1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Machine specific setup for xen
4 *
5 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
6 */
7
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/mm.h>
11 #include <linux/pm.h>
12 #include <linux/memblock.h>
13 #include <linux/cpuidle.h>
14 #include <linux/cpufreq.h>
15 #include <linux/memory_hotplug.h>
16
17 #include <asm/elf.h>
18 #include <asm/vdso.h>
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 #include <asm/acpi.h>
22 #include <asm/numa.h>
23 #include <asm/xen/hypervisor.h>
24 #include <asm/xen/hypercall.h>
25
26 #include <xen/xen.h>
27 #include <xen/page.h>
28 #include <xen/interface/callback.h>
29 #include <xen/interface/memory.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/features.h>
32 #include <xen/hvc-console.h>
33 #include "xen-ops.h"
34 #include "vdso.h"
35 #include "mmu.h"
36
37 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
38
39 /* Amount of extra memory space we add to the e820 ranges */
40 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
41
42 /* Number of pages released from the initial allocation. */
43 unsigned long xen_released_pages;
44
45 /* E820 map used during setting up memory. */
46 static struct e820_table xen_e820_table __initdata;
47
48 /*
49 * Buffer used to remap identity mapped pages. We only need the virtual space.
50 * The physical page behind this address is remapped as needed to different
51 * buffer pages.
52 */
53 #define REMAP_SIZE (P2M_PER_PAGE - 3)
54 static struct {
55 unsigned long next_area_mfn;
56 unsigned long target_pfn;
57 unsigned long size;
58 unsigned long mfns[REMAP_SIZE];
59 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
60 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
61
62 /*
63 * The maximum amount of extra memory compared to the base size. The
64 * main scaling factor is the size of struct page. At extreme ratios
65 * of base:extra, all the base memory can be filled with page
66 * structures for the extra memory, leaving no space for anything
67 * else.
68 *
69 * 10x seems like a reasonable balance between scaling flexibility and
70 * leaving a practically usable system.
71 */
72 #define EXTRA_MEM_RATIO (10)
73
74 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
75
xen_parse_512gb(void)76 static void __init xen_parse_512gb(void)
77 {
78 bool val = false;
79 char *arg;
80
81 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
82 if (!arg)
83 return;
84
85 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
86 if (!arg)
87 val = true;
88 else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
89 return;
90
91 xen_512gb_limit = val;
92 }
93
xen_add_extra_mem(unsigned long start_pfn,unsigned long n_pfns)94 static void __init xen_add_extra_mem(unsigned long start_pfn,
95 unsigned long n_pfns)
96 {
97 int i;
98
99 /*
100 * No need to check for zero size, should happen rarely and will only
101 * write a new entry regarded to be unused due to zero size.
102 */
103 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
104 /* Add new region. */
105 if (xen_extra_mem[i].n_pfns == 0) {
106 xen_extra_mem[i].start_pfn = start_pfn;
107 xen_extra_mem[i].n_pfns = n_pfns;
108 break;
109 }
110 /* Append to existing region. */
111 if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
112 start_pfn) {
113 xen_extra_mem[i].n_pfns += n_pfns;
114 break;
115 }
116 }
117 if (i == XEN_EXTRA_MEM_MAX_REGIONS)
118 printk(KERN_WARNING "Warning: not enough extra memory regions\n");
119
120 memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
121 }
122
xen_del_extra_mem(unsigned long start_pfn,unsigned long n_pfns)123 static void __init xen_del_extra_mem(unsigned long start_pfn,
124 unsigned long n_pfns)
125 {
126 int i;
127 unsigned long start_r, size_r;
128
129 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
130 start_r = xen_extra_mem[i].start_pfn;
131 size_r = xen_extra_mem[i].n_pfns;
132
133 /* Start of region. */
134 if (start_r == start_pfn) {
135 BUG_ON(n_pfns > size_r);
136 xen_extra_mem[i].start_pfn += n_pfns;
137 xen_extra_mem[i].n_pfns -= n_pfns;
138 break;
139 }
140 /* End of region. */
141 if (start_r + size_r == start_pfn + n_pfns) {
142 BUG_ON(n_pfns > size_r);
143 xen_extra_mem[i].n_pfns -= n_pfns;
144 break;
145 }
146 /* Mid of region. */
147 if (start_pfn > start_r && start_pfn < start_r + size_r) {
148 BUG_ON(start_pfn + n_pfns > start_r + size_r);
149 xen_extra_mem[i].n_pfns = start_pfn - start_r;
150 /* Calling memblock_reserve() again is okay. */
151 xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
152 (start_pfn + n_pfns));
153 break;
154 }
155 }
156 memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
157 }
158
159 /*
160 * Called during boot before the p2m list can take entries beyond the
161 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
162 * invalid.
