278 	}
279 	return 0;
280 }
281 
FNAME(gpte_pkeys)282 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
283 {
284 	unsigned pkeys = 0;
285 #if PTTYPE == 64
286 	pte_t pte = {.pte = gpte};
287 
288 	pkeys = pte_flags_pkey(pte_flags(pte));
289 #endif
290 	return pkeys;
291 }
292 
293 /*
294  * Fetch a guest pte for a guest virtual address
295  */
FNAME(walk_addr_generic)296 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
297 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
298 				    gva_t addr, u32 access)
299 {
300 	int ret;
301 	pt_element_t pte;
302 	pt_element_t __user *uninitialized_var(ptep_user);
303 	gfn_t table_gfn;
304 	u64 pt_access, pte_access;
305 	unsigned index, accessed_dirty, pte_pkey;
306 	unsigned nested_access;
307 	gpa_t pte_gpa;
308 	bool have_ad;
309 	int offset;
310 	u64 walk_nx_mask = 0;
311 	const int write_fault = access & PFERR_WRITE_MASK;
312 	const int user_fault  = access & PFERR_USER_MASK;
313 	const int fetch_fault = access & PFERR_FETCH_MASK;
314 	u16 errcode = 0;
315 	gpa_t real_gpa;
316 	gfn_t gfn;
317 
318 	trace_kvm_mmu_pagetable_walk(addr, access);
319 retry_walk:
320 	walker->level = mmu->root_level;
321 	pte           = mmu->get_cr3(vcpu);
322 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
323 
324 #if PTTYPE == 64
325 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
326 	if (walker->level == PT32E_ROOT_LEVEL) {
327 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
328 		trace_kvm_mmu_paging_element(pte, walker->level);
329 		if (!FNAME(is_present_gpte)(pte))
330 			goto error;
331 		--walker->level;
332 	}
333 #endif
334 	walker->max_level = walker->level;
335 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
336 
337 	/*
338 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
339 	 * by the MOV to CR instruction are treated as reads and do not cause the
340 	 * processor to set the dirty flag in any EPT paging-structure entry.
341 	 */
342 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
343 
344 	pte_access = ~0;
345 	++walker->level;
346 
347 	do {
348 		gfn_t real_gfn;
349 		unsigned long host_addr;
350 
351 		pt_access = pte_access;
352 		--walker->level;
353 
354 		index = PT_INDEX(addr, walker->level);
355 		table_gfn = gpte_to_gfn(pte);
356 		offset    = index * sizeof(pt_element_t);
357 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
358 
359 		BUG_ON(walker->level < 1);
360 		walker->table_gfn[walker->level - 1] = table_gfn;
361 		walker->pte_gpa[walker->level - 1] = pte_gpa;
362 
363 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
364 					      nested_access,
365 					      &walker->fault);
366 
367 		/*
368 		 * FIXME: This can happen if emulation (for of an INS/OUTS
369 		 * instruction) triggers a nested page fault.  The exit
370 		 * qualification / exit info field will incorrectly have
371 		 * "guest page access" as the nested page fault's cause,
372 		 * instead of "guest page structure access".  To fix this,
373 		 * the x86_exception struct should be augmented with enough
374 		 * information to fix the exit_qualification or exit_info_1
375 		 * fields.
376 		 */
377 		if (unlikely(real_gfn == UNMAPPED_GVA))
378 			return 0;
379 
380 		real_gfn = gpa_to_gfn(real_gfn);
381 
382 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
383 					    &walker->pte_writable[walker->level - 1]);
384 		if (unlikely(kvm_is_error_hva(host_addr)))
385 			goto error;
386 
387 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
388 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
389 			goto error;
390 		walker->ptep_user[walker->level - 1] = ptep_user;
391 
392 		trace_kvm_mmu_paging_element(pte, walker->level);
393 
394 		/*
395 		 * Inverting the NX it lets us AND it like other
396 		 * permission bits.
