1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SGI RTC clock/timer routines.
4 *
5 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
6 * Copyright (c) Dimitri Sivanich
7 */
8 #include <linux/clockchips.h>
9 #include <linux/slab.h>
10
11 #include <asm/uv/uv_mmrs.h>
12 #include <asm/uv/uv_hub.h>
13 #include <asm/uv/bios.h>
14 #include <asm/uv/uv.h>
15 #include <asm/apic.h>
16 #include <asm/cpu.h>
17
18 #define RTC_NAME "sgi_rtc"
19
20 static u64 uv_read_rtc(struct clocksource *cs);
21 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
22 static int uv_rtc_shutdown(struct clock_event_device *evt);
23
24 static struct clocksource clocksource_uv = {
25 .name = RTC_NAME,
26 .rating = 299,
27 .read = uv_read_rtc,
28 .mask = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
29 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
30 };
31
32 static struct clock_event_device clock_event_device_uv = {
33 .name = RTC_NAME,
34 .features = CLOCK_EVT_FEAT_ONESHOT,
35 .shift = 20,
36 .rating = 400,
37 .irq = -1,
38 .set_next_event = uv_rtc_next_event,
39 .set_state_shutdown = uv_rtc_shutdown,
40 .event_handler = NULL,
41 };
42
43 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
44
45 /* There is one of these allocated per node */
46 struct uv_rtc_timer_head {
47 spinlock_t lock;
48 /* next cpu waiting for timer, local node relative: */
49 int next_cpu;
50 /* number of cpus on this node: */
51 int ncpus;
52 struct {
53 int lcpu; /* systemwide logical cpu number */
54 u64 expires; /* next timer expiration for this cpu */
55 } cpu[1];
56 };
57
58 /*
59 * Access to uv_rtc_timer_head via blade id.
60 */
61 static struct uv_rtc_timer_head **blade_info __read_mostly;
62
63 static int uv_rtc_evt_enable;
64
65 /*
66 * Hardware interface routines
67 */
68
69 /* Send IPIs to another node */
uv_rtc_send_IPI(int cpu)70 static void uv_rtc_send_IPI(int cpu)
71 {
72 unsigned long apicid, val;
73 int pnode;
74
75 apicid = cpu_physical_id(cpu);
76 pnode = uv_apicid_to_pnode(apicid);
77 apicid |= uv_apicid_hibits;
78 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
79 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
80 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
81
82 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
83 }
84
85 /* Check for an RTC interrupt pending */
uv_intr_pending(int pnode)86 static int uv_intr_pending(int pnode)
87 {
88 if (is_uv1_hub())
89 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
90 UV1H_EVENT_OCCURRED0_RTC1_MASK;
91 else if (is_uvx_hub())
92 return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
93 UVXH_EVENT_OCCURRED2_RTC_1_MASK;
94 return 0;
95 }
96
97 /* Setup interrupt and return non-zero if early expiration occurred. */
uv_setup_intr(int cpu,u64 expires)98 static int uv_setup_intr(int cpu, u64 expires)
99 {
100 u64 val;
101 unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
102 int pnode = uv_cpu_to_pnode(cpu);
103
104 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
105 UVH_RTC1_INT_CONFIG_M_MASK);
106 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
107
108 if (is_uv1_hub())
109 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
110 UV1H_EVENT_OCCURRED0_RTC1_MASK);
111 else
112 uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
113 UVXH_EVENT_OCCURRED2_RTC_1_MASK);
114
115 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