163 */
xen_chk_extra_mem(unsigned long pfn)164 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
165 {
166 int i;
167
168 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
169 if (pfn >= xen_extra_mem[i].start_pfn &&
170 pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
171 return INVALID_P2M_ENTRY;
172 }
173
174 return IDENTITY_FRAME(pfn);
175 }
176
177 /*
178 * Mark all pfns of extra mem as invalid in p2m list.
179 */
xen_inv_extra_mem(void)180 void __init xen_inv_extra_mem(void)
181 {
182 unsigned long pfn, pfn_s, pfn_e;
183 int i;
184
185 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
186 if (!xen_extra_mem[i].n_pfns)
187 continue;
188 pfn_s = xen_extra_mem[i].start_pfn;
189 pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
190 for (pfn = pfn_s; pfn < pfn_e; pfn++)
191 set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
192 }
193 }
194
195 /*
196 * Finds the next RAM pfn available in the E820 map after min_pfn.
197 * This function updates min_pfn with the pfn found and returns
198 * the size of that range or zero if not found.
199 */
xen_find_pfn_range(unsigned long * min_pfn)200 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
201 {
202 const struct e820_entry *entry = xen_e820_table.entries;
203 unsigned int i;
204 unsigned long done = 0;
205
206 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
207 unsigned long s_pfn;
208 unsigned long e_pfn;
209
210 if (entry->type != E820_TYPE_RAM)
211 continue;
212
213 e_pfn = PFN_DOWN(entry->addr + entry->size);
214
215 /* We only care about E820 after this */
216 if (e_pfn <= *min_pfn)
217 continue;
218
219 s_pfn = PFN_UP(entry->addr);
220
221 /* If min_pfn falls within the E820 entry, we want to start
222 * at the min_pfn PFN.
223 */
224 if (s_pfn <= *min_pfn) {
225 done = e_pfn - *min_pfn;
226 } else {
227 done = e_pfn - s_pfn;
228 *min_pfn = s_pfn;
229 }
230 break;
231 }
232
233 return done;
234 }
235
xen_free_mfn(unsigned long mfn)236 static int __init xen_free_mfn(unsigned long mfn)
237 {
238 struct xen_memory_reservation reservation = {
239 .address_bits = 0,
240 .extent_order = 0,
241 .domid = DOMID_SELF
242 };
243
244 set_xen_guest_handle(reservation.extent_start, &mfn);
245 reservation.nr_extents = 1;
246
247 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
248 }
249
250 /*
251 * This releases a chunk of memory and then does the identity map. It's used
252 * as a fallback if the remapping fails.
253 */
xen_set_identity_and_release_chunk(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages)254 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
255 unsigned long end_pfn, unsigned long nr_pages)
256 {
257 unsigned long pfn, end;
258 int ret;
259
260 WARN_ON(start_pfn > end_pfn);
261
262 /* Release pages first. */
263 end = min(end_pfn, nr_pages);
264 for (pfn = start_pfn; pfn < end; pfn++) {
265 unsigned long mfn = pfn_to_mfn(pfn);
266
267 /* Make sure pfn exists to start with */
268 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
269 continue;
270
271 ret = xen_free_mfn(mfn);
272 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
273
274 if (ret == 1) {
275 xen_released_pages++;
276 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
277 break;
278 } else
279 break;
280 }
281
282 set_phys_range_identity(start_pfn, end_pfn);
283 }
284
285 /*
286 * Helper function to update the p2m and m2p tables and kernel mapping.
