1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * bpf_jit_comp.c: BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12
13 #include <asm/set_memory.h>
14 #include <asm/nospec-branch.h>
15
emit_code(u8 * ptr,u32 bytes,unsigned int len)16 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
17 {
18 if (len == 1)
19 *ptr = bytes;
20 else if (len == 2)
21 *(u16 *)ptr = bytes;
22 else {
23 *(u32 *)ptr = bytes;
24 barrier();
25 }
26 return ptr + len;
27 }
28
29 #define EMIT(bytes, len) \
30 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
31
32 #define EMIT1(b1) EMIT(b1, 1)
33 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
34 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
35 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
36
37 #define EMIT1_off32(b1, off) \
38 do { EMIT1(b1); EMIT(off, 4); } while (0)
39 #define EMIT2_off32(b1, b2, off) \
40 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
41 #define EMIT3_off32(b1, b2, b3, off) \
42 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
43 #define EMIT4_off32(b1, b2, b3, b4, off) \
44 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
45
is_imm8(int value)46 static bool is_imm8(int value)
47 {
48 return value <= 127 && value >= -128;
49 }
50
is_simm32(s64 value)51 static bool is_simm32(s64 value)
52 {
53 return value == (s64)(s32)value;
54 }
55
is_uimm32(u64 value)56 static bool is_uimm32(u64 value)
57 {
58 return value == (u64)(u32)value;
59 }
60
61 /* mov dst, src */
62 #define EMIT_mov(DST, SRC) \
63 do { \
64 if (DST != SRC) \
65 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
66 } while (0)
67
bpf_size_to_x86_bytes(int bpf_size)68 static int bpf_size_to_x86_bytes(int bpf_size)
69 {
70 if (bpf_size == BPF_W)
71 return 4;
72 else if (bpf_size == BPF_H)
73 return 2;
74 else if (bpf_size == BPF_B)
75 return 1;
76 else if (bpf_size == BPF_DW)
77 return 4; /* imm32 */
78 else
79 return 0;
80 }
81
82 /*
83 * List of x86 cond jumps opcodes (. + s8)
84 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
85 */
86 #define X86_JB 0x72
87 #define X86_JAE 0x73
88 #define X86_JE 0x74
89 #define X86_JNE 0x75
90 #define X86_JBE 0x76
91 #define X86_JA 0x77
92 #define X86_JL 0x7C
93 #define X86_JGE 0x7D
94 #define X86_JLE 0x7E
95 #define X86_JG 0x7F
96
97 /* Pick a register outside of BPF range for JIT internal work */
98 #define AUX_REG (MAX_BPF_JIT_REG + 1)
99
100 /*
101 * The following table maps BPF registers to x86-64 registers.
102 *
103 * x86-64 register R12 is unused, since if used as base address
104 * register in load/store instructions, it always needs an
105 * extra byte of encoding and is callee saved.
106 *
107 * Also x86-64 register R9 is unused. x86-64 register R10 is
108 * used for blinding (if enabled).
109 */
110 static const int reg2hex[] = {
111 [BPF_REG_0] = 0, /* RAX */
112 [BPF_REG_1] = 7, /* RDI */
113 [BPF_REG_2] = 6, /* RSI */
114 [BPF_REG_3] = 2, /* RDX */
115 [BPF_REG_4] = 1, /* RCX */
116 [BPF_REG_5] = 0, /* R8 */
117 [BPF_REG_6] = 3, /* RBX callee saved */
118 [BPF_REG_7] = 5, /* R13 callee saved */
119 [BPF_REG_8] = 6, /* R14 callee saved */
120 [BPF_REG_9] = 7, /* R15 callee saved */
121 [BPF_REG_FP] = 5, /* RBP readonly */
122 [BPF_REG_AX] = 2, /* R10 temp register */
123 [AUX_REG] = 3, /* R11 temp register */
124 };
125
126 /*
127 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
128 * which need extra byte of encoding.
129 * rax,rcx,...,rbp have simpler encoding
130 */
is_ereg(u32 reg)131 static bool is_ereg(u32 reg)
132 {
133 return (1 << reg) & (BIT(BPF_REG_5) |
134 BIT(AUX_REG) |
135 BIT(BPF_REG_7) |
136 BIT(BPF_REG_8) |
137 BIT(BPF_REG_9) |
138 BIT(BPF_REG_AX));
139 }
140
is_axreg(u32 reg)141 static bool is_axreg(u32 reg)
142 {
143 return reg == BPF_REG_0;
144 }
145
146 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte,u32 reg)147 static u8 add_1mod(u8 byte, u32 reg)
148 {
149 if (is_ereg(reg))
150 byte |= 1;
151 return byte;
152 }
153
add_2mod(u8 byte,u32 r1,u32 r2)154 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
155 {
156 if (is_ereg(r1))
157 byte |= 1;
158 if (is_ereg(r2))
159 byte |= 4;
160 return byte;
161 }
162
163 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)164 static u8 add_1reg(u8 byte, u32 dst_reg)
165 {
166 return byte + reg2hex[dst_reg];
167 }
168
169 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)170 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
171 {
172 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
173 }
174
jit_fill_hole(void * area,unsigned int size)175 static void jit_fill_hole(void *area, unsigned int size)
176 {
177 /* Fill whole space with INT3 instructions */
178 memset(area, 0xcc, size);
179 }
180
181 struct jit_context {
182 int cleanup_addr; /* Epilogue code offset */
183 };
184
185 /* Maximum number of bytes emitted while JITing one eBPF insn */
186 #define BPF_MAX_INSN_SIZE 128
187 #define BPF_INSN_SAFETY 64
188
189 #define PROLOGUE_SIZE 20
190
191 /*
192 * Emit x86-64 prologue code for BPF program and check its size.
