1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This option enables the fips boot option which is 31 required if you want the system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 select SGL_ALLOC 109 110config CRYPTO_ACOMP 111 tristate 112 select CRYPTO_ALGAPI 113 select CRYPTO_ACOMP2 114 115config CRYPTO_MANAGER 116 tristate "Cryptographic algorithm manager" 117 select CRYPTO_MANAGER2 118 help 119 Create default cryptographic template instantiations such as 120 cbc(aes). 121 122config CRYPTO_MANAGER2 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 124 select CRYPTO_AEAD2 125 select CRYPTO_HASH2 126 select CRYPTO_BLKCIPHER2 127 select CRYPTO_AKCIPHER2 128 select CRYPTO_KPP2 129 select CRYPTO_ACOMP2 130 131config CRYPTO_USER 132 tristate "Userspace cryptographic algorithm configuration" 133 depends on NET 134 select CRYPTO_MANAGER 135 help 136 Userspace configuration for cryptographic instantiations such as 137 cbc(aes). 138 139if CRYPTO_MANAGER2 140 141config CRYPTO_MANAGER_DISABLE_TESTS 142 bool "Disable run-time self tests" 143 default y 144 help 145 Disable run-time self tests that normally take place at 146 algorithm registration. 147 148config CRYPTO_MANAGER_EXTRA_TESTS 149 bool "Enable extra run-time crypto self tests" 150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 151 help 152 Enable extra run-time self tests of registered crypto algorithms, 153 including randomized fuzz tests. 154 155 This is intended for developer use only, as these tests take much 156 longer to run than the normal self tests. 157 158endif # if CRYPTO_MANAGER2 159 160config CRYPTO_GF128MUL 161 tristate 162 163config CRYPTO_NULL 164 tristate "Null algorithms" 165 select CRYPTO_NULL2 166 help 167 These are 'Null' algorithms, used by IPsec, which do nothing. 168 169config CRYPTO_NULL2 170 tristate 171 select CRYPTO_ALGAPI2 172 select CRYPTO_BLKCIPHER2 173 select CRYPTO_HASH2 174 175config CRYPTO_PCRYPT 176 tristate "Parallel crypto engine" 177 depends on SMP 178 select PADATA 179 select CRYPTO_MANAGER 180 select CRYPTO_AEAD 181 help 182 This converts an arbitrary crypto algorithm into a parallel 183 algorithm that executes in kernel threads. 184 185config CRYPTO_CRYPTD 186 tristate "Software async crypto daemon" 187 select CRYPTO_BLKCIPHER 188 select CRYPTO_HASH 189 select CRYPTO_MANAGER 190 help 191 This is a generic software asynchronous crypto daemon that 192 converts an arbitrary synchronous software crypto algorithm 193 into an asynchronous algorithm that executes in a kernel thread. 194 195config CRYPTO_AUTHENC 196 tristate "Authenc support" 197 select CRYPTO_AEAD 198 select CRYPTO_BLKCIPHER 199 select CRYPTO_MANAGER 200 select CRYPTO_HASH 201 select CRYPTO_NULL 202 help 203 Authenc: Combined mode wrapper for IPsec. 204 This is required for IPSec. 205 206config CRYPTO_TEST 207 tristate "Testing module" 208 depends on m 209 select CRYPTO_MANAGER 210 help 211 Quick & dirty crypto test module. 212 213config CRYPTO_SIMD 214 tristate 215 select CRYPTO_CRYPTD 216 217config CRYPTO_GLUE_HELPER_X86 218 tristate 219 depends on X86 220 select CRYPTO_BLKCIPHER 221 222config CRYPTO_ENGINE 223 tristate 224 225comment "Public-key cryptography" 226 227config CRYPTO_RSA 228 tristate "RSA algorithm" 229 select CRYPTO_AKCIPHER 230 select CRYPTO_MANAGER 231 select MPILIB 232 select ASN1 233 help 234 Generic implementation of the RSA public key algorithm. 235 236config CRYPTO_DH 237 tristate "Diffie-Hellman algorithm" 238 select CRYPTO_KPP 239 select MPILIB 240 help 241 Generic implementation of the Diffie-Hellman algorithm. 242 243config CRYPTO_ECC 244 tristate 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 select CRYPTO_RNG_DEFAULT 251 help 252 Generic implementation of the ECDH algorithm 253 254config CRYPTO_ECRDSA 255 tristate "EC-RDSA (GOST 34.10) algorithm" 256 select CRYPTO_ECC 257 select CRYPTO_AKCIPHER 258 select CRYPTO_STREEBOG 259 select OID_REGISTRY 260 select ASN1 261 help 262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 264 standard algorithms (called GOST algorithms). Only signature verification 265 is implemented. 266 267comment "Authenticated Encryption with Associated Data" 268 269config CRYPTO_CCM 270 tristate "CCM support" 271 select CRYPTO_CTR 272 select CRYPTO_HASH 273 select CRYPTO_AEAD 274 select CRYPTO_MANAGER 275 help 276 Support for Counter with CBC MAC. Required for IPsec. 277 278config CRYPTO_GCM 279 tristate "GCM/GMAC support" 280 select CRYPTO_CTR 281 select CRYPTO_AEAD 282 select CRYPTO_GHASH 283 select CRYPTO_NULL 284 select CRYPTO_MANAGER 285 help 286 Support for Galois/Counter Mode (GCM) and Galois Message 287 Authentication Code (GMAC). Required for IPSec. 288 289config CRYPTO_CHACHA20POLY1305 290 tristate "ChaCha20-Poly1305 AEAD support" 291 select CRYPTO_CHACHA20 292 select CRYPTO_POLY1305 293 select CRYPTO_AEAD 294 select CRYPTO_MANAGER 295 help 296 ChaCha20-Poly1305 AEAD support, RFC7539. 297 298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 299 with the Poly1305 authenticator. It is defined in RFC7539 for use in 300 IETF protocols. 301 302config CRYPTO_AEGIS128 303 tristate "AEGIS-128 AEAD algorithm" 304 select CRYPTO_AEAD 305 select CRYPTO_AES # for AES S-box tables 306 help 307 Support for the AEGIS-128 dedicated AEAD algorithm. 308 309config CRYPTO_AEGIS128_SIMD 310 bool "Support SIMD acceleration for AEGIS-128" 311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 312 depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 313 default y 314 315config CRYPTO_AEGIS128_AESNI_SSE2 316 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 317 depends on X86 && 64BIT 318 select CRYPTO_AEAD 319 select CRYPTO_SIMD 320 help 321 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 322 323config CRYPTO_SEQIV 324 tristate "Sequence Number IV Generator" 325 select CRYPTO_AEAD 326 select CRYPTO_BLKCIPHER 327 select CRYPTO_NULL 328 select CRYPTO_RNG_DEFAULT 329 select CRYPTO_MANAGER 330 help 331 This IV generator generates an IV based on a sequence number by 332 xoring it with a salt. This algorithm is mainly useful for CTR 333 334config CRYPTO_ECHAINIV 335 tristate "Encrypted Chain IV Generator" 336 select CRYPTO_AEAD 337 select CRYPTO_NULL 338 select CRYPTO_RNG_DEFAULT 339 select CRYPTO_MANAGER 340 help 341 This IV generator generates an IV based on the encryption of 342 a sequence number xored with a salt. This is the default 343 algorithm for CBC. 344 345comment "Block modes" 346 347config CRYPTO_CBC 348 tristate "CBC support" 349 select CRYPTO_BLKCIPHER 350 select CRYPTO_MANAGER 351 help 352 CBC: Cipher Block Chaining mode 353 This block cipher algorithm is required for IPSec. 