287 */
xen_update_mem_tables(unsigned long pfn,unsigned long mfn)288 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
289 {
290 struct mmu_update update = {
291 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
292 .val = pfn
293 };
294
295 /* Update p2m */
296 if (!set_phys_to_machine(pfn, mfn)) {
297 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
298 pfn, mfn);
299 BUG();
300 }
301
302 /* Update m2p */
303 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
304 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
305 mfn, pfn);
306 BUG();
307 }
308
309 /* Update kernel mapping, but not for highmem. */
310 if (pfn >= PFN_UP(__pa(high_memory - 1)))
311 return;
312
313 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
314 mfn_pte(mfn, PAGE_KERNEL), 0)) {
315 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
316 mfn, pfn);
317 BUG();
318 }
319 }
320
321 /*
322 * This function updates the p2m and m2p tables with an identity map from
323 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
324 * original allocation at remap_pfn. The information needed for remapping is
325 * saved in the memory itself to avoid the need for allocating buffers. The
326 * complete remap information is contained in a list of MFNs each containing
327 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
328 * This enables us to preserve the original mfn sequence while doing the
329 * remapping at a time when the memory management is capable of allocating
330 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
331 * its callers.
332 */
xen_do_set_identity_and_remap_chunk(unsigned long start_pfn,unsigned long size,unsigned long remap_pfn)333 static void __init xen_do_set_identity_and_remap_chunk(
334 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
335 {
336 unsigned long buf = (unsigned long)&xen_remap_buf;
337 unsigned long mfn_save, mfn;
338 unsigned long ident_pfn_iter, remap_pfn_iter;
339 unsigned long ident_end_pfn = start_pfn + size;
340 unsigned long left = size;
341 unsigned int i, chunk;
342
343 WARN_ON(size == 0);
344
345 mfn_save = virt_to_mfn(buf);
346
347 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
348 ident_pfn_iter < ident_end_pfn;
349 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
350 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
351
352 /* Map first pfn to xen_remap_buf */
353 mfn = pfn_to_mfn(ident_pfn_iter);
354 set_pte_mfn(buf, mfn, PAGE_KERNEL);
355
356 /* Save mapping information in page */
357 xen_remap_buf.next_area_mfn = xen_remap_mfn;
358 xen_remap_buf.target_pfn = remap_pfn_iter;
359 xen_remap_buf.size = chunk;
360 for (i = 0; i < chunk; i++)
361 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
362
363 /* Put remap buf into list. */
364 xen_remap_mfn = mfn;
365
366 /* Set identity map */
367 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
368
369 left -= chunk;
370 }
371
372 /* Restore old xen_remap_buf mapping */
373 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
374 }
375
376 /*
377 * This function takes a contiguous pfn range that needs to be identity mapped
378 * and:
379 *
380 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
381 * 2) Calls the do_ function to actually do the mapping/remapping work.
382 *
383 * The goal is to not allocate additional memory but to remap the existing
384 * pages. In the case of an error the underlying memory is simply released back
385 * to Xen and not remapped.