193 * bpf_tail_call helper will skip it while jumping into another program
194 */
emit_prologue(u8 ** pprog,u32 stack_depth,bool ebpf_from_cbpf)195 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
196 {
197 u8 *prog = *pprog;
198 int cnt = 0;
199
200 EMIT1(0x55); /* push rbp */
201 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
202 /* sub rsp, rounded_stack_depth */
203 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
204 EMIT1(0x53); /* push rbx */
205 EMIT2(0x41, 0x55); /* push r13 */
206 EMIT2(0x41, 0x56); /* push r14 */
207 EMIT2(0x41, 0x57); /* push r15 */
208 if (!ebpf_from_cbpf) {
209 /* zero init tail_call_cnt */
210 EMIT2(0x6a, 0x00);
211 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
212 }
213 *pprog = prog;
214 }
215
216 /*
217 * Generate the following code:
218 *
219 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
220 * if (index >= array->map.max_entries)
221 * goto out;
222 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
223 * goto out;
224 * prog = array->ptrs[index];
225 * if (prog == NULL)
226 * goto out;
227 * goto *(prog->bpf_func + prologue_size);
228 * out:
229 */
emit_bpf_tail_call(u8 ** pprog)230 static void emit_bpf_tail_call(u8 **pprog)
231 {
232 u8 *prog = *pprog;
233 int label1, label2, label3;
234 int cnt = 0;
235
236 /*
237 * rdi - pointer to ctx
238 * rsi - pointer to bpf_array
239 * rdx - index in bpf_array
240 */
241
242 /*
243 * if (index >= array->map.max_entries)
244 * goto out;
245 */
246 EMIT2(0x89, 0xD2); /* mov edx, edx */
247 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
248 offsetof(struct bpf_array, map.max_entries));
249 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
250 EMIT2(X86_JBE, OFFSET1); /* jbe out */
251 label1 = cnt;
252
253 /*
254 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
255 * goto out;
256 */
257 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
258 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
259 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
260 EMIT2(X86_JA, OFFSET2); /* ja out */
261 label2 = cnt;
262 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
263 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
264
265 /* prog = array->ptrs[index]; */
266 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
267 offsetof(struct bpf_array, ptrs));
268
269 /*
270 * if (prog == NULL)
271 * goto out;
272 */
273 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
274 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
275 EMIT2(X86_JE, OFFSET3); /* je out */
276 label3 = cnt;
277
278 /* goto *(prog->bpf_func + prologue_size); */
279 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
280 offsetof(struct bpf_prog, bpf_func));
281 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
282
283 /*
284 * Wow we're ready to jump into next BPF program
285 * rdi == ctx (1st arg)
286 * rax == prog->bpf_func + prologue_size
287 */
288 RETPOLINE_RAX_BPF_JIT();
289
290 /* out: */
291 BUILD_BUG_ON(cnt - label1 != OFFSET1);
292 BUILD_BUG_ON(cnt - label2 != OFFSET2);
293 BUILD_BUG_ON(cnt - label3 != OFFSET3);
294 *pprog = prog;
295 }
296
emit_mov_imm32(u8 ** pprog,bool sign_propagate,u32 dst_reg,const u32 imm32)297 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
298 u32 dst_reg, const u32 imm32)
299 {
300 u8 *prog = *pprog;
301 u8 b1, b2, b3;
302 int cnt = 0;
303
304 /*
305 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
306 * (which zero-extends imm32) to save 2 bytes.
307 */
308 if (sign_propagate && (s32)imm32 < 0) {
309 /* 'mov %rax, imm32' sign extends imm32 */
310 b1 = add_1mod(0x48, dst_reg);
311 b2 = 0xC7;
312 b3 = 0xC0;
313 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
314 goto done;
315 }
316
317 /*
318 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
319 * to save 3 bytes.
320 */
321 if (imm32 == 0) {
322 if (is_ereg(dst_reg))
323 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
324 b2 = 0x31; /* xor */
325 b3 = 0xC0;
326 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
327 goto done;
328 }
329
330 /* mov %eax, imm32 */
331 if (is_ereg(dst_reg))
332 EMIT1(add_1mod(0x40, dst_reg));
333 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
334 done:
335 *pprog = prog;
336 }
337
emit_mov_imm64(u8 ** pprog,u32 dst_reg,const u32 imm32_hi,const u32 imm32_lo)338 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
339 const u32 imm32_hi, const u32 imm32_lo)
340 {
341 u8 *prog = *pprog;
342 int cnt = 0;
343
344 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
345 /*
346 * For emitting plain u32, where sign bit must not be
347 * propagated LLVM tends to load imm64 over mov32
348 * directly, so save couple of bytes by just doing
349 * 'mov %eax, imm32' instead.