397 		 */
398 		pte_access = pt_access & (pte ^ walk_nx_mask);
399 
400 		if (unlikely(!FNAME(is_present_gpte)(pte)))
401 			goto error;
402 
403 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
404 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
405 			goto error;
406 		}
407 
408 		walker->ptes[walker->level - 1] = pte;
409 	} while (!is_last_gpte(mmu, walker->level, pte));
410 
411 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
412 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
413 
414 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
415 	walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
416 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
417 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
418 	if (unlikely(errcode))
419 		goto error;
420 
421 	gfn = gpte_to_gfn_lvl(pte, walker->level);
422 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
423 
424 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
425 		gfn += pse36_gfn_delta(pte);
426 
427 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
428 	if (real_gpa == UNMAPPED_GVA)
429 		return 0;
430 
431 	walker->gfn = real_gpa >> PAGE_SHIFT;
432 
433 	if (!write_fault)
434 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
435 	else
436 		/*
437 		 * On a write fault, fold the dirty bit into accessed_dirty.
438 		 * For modes without A/D bits support accessed_dirty will be
439 		 * always clear.
440 		 */
441 		accessed_dirty &= pte >>
442 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
443 
444 	if (unlikely(!accessed_dirty)) {
445 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
446 		if (unlikely(ret < 0))
447 			goto error;
448 		else if (ret)
449 			goto retry_walk;
450 	}
451 
452 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
453 		 __func__, (u64)pte, walker->pte_access, walker->pt_access);
454 	return 1;
455 
456 error:
457 	errcode |= write_fault | user_fault;
458 	if (fetch_fault && (mmu->nx ||
459 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
460 		errcode |= PFERR_FETCH_MASK;
461 
462 	walker->fault.vector = PF_VECTOR;
463 	walker->fault.error_code_valid = true;
464 	walker->fault.error_code = errcode;
465 
466 #if PTTYPE == PTTYPE_EPT
467 	/*
468 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
469 	 * misconfiguration requires to be injected. The detection is
470 	 * done by is_rsvd_bits_set() above.
471 	 *
472 	 * We set up the value of exit_qualification to inject:
473 	 * [2:0] - Derive from the access bits. The exit_qualification might be
474 	 *         out of date if it is serving an EPT misconfiguration.
475 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
476 	 * [7:8] - Derived from [7:8] of real exit_qualification
477 	 *
478 	 * The other bits are set to 0.
479 	 */
480 	if (!(errcode & PFERR_RSVD_MASK)) {
481 		vcpu->arch.exit_qualification &= 0x180;
482 		if (write_fault)
483 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
484 		if (user_fault)
485 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
486 		if (fetch_fault)
487 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
488 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
489 	}
490 #endif
491 	walker->fault.address = addr;
492 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
493 
494 	trace_kvm_mmu_walker_error(walker->fault.error_code);
495 	return 0;
496 }
497 
FNAME(walk_addr)498 static int FNAME(walk_addr)(struct guest_walker *walker,
499 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
500 {
501 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
502 					access);
503 }
504 
505 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)506 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
507 				   struct kvm_vcpu *vcpu, gva_t addr,
508 				   u32 access)
509 {
510 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
511 					addr, access);
512 }
513 #endif
514 
515 static bool
FNAME(prefetch_gpte)516 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
517 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
518 {
519 	unsigned pte_access;
520 	gfn_t gfn;
521 	kvm_pfn_t pfn;
522 
523 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
524 		return false;
525 
526 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
527 
528 	gfn = gpte_to_gfn(gpte);
529 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
530 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
531 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
532 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
533 	if (is_error_pfn(pfn))
534 		return false;
535 
536 	/*