386 */
xen_set_identity_and_remap_chunk(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long remap_pfn)387 static unsigned long __init xen_set_identity_and_remap_chunk(
388 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
389 unsigned long remap_pfn)
390 {
391 unsigned long pfn;
392 unsigned long i = 0;
393 unsigned long n = end_pfn - start_pfn;
394
395 if (remap_pfn == 0)
396 remap_pfn = nr_pages;
397
398 while (i < n) {
399 unsigned long cur_pfn = start_pfn + i;
400 unsigned long left = n - i;
401 unsigned long size = left;
402 unsigned long remap_range_size;
403
404 /* Do not remap pages beyond the current allocation */
405 if (cur_pfn >= nr_pages) {
406 /* Identity map remaining pages */
407 set_phys_range_identity(cur_pfn, cur_pfn + size);
408 break;
409 }
410 if (cur_pfn + size > nr_pages)
411 size = nr_pages - cur_pfn;
412
413 remap_range_size = xen_find_pfn_range(&remap_pfn);
414 if (!remap_range_size) {
415 pr_warning("Unable to find available pfn range, not remapping identity pages\n");
416 xen_set_identity_and_release_chunk(cur_pfn,
417 cur_pfn + left, nr_pages);
418 break;
419 }
420 /* Adjust size to fit in current e820 RAM region */
421 if (size > remap_range_size)
422 size = remap_range_size;
423
424 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
425
426 /* Update variables to reflect new mappings. */
427 i += size;
428 remap_pfn += size;
429 }
430
431 /*
432 * If the PFNs are currently mapped, the VA mapping also needs
433 * to be updated to be 1:1.
434 */
435 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
436 (void)HYPERVISOR_update_va_mapping(
437 (unsigned long)__va(pfn << PAGE_SHIFT),
438 mfn_pte(pfn, PAGE_KERNEL_IO), 0);
439
440 return remap_pfn;
441 }
442
xen_count_remap_pages(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long remap_pages)443 static unsigned long __init xen_count_remap_pages(
444 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
445 unsigned long remap_pages)
446 {
447 if (start_pfn >= nr_pages)
448 return remap_pages;
449
450 return remap_pages + min(end_pfn, nr_pages) - start_pfn;
451 }
452
xen_foreach_remap_area(unsigned long nr_pages,unsigned long (* func)(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long last_val))453 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages,
454 unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn,
455 unsigned long nr_pages, unsigned long last_val))
456 {
457 phys_addr_t start = 0;
458 unsigned long ret_val = 0;
459 const struct e820_entry *entry = xen_e820_table.entries;
460 int i;
461
462 /*
463 * Combine non-RAM regions and gaps until a RAM region (or the
464 * end of the map) is reached, then call the provided function
465 * to perform its duty on the non-RAM region.
466 *
467 * The combined non-RAM regions are rounded to a whole number
468 * of pages so any partial pages are accessible via the 1:1
469 * mapping. This is needed for some BIOSes that put (for
470 * example) the DMI tables in a reserved region that begins on
471 * a non-page boundary.
472 */
473 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
474 phys_addr_t end = entry->addr + entry->size;
475 if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) {
476 unsigned long start_pfn = PFN_DOWN(start);
477 unsigned long end_pfn = PFN_UP(end);
478
479 if (entry->type == E820_TYPE_RAM)
480 end_pfn = PFN_UP(entry->addr);
481
482 if (start_pfn < end_pfn)
483 ret_val = func(start_pfn, end_pfn, nr_pages,
484 ret_val);
485 start = end;
486 }
487 }
488
489 return ret_val;
490 }
491
492 /*
493 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
494 * The remap information (which mfn remap to which pfn) is contained in the
495 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
496 * This scheme allows to remap the different chunks in arbitrary order while
497 * the resulting mapping will be independent from the order.