116 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
117
118 /* Set configuration */
119 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
120 /* Initialize comparator value */
121 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
122
123 if (uv_read_rtc(NULL) <= expires)
124 return 0;
125
126 return !uv_intr_pending(pnode);
127 }
128
129 /*
130 * Per-cpu timer tracking routines
131 */
132
uv_rtc_deallocate_timers(void)133 static __init void uv_rtc_deallocate_timers(void)
134 {
135 int bid;
136
137 for_each_possible_blade(bid) {
138 kfree(blade_info[bid]);
139 }
140 kfree(blade_info);
141 }
142
143 /* Allocate per-node list of cpu timer expiration times. */
uv_rtc_allocate_timers(void)144 static __init int uv_rtc_allocate_timers(void)
145 {
146 int cpu;
147
148 blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
149 if (!blade_info)
150 return -ENOMEM;
151
152 for_each_present_cpu(cpu) {
153 int nid = cpu_to_node(cpu);
154 int bid = uv_cpu_to_blade_id(cpu);
155 int bcpu = uv_cpu_blade_processor_id(cpu);
156 struct uv_rtc_timer_head *head = blade_info[bid];
157
158 if (!head) {
159 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
160 (uv_blade_nr_possible_cpus(bid) *
161 2 * sizeof(u64)),
162 GFP_KERNEL, nid);
163 if (!head) {
164 uv_rtc_deallocate_timers();
165 return -ENOMEM;
166 }
167 spin_lock_init(&head->lock);
168 head->ncpus = uv_blade_nr_possible_cpus(bid);
169 head->next_cpu = -1;
170 blade_info[bid] = head;
171 }
172
173 head->cpu[bcpu].lcpu = cpu;
174 head->cpu[bcpu].expires = ULLONG_MAX;
175 }
176
177 return 0;
178 }
179
180 /* Find and set the next expiring timer. */
uv_rtc_find_next_timer(struct uv_rtc_timer_head * head,int pnode)181 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
182 {
183 u64 lowest = ULLONG_MAX;
184 int c, bcpu = -1;
185
186 head->next_cpu = -1;
187 for (c = 0; c < head->ncpus; c++) {
188 u64 exp = head->cpu[c].expires;
189 if (exp < lowest) {
190 bcpu = c;
191 lowest = exp;
192 }
193 }
194 if (bcpu >= 0) {
195 head->next_cpu = bcpu;
196 c = head->cpu[bcpu].lcpu;
197 if (uv_setup_intr(c, lowest))
198 /* If we didn't set it up in time, trigger */
199 uv_rtc_send_IPI(c);
200 } else {
201 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
202 UVH_RTC1_INT_CONFIG_M_MASK);
203 }
204 }
205
206 /*
207 * Set expiration time for current cpu.
208 *
209 * Returns 1 if we missed the expiration time.
210 */
uv_rtc_set_timer(int cpu,u64 expires)211 static int uv_rtc_set_timer(int cpu, u64 expires)
212 {
213 int pnode = uv_cpu_to_pnode(cpu);
214 int bid = uv_cpu_to_blade_id(cpu);
215 struct uv_rtc_timer_head *head = blade_info[bid];
216 int bcpu = uv_cpu_blade_processor_id(cpu);
217 u64 *t = &head->cpu[bcpu].expires;
218 unsigned long flags;
219 int next_cpu;
220
221 spin_lock_irqsave(&head->lock, flags);
222
223 next_cpu = head->next_cpu;
224 *t = expires;
225
226 /* Will this one be next to go off? */
227 if (next_cpu < 0 || bcpu == next_cpu ||
228 expires < head->cpu[next_cpu].expires) {
229 head->next_cpu = bcpu;
230 if (uv_setup_intr(cpu, expires)) {
231 *t = ULLONG_MAX;
232 uv_rtc_find_next_timer(head, pnode);
233 spin_unlock_irqrestore(&head->lock, flags);
234 return -ETIME;
235 }
236 }
237
238 spin_unlock_irqrestore(&head->lock, flags);
239 return 0;
240 }
241
242 /*
243 * Unset expiration time for current cpu.
244 *
245 * Returns 1 if this timer was pending.