354 355config CRYPTO_CFB 356 tristate "CFB support" 357 select CRYPTO_BLKCIPHER 358 select CRYPTO_MANAGER 359 help 360 CFB: Cipher FeedBack mode 361 This block cipher algorithm is required for TPM2 Cryptography. 362 363config CRYPTO_CTR 364 tristate "CTR support" 365 select CRYPTO_BLKCIPHER 366 select CRYPTO_SEQIV 367 select CRYPTO_MANAGER 368 help 369 CTR: Counter mode 370 This block cipher algorithm is required for IPSec. 371 372config CRYPTO_CTS 373 tristate "CTS support" 374 select CRYPTO_BLKCIPHER 375 select CRYPTO_MANAGER 376 help 377 CTS: Cipher Text Stealing 378 This is the Cipher Text Stealing mode as described by 379 Section 8 of rfc2040 and referenced by rfc3962 380 (rfc3962 includes errata information in its Appendix A) or 381 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 382 This mode is required for Kerberos gss mechanism support 383 for AES encryption. 384 385 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 386 387config CRYPTO_ECB 388 tristate "ECB support" 389 select CRYPTO_BLKCIPHER 390 select CRYPTO_MANAGER 391 help 392 ECB: Electronic CodeBook mode 393 This is the simplest block cipher algorithm. It simply encrypts 394 the input block by block. 395 396config CRYPTO_LRW 397 tristate "LRW support" 398 select CRYPTO_BLKCIPHER 399 select CRYPTO_MANAGER 400 select CRYPTO_GF128MUL 401 help 402 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 403 narrow block cipher mode for dm-crypt. Use it with cipher 404 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 405 The first 128, 192 or 256 bits in the key are used for AES and the 406 rest is used to tie each cipher block to its logical position. 407 408config CRYPTO_OFB 409 tristate "OFB support" 410 select CRYPTO_BLKCIPHER 411 select CRYPTO_MANAGER 412 help 413 OFB: the Output Feedback mode makes a block cipher into a synchronous 414 stream cipher. It generates keystream blocks, which are then XORed 415 with the plaintext blocks to get the ciphertext. Flipping a bit in the 416 ciphertext produces a flipped bit in the plaintext at the same 417 location. This property allows many error correcting codes to function 418 normally even when applied before encryption. 419 420config CRYPTO_PCBC 421 tristate "PCBC support" 422 select CRYPTO_BLKCIPHER 423 select CRYPTO_MANAGER 424 help 425 PCBC: Propagating Cipher Block Chaining mode 426 This block cipher algorithm is required for RxRPC. 427 428config CRYPTO_XTS 429 tristate "XTS support" 430 select CRYPTO_BLKCIPHER 431 select CRYPTO_MANAGER 432 select CRYPTO_ECB 433 help 434 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 435 key size 256, 384 or 512 bits. This implementation currently 436 can't handle a sectorsize which is not a multiple of 16 bytes. 437 438config CRYPTO_KEYWRAP 439 tristate "Key wrapping support" 440 select CRYPTO_BLKCIPHER 441 select CRYPTO_MANAGER 442 help 443 Support for key wrapping (NIST SP800-38F / RFC3394) without 444 padding. 445 446config CRYPTO_NHPOLY1305 447 tristate 448 select CRYPTO_HASH 449 select CRYPTO_POLY1305 450 451config CRYPTO_NHPOLY1305_SSE2 452 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 453 depends on X86 && 64BIT 454 select CRYPTO_NHPOLY1305 455 help 456 SSE2 optimized implementation of the hash function used by the 457 Adiantum encryption mode. 458 459config CRYPTO_NHPOLY1305_AVX2 460 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 461 depends on X86 && 64BIT 462 select CRYPTO_NHPOLY1305 463 help 464 AVX2 optimized implementation of the hash function used by the 465 Adiantum encryption mode. 466 467config CRYPTO_ADIANTUM 468 tristate "Adiantum support" 469 select CRYPTO_CHACHA20 470 select CRYPTO_POLY1305 471 select CRYPTO_NHPOLY1305 472 select CRYPTO_MANAGER 473 help 474 Adiantum is a tweakable, length-preserving encryption mode 475 designed for fast and secure disk encryption, especially on 476 CPUs without dedicated crypto instructions. It encrypts 477 each sector using the XChaCha12 stream cipher, two passes of 478 an ε-almost-∆-universal hash function, and an invocation of 479 the AES-256 block cipher on a single 16-byte block. On CPUs 480 without AES instructions, Adiantum is much faster than 481 AES-XTS. 482 483 Adiantum's security is provably reducible to that of its 484 underlying stream and block ciphers, subject to a security 485 bound. Unlike XTS, Adiantum is a true wide-block encryption 486 mode, so it actually provides an even stronger notion of 487 security than XTS, subject to the security bound. 488 489 If unsure, say N. 490 491config CRYPTO_ESSIV 492 tristate "ESSIV support for block encryption" 493 select CRYPTO_AUTHENC 494 help 495 Encrypted salt-sector initialization vector (ESSIV) is an IV 496 generation method that is used in some cases by fscrypt and/or 497 dm-crypt. It uses the hash of the block encryption key as the 498 symmetric key for a block encryption pass applied to the input 499 IV, making low entropy IV sources more suitable for block 500 encryption. 501 502 This driver implements a crypto API template that can be 503 instantiated either as a skcipher or as a aead (depending on the 504 type of the first template argument), and which defers encryption 505 and decryption requests to the encapsulated cipher after applying 506 ESSIV to the input IV. Note that in the aead case, it is assumed 507 that the keys are presented in the same format used by the authenc 508 template, and that the IV appears at the end of the authenticated 509 associated data (AAD) region (which is how dm-crypt uses it.) 510 511 Note that the use of ESSIV is not recommended for new deployments, 512 and so this only needs to be enabled when interoperability with 513 existing encrypted volumes of filesystems is required, or when 514 building for a particular system that requires it (e.g., when 515 the SoC in question has accelerated CBC but not XTS, making CBC 516 combined with ESSIV the only feasible mode for h/w accelerated 517 block encryption) 518 519comment "Hash modes" 520 521config CRYPTO_CMAC 522 tristate "CMAC support" 523 select CRYPTO_HASH 524 select CRYPTO_MANAGER 525 help 526 Cipher-based Message Authentication Code (CMAC) specified by 527 The National Institute of Standards and Technology (NIST). 528 529 https://tools.ietf.org/html/rfc4493 530 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 531 532config CRYPTO_HMAC 533 tristate "HMAC support" 534 select CRYPTO_HASH 535 select CRYPTO_MANAGER 536 help 537 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 538 This is required for IPSec. 