498 */
xen_remap_memory(void)499 void __init xen_remap_memory(void)
500 {
501 unsigned long buf = (unsigned long)&xen_remap_buf;
502 unsigned long mfn_save, pfn;
503 unsigned long remapped = 0;
504 unsigned int i;
505 unsigned long pfn_s = ~0UL;
506 unsigned long len = 0;
507
508 mfn_save = virt_to_mfn(buf);
509
510 while (xen_remap_mfn != INVALID_P2M_ENTRY) {
511 /* Map the remap information */
512 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
513
514 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
515
516 pfn = xen_remap_buf.target_pfn;
517 for (i = 0; i < xen_remap_buf.size; i++) {
518 xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]);
519 remapped++;
520 pfn++;
521 }
522 if (pfn_s == ~0UL || pfn == pfn_s) {
523 pfn_s = xen_remap_buf.target_pfn;
524 len += xen_remap_buf.size;
525 } else if (pfn_s + len == xen_remap_buf.target_pfn) {
526 len += xen_remap_buf.size;
527 } else {
528 xen_del_extra_mem(pfn_s, len);
529 pfn_s = xen_remap_buf.target_pfn;
530 len = xen_remap_buf.size;
531 }
532 xen_remap_mfn = xen_remap_buf.next_area_mfn;
533 }
534
535 if (pfn_s != ~0UL && len)
536 xen_del_extra_mem(pfn_s, len);
537
538 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
539
540 pr_info("Remapped %ld page(s)\n", remapped);
541 }
542
xen_get_pages_limit(void)543 static unsigned long __init xen_get_pages_limit(void)
544 {
545 unsigned long limit;
546
547 #ifdef CONFIG_X86_32
548 limit = GB(64) / PAGE_SIZE;
549 #else
550 limit = MAXMEM / PAGE_SIZE;
551 if (!xen_initial_domain() && xen_512gb_limit)
552 limit = GB(512) / PAGE_SIZE;
553 #endif
554 return limit;
555 }
556
xen_get_max_pages(void)557 static unsigned long __init xen_get_max_pages(void)
558 {
559 unsigned long max_pages, limit;
560 domid_t domid = DOMID_SELF;
561 long ret;
562
563 limit = xen_get_pages_limit();
564 max_pages = limit;
565
566 /*
567 * For the initial domain we use the maximum reservation as
568 * the maximum page.
569 *
570 * For guest domains the current maximum reservation reflects
571 * the current maximum rather than the static maximum. In this
572 * case the e820 map provided to us will cover the static
573 * maximum region.
574 */
575 if (xen_initial_domain()) {
576 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
577 if (ret > 0)
578 max_pages = ret;
579 }
580
581 return min(max_pages, limit);
582 }
583
xen_align_and_add_e820_region(phys_addr_t start,phys_addr_t size,int type)584 static void __init xen_align_and_add_e820_region(phys_addr_t start,
585 phys_addr_t size, int type)
586 {
587 phys_addr_t end = start + size;
588
589 /* Align RAM regions to page boundaries. */
590 if (type == E820_TYPE_RAM) {
591 start = PAGE_ALIGN(start);
592 end &= ~((phys_addr_t)PAGE_SIZE - 1);
593 #ifdef CONFIG_MEMORY_HOTPLUG
594 /*
595 * Don't allow adding memory not in E820 map while booting the
596 * system. Once the balloon driver is up it will remove that
597 * restriction again.
598 */
599 max_mem_size = end;
600 #endif
601 }
602
603 e820__range_add(start, end - start, type);
604 }
605
xen_ignore_unusable(void)606 static void __init xen_ignore_unusable(void)
607 {
608 struct e820_entry *entry = xen_e820_table.entries;
609 unsigned int i;
610
611 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
612 if (entry->type == E820_TYPE_UNUSABLE)
613 entry->type = E820_TYPE_RAM;
614 }
615 }
616
xen_is_e820_reserved(phys_addr_t start,phys_addr_t size)617 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
618 {
619 struct e820_entry *entry;
620 unsigned mapcnt;
621 phys_addr_t end;
622
623 if (!size)
624 return false;
625
626 end = start + size;
627 entry = xen_e820_table.entries;
628
629 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) {
630 if (entry->type == E820_TYPE_RAM && entry->addr <= start &&
631 (entry->addr + entry->size) >= end)
632 return false;
633
634 entry++;
635 }
636
637 return true;
638 }
639
640 /*
641 * Find a free area in physical memory not yet reserved and compliant with
642 * E820 map.
643 * Used to relocate pre-allocated areas like initrd or p2m list which are in
644 * conflict with the to be used E820 map.
645 * In case no area is found, return 0. Otherwise return the physical address
646 * of the area which is already reserved for convenience.