246 */
uv_rtc_unset_timer(int cpu,int force)247 static int uv_rtc_unset_timer(int cpu, int force)
248 {
249 int pnode = uv_cpu_to_pnode(cpu);
250 int bid = uv_cpu_to_blade_id(cpu);
251 struct uv_rtc_timer_head *head = blade_info[bid];
252 int bcpu = uv_cpu_blade_processor_id(cpu);
253 u64 *t = &head->cpu[bcpu].expires;
254 unsigned long flags;
255 int rc = 0;
256
257 spin_lock_irqsave(&head->lock, flags);
258
259 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
260 rc = 1;
261
262 if (rc) {
263 *t = ULLONG_MAX;
264 /* Was the hardware setup for this timer? */
265 if (head->next_cpu == bcpu)
266 uv_rtc_find_next_timer(head, pnode);
267 }
268
269 spin_unlock_irqrestore(&head->lock, flags);
270
271 return rc;
272 }
273
274
275 /*
276 * Kernel interface routines.
277 */
278
279 /*
280 * Read the RTC.
281 *
282 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
283 * cachelines of it's own page. This allows faster simultaneous reads
284 * from a given socket.
285 */
uv_read_rtc(struct clocksource * cs)286 static u64 uv_read_rtc(struct clocksource *cs)
287 {
288 unsigned long offset;
289
290 if (uv_get_min_hub_revision_id() == 1)
291 offset = 0;
292 else
293 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
294
295 return (u64)uv_read_local_mmr(UVH_RTC | offset);
296 }
297
298 /*
299 * Program the next event, relative to now
300 */
uv_rtc_next_event(unsigned long delta,struct clock_event_device * ced)301 static int uv_rtc_next_event(unsigned long delta,
302 struct clock_event_device *ced)
303 {
304 int ced_cpu = cpumask_first(ced->cpumask);
305
306 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
307 }
308
309 /*
310 * Shutdown the RTC timer
311 */
uv_rtc_shutdown(struct clock_event_device * evt)312 static int uv_rtc_shutdown(struct clock_event_device *evt)
313 {
314 int ced_cpu = cpumask_first(evt->cpumask);
315
316 uv_rtc_unset_timer(ced_cpu, 1);
317 return 0;
318 }
319
uv_rtc_interrupt(void)320 static void uv_rtc_interrupt(void)
321 {
322 int cpu = smp_processor_id();
323 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
324
325 if (!ced || !ced->event_handler)
326 return;
327
328 if (uv_rtc_unset_timer(cpu, 0) != 1)
329 return;
330
331 ced->event_handler(ced);
332 }
333
uv_enable_evt_rtc(char * str)334 static int __init uv_enable_evt_rtc(char *str)
335 {
336 uv_rtc_evt_enable = 1;
337
338 return 1;
339 }
340 __setup("uvrtcevt", uv_enable_evt_rtc);
341
uv_rtc_register_clockevents(struct work_struct * dummy)342 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
343 {
344 struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
345
346 *ced = clock_event_device_uv;
347 ced->cpumask = cpumask_of(smp_processor_id());
348 clockevents_register_device(ced);
349 }
350
uv_rtc_setup_clock(void)351 static __init int uv_rtc_setup_clock(void)
352 {
353 int rc;
354
355 if (!is_uv_system())
356 return -ENODEV;
357
358 rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
359 if (rc)
360 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
361 else
362 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
363 sn_rtc_cycles_per_second/(unsigned long)1E6);
364
365 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
366 return rc;
367
368 /* Setup and register clockevents */
369 rc = uv_rtc_allocate_timers();
370 if (rc)
371 goto error;
372
373 x86_platform_ipi_callback = uv_rtc_interrupt;
374
375 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
376 NSEC_PER_SEC, clock_event_device_uv.shift);
377
378 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
379 sn_rtc_cycles_per_second;
380 clock_event_device_uv.min_delta_ticks = 1;
381
382 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
383 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
384 clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
385
386 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
387 if (rc) {
388 x86_platform_ipi_callback = NULL;
389 uv_rtc_deallocate_timers();
390 goto error;
391 }
392
393 printk(KERN_INFO "UV RTC clockevents registered\n");
394
395 return 0;
396
397 error:
398 clocksource_unregister(&clocksource_uv);
399 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
400
401 return rc;
402 }
403 arch_initcall(uv_rtc_setup_clock);
404