539 540config CRYPTO_XCBC 541 tristate "XCBC support" 542 select CRYPTO_HASH 543 select CRYPTO_MANAGER 544 help 545 XCBC: Keyed-Hashing with encryption algorithm 546 http://www.ietf.org/rfc/rfc3566.txt 547 http://csrc.nist.gov/encryption/modes/proposedmodes/ 548 xcbc-mac/xcbc-mac-spec.pdf 549 550config CRYPTO_VMAC 551 tristate "VMAC support" 552 select CRYPTO_HASH 553 select CRYPTO_MANAGER 554 help 555 VMAC is a message authentication algorithm designed for 556 very high speed on 64-bit architectures. 557 558 See also: 559 <http://fastcrypto.org/vmac> 560 561comment "Digest" 562 563config CRYPTO_CRC32C 564 tristate "CRC32c CRC algorithm" 565 select CRYPTO_HASH 566 select CRC32 567 help 568 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 569 by iSCSI for header and data digests and by others. 570 See Castagnoli93. Module will be crc32c. 571 572config CRYPTO_CRC32C_INTEL 573 tristate "CRC32c INTEL hardware acceleration" 574 depends on X86 575 select CRYPTO_HASH 576 help 577 In Intel processor with SSE4.2 supported, the processor will 578 support CRC32C implementation using hardware accelerated CRC32 579 instruction. This option will create 'crc32c-intel' module, 580 which will enable any routine to use the CRC32 instruction to 581 gain performance compared with software implementation. 582 Module will be crc32c-intel. 583 584config CRYPTO_CRC32C_VPMSUM 585 tristate "CRC32c CRC algorithm (powerpc64)" 586 depends on PPC64 && ALTIVEC 587 select CRYPTO_HASH 588 select CRC32 589 help 590 CRC32c algorithm implemented using vector polynomial multiply-sum 591 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 592 and newer processors for improved performance. 593 594 595config CRYPTO_CRC32C_SPARC64 596 tristate "CRC32c CRC algorithm (SPARC64)" 597 depends on SPARC64 598 select CRYPTO_HASH 599 select CRC32 600 help 601 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 602 when available. 603 604config CRYPTO_CRC32 605 tristate "CRC32 CRC algorithm" 606 select CRYPTO_HASH 607 select CRC32 608 help 609 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 610 Shash crypto api wrappers to crc32_le function. 611 612config CRYPTO_CRC32_PCLMUL 613 tristate "CRC32 PCLMULQDQ hardware acceleration" 614 depends on X86 615 select CRYPTO_HASH 616 select CRC32 617 help 618 From Intel Westmere and AMD Bulldozer processor with SSE4.2 619 and PCLMULQDQ supported, the processor will support 620 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 621 instruction. This option will create 'crc32-pclmul' module, 622 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 623 and gain better performance as compared with the table implementation. 624 625config CRYPTO_CRC32_MIPS 626 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 627 depends on MIPS_CRC_SUPPORT 628 select CRYPTO_HASH 629 help 630 CRC32c and CRC32 CRC algorithms implemented using mips crypto 631 instructions, when available. 632 633 634config CRYPTO_XXHASH 635 tristate "xxHash hash algorithm" 636 select CRYPTO_HASH 637 select XXHASH 638 help 639 xxHash non-cryptographic hash algorithm. Extremely fast, working at 640 speeds close to RAM limits. 641 642config CRYPTO_CRCT10DIF 643 tristate "CRCT10DIF algorithm" 644 select CRYPTO_HASH 645 help 646 CRC T10 Data Integrity Field computation is being cast as 647 a crypto transform. This allows for faster crc t10 diff 648 transforms to be used if they are available. 649 650config CRYPTO_CRCT10DIF_PCLMUL 651 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 652 depends on X86 && 64BIT && CRC_T10DIF 653 select CRYPTO_HASH 654 help 655 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 656 CRC T10 DIF PCLMULQDQ computation can be hardware 657 accelerated PCLMULQDQ instruction. This option will create 658 'crct10dif-pclmul' module, which is faster when computing the 659 crct10dif checksum as compared with the generic table implementation. 660 661config CRYPTO_CRCT10DIF_VPMSUM 662 tristate "CRC32T10DIF powerpc64 hardware acceleration" 663 depends on PPC64 && ALTIVEC && CRC_T10DIF 664 select CRYPTO_HASH 665 help 666 CRC10T10DIF algorithm implemented using vector polynomial 667 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 668 POWER8 and newer processors for improved performance. 669 670config CRYPTO_VPMSUM_TESTER 671 tristate "Powerpc64 vpmsum hardware acceleration tester" 672 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 673 help 674 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 675 POWER8 vpmsum instructions. 676 Unless you are testing these algorithms, you don't need this. 677 678config CRYPTO_GHASH 679 tristate "GHASH hash function" 680 select CRYPTO_GF128MUL 681 select CRYPTO_HASH 682 help 683 GHASH is the hash function used in GCM (Galois/Counter Mode). 684 It is not a general-purpose cryptographic hash function. 685 686config CRYPTO_POLY1305 687 tristate "Poly1305 authenticator algorithm" 688 select CRYPTO_HASH 689 help 690 Poly1305 authenticator algorithm, RFC7539. 691 692 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 693 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 694 in IETF protocols. This is the portable C implementation of Poly1305. 695 696config CRYPTO_POLY1305_X86_64 697 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 698 depends on X86 && 64BIT 699 select CRYPTO_POLY1305 700 help 701 Poly1305 authenticator algorithm, RFC7539. 702 703 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 704 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 705 in IETF protocols. This is the x86_64 assembler implementation using SIMD 706 instructions. 707 708config CRYPTO_MD4 709 tristate "MD4 digest algorithm" 710 select CRYPTO_HASH 711 help 712 MD4 message digest algorithm (RFC1320). 713 714config CRYPTO_MD5 715 tristate "MD5 digest algorithm" 716 select CRYPTO_HASH 717 help 718 MD5 message digest algorithm (RFC1321). 719 720config CRYPTO_MD5_OCTEON 721 tristate "MD5 digest algorithm (OCTEON)" 722 depends on CPU_CAVIUM_OCTEON 723 select CRYPTO_MD5 724 select CRYPTO_HASH 725 help 726 MD5 message digest algorithm (RFC1321) implemented 727 using OCTEON crypto instructions, when available. 728 729config CRYPTO_MD5_PPC 730 tristate "MD5 digest algorithm (PPC)" 731 depends on PPC 732 select CRYPTO_HASH 733 help 734 MD5 message digest algorithm (RFC1321) implemented 735 in PPC assembler. 736 737config CRYPTO_MD5_SPARC64 738 tristate "MD5 digest algorithm (SPARC64)" 739 depends on SPARC64 740 select CRYPTO_MD5 741 select CRYPTO_HASH 742 help 743 MD5 message digest algorithm (RFC1321) implemented 744 using sparc64 crypto instructions, when available. 745 746config CRYPTO_MICHAEL_MIC 747 tristate "Michael MIC keyed digest algorithm" 748 select CRYPTO_HASH 749 help 750 Michael MIC is used for message integrity protection in TKIP 751 (IEEE 802.11i). This algorithm is required for TKIP, but it 752 should not be used for other purposes because of the weakness 753 of the algorithm. 