350 */
351 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
352 } else {
353 /* movabsq %rax, imm64 */
354 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
355 EMIT(imm32_lo, 4);
356 EMIT(imm32_hi, 4);
357 }
358
359 *pprog = prog;
360 }
361
emit_mov_reg(u8 ** pprog,bool is64,u32 dst_reg,u32 src_reg)362 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
363 {
364 u8 *prog = *pprog;
365 int cnt = 0;
366
367 if (is64) {
368 /* mov dst, src */
369 EMIT_mov(dst_reg, src_reg);
370 } else {
371 /* mov32 dst, src */
372 if (is_ereg(dst_reg) || is_ereg(src_reg))
373 EMIT1(add_2mod(0x40, dst_reg, src_reg));
374 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
375 }
376
377 *pprog = prog;
378 }
379
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,int oldproglen,struct jit_context * ctx)380 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
381 int oldproglen, struct jit_context *ctx)
382 {
383 struct bpf_insn *insn = bpf_prog->insnsi;
384 int insn_cnt = bpf_prog->len;
385 bool seen_exit = false;
386 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
387 int i, cnt = 0;
388 int proglen = 0;
389 u8 *prog = temp;
390
391 emit_prologue(&prog, bpf_prog->aux->stack_depth,
392 bpf_prog_was_classic(bpf_prog));
393 addrs[0] = prog - temp;
394
395 for (i = 1; i <= insn_cnt; i++, insn++) {
396 const s32 imm32 = insn->imm;
397 u32 dst_reg = insn->dst_reg;
398 u32 src_reg = insn->src_reg;
399 u8 b2 = 0, b3 = 0;
400 s64 jmp_offset;
401 u8 jmp_cond;
402 int ilen;
403 u8 *func;
404
405 switch (insn->code) {
406 /* ALU */
407 case BPF_ALU | BPF_ADD | BPF_X:
408 case BPF_ALU | BPF_SUB | BPF_X:
409 case BPF_ALU | BPF_AND | BPF_X:
410 case BPF_ALU | BPF_OR | BPF_X:
411 case BPF_ALU | BPF_XOR | BPF_X:
412 case BPF_ALU64 | BPF_ADD | BPF_X:
413 case BPF_ALU64 | BPF_SUB | BPF_X:
414 case BPF_ALU64 | BPF_AND | BPF_X:
415 case BPF_ALU64 | BPF_OR | BPF_X:
416 case BPF_ALU64 | BPF_XOR | BPF_X:
417 switch (BPF_OP(insn->code)) {
418 case BPF_ADD: b2 = 0x01; break;
419 case BPF_SUB: b2 = 0x29; break;
420 case BPF_AND: b2 = 0x21; break;
421 case BPF_OR: b2 = 0x09; break;
422 case BPF_XOR: b2 = 0x31; break;
423 }
424 if (BPF_CLASS(insn->code) == BPF_ALU64)
425 EMIT1(add_2mod(0x48, dst_reg, src_reg));
426 else if (is_ereg(dst_reg) || is_ereg(src_reg))
427 EMIT1(add_2mod(0x40, dst_reg, src_reg));
428 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
429 break;
430
431 case BPF_ALU64 | BPF_MOV | BPF_X:
432 case BPF_ALU | BPF_MOV | BPF_X:
433 emit_mov_reg(&prog,
434 BPF_CLASS(insn->code) == BPF_ALU64,
435 dst_reg, src_reg);
436 break;
437
438 /* neg dst */
439 case BPF_ALU | BPF_NEG:
440 case BPF_ALU64 | BPF_NEG:
441 if (BPF_CLASS(insn->code) == BPF_ALU64)
442 EMIT1(add_1mod(0x48, dst_reg));
443 else if (is_ereg(dst_reg))
444 EMIT1(add_1mod(0x40, dst_reg));
445 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
446 break;
447
448 case BPF_ALU | BPF_ADD | BPF_K:
449 case BPF_ALU | BPF_SUB | BPF_K:
450 case BPF_ALU | BPF_AND | BPF_K:
451 case BPF_ALU | BPF_OR | BPF_K:
452 case BPF_ALU | BPF_XOR | BPF_K:
453 case BPF_ALU64 | BPF_ADD | BPF_K:
454 case BPF_ALU64 | BPF_SUB | BPF_K:
455 case BPF_ALU64 | BPF_AND | BPF_K:
456 case BPF_ALU64 | BPF_OR | BPF_K:
457 case BPF_ALU64 | BPF_XOR | BPF_K:
458 if (BPF_CLASS(insn->code) == BPF_ALU64)
459 EMIT1(add_1mod(0x48, dst_reg));
460 else if (is_ereg(dst_reg))
461 EMIT1(add_1mod(0x40, dst_reg));
462
463 /*
464 * b3 holds 'normal' opcode, b2 short form only valid
465 * in case dst is eax/rax.