647 */
xen_find_free_area(phys_addr_t size)648 phys_addr_t __init xen_find_free_area(phys_addr_t size)
649 {
650 unsigned mapcnt;
651 phys_addr_t addr, start;
652 struct e820_entry *entry = xen_e820_table.entries;
653
654 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) {
655 if (entry->type != E820_TYPE_RAM || entry->size < size)
656 continue;
657 start = entry->addr;
658 for (addr = start; addr < start + size; addr += PAGE_SIZE) {
659 if (!memblock_is_reserved(addr))
660 continue;
661 start = addr + PAGE_SIZE;
662 if (start + size > entry->addr + entry->size)
663 break;
664 }
665 if (addr >= start + size) {
666 memblock_reserve(start, size);
667 return start;
668 }
669 }
670
671 return 0;
672 }
673
674 /*
675 * Like memcpy, but with physical addresses for dest and src.
676 */
xen_phys_memcpy(phys_addr_t dest,phys_addr_t src,phys_addr_t n)677 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
678 phys_addr_t n)
679 {
680 phys_addr_t dest_off, src_off, dest_len, src_len, len;
681 void *from, *to;
682
683 while (n) {
684 dest_off = dest & ~PAGE_MASK;
685 src_off = src & ~PAGE_MASK;
686 dest_len = n;
687 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
688 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
689 src_len = n;
690 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
691 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
692 len = min(dest_len, src_len);
693 to = early_memremap(dest - dest_off, dest_len + dest_off);
694 from = early_memremap(src - src_off, src_len + src_off);
695 memcpy(to, from, len);
696 early_memunmap(to, dest_len + dest_off);
697 early_memunmap(from, src_len + src_off);
698 n -= len;
699 dest += len;
700 src += len;
701 }
702 }
703
704 /*
705 * Reserve Xen mfn_list.
706 */
xen_reserve_xen_mfnlist(void)707 static void __init xen_reserve_xen_mfnlist(void)
708 {
709 phys_addr_t start, size;
710
711 if (xen_start_info->mfn_list >= __START_KERNEL_map) {
712 start = __pa(xen_start_info->mfn_list);
713 size = PFN_ALIGN(xen_start_info->nr_pages *
714 sizeof(unsigned long));
715 } else {
716 start = PFN_PHYS(xen_start_info->first_p2m_pfn);
717 size = PFN_PHYS(xen_start_info->nr_p2m_frames);
718 }
719
720 memblock_reserve(start, size);
721 if (!xen_is_e820_reserved(start, size))
722 return;
723
724 #ifdef CONFIG_X86_32
725 /*
726 * Relocating the p2m on 32 bit system to an arbitrary virtual address
727 * is not supported, so just give up.
728 */
729 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
730 BUG();
731 #else
732 xen_relocate_p2m();
733 memblock_free(start, size);
734 #endif
735 }
736
737 /**
738 * machine_specific_memory_setup - Hook for machine specific memory setup.
739 **/
xen_memory_setup(void)740 char * __init xen_memory_setup(void)
741 {
742 unsigned long max_pfn, pfn_s, n_pfns;
743 phys_addr_t mem_end, addr, size, chunk_size;
744 u32 type;
745 int rc;
746 struct xen_memory_map memmap;
747 unsigned long max_pages;
748 unsigned long extra_pages = 0;
749 int i;
750 int op;
751
752 xen_parse_512gb();
753 max_pfn = xen_get_pages_limit();
754 max_pfn = min(max_pfn, xen_start_info->nr_pages);
755 mem_end = PFN_PHYS(max_pfn);
756
757 memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
758 set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
759
760 #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_XEN_BALLOON)
761 xen_saved_max_mem_size = max_mem_size;
762 #endif
763
764 op = xen_initial_domain() ?