754 755config CRYPTO_RMD128 756 tristate "RIPEMD-128 digest algorithm" 757 select CRYPTO_HASH 758 help 759 RIPEMD-128 (ISO/IEC 10118-3:2004). 760 761 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 762 be used as a secure replacement for RIPEMD. For other use cases, 763 RIPEMD-160 should be used. 764 765 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 766 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 767 768config CRYPTO_RMD160 769 tristate "RIPEMD-160 digest algorithm" 770 select CRYPTO_HASH 771 help 772 RIPEMD-160 (ISO/IEC 10118-3:2004). 773 774 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 775 to be used as a secure replacement for the 128-bit hash functions 776 MD4, MD5 and it's predecessor RIPEMD 777 (not to be confused with RIPEMD-128). 778 779 It's speed is comparable to SHA1 and there are no known attacks 780 against RIPEMD-160. 781 782 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 783 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 784 785config CRYPTO_RMD256 786 tristate "RIPEMD-256 digest algorithm" 787 select CRYPTO_HASH 788 help 789 RIPEMD-256 is an optional extension of RIPEMD-128 with a 790 256 bit hash. It is intended for applications that require 791 longer hash-results, without needing a larger security level 792 (than RIPEMD-128). 793 794 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 795 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 796 797config CRYPTO_RMD320 798 tristate "RIPEMD-320 digest algorithm" 799 select CRYPTO_HASH 800 help 801 RIPEMD-320 is an optional extension of RIPEMD-160 with a 802 320 bit hash. It is intended for applications that require 803 longer hash-results, without needing a larger security level 804 (than RIPEMD-160). 805 806 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 807 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 808 809config CRYPTO_SHA1 810 tristate "SHA1 digest algorithm" 811 select CRYPTO_HASH 812 help 813 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 814 815config CRYPTO_SHA1_SSSE3 816 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 817 depends on X86 && 64BIT 818 select CRYPTO_SHA1 819 select CRYPTO_HASH 820 help 821 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 822 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 823 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 824 when available. 825 826config CRYPTO_SHA256_SSSE3 827 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 828 depends on X86 && 64BIT 829 select CRYPTO_SHA256 830 select CRYPTO_HASH 831 help 832 SHA-256 secure hash standard (DFIPS 180-2) implemented 833 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 834 Extensions version 1 (AVX1), or Advanced Vector Extensions 835 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 836 Instructions) when available. 837 838config CRYPTO_SHA512_SSSE3 839 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 840 depends on X86 && 64BIT 841 select CRYPTO_SHA512 842 select CRYPTO_HASH 843 help 844 SHA-512 secure hash standard (DFIPS 180-2) implemented 845 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 846 Extensions version 1 (AVX1), or Advanced Vector Extensions 847 version 2 (AVX2) instructions, when available. 848 849config CRYPTO_SHA1_OCTEON 850 tristate "SHA1 digest algorithm (OCTEON)" 851 depends on CPU_CAVIUM_OCTEON 852 select CRYPTO_SHA1 853 select CRYPTO_HASH 854 help 855 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 856 using OCTEON crypto instructions, when available. 857 858config CRYPTO_SHA1_SPARC64 859 tristate "SHA1 digest algorithm (SPARC64)" 860 depends on SPARC64 861 select CRYPTO_SHA1 862 select CRYPTO_HASH 863 help 864 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 865 using sparc64 crypto instructions, when available. 866 867config CRYPTO_SHA1_PPC 868 tristate "SHA1 digest algorithm (powerpc)" 869 depends on PPC 870 help 871 This is the powerpc hardware accelerated implementation of the 872 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 873 874config CRYPTO_SHA1_PPC_SPE 875 tristate "SHA1 digest algorithm (PPC SPE)" 876 depends on PPC && SPE 877 help 878 SHA-1 secure hash standard (DFIPS 180-4) implemented 879 using powerpc SPE SIMD instruction set. 880 881config CRYPTO_LIB_SHA256 882 tristate 883 884config CRYPTO_SHA256 885 tristate "SHA224 and SHA256 digest algorithm" 886 select CRYPTO_HASH 887 select CRYPTO_LIB_SHA256 888 help 889 SHA256 secure hash standard (DFIPS 180-2). 890 891 This version of SHA implements a 256 bit hash with 128 bits of 892 security against collision attacks. 893 894 This code also includes SHA-224, a 224 bit hash with 112 bits 895 of security against collision attacks. 896 897config CRYPTO_SHA256_PPC_SPE 898 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 899 depends on PPC && SPE 900 select CRYPTO_SHA256 901 select CRYPTO_HASH 902 help 903 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 904 implemented using powerpc SPE SIMD instruction set. 905 906config CRYPTO_SHA256_OCTEON 907 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 908 depends on CPU_CAVIUM_OCTEON 909 select CRYPTO_SHA256 910 select CRYPTO_HASH 911 help 912 SHA-256 secure hash standard (DFIPS 180-2) implemented 913 using OCTEON crypto instructions, when available. 914 915config CRYPTO_SHA256_SPARC64 916 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 917 depends on SPARC64 918 select CRYPTO_SHA256 919 select CRYPTO_HASH 920 help 921 SHA-256 secure hash standard (DFIPS 180-2) implemented 922 using sparc64 crypto instructions, when available. 923 924config CRYPTO_SHA512 925 tristate "SHA384 and SHA512 digest algorithms" 926 select CRYPTO_HASH 927 help 928 SHA512 secure hash standard (DFIPS 180-2). 929 930 This version of SHA implements a 512 bit hash with 256 bits of 931 security against collision attacks. 932 933 This code also includes SHA-384, a 384 bit hash with 192 bits 934 of security against collision attacks. 935 936config CRYPTO_SHA512_OCTEON 937 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 938 depends on CPU_CAVIUM_OCTEON 939 select CRYPTO_SHA512 940 select CRYPTO_HASH 941 help 942 SHA-512 secure hash standard (DFIPS 180-2) implemented 943 using OCTEON crypto instructions, when available. 944 945config CRYPTO_SHA512_SPARC64 946 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 947 depends on SPARC64 948 select CRYPTO_SHA512 949 select CRYPTO_HASH 950 help 951 SHA-512 secure hash standard (DFIPS 180-2) implemented 952 using sparc64 crypto instructions, when available. 