537 	 * we call mmu_set_spte() with host_writable = true because
538 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
539 	 */
540 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
541 		     true, true);
542 
543 	kvm_release_pfn_clean(pfn);
544 	return true;
545 }
546 
FNAME(update_pte)547 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
548 			      u64 *spte, const void *pte)
549 {
550 	pt_element_t gpte = *(const pt_element_t *)pte;
551 
552 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
553 }
554 
FNAME(gpte_changed)555 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
556 				struct guest_walker *gw, int level)
557 {
558 	pt_element_t curr_pte;
559 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
560 	u64 mask;
561 	int r, index;
562 
563 	if (level == PT_PAGE_TABLE_LEVEL) {
564 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
565 		base_gpa = pte_gpa & ~mask;
566 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
567 
568 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
569 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
570 		curr_pte = gw->prefetch_ptes[index];
571 	} else
572 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
573 				  &curr_pte, sizeof(curr_pte));
574 
575 	return r || curr_pte != gw->ptes[level - 1];
576 }
577 
FNAME(pte_prefetch)578 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
579 				u64 *sptep)
580 {
581 	struct kvm_mmu_page *sp;
582 	pt_element_t *gptep = gw->prefetch_ptes;
583 	u64 *spte;
584 	int i;
585 
586 	sp = page_header(__pa(sptep));
587 
588 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
589 		return;
590 
591 	if (sp->role.direct)
592 		return __direct_pte_prefetch(vcpu, sp, sptep);
593 
594 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
595 	spte = sp->spt + i;
596 
597 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
598 		if (spte == sptep)
599 			continue;
600 
601 		if (is_shadow_present_pte(*spte))
602 			continue;
603 
604 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
605 			break;
606 	}
607 }
608 
609 /*
610  * Fetch a shadow pte for a specific level in the paging hierarchy.
611  * If the guest tries to write a write-protected page, we need to
612  * emulate this operation, return 1 to indicate this case.
613  */
FNAME(fetch)614 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
615 			 struct guest_walker *gw,
616 			 int write_fault, int hlevel,
617 			 kvm_pfn_t pfn, bool map_writable, bool prefault,
618 			 bool lpage_disallowed)
619 {
620 	struct kvm_mmu_page *sp = NULL;
621 	struct kvm_shadow_walk_iterator it;
622 	unsigned direct_access, access = gw->pt_access;
623 	int top_level, ret;
624 	gfn_t gfn, base_gfn;
625 
626 	direct_access = gw->pte_access;
627 
628 	top_level = vcpu->arch.mmu->root_level;
629 	if (top_level == PT32E_ROOT_LEVEL)
630 		top_level = PT32_ROOT_LEVEL;
631 	/*
632 	 * Verify that the top-level gpte is still there.  Since the page
633 	 * is a root page, it is either write protected (and cannot be
634 	 * changed from now on) or it is invalid (in which case, we don't
635 	 * really care if it changes underneath us after this point).
636 	 */
637 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
638 		goto out_gpte_changed;
639 
640 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
641 		goto out_gpte_changed;
642 
643 	for (shadow_walk_init(&it, vcpu, addr);
644 	     shadow_walk_okay(&it) && it.level > gw->level;
645 	     shadow_walk_next(&it)) {
646 		gfn_t table_gfn;
647 
648 		clear_sp_write_flooding_count(it.sptep);
649 		drop_large_spte(vcpu, it.sptep);
650 
651 		sp = NULL;
652 		if (!is_shadow_present_pte(*it.sptep)) {
653 			table_gfn = gw->table_gfn[it.level - 2];
654 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
655 					      false, access);
656 		}
657 
658 		/*
659 		 * Verify that the gpte in the page we've just write
660 		 * protected is still there.
661 		 */
662 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
663 			goto out_gpte_changed;
664 
665 		if (sp)
666 			link_shadow_page(vcpu, it.sptep, sp);
667 	}
668 
669 	/*
670 	 * FNAME(page_fault) might have clobbered the bottom bits of
671 	 * gw->gfn, restore them from the virtual address.
672 	 */
673 	gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
674 	base_gfn = gfn;
675 
676 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
677 
678 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
679 		clear_sp_write_flooding_count(it.sptep);
680 
681 		/*
682 		 * We cannot overwrite existing page tables with an NX
683 		 * large page, as the leaf could be executable.