765 XENMEM_machine_memory_map :
766 XENMEM_memory_map;
767 rc = HYPERVISOR_memory_op(op, &memmap);
768 if (rc == -ENOSYS) {
769 BUG_ON(xen_initial_domain());
770 memmap.nr_entries = 1;
771 xen_e820_table.entries[0].addr = 0ULL;
772 xen_e820_table.entries[0].size = mem_end;
773 /* 8MB slack (to balance backend allocations). */
774 xen_e820_table.entries[0].size += 8ULL << 20;
775 xen_e820_table.entries[0].type = E820_TYPE_RAM;
776 rc = 0;
777 }
778 BUG_ON(rc);
779 BUG_ON(memmap.nr_entries == 0);
780 xen_e820_table.nr_entries = memmap.nr_entries;
781
782 /*
783 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
784 * regions, so if we're using the machine memory map leave the
785 * region as RAM as it is in the pseudo-physical map.
786 *
787 * UNUSABLE regions in domUs are not handled and will need
788 * a patch in the future.
789 */
790 if (xen_initial_domain())
791 xen_ignore_unusable();
792
793 /* Make sure the Xen-supplied memory map is well-ordered. */
794 e820__update_table(&xen_e820_table);
795
796 max_pages = xen_get_max_pages();
797
798 /* How many extra pages do we need due to remapping? */
799 max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages);
800
801 if (max_pages > max_pfn)
802 extra_pages += max_pages - max_pfn;
803
804 /*
805 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
806 * factor the base size. On non-highmem systems, the base
807 * size is the full initial memory allocation; on highmem it
808 * is limited to the max size of lowmem, so that it doesn't
809 * get completely filled.
810 *
811 * Make sure we have no memory above max_pages, as this area
812 * isn't handled by the p2m management.
813 *
814 * In principle there could be a problem in lowmem systems if
815 * the initial memory is also very large with respect to
816 * lowmem, but we won't try to deal with that here.
817 */
818 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
819 extra_pages, max_pages - max_pfn);
820 i = 0;
821 addr = xen_e820_table.entries[0].addr;
822 size = xen_e820_table.entries[0].size;
823 while (i < xen_e820_table.nr_entries) {
824 bool discard = false;
825
826 chunk_size = size;
827 type = xen_e820_table.entries[i].type;
828
829 if (type == E820_TYPE_RAM) {
830 if (addr < mem_end) {
831 chunk_size = min(size, mem_end - addr);
832 } else if (extra_pages) {
833 chunk_size = min(size, PFN_PHYS(extra_pages));
834 pfn_s = PFN_UP(addr);
835 n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
836 extra_pages -= n_pfns;
837 xen_add_extra_mem(pfn_s, n_pfns);
838 xen_max_p2m_pfn = pfn_s + n_pfns;
839 } else
840 discard = true;
841 }
842
843 if (!discard)
844 xen_align_and_add_e820_region(addr, chunk_size, type);
845
846 addr += chunk_size;
847 size -= chunk_size;
848 if (size == 0) {
849 i++;
850 if (i < xen_e820_table.nr_entries) {
851 addr = xen_e820_table.entries[i].addr;
852 size = xen_e820_table.entries[i].size;
853 }
854 }
855 }
856
857 /*
858 * Set the rest as identity mapped, in case PCI BARs are
859 * located here.
860 */
861 set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
862
863 /*
864 * In domU, the ISA region is normal, usable memory, but we
865 * reserve ISA memory anyway because too many things poke
866 * about in there.
867 */
868 e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED);
869
870 e820__update_table(e820_table);
871
872 /*
873 * Check whether the kernel itself conflicts with the target E820 map.
874 * Failing now is better than running into weird problems later due
875 * to relocating (and even reusing) pages with kernel text or data.
876 */
877 if (xen_is_e820_reserved(__pa_symbol(_text),
878 __pa_symbol(__bss_stop) - __pa_symbol(_text))) {
879 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
880 BUG();
881 }
882
883 /*
884 * Check for a conflict of the hypervisor supplied page tables with
885 * the target E820 map.