466 */
467 switch (BPF_OP(insn->code)) {
468 case BPF_ADD:
469 b3 = 0xC0;
470 b2 = 0x05;
471 break;
472 case BPF_SUB:
473 b3 = 0xE8;
474 b2 = 0x2D;
475 break;
476 case BPF_AND:
477 b3 = 0xE0;
478 b2 = 0x25;
479 break;
480 case BPF_OR:
481 b3 = 0xC8;
482 b2 = 0x0D;
483 break;
484 case BPF_XOR:
485 b3 = 0xF0;
486 b2 = 0x35;
487 break;
488 }
489
490 if (is_imm8(imm32))
491 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
492 else if (is_axreg(dst_reg))
493 EMIT1_off32(b2, imm32);
494 else
495 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
496 break;
497
498 case BPF_ALU64 | BPF_MOV | BPF_K:
499 case BPF_ALU | BPF_MOV | BPF_K:
500 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
501 dst_reg, imm32);
502 break;
503
504 case BPF_LD | BPF_IMM | BPF_DW:
505 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
506 insn++;
507 i++;
508 break;
509
510 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
511 case BPF_ALU | BPF_MOD | BPF_X:
512 case BPF_ALU | BPF_DIV | BPF_X:
513 case BPF_ALU | BPF_MOD | BPF_K:
514 case BPF_ALU | BPF_DIV | BPF_K:
515 case BPF_ALU64 | BPF_MOD | BPF_X:
516 case BPF_ALU64 | BPF_DIV | BPF_X:
517 case BPF_ALU64 | BPF_MOD | BPF_K:
518 case BPF_ALU64 | BPF_DIV | BPF_K:
519 EMIT1(0x50); /* push rax */
520 EMIT1(0x52); /* push rdx */
521
522 if (BPF_SRC(insn->code) == BPF_X)
523 /* mov r11, src_reg */
524 EMIT_mov(AUX_REG, src_reg);
525 else
526 /* mov r11, imm32 */
527 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
528
529 /* mov rax, dst_reg */
530 EMIT_mov(BPF_REG_0, dst_reg);
531
532 /*
533 * xor edx, edx
534 * equivalent to 'xor rdx, rdx', but one byte less
535 */
536 EMIT2(0x31, 0xd2);
537
538 if (BPF_CLASS(insn->code) == BPF_ALU64)
539 /* div r11 */
540 EMIT3(0x49, 0xF7, 0xF3);
541 else
542 /* div r11d */
543 EMIT3(0x41, 0xF7, 0xF3);
544
545 if (BPF_OP(insn->code) == BPF_MOD)
546 /* mov r11, rdx */
547 EMIT3(0x49, 0x89, 0xD3);
548 else
549 /* mov r11, rax */
550 EMIT3(0x49, 0x89, 0xC3);
551
552 EMIT1(0x5A); /* pop rdx */
553 EMIT1(0x58); /* pop rax */
554
555 /* mov dst_reg, r11 */
556 EMIT_mov(dst_reg, AUX_REG);
557 break;
558
559 case BPF_ALU | BPF_MUL | BPF_K:
560 case BPF_ALU | BPF_MUL | BPF_X:
561 case BPF_ALU64 | BPF_MUL | BPF_K:
562 case BPF_ALU64 | BPF_MUL | BPF_X:
563 {
564 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
565
566 if (dst_reg != BPF_REG_0)
567 EMIT1(0x50); /* push rax */
568 if (dst_reg != BPF_REG_3)
569 EMIT1(0x52); /* push rdx */
570
571 /* mov r11, dst_reg */
572 EMIT_mov(AUX_REG, dst_reg);
573
574 if (BPF_SRC(insn->code) == BPF_X)
575 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
576 else
577 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
578
579 if (is64)
580 EMIT1(add_1mod(0x48, AUX_REG));
581 else if (is_ereg(AUX_REG))
582 EMIT1(add_1mod(0x40, AUX_REG));
583 /* mul(q) r11 */
584 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
585
586 if (dst_reg != BPF_REG_3)
587 EMIT1(0x5A); /* pop rdx */
588 if (dst_reg != BPF_REG_0) {
589 /* mov dst_reg, rax */
590 EMIT_mov(dst_reg, BPF_REG_0);
591 EMIT1(0x58); /* pop rax */
592 }
593 break;
594 }
595 /* Shifts */
596 case BPF_ALU | BPF_LSH | BPF_K:
597 case BPF_ALU | BPF_RSH | BPF_K:
598 case BPF_ALU | BPF_ARSH | BPF_K:
599 case BPF_ALU64 | BPF_LSH | BPF_K:
600 case BPF_ALU64 | BPF_RSH | BPF_K:
601 case BPF_ALU64 | BPF_ARSH | BPF_K:
602 if (BPF_CLASS(insn->code) == BPF_ALU64)
603 EMIT1(add_1mod(0x48, dst_reg));
604 else if (is_ereg(dst_reg))
605 EMIT1(add_1mod(0x40, dst_reg));
606
607 switch (BPF_OP(insn->code)) {
608 case BPF_LSH: b3 = 0xE0; break;
609 case BPF_RSH: b3 = 0xE8; break;
610 case BPF_ARSH: b3 = 0xF8; break;
611 }
612
613 if (imm32 == 1)
614 EMIT2(0xD1, add_1reg(b3, dst_reg));
615 else
616 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
617 break;
618
619 case BPF_ALU | BPF_LSH | BPF_X:
620 case BPF_ALU | BPF_RSH | BPF_X:
621 case BPF_ALU | BPF_ARSH | BPF_X:
622 case BPF_ALU64 | BPF_LSH | BPF_X:
623 case BPF_ALU64 | BPF_RSH | BPF_X:
624 case BPF_ALU64 | BPF_ARSH | BPF_X:
625
626 /* Check for bad case when dst_reg == rcx */
627 if (dst_reg == BPF_REG_4) {
628 /* mov r11, dst_reg */
629 EMIT_mov(AUX_REG, dst_reg);
630 dst_reg = AUX_REG;
631 }
632
633 if (src_reg != BPF_REG_4) { /* common case */
634 EMIT1(0x51); /* push rcx */
635
636 /* mov rcx, src_reg */
637 EMIT_mov(BPF_REG_4, src_reg);
638 }
639
640 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
641 if (BPF_CLASS(insn->code) == BPF_ALU64)
642 EMIT1(add_1mod(0x48, dst_reg));
643 else if (is_ereg(dst_reg))
644 EMIT1(add_1mod(0x40, dst_reg));
645
646 switch (BPF_OP(insn->code)) {
647 case BPF_LSH: b3 = 0xE0; break;
648 case BPF_RSH: b3 = 0xE8; break;
649 case BPF_ARSH: b3 = 0xF8; break;
650 }
651 EMIT2(0xD3, add_1reg(b3, dst_reg));
652
653 if (src_reg != BPF_REG_4)
654 EMIT1(0x59); /* pop rcx */
655
656 if (insn->dst_reg == BPF_REG_4)
657 /* mov dst_reg, r11 */
658 EMIT_mov(insn->dst_reg, AUX_REG);
659 break;
660
661 case BPF_ALU | BPF_END | BPF_FROM_BE:
662 switch (imm32) {
663 case 16:
664 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
665 EMIT1(0x66);
666 if (is_ereg(dst_reg))
667 EMIT1(0x41);
668 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
669
670 /* Emit 'movzwl eax, ax' */
671 if (is_ereg(dst_reg))
672 EMIT3(0x45, 0x0F, 0xB7);
673 else
674 EMIT2(0x0F, 0xB7);
675 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
676 break;
677 case 32:
678 /* Emit 'bswap eax' to swap lower 4 bytes */
679 if (is_ereg(dst_reg))
680 EMIT2(0x41, 0x0F);
681 else
682 EMIT1(0x0F);
683 EMIT1(add_1reg(0xC8, dst_reg));
684 break;
685 case 64:
686 /* Emit 'bswap rax' to swap 8 bytes */
687 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
688 add_1reg(0xC8, dst_reg));
689 break;
690 }
691 break;
692
693 case BPF_ALU | BPF_END | BPF_FROM_LE:
694 switch (imm32) {
695 case 16:
696 /*
697 * Emit 'movzwl eax, ax' to zero extend 16-bit
698 * into 64 bit
699 */
700 if (is_ereg(dst_reg))
701 EMIT3(0x45, 0x0F, 0xB7);
702 else
703 EMIT2(0x0F, 0xB7);
704 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
705 break;
706 case 32:
707 /* Emit 'mov eax, eax' to clear upper 32-bits */
708 if (is_ereg(dst_reg))
709 EMIT1(0x45);
710 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
711 break;
712 case 64:
713 /* nop */
714 break;
715 }
716 break;
717
718 /* ST: *(u8*)(dst_reg + off) = imm */
719 case BPF_ST | BPF_MEM | BPF_B:
720 if (is_ereg(dst_reg))
721 EMIT2(0x41, 0xC6);
722 else
723 EMIT1(0xC6);
724 goto st;
725 case BPF_ST | BPF_MEM | BPF_H:
726 if (is_ereg(dst_reg))
727 EMIT3(0x66, 0x41, 0xC7);
728 else
729 EMIT2(0x66, 0xC7);
730 goto st;
731 case BPF_ST | BPF_MEM | BPF_W:
732 if (is_ereg(dst_reg))
733 EMIT2(0x41, 0xC7);
734 else
735 EMIT1(0xC7);
736 goto st;
737 case BPF_ST | BPF_MEM | BPF_DW:
738 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
739
740 st: if (is_imm8(insn->off))
741 EMIT2(add_1reg(0x40, dst_reg), insn->off);
742 else
743 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
744
745 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
746 break;
747
748 /* STX: *(u8*)(dst_reg + off) = src_reg */
749 case BPF_STX | BPF_MEM | BPF_B:
750 /* Emit 'mov byte ptr [rax + off], al' */
751 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
752 /* We have to add extra byte for x86 SIL, DIL regs */
753 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
754 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
755 else
756 EMIT1(0x88);
757 goto stx;
758 case BPF_STX | BPF_MEM | BPF_H:
759 if (is_ereg(dst_reg) || is_ereg(src_reg))
760 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
761 else
762 EMIT2(0x66, 0x89);
763 goto stx;
764 case BPF_STX | BPF_MEM | BPF_W:
765 if (is_ereg(dst_reg) || is_ereg(src_reg))
766 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
767 else
768 EMIT1(0x89);
769 goto stx;
770 case BPF_STX | BPF_MEM | BPF_DW:
771 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
772 stx: if (is_imm8(insn->off))
773 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
774 else
775 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
776 insn->off);
777 break;
778
779 /* LDX: dst_reg = *(u8*)(src_reg + off) */
780 case BPF_LDX | BPF_MEM | BPF_B:
781 /* Emit 'movzx rax, byte ptr [rax + off]' */
782 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
783 goto ldx;
784 case BPF_LDX | BPF_MEM | BPF_H:
785 /* Emit 'movzx rax, word ptr [rax + off]' */
786 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
787 goto ldx;
788 case BPF_LDX | BPF_MEM | BPF_W:
789 /* Emit 'mov eax, dword ptr [rax+0x14]' */
790 if (is_ereg(dst_reg) || is_ereg(src_reg))
791 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
792 else
793 EMIT1(0x8B);
794 goto ldx;
795 case BPF_LDX | BPF_MEM | BPF_DW:
796 /* Emit 'mov rax, qword ptr [rax+0x14]' */
797 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
798 ldx: /*
799 * If insn->off == 0 we can save one extra byte, but
800 * special case of x86 R13 which always needs an offset
801 * is not worth the hassle
802 */
803 if (is_imm8(insn->off))
804 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
805 else
806 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
807 insn->off);
808 break;
809
810 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
811 case BPF_STX | BPF_XADD | BPF_W:
812 /* Emit 'lock add dword ptr [rax + off], eax' */
813 if (is_ereg(dst_reg) || is_ereg(src_reg))
814 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
815 else
816 EMIT2(0xF0, 0x01);
817 goto xadd;
818 case BPF_STX | BPF_XADD | BPF_DW:
819 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
820 xadd: if (is_imm8(insn->off))
821 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
822 else
823 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
824 insn->off);
825 break;
826
827 /* call */
828 case BPF_JMP | BPF_CALL:
829 func = (u8 *) __bpf_call_base + imm32;
830 jmp_offset = func - (image + addrs[i]);
831 if (!imm32 || !is_simm32(jmp_offset)) {
832 pr_err("unsupported BPF func %d addr %p image %p\n",
833 imm32, func, image);
834 return -EINVAL;
835 }
836 EMIT1_off32(0xE8, jmp_offset);
837 break;
838
839 case BPF_JMP | BPF_TAIL_CALL:
840 emit_bpf_tail_call(&prog);
841 break;
842
843 /* cond jump */
844 case BPF_JMP | BPF_JEQ | BPF_X:
845 case BPF_JMP | BPF_JNE | BPF_X:
846 case BPF_JMP | BPF_JGT | BPF_X:
847 case BPF_JMP | BPF_JLT | BPF_X:
848 case BPF_JMP | BPF_JGE | BPF_X:
849 case BPF_JMP | BPF_JLE | BPF_X:
850 case BPF_JMP | BPF_JSGT | BPF_X:
851 case BPF_JMP | BPF_JSLT | BPF_X:
852 case BPF_JMP | BPF_JSGE | BPF_X:
853 case BPF_JMP | BPF_JSLE | BPF_X:
854 case BPF_JMP32 | BPF_JEQ | BPF_X:
855 case BPF_JMP32 | BPF_JNE | BPF_X:
856 case BPF_JMP32 | BPF_JGT | BPF_X:
857 case BPF_JMP32 | BPF_JLT | BPF_X:
858 case BPF_JMP32 | BPF_JGE | BPF_X:
859 case BPF_JMP32 | BPF_JLE | BPF_X:
860 case BPF_JMP32 | BPF_JSGT | BPF_X:
861 case BPF_JMP32 | BPF_JSLT | BPF_X:
862 case BPF_JMP32 | BPF_JSGE | BPF_X:
863 case BPF_JMP32 | BPF_JSLE | BPF_X:
864 /* cmp dst_reg, src_reg */
865 if (BPF_CLASS(insn->code) == BPF_JMP)
866 EMIT1(add_2mod(0x48, dst_reg, src_reg));
867 else if (is_ereg(dst_reg) || is_ereg(src_reg))
868 EMIT1(add_2mod(0x40, dst_reg, src_reg));
869 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
870 goto emit_cond_jmp;
871
872 case BPF_JMP | BPF_JSET | BPF_X:
873 case BPF_JMP32 | BPF_JSET | BPF_X:
874 /* test dst_reg, src_reg */
875 if (BPF_CLASS(insn->code) == BPF_JMP)
876 EMIT1(add_2mod(0x48, dst_reg, src_reg));
877 else if (is_ereg(dst_reg) || is_ereg(src_reg))
878 EMIT1(add_2mod(0x40, dst_reg, src_reg));
879 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
880 goto emit_cond_jmp;
881
882 case BPF_JMP | BPF_JSET | BPF_K:
883 case BPF_JMP32 | BPF_JSET | BPF_K:
884 /* test dst_reg, imm32 */