953 954config CRYPTO_SHA3 955 tristate "SHA3 digest algorithm" 956 select CRYPTO_HASH 957 help 958 SHA-3 secure hash standard (DFIPS 202). It's based on 959 cryptographic sponge function family called Keccak. 960 961 References: 962 http://keccak.noekeon.org/ 963 964config CRYPTO_SM3 965 tristate "SM3 digest algorithm" 966 select CRYPTO_HASH 967 help 968 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 969 It is part of the Chinese Commercial Cryptography suite. 970 971 References: 972 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 973 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 974 975config CRYPTO_STREEBOG 976 tristate "Streebog Hash Function" 977 select CRYPTO_HASH 978 help 979 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 980 cryptographic standard algorithms (called GOST algorithms). 981 This setting enables two hash algorithms with 256 and 512 bits output. 982 983 References: 984 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 985 https://tools.ietf.org/html/rfc6986 986 987config CRYPTO_TGR192 988 tristate "Tiger digest algorithms" 989 select CRYPTO_HASH 990 help 991 Tiger hash algorithm 192, 160 and 128-bit hashes 992 993 Tiger is a hash function optimized for 64-bit processors while 994 still having decent performance on 32-bit processors. 995 Tiger was developed by Ross Anderson and Eli Biham. 996 997 See also: 998 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 999 1000config CRYPTO_WP512 1001 tristate "Whirlpool digest algorithms" 1002 select CRYPTO_HASH 1003 help 1004 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1005 1006 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1007 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1008 1009 See also: 1010 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1011 1012config CRYPTO_GHASH_CLMUL_NI_INTEL 1013 tristate "GHASH hash function (CLMUL-NI accelerated)" 1014 depends on X86 && 64BIT 1015 select CRYPTO_CRYPTD 1016 help 1017 This is the x86_64 CLMUL-NI accelerated implementation of 1018 GHASH, the hash function used in GCM (Galois/Counter mode). 1019 1020comment "Ciphers" 1021 1022config CRYPTO_LIB_AES 1023 tristate 1024 1025config CRYPTO_AES 1026 tristate "AES cipher algorithms" 1027 select CRYPTO_ALGAPI 1028 select CRYPTO_LIB_AES 1029 help 1030 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1031 algorithm. 1032 1033 Rijndael appears to be consistently a very good performer in 1034 both hardware and software across a wide range of computing 1035 environments regardless of its use in feedback or non-feedback 1036 modes. Its key setup time is excellent, and its key agility is 1037 good. Rijndael's very low memory requirements make it very well 1038 suited for restricted-space environments, in which it also 1039 demonstrates excellent performance. Rijndael's operations are 1040 among the easiest to defend against power and timing attacks. 1041 1042 The AES specifies three key sizes: 128, 192 and 256 bits 1043 1044 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1045 1046config CRYPTO_AES_TI 1047 tristate "Fixed time AES cipher" 1048 select CRYPTO_ALGAPI 1049 select CRYPTO_LIB_AES 1050 help 1051 This is a generic implementation of AES that attempts to eliminate 1052 data dependent latencies as much as possible without affecting 1053 performance too much. It is intended for use by the generic CCM 1054 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1055 solely on encryption (although decryption is supported as well, but 1056 with a more dramatic performance hit) 1057 1058 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1059 8 for decryption), this implementation only uses just two S-boxes of 1060 256 bytes each, and attempts to eliminate data dependent latencies by 1061 prefetching the entire table into the cache at the start of each 1062 block. Interrupts are also disabled to avoid races where cachelines 1063 are evicted when the CPU is interrupted to do something else. 1064 1065config CRYPTO_AES_NI_INTEL 1066 tristate "AES cipher algorithms (AES-NI)" 1067 depends on X86 1068 select CRYPTO_AEAD 1069 select CRYPTO_LIB_AES 1070 select CRYPTO_ALGAPI 1071 select CRYPTO_BLKCIPHER 1072 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1073 select CRYPTO_SIMD 1074 help 1075 Use Intel AES-NI instructions for AES algorithm. 1076 1077 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1078 algorithm. 1079 1080 Rijndael appears to be consistently a very good performer in 1081 both hardware and software across a wide range of computing 1082 environments regardless of its use in feedback or non-feedback 1083 modes. Its key setup time is excellent, and its key agility is 1084 good. Rijndael's very low memory requirements make it very well 1085 suited for restricted-space environments, in which it also 1086 demonstrates excellent performance. Rijndael's operations are 1087 among the easiest to defend against power and timing attacks. 1088 1089 The AES specifies three key sizes: 128, 192 and 256 bits 1090 1091 See <http://csrc.nist.gov/encryption/aes/> for more information. 1092 1093 In addition to AES cipher algorithm support, the acceleration 1094 for some popular block cipher mode is supported too, including 1095 ECB, CBC, LRW, XTS. The 64 bit version has additional 1096 acceleration for CTR. 1097 1098config CRYPTO_AES_SPARC64 1099 tristate "AES cipher algorithms (SPARC64)" 1100 depends on SPARC64 1101 select CRYPTO_CRYPTD 1102 select CRYPTO_ALGAPI 1103 help 1104 Use SPARC64 crypto opcodes for AES algorithm. 1105 1106 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1107 algorithm. 1108 1109 Rijndael appears to be consistently a very good performer in 1110 both hardware and software across a wide range of computing 1111 environments regardless of its use in feedback or non-feedback 1112 modes. Its key setup time is excellent, and its key agility is 1113 good. Rijndael's very low memory requirements make it very well 1114 suited for restricted-space environments, in which it also 1115 demonstrates excellent performance. Rijndael's operations are 1116 among the easiest to defend against power and timing attacks. 1117 1118 The AES specifies three key sizes: 128, 192 and 256 bits 1119 1120 See <http://csrc.nist.gov/encryption/aes/> for more information. 1121 1122 In addition to AES cipher algorithm support, the acceleration 1123 for some popular block cipher mode is supported too, including 1124 ECB and CBC. 1125 1126config CRYPTO_AES_PPC_SPE 1127 tristate "AES cipher algorithms (PPC SPE)" 1128 depends on PPC && SPE 1129 help 1130 AES cipher algorithms (FIPS-197). Additionally the acceleration 1131 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1132 This module should only be used for low power (router) devices 1133 without hardware AES acceleration (e.g. caam crypto). It reduces the 1134 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1135 timining attacks. Nevertheless it might be not as secure as other 1136 architecture specific assembler implementations that work on 1KB 1137 tables or 256 bytes S-boxes. 