886 */
887 xen_pt_check_e820();
888
889 xen_reserve_xen_mfnlist();
890
891 /* Check for a conflict of the initrd with the target E820 map. */
892 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
893 boot_params.hdr.ramdisk_size)) {
894 phys_addr_t new_area, start, size;
895
896 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
897 if (!new_area) {
898 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
899 BUG();
900 }
901
902 start = boot_params.hdr.ramdisk_image;
903 size = boot_params.hdr.ramdisk_size;
904 xen_phys_memcpy(new_area, start, size);
905 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
906 start, start + size, new_area, new_area + size);
907 memblock_free(start, size);
908 boot_params.hdr.ramdisk_image = new_area;
909 boot_params.ext_ramdisk_image = new_area >> 32;
910 }
911
912 /*
913 * Set identity map on non-RAM pages and prepare remapping the
914 * underlying RAM.
915 */
916 xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk);
917
918 pr_info("Released %ld page(s)\n", xen_released_pages);
919
920 return "Xen";
921 }
922
923 /*
924 * Set the bit indicating "nosegneg" library variants should be used.
925 * We only need to bother in pure 32-bit mode; compat 32-bit processes
926 * can have un-truncated segments, so wrapping around is allowed.
927 */
fiddle_vdso(void)928 static void __init fiddle_vdso(void)
929 {
930 #ifdef CONFIG_X86_32
931 u32 *mask = vdso_image_32.data +
932 vdso_image_32.sym_VDSO32_NOTE_MASK;
933 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
934 #endif
935 }
936
register_callback(unsigned type,const void * func)937 static int register_callback(unsigned type, const void *func)
938 {
939 struct callback_register callback = {
940 .type = type,
941 .address = XEN_CALLBACK(__KERNEL_CS, func),
942 .flags = CALLBACKF_mask_events,
943 };
944
945 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
946 }
947
xen_enable_sysenter(void)948 void xen_enable_sysenter(void)
949 {
950 int ret;
951 unsigned sysenter_feature;
952
953 #ifdef CONFIG_X86_32
954 sysenter_feature = X86_FEATURE_SEP;
955 #else
956 sysenter_feature = X86_FEATURE_SYSENTER32;
957 #endif
958
959 if (!boot_cpu_has(sysenter_feature))
960 return;
961
962 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
963 if(ret != 0)
964 setup_clear_cpu_cap(sysenter_feature);
965 }
966
xen_enable_syscall(void)967 void xen_enable_syscall(void)
968 {
969 #ifdef CONFIG_X86_64
970 int ret;
971
972 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
973 if (ret != 0) {
974 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
975 /* Pretty fatal; 64-bit userspace has no other
976 mechanism for syscalls. */
977 }
978
979 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
980 ret = register_callback(CALLBACKTYPE_syscall32,
981 xen_syscall32_target);
982 if (ret != 0)
983 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
984 }
985 #endif /* CONFIG_X86_64 */
986 }
987
xen_pvmmu_arch_setup(void)988 void __init xen_pvmmu_arch_setup(void)
989 {
990 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
991 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
992
993 HYPERVISOR_vm_assist(VMASST_CMD_enable,
994 VMASST_TYPE_pae_extended_cr3);
995
996 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
997 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
998 BUG();
999
1000 xen_enable_sysenter();
1001 xen_enable_syscall();
1002 }
1003
1004 /* This function is not called for HVM domains */
xen_arch_setup(void)1005 void __init xen_arch_setup(void)
1006 {
1007 xen_panic_handler_init();
1008 xen_pvmmu_arch_setup();
1009
1010 #ifdef CONFIG_ACPI
1011 if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1012 printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1013 disable_acpi();
1014 }
1015 #endif
1016
1017 memcpy(boot_command_line, xen_start_info->cmd_line,
1018 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1019 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1020
1021 /* Set up idle, making sure it calls safe_halt() pvop */
1022 disable_cpuidle();
1023 disable_cpufreq();
1024 WARN_ON(xen_set_default_idle());
1025 fiddle_vdso();
1026 #ifdef CONFIG_NUMA
1027 numa_off = 1;
1028 #endif
1029 }
1030