885 if (BPF_CLASS(insn->code) == BPF_JMP)
886 EMIT1(add_1mod(0x48, dst_reg));
887 else if (is_ereg(dst_reg))
888 EMIT1(add_1mod(0x40, dst_reg));
889 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
890 goto emit_cond_jmp;
891
892 case BPF_JMP | BPF_JEQ | BPF_K:
893 case BPF_JMP | BPF_JNE | BPF_K:
894 case BPF_JMP | BPF_JGT | BPF_K:
895 case BPF_JMP | BPF_JLT | BPF_K:
896 case BPF_JMP | BPF_JGE | BPF_K:
897 case BPF_JMP | BPF_JLE | BPF_K:
898 case BPF_JMP | BPF_JSGT | BPF_K:
899 case BPF_JMP | BPF_JSLT | BPF_K:
900 case BPF_JMP | BPF_JSGE | BPF_K:
901 case BPF_JMP | BPF_JSLE | BPF_K:
902 case BPF_JMP32 | BPF_JEQ | BPF_K:
903 case BPF_JMP32 | BPF_JNE | BPF_K:
904 case BPF_JMP32 | BPF_JGT | BPF_K:
905 case BPF_JMP32 | BPF_JLT | BPF_K:
906 case BPF_JMP32 | BPF_JGE | BPF_K:
907 case BPF_JMP32 | BPF_JLE | BPF_K:
908 case BPF_JMP32 | BPF_JSGT | BPF_K:
909 case BPF_JMP32 | BPF_JSLT | BPF_K:
910 case BPF_JMP32 | BPF_JSGE | BPF_K:
911 case BPF_JMP32 | BPF_JSLE | BPF_K:
912 /* cmp dst_reg, imm8/32 */
913 if (BPF_CLASS(insn->code) == BPF_JMP)
914 EMIT1(add_1mod(0x48, dst_reg));
915 else if (is_ereg(dst_reg))
916 EMIT1(add_1mod(0x40, dst_reg));
917
918 if (is_imm8(imm32))
919 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
920 else
921 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
922
923 emit_cond_jmp: /* Convert BPF opcode to x86 */
924 switch (BPF_OP(insn->code)) {
925 case BPF_JEQ:
926 jmp_cond = X86_JE;
927 break;
928 case BPF_JSET:
929 case BPF_JNE:
930 jmp_cond = X86_JNE;
931 break;
932 case BPF_JGT:
933 /* GT is unsigned '>', JA in x86 */
934 jmp_cond = X86_JA;
935 break;
936 case BPF_JLT:
937 /* LT is unsigned '<', JB in x86 */
938 jmp_cond = X86_JB;
939 break;
940 case BPF_JGE:
941 /* GE is unsigned '>=', JAE in x86 */
942 jmp_cond = X86_JAE;
943 break;
944 case BPF_JLE:
945 /* LE is unsigned '<=', JBE in x86 */
946 jmp_cond = X86_JBE;
947 break;
948 case BPF_JSGT:
949 /* Signed '>', GT in x86 */
950 jmp_cond = X86_JG;
951 break;
952 case BPF_JSLT:
953 /* Signed '<', LT in x86 */
954 jmp_cond = X86_JL;
955 break;
956 case BPF_JSGE:
957 /* Signed '>=', GE in x86 */
958 jmp_cond = X86_JGE;
959 break;
960 case BPF_JSLE:
961 /* Signed '<=', LE in x86 */
962 jmp_cond = X86_JLE;
963 break;
964 default: /* to silence GCC warning */
965 return -EFAULT;
966 }
967 jmp_offset = addrs[i + insn->off] - addrs[i];
968 if (is_imm8(jmp_offset)) {
969 EMIT2(jmp_cond, jmp_offset);
970 } else if (is_simm32(jmp_offset)) {
971 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
972 } else {
973 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
974 return -EFAULT;
975 }
976
977 break;
978
979 case BPF_JMP | BPF_JA:
980 if (insn->off == -1)
981 /* -1 jmp instructions will always jump
982 * backwards two bytes. Explicitly handling
983 * this case avoids wasting too many passes
984 * when there are long sequences of replaced
985 * dead code.
986 */
987 jmp_offset = -2;
988 else
989 jmp_offset = addrs[i + insn->off] - addrs[i];
990
991 if (!jmp_offset)
992 /* Optimize out nop jumps */
993 break;
994 emit_jmp:
995 if (is_imm8(jmp_offset)) {
996 EMIT2(0xEB, jmp_offset);
997 } else if (is_simm32(jmp_offset)) {
998 EMIT1_off32(0xE9, jmp_offset);
999 } else {
1000 pr_err("jmp gen bug %llx\n", jmp_offset);
1001 return -EFAULT;
1002 }
1003 break;
1004
1005 case BPF_JMP | BPF_EXIT:
1006 if (seen_exit) {
1007 jmp_offset = ctx->cleanup_addr - addrs[i];
1008 goto emit_jmp;
1009 }
1010 seen_exit = true;
1011 /* Update cleanup_addr */
1012 ctx->cleanup_addr = proglen;
1013 if (!bpf_prog_was_classic(bpf_prog))
1014 EMIT1(0x5B); /* get rid of tail_call_cnt */
1015 EMIT2(0x41, 0x5F); /* pop r15 */
1016 EMIT2(0x41, 0x5E); /* pop r14 */
1017 EMIT2(0x41, 0x5D); /* pop r13 */
1018 EMIT1(0x5B); /* pop rbx */
1019 EMIT1(0xC9); /* leave */
1020 EMIT1(0xC3); /* ret */
1021 break;
1022
1023 default:
1024 /*
1025 * By design x86-64 JIT should support all BPF instructions.