684 		 */
685 		disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
686 
687 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
688 		if (it.level == hlevel)
689 			break;
690 
691 		validate_direct_spte(vcpu, it.sptep, direct_access);
692 
693 		drop_large_spte(vcpu, it.sptep);
694 
695 		if (!is_shadow_present_pte(*it.sptep)) {
696 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
697 					      it.level - 1, true, direct_access);
698 			link_shadow_page(vcpu, it.sptep, sp);
699 			if (lpage_disallowed)
700 				account_huge_nx_page(vcpu->kvm, sp);
701 		}
702 	}
703 
704 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
705 			   it.level, base_gfn, pfn, prefault, map_writable);
706 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
707 	++vcpu->stat.pf_fixed;
708 	return ret;
709 
710 out_gpte_changed:
711 	return RET_PF_RETRY;
712 }
713 
714  /*
715  * To see whether the mapped gfn can write its page table in the current
716  * mapping.
717  *
718  * It is the helper function of FNAME(page_fault). When guest uses large page
719  * size to map the writable gfn which is used as current page table, we should
720  * force kvm to use small page size to map it because new shadow page will be
721  * created when kvm establishes shadow page table that stop kvm using large
722  * page size. Do it early can avoid unnecessary #PF and emulation.
723  *
724  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
725  * currently used as its page table.
726  *
727  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
728  * since the PDPT is always shadowed, that means, we can not use large page
729  * size to map the gfn which is used as PDPT.
730  */
731 static bool
FNAME(is_self_change_mapping)732 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
733 			      struct guest_walker *walker, int user_fault,
734 			      bool *write_fault_to_shadow_pgtable)
735 {
736 	int level;
737 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
738 	bool self_changed = false;
739 
740 	if (!(walker->pte_access & ACC_WRITE_MASK ||
741 	      (!is_write_protection(vcpu) && !user_fault)))
742 		return false;
743 
744 	for (level = walker->level; level <= walker->max_level; level++) {
745 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
746 
747 		self_changed |= !(gfn & mask);
748 		*write_fault_to_shadow_pgtable |= !gfn;
749 	}
750 
751 	return self_changed;
752 }
753 
754 /*
755  * Page fault handler.  There are several causes for a page fault:
756  *   - there is no shadow pte for the guest pte
757  *   - write access through a shadow pte marked read only so that we can set
758  *     the dirty bit
759  *   - write access to a shadow pte marked read only so we can update the page
760  *     dirty bitmap, when userspace requests it
761  *   - mmio access; in this case we will never install a present shadow pte
762  *   - normal guest page fault due to the guest pte marked not present, not
763  *     writable, or not executable
764  *
765  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
766  *           a negative value on error.
767  */
FNAME(page_fault)768 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
769 			     bool prefault)
770 {
771 	int write_fault = error_code & PFERR_WRITE_MASK;
772 	int user_fault = error_code & PFERR_USER_MASK;
773 	struct guest_walker walker;
774 	int r;
775 	kvm_pfn_t pfn;
776 	int level = PT_PAGE_TABLE_LEVEL;
777 	unsigned long mmu_seq;
778 	bool map_writable, is_self_change_mapping;
779 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
780 				is_nx_huge_page_enabled();
781 	bool force_pt_level = lpage_disallowed;
782 
783 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
784 
785 	r = mmu_topup_memory_caches(vcpu);
786 	if (r)
787 		return r;
788 
789 	/*
790 	 * If PFEC.RSVD is set, this is a shadow page fault.
791 	 * The bit needs to be cleared before walking guest page tables.
792 	 */
793 	error_code &= ~PFERR_RSVD_MASK;
794 
795 	/*
796 	 * Look up the guest pte for the faulting address.
797 	 */
798 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
799 
800 	/*
801 	 * The page is not mapped by the guest.  Let the guest handle it.