1138 1139config CRYPTO_ANUBIS 1140 tristate "Anubis cipher algorithm" 1141 select CRYPTO_ALGAPI 1142 help 1143 Anubis cipher algorithm. 1144 1145 Anubis is a variable key length cipher which can use keys from 1146 128 bits to 320 bits in length. It was evaluated as a entrant 1147 in the NESSIE competition. 1148 1149 See also: 1150 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1151 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1152 1153config CRYPTO_LIB_ARC4 1154 tristate 1155 1156config CRYPTO_ARC4 1157 tristate "ARC4 cipher algorithm" 1158 select CRYPTO_BLKCIPHER 1159 select CRYPTO_LIB_ARC4 1160 help 1161 ARC4 cipher algorithm. 1162 1163 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1164 bits in length. This algorithm is required for driver-based 1165 WEP, but it should not be for other purposes because of the 1166 weakness of the algorithm. 1167 1168config CRYPTO_BLOWFISH 1169 tristate "Blowfish cipher algorithm" 1170 select CRYPTO_ALGAPI 1171 select CRYPTO_BLOWFISH_COMMON 1172 help 1173 Blowfish cipher algorithm, by Bruce Schneier. 1174 1175 This is a variable key length cipher which can use keys from 32 1176 bits to 448 bits in length. It's fast, simple and specifically 1177 designed for use on "large microprocessors". 1178 1179 See also: 1180 <http://www.schneier.com/blowfish.html> 1181 1182config CRYPTO_BLOWFISH_COMMON 1183 tristate 1184 help 1185 Common parts of the Blowfish cipher algorithm shared by the 1186 generic c and the assembler implementations. 1187 1188 See also: 1189 <http://www.schneier.com/blowfish.html> 1190 1191config CRYPTO_BLOWFISH_X86_64 1192 tristate "Blowfish cipher algorithm (x86_64)" 1193 depends on X86 && 64BIT 1194 select CRYPTO_BLKCIPHER 1195 select CRYPTO_BLOWFISH_COMMON 1196 help 1197 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1198 1199 This is a variable key length cipher which can use keys from 32 1200 bits to 448 bits in length. It's fast, simple and specifically 1201 designed for use on "large microprocessors". 1202 1203 See also: 1204 <http://www.schneier.com/blowfish.html> 1205 1206config CRYPTO_CAMELLIA 1207 tristate "Camellia cipher algorithms" 1208 depends on CRYPTO 1209 select CRYPTO_ALGAPI 1210 help 1211 Camellia cipher algorithms module. 1212 1213 Camellia is a symmetric key block cipher developed jointly 1214 at NTT and Mitsubishi Electric Corporation. 1215 1216 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1217 1218 See also: 1219 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1220 1221config CRYPTO_CAMELLIA_X86_64 1222 tristate "Camellia cipher algorithm (x86_64)" 1223 depends on X86 && 64BIT 1224 depends on CRYPTO 1225 select CRYPTO_BLKCIPHER 1226 select CRYPTO_GLUE_HELPER_X86 1227 help 1228 Camellia cipher algorithm module (x86_64). 1229 1230 Camellia is a symmetric key block cipher developed jointly 1231 at NTT and Mitsubishi Electric Corporation. 1232 1233 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1234 1235 See also: 1236 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1237 1238config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1239 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1240 depends on X86 && 64BIT 1241 depends on CRYPTO 1242 select CRYPTO_BLKCIPHER 1243 select CRYPTO_CAMELLIA_X86_64 1244 select CRYPTO_GLUE_HELPER_X86 1245 select CRYPTO_SIMD 1246 select CRYPTO_XTS 1247 help 1248 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1249 1250 Camellia is a symmetric key block cipher developed jointly 1251 at NTT and Mitsubishi Electric Corporation. 1252 1253 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1254 1255 See also: 1256 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1257 1258config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1259 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1260 depends on X86 && 64BIT 1261 depends on CRYPTO 1262 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1263 help 1264 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1265 1266 Camellia is a symmetric key block cipher developed jointly 1267 at NTT and Mitsubishi Electric Corporation. 1268 1269 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1270 1271 See also: 1272 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1273 1274config CRYPTO_CAMELLIA_SPARC64 1275 tristate "Camellia cipher algorithm (SPARC64)" 1276 depends on SPARC64 1277 depends on CRYPTO 1278 select CRYPTO_ALGAPI 1279 help 1280 Camellia cipher algorithm module (SPARC64). 1281 1282 Camellia is a symmetric key block cipher developed jointly 1283 at NTT and Mitsubishi Electric Corporation. 1284 1285 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1286 1287 See also: 1288 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1289 1290config CRYPTO_CAST_COMMON 1291 tristate 1292 help 1293 Common parts of the CAST cipher algorithms shared by the 1294 generic c and the assembler implementations. 1295 1296config CRYPTO_CAST5 1297 tristate "CAST5 (CAST-128) cipher algorithm" 1298 select CRYPTO_ALGAPI 1299 select CRYPTO_CAST_COMMON 1300 help 1301 The CAST5 encryption algorithm (synonymous with CAST-128) is 1302 described in RFC2144. 1303 1304config CRYPTO_CAST5_AVX_X86_64 1305 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1306 depends on X86 && 64BIT 1307 select CRYPTO_BLKCIPHER 1308 select CRYPTO_CAST5 1309 select CRYPTO_CAST_COMMON 1310 select CRYPTO_SIMD 1311 help 1312 The CAST5 encryption algorithm (synonymous with CAST-128) is 1313 described in RFC2144. 1314 1315 This module provides the Cast5 cipher algorithm that processes 1316 sixteen blocks parallel using the AVX instruction set. 1317 1318config CRYPTO_CAST6 1319 tristate "CAST6 (CAST-256) cipher algorithm" 1320 select CRYPTO_ALGAPI 1321 select CRYPTO_CAST_COMMON 1322 help 1323 The CAST6 encryption algorithm (synonymous with CAST-256) is 1324 described in RFC2612. 1325 1326config CRYPTO_CAST6_AVX_X86_64 1327 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1328 depends on X86 && 64BIT 1329 select CRYPTO_BLKCIPHER 1330 select CRYPTO_CAST6 1331 select CRYPTO_CAST_COMMON 1332 select CRYPTO_GLUE_HELPER_X86 1333 select CRYPTO_SIMD 1334 select CRYPTO_XTS 1335 help 1336 The CAST6 encryption algorithm (synonymous with CAST-256) is 1337 described in RFC2612. 