1026 * This error will be seen if new instruction was added
1027 * to the interpreter, but not to the JIT, or if there is
1028 * junk in bpf_prog.
1029 */
1030 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1031 return -EINVAL;
1032 }
1033
1034 ilen = prog - temp;
1035 if (ilen > BPF_MAX_INSN_SIZE) {
1036 pr_err("bpf_jit: fatal insn size error\n");
1037 return -EFAULT;
1038 }
1039
1040 if (image) {
1041 if (unlikely(proglen + ilen > oldproglen)) {
1042 pr_err("bpf_jit: fatal error\n");
1043 return -EFAULT;
1044 }
1045 memcpy(image + proglen, temp, ilen);
1046 }
1047 proglen += ilen;
1048 addrs[i] = proglen;
1049 prog = temp;
1050 }
1051 return proglen;
1052 }
1053
1054 struct x64_jit_data {
1055 struct bpf_binary_header *header;
1056 int *addrs;
1057 u8 *image;
1058 int proglen;
1059 struct jit_context ctx;
1060 };
1061
bpf_int_jit_compile(struct bpf_prog * prog)1062 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1063 {
1064 struct bpf_binary_header *header = NULL;
1065 struct bpf_prog *tmp, *orig_prog = prog;
1066 struct x64_jit_data *jit_data;
1067 int proglen, oldproglen = 0;
1068 struct jit_context ctx = {};
1069 bool tmp_blinded = false;
1070 bool extra_pass = false;
1071 u8 *image = NULL;
1072 int *addrs;
1073 int pass;
1074 int i;
1075
1076 if (!prog->jit_requested)
1077 return orig_prog;
1078
1079 tmp = bpf_jit_blind_constants(prog);
1080 /*
1081 * If blinding was requested and we failed during blinding,
1082 * we must fall back to the interpreter.
1083 */
1084 if (IS_ERR(tmp))
1085 return orig_prog;
1086 if (tmp != prog) {
1087 tmp_blinded = true;
1088 prog = tmp;
1089 }
1090
1091 jit_data = prog->aux->jit_data;
1092 if (!jit_data) {
1093 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1094 if (!jit_data) {
1095 prog = orig_prog;
1096 goto out;
1097 }
1098 prog->aux->jit_data = jit_data;
1099 }
1100 addrs = jit_data->addrs;
1101 if (addrs) {
1102 ctx = jit_data->ctx;
1103 oldproglen = jit_data->proglen;
1104 image = jit_data->image;
1105 header = jit_data->header;
1106 extra_pass = true;
1107 goto skip_init_addrs;
1108 }
1109 addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1110 if (!addrs) {
1111 prog = orig_prog;
1112 goto out_addrs;
1113 }
1114
1115 /*
1116 * Before first pass, make a rough estimation of addrs[]
1117 * each BPF instruction is translated to less than 64 bytes
1118 */
1119 for (proglen = 0, i = 0; i <= prog->len; i++) {
1120 proglen += 64;
1121 addrs[i] = proglen;
1122 }
1123 ctx.cleanup_addr = proglen;
1124 skip_init_addrs:
1125
1126 /*
1127 * JITed image shrinks with every pass and the loop iterates
1128 * until the image stops shrinking. Very large BPF programs
1129 * may converge on the last pass. In such case do one more
1130 * pass to emit the final image.
1131 */
1132 for (pass = 0; pass < 20 || image; pass++) {
1133 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1134 if (proglen <= 0) {
1135 out_image:
1136 image = NULL;
1137 if (header)
1138 bpf_jit_binary_free(header);
1139 prog = orig_prog;
1140 goto out_addrs;
1141 }
1142 if (image) {
1143 if (proglen != oldproglen) {
1144 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1145 proglen, oldproglen);
1146 goto out_image;
1147 }
1148 break;
1149 }
1150 if (proglen == oldproglen) {
1151 header = bpf_jit_binary_alloc(proglen, &image,
1152 1, jit_fill_hole);
1153 if (!header) {
1154 prog = orig_prog;
1155 goto out_addrs;
1156 }
1157 }
1158 oldproglen = proglen;
1159 cond_resched();
1160 }
1161
1162 if (bpf_jit_enable > 1)
1163 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1164
1165 if (image) {
1166 if (!prog->is_func || extra_pass) {
1167 bpf_jit_binary_lock_ro(header);
1168 } else {
1169 jit_data->addrs = addrs;
1170 jit_data->ctx = ctx;
1171 jit_data->proglen = proglen;
1172 jit_data->image = image;
1173 jit_data->header = header;
1174 }
1175 prog->bpf_func = (void *)image;
1176 prog->jited = 1;
1177 prog->jited_len = proglen;
1178 } else {
1179 prog = orig_prog;
1180 }
1181
1182 if (!image || !prog->is_func || extra_pass) {
1183 if (image)
1184 bpf_prog_fill_jited_linfo(prog, addrs + 1);
1185 out_addrs:
1186 kfree(addrs);
1187 kfree(jit_data);
1188 prog->aux->jit_data = NULL;
1189 }
1190 out:
1191 if (tmp_blinded)
1192 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1193 tmp : orig_prog);
1194 return prog;
1195 }
1196