802 	 */
803 	if (!r) {
804 		pgprintk("%s: guest page fault\n", __func__);
805 		if (!prefault)
806 			inject_page_fault(vcpu, &walker.fault);
807 
808 		return RET_PF_RETRY;
809 	}
810 
811 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
812 		shadow_page_table_clear_flood(vcpu, addr);
813 		return RET_PF_EMULATE;
814 	}
815 
816 	vcpu->arch.write_fault_to_shadow_pgtable = false;
817 
818 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
819 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
820 
821 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
822 		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
823 		if (likely(!force_pt_level)) {
824 			level = min(walker.level, level);
825 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
826 		}
827 	} else
828 		force_pt_level = true;
829 
830 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
831 	smp_rmb();
832 
833 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
834 			 &map_writable))
835 		return RET_PF_RETRY;
836 
837 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
838 		return r;
839 
840 	/*
841 	 * Do not change pte_access if the pfn is a mmio page, otherwise
842 	 * we will cache the incorrect access into mmio spte.
843 	 */
844 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
845 	     !is_write_protection(vcpu) && !user_fault &&
846 	      !is_noslot_pfn(pfn)) {
847 		walker.pte_access |= ACC_WRITE_MASK;
848 		walker.pte_access &= ~ACC_USER_MASK;
849 
850 		/*
851 		 * If we converted a user page to a kernel page,
852 		 * so that the kernel can write to it when cr0.wp=0,
853 		 * then we should prevent the kernel from executing it
854 		 * if SMEP is enabled.
855 		 */
856 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
857 			walker.pte_access &= ~ACC_EXEC_MASK;
858 	}
859 
860 	r = RET_PF_RETRY;
861 	spin_lock(&vcpu->kvm->mmu_lock);
862 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
863 		goto out_unlock;
864 
865 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
866 	if (make_mmu_pages_available(vcpu) < 0)
867 		goto out_unlock;
868 	if (!force_pt_level)
869 		transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
870 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
871 			 level, pfn, map_writable, prefault, lpage_disallowed);
872 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
873 
874 out_unlock:
875 	spin_unlock(&vcpu->kvm->mmu_lock);
876 	kvm_release_pfn_clean(pfn);
877 	return r;
878 }
879 
FNAME(get_level1_sp_gpa)880 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
881 {
882 	int offset = 0;
883 
884 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
885 
886 	if (PTTYPE == 32)
887 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
888 
889 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
890 }
891 
FNAME(invlpg)892 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
893 {
894 	struct kvm_shadow_walk_iterator iterator;
895 	struct kvm_mmu_page *sp;
896 	int level;
897 	u64 *sptep;
898 
899 	vcpu_clear_mmio_info(vcpu, gva);
900 
901 	/*
902 	 * No need to check return value here, rmap_can_add() can
903 	 * help us to skip pte prefetch later.
904 	 */
905 	mmu_topup_memory_caches(vcpu);
906 
907 	if (!VALID_PAGE(root_hpa)) {
908 		WARN_ON(1);
909 		return;
910 	}
911 
912 	spin_lock(&vcpu->kvm->mmu_lock);
913 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
914 		level = iterator.level;
915 		sptep = iterator.sptep;
916 
917 		sp = page_header(__pa(sptep));
918 		if (is_last_spte(*sptep, level)) {
919 			pt_element_t gpte;
920 			gpa_t pte_gpa;
921 
922 			if (!sp->unsync)
923 				break;
924 
925 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
926 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
927 
928 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
929 				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
930 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
931 
932 			if (!rmap_can_add(vcpu))
933 				break;
934 
935 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
936 						       sizeof(pt_element_t)))
937 				break;
938 
939 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
940 		}
941 
942 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
943 			break;
944 	}
945 	spin_unlock(&vcpu->kvm->mmu_lock);
946 }
947 
FNAME(gva_to_gpa)948 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
949 			       struct x86_exception *exception)
950 {
951 	struct guest_walker walker;
952 	gpa_t gpa = UNMAPPED_GVA;
953 	int r;
954 
955 	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
956 
957 	if (r) {
958 		gpa = gfn_to_gpa(walker.gfn);
959 		gpa |= vaddr & ~PAGE_MASK;
960 	} else if (exception)
961 		*exception = walker.fault;
962 
963 	return gpa;
964 }
965 
966 #if PTTYPE != PTTYPE_EPT
FNAME(gva_to_gpa_nested)967 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
968 				      u32 access,
969 				      struct x86_exception *exception)
970 {
971 	struct guest_walker walker;
972 	gpa_t gpa = UNMAPPED_GVA;
973 	int r;
974 
975 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
976 
977 	if (r) {
978 		gpa = gfn_to_gpa(walker.gfn);
979 		gpa |= vaddr & ~PAGE_MASK;
980 	} else if (exception)
981 		*exception = walker.fault;
982 
983 	return gpa;
984 }
985 #endif
986 
987 /*
988  * Using the cached information from sp->gfns is safe because:
989  * - The spte has a reference to the struct page, so the pfn for a given gfn
990  *   can't change unless all sptes pointing to it are nuked first.