1338 1339 This module provides the Cast6 cipher algorithm that processes 1340 eight blocks parallel using the AVX instruction set. 1341 1342config CRYPTO_LIB_DES 1343 tristate 1344 1345config CRYPTO_DES 1346 tristate "DES and Triple DES EDE cipher algorithms" 1347 select CRYPTO_ALGAPI 1348 select CRYPTO_LIB_DES 1349 help 1350 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1351 1352config CRYPTO_DES_SPARC64 1353 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1354 depends on SPARC64 1355 select CRYPTO_ALGAPI 1356 select CRYPTO_LIB_DES 1357 help 1358 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1359 optimized using SPARC64 crypto opcodes. 1360 1361config CRYPTO_DES3_EDE_X86_64 1362 tristate "Triple DES EDE cipher algorithm (x86-64)" 1363 depends on X86 && 64BIT 1364 select CRYPTO_BLKCIPHER 1365 select CRYPTO_LIB_DES 1366 help 1367 Triple DES EDE (FIPS 46-3) algorithm. 1368 1369 This module provides implementation of the Triple DES EDE cipher 1370 algorithm that is optimized for x86-64 processors. Two versions of 1371 algorithm are provided; regular processing one input block and 1372 one that processes three blocks parallel. 1373 1374config CRYPTO_FCRYPT 1375 tristate "FCrypt cipher algorithm" 1376 select CRYPTO_ALGAPI 1377 select CRYPTO_BLKCIPHER 1378 help 1379 FCrypt algorithm used by RxRPC. 1380 1381config CRYPTO_KHAZAD 1382 tristate "Khazad cipher algorithm" 1383 select CRYPTO_ALGAPI 1384 help 1385 Khazad cipher algorithm. 1386 1387 Khazad was a finalist in the initial NESSIE competition. It is 1388 an algorithm optimized for 64-bit processors with good performance 1389 on 32-bit processors. Khazad uses an 128 bit key size. 1390 1391 See also: 1392 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1393 1394config CRYPTO_SALSA20 1395 tristate "Salsa20 stream cipher algorithm" 1396 select CRYPTO_BLKCIPHER 1397 help 1398 Salsa20 stream cipher algorithm. 1399 1400 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1401 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1402 1403 The Salsa20 stream cipher algorithm is designed by Daniel J. 1404 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1405 1406config CRYPTO_CHACHA20 1407 tristate "ChaCha stream cipher algorithms" 1408 select CRYPTO_BLKCIPHER 1409 help 1410 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1411 1412 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1413 Bernstein and further specified in RFC7539 for use in IETF protocols. 1414 This is the portable C implementation of ChaCha20. See also: 1415 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1416 1417 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1418 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1419 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1420 while provably retaining ChaCha20's security. See also: 1421 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1422 1423 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1424 reduced security margin but increased performance. It can be needed 1425 in some performance-sensitive scenarios. 1426 1427config CRYPTO_CHACHA20_X86_64 1428 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1429 depends on X86 && 64BIT 1430 select CRYPTO_BLKCIPHER 1431 select CRYPTO_CHACHA20 1432 help 1433 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1434 XChaCha20, and XChaCha12 stream ciphers. 1435 1436config CRYPTO_SEED 1437 tristate "SEED cipher algorithm" 1438 select CRYPTO_ALGAPI 1439 help 1440 SEED cipher algorithm (RFC4269). 1441 1442 SEED is a 128-bit symmetric key block cipher that has been 1443 developed by KISA (Korea Information Security Agency) as a 1444 national standard encryption algorithm of the Republic of Korea. 1445 It is a 16 round block cipher with the key size of 128 bit. 1446 1447 See also: 1448 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1449 1450config CRYPTO_SERPENT 1451 tristate "Serpent cipher algorithm" 1452 select CRYPTO_ALGAPI 1453 help 1454 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1455 1456 Keys are allowed to be from 0 to 256 bits in length, in steps 1457 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1458 variant of Serpent for compatibility with old kerneli.org code. 1459 1460 See also: 1461 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1462 1463config CRYPTO_SERPENT_SSE2_X86_64 1464 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1465 depends on X86 && 64BIT 1466 select CRYPTO_BLKCIPHER 1467 select CRYPTO_GLUE_HELPER_X86 1468 select CRYPTO_SERPENT 1469 select CRYPTO_SIMD 1470 help 1471 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1472 1473 Keys are allowed to be from 0 to 256 bits in length, in steps 1474 of 8 bits. 1475 1476 This module provides Serpent cipher algorithm that processes eight 1477 blocks parallel using SSE2 instruction set. 1478 1479 See also: 1480 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1481 1482config CRYPTO_SERPENT_SSE2_586 1483 tristate "Serpent cipher algorithm (i586/SSE2)" 1484 depends on X86 && !64BIT 1485 select CRYPTO_BLKCIPHER 1486 select CRYPTO_GLUE_HELPER_X86 1487 select CRYPTO_SERPENT 1488 select CRYPTO_SIMD 1489 help 1490 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1491 1492 Keys are allowed to be from 0 to 256 bits in length, in steps 1493 of 8 bits. 1494 1495 This module provides Serpent cipher algorithm that processes four 1496 blocks parallel using SSE2 instruction set. 1497 1498 See also: 1499 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1500 1501config CRYPTO_SERPENT_AVX_X86_64 1502 tristate "Serpent cipher algorithm (x86_64/AVX)" 1503 depends on X86 && 64BIT 1504 select CRYPTO_BLKCIPHER 1505 select CRYPTO_GLUE_HELPER_X86 1506 select CRYPTO_SERPENT 1507 select CRYPTO_SIMD 1508 select CRYPTO_XTS 1509 help 1510 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1511 1512 Keys are allowed to be from 0 to 256 bits in length, in steps 1513 of 8 bits. 1514 1515 This module provides the Serpent cipher algorithm that processes 1516 eight blocks parallel using the AVX instruction set. 1517 1518 See also: 1519 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1520 1521config CRYPTO_SERPENT_AVX2_X86_64 1522 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1523 depends on X86 && 64BIT 1524 select CRYPTO_SERPENT_AVX_X86_64 1525 help 1526 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1527 1528 Keys are allowed to be from 0 to 256 bits in length, in steps 1529 of 8 bits. 1530 1531 This module provides Serpent cipher algorithm that processes 16 1532 blocks parallel using AVX2 instruction set. 1533 1534 See also: 1535 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1536 1537config CRYPTO_SM4 1538 tristate "SM4 cipher algorithm" 1539 select CRYPTO_ALGAPI 1540 help 1541 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1542 1543 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1544 Organization of State Commercial Administration of China (OSCCA) 1545 as an authorized cryptographic algorithms for the use within China. 