991  *
992  * Note:
993  *   We should flush all tlbs if spte is dropped even though guest is
994  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
995  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
996  *   used by guest then tlbs are not flushed, so guest is allowed to access the
997  *   freed pages.
998  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
999  */
FNAME(sync_page)1000 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1001 {
1002 	int i, nr_present = 0;
1003 	bool host_writable;
1004 	gpa_t first_pte_gpa;
1005 	int set_spte_ret = 0;
1006 
1007 	/* direct kvm_mmu_page can not be unsync. */
1008 	BUG_ON(sp->role.direct);
1009 
1010 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1011 
1012 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1013 		unsigned pte_access;
1014 		pt_element_t gpte;
1015 		gpa_t pte_gpa;
1016 		gfn_t gfn;
1017 
1018 		if (!sp->spt[i])
1019 			continue;
1020 
1021 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1022 
1023 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1024 					       sizeof(pt_element_t)))
1025 			return 0;
1026 
1027 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1028 			/*
1029 			 * Update spte before increasing tlbs_dirty to make
1030 			 * sure no tlb flush is lost after spte is zapped; see
1031 			 * the comments in kvm_flush_remote_tlbs().
1032 			 */
1033 			smp_wmb();
1034 			vcpu->kvm->tlbs_dirty++;
1035 			continue;
1036 		}
1037 
1038 		gfn = gpte_to_gfn(gpte);
1039 		pte_access = sp->role.access;
1040 		pte_access &= FNAME(gpte_access)(gpte);
1041 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1042 
1043 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1044 		      &nr_present))
1045 			continue;
1046 
1047 		if (gfn != sp->gfns[i]) {
1048 			drop_spte(vcpu->kvm, &sp->spt[i]);
1049 			/*
1050 			 * The same as above where we are doing
1051 			 * prefetch_invalid_gpte().
1052 			 */
1053 			smp_wmb();
1054 			vcpu->kvm->tlbs_dirty++;
1055 			continue;
1056 		}
1057 
1058 		nr_present++;
1059 
1060 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1061 
1062 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1063 					 pte_access, PT_PAGE_TABLE_LEVEL,
1064 					 gfn, spte_to_pfn(sp->spt[i]),
1065 					 true, false, host_writable);
1066 	}
1067 
1068 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1069 		kvm_flush_remote_tlbs(vcpu->kvm);
1070 
1071 	return nr_present;
1072 }
1073 
1074 #undef pt_element_t
1075 #undef guest_walker
1076 #undef FNAME
1077 #undef PT_BASE_ADDR_MASK
1078 #undef PT_INDEX
1079 #undef PT_LVL_ADDR_MASK
1080 #undef PT_LVL_OFFSET_MASK
1081 #undef PT_LEVEL_BITS
1082 #undef PT_MAX_FULL_LEVELS
1083 #undef gpte_to_gfn
1084 #undef gpte_to_gfn_lvl
1085 #undef CMPXCHG
1086 #undef PT_GUEST_ACCESSED_MASK
1087 #undef PT_GUEST_DIRTY_MASK
1088 #undef PT_GUEST_DIRTY_SHIFT
1089 #undef PT_GUEST_ACCESSED_SHIFT
1090 #undef PT_HAVE_ACCESSED_DIRTY
1091