1546 1547 SMS4 was originally created for use in protecting wireless 1548 networks, and is mandated in the Chinese National Standard for 1549 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1550 (GB.15629.11-2003). 1551 1552 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1553 standardized through TC 260 of the Standardization Administration 1554 of the People's Republic of China (SAC). 1555 1556 The input, output, and key of SMS4 are each 128 bits. 1557 1558 See also: <https://eprint.iacr.org/2008/329.pdf> 1559 1560 If unsure, say N. 1561 1562config CRYPTO_TEA 1563 tristate "TEA, XTEA and XETA cipher algorithms" 1564 select CRYPTO_ALGAPI 1565 help 1566 TEA cipher algorithm. 1567 1568 Tiny Encryption Algorithm is a simple cipher that uses 1569 many rounds for security. It is very fast and uses 1570 little memory. 1571 1572 Xtendend Tiny Encryption Algorithm is a modification to 1573 the TEA algorithm to address a potential key weakness 1574 in the TEA algorithm. 1575 1576 Xtendend Encryption Tiny Algorithm is a mis-implementation 1577 of the XTEA algorithm for compatibility purposes. 1578 1579config CRYPTO_TWOFISH 1580 tristate "Twofish cipher algorithm" 1581 select CRYPTO_ALGAPI 1582 select CRYPTO_TWOFISH_COMMON 1583 help 1584 Twofish cipher algorithm. 1585 1586 Twofish was submitted as an AES (Advanced Encryption Standard) 1587 candidate cipher by researchers at CounterPane Systems. It is a 1588 16 round block cipher supporting key sizes of 128, 192, and 256 1589 bits. 1590 1591 See also: 1592 <http://www.schneier.com/twofish.html> 1593 1594config CRYPTO_TWOFISH_COMMON 1595 tristate 1596 help 1597 Common parts of the Twofish cipher algorithm shared by the 1598 generic c and the assembler implementations. 1599 1600config CRYPTO_TWOFISH_586 1601 tristate "Twofish cipher algorithms (i586)" 1602 depends on (X86 || UML_X86) && !64BIT 1603 select CRYPTO_ALGAPI 1604 select CRYPTO_TWOFISH_COMMON 1605 help 1606 Twofish cipher algorithm. 1607 1608 Twofish was submitted as an AES (Advanced Encryption Standard) 1609 candidate cipher by researchers at CounterPane Systems. It is a 1610 16 round block cipher supporting key sizes of 128, 192, and 256 1611 bits. 1612 1613 See also: 1614 <http://www.schneier.com/twofish.html> 1615 1616config CRYPTO_TWOFISH_X86_64 1617 tristate "Twofish cipher algorithm (x86_64)" 1618 depends on (X86 || UML_X86) && 64BIT 1619 select CRYPTO_ALGAPI 1620 select CRYPTO_TWOFISH_COMMON 1621 help 1622 Twofish cipher algorithm (x86_64). 1623 1624 Twofish was submitted as an AES (Advanced Encryption Standard) 1625 candidate cipher by researchers at CounterPane Systems. It is a 1626 16 round block cipher supporting key sizes of 128, 192, and 256 1627 bits. 1628 1629 See also: 1630 <http://www.schneier.com/twofish.html> 1631 1632config CRYPTO_TWOFISH_X86_64_3WAY 1633 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1634 depends on X86 && 64BIT 1635 select CRYPTO_BLKCIPHER 1636 select CRYPTO_TWOFISH_COMMON 1637 select CRYPTO_TWOFISH_X86_64 1638 select CRYPTO_GLUE_HELPER_X86 1639 help 1640 Twofish cipher algorithm (x86_64, 3-way parallel). 1641 1642 Twofish was submitted as an AES (Advanced Encryption Standard) 1643 candidate cipher by researchers at CounterPane Systems. It is a 1644 16 round block cipher supporting key sizes of 128, 192, and 256 1645 bits. 1646 1647 This module provides Twofish cipher algorithm that processes three 1648 blocks parallel, utilizing resources of out-of-order CPUs better. 1649 1650 See also: 1651 <http://www.schneier.com/twofish.html> 1652 1653config CRYPTO_TWOFISH_AVX_X86_64 1654 tristate "Twofish cipher algorithm (x86_64/AVX)" 1655 depends on X86 && 64BIT 1656 select CRYPTO_BLKCIPHER 1657 select CRYPTO_GLUE_HELPER_X86 1658 select CRYPTO_SIMD 1659 select CRYPTO_TWOFISH_COMMON 1660 select CRYPTO_TWOFISH_X86_64 1661 select CRYPTO_TWOFISH_X86_64_3WAY 1662 help 1663 Twofish cipher algorithm (x86_64/AVX). 1664 1665 Twofish was submitted as an AES (Advanced Encryption Standard) 1666 candidate cipher by researchers at CounterPane Systems. It is a 1667 16 round block cipher supporting key sizes of 128, 192, and 256 1668 bits. 1669 1670 This module provides the Twofish cipher algorithm that processes 1671 eight blocks parallel using the AVX Instruction Set. 1672 1673 See also: 1674 <http://www.schneier.com/twofish.html> 1675 1676comment "Compression" 1677 1678config CRYPTO_DEFLATE 1679 tristate "Deflate compression algorithm" 1680 select CRYPTO_ALGAPI 1681 select CRYPTO_ACOMP2 1682 select ZLIB_INFLATE 1683 select ZLIB_DEFLATE 1684 help 1685 This is the Deflate algorithm (RFC1951), specified for use in 1686 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1687 1688 You will most probably want this if using IPSec. 1689 1690config CRYPTO_LZO 1691 tristate "LZO compression algorithm" 1692 select CRYPTO_ALGAPI 1693 select CRYPTO_ACOMP2 1694 select LZO_COMPRESS 1695 select LZO_DECOMPRESS 1696 help 1697 This is the LZO algorithm. 1698 1699config CRYPTO_842 1700 tristate "842 compression algorithm" 1701 select CRYPTO_ALGAPI 1702 select CRYPTO_ACOMP2 1703 select 842_COMPRESS 1704 select 842_DECOMPRESS 1705 help 1706 This is the 842 algorithm. 1707 1708config CRYPTO_LZ4 1709 tristate "LZ4 compression algorithm" 1710 select CRYPTO_ALGAPI 1711 select CRYPTO_ACOMP2 1712 select LZ4_COMPRESS 1713 select LZ4_DECOMPRESS 1714 help 1715 This is the LZ4 algorithm. 1716 1717config CRYPTO_LZ4HC 1718 tristate "LZ4HC compression algorithm" 1719 select CRYPTO_ALGAPI 1720 select CRYPTO_ACOMP2 1721 select LZ4HC_COMPRESS 1722 select LZ4_DECOMPRESS 1723 help 1724 This is the LZ4 high compression mode algorithm. 1725 1726config CRYPTO_ZSTD 1727 tristate "Zstd compression algorithm" 1728 select CRYPTO_ALGAPI 1729 select CRYPTO_ACOMP2 1730 select ZSTD_COMPRESS 1731 select ZSTD_DECOMPRESS 1732 help 1733 This is the zstd algorithm. 1734 1735comment "Random Number Generation" 1736 1737config CRYPTO_ANSI_CPRNG 1738 tristate "Pseudo Random Number Generation for Cryptographic modules" 1739 select CRYPTO_AES 1740 select CRYPTO_RNG 1741 help 1742 This option enables the generic pseudo random number generator 1743 for cryptographic modules. Uses the Algorithm specified in 1744 ANSI X9.31 A.2.4. Note that this option must be enabled if 1745 CRYPTO_FIPS is selected 1746 1747menuconfig CRYPTO_DRBG_MENU 1748 tristate "NIST SP800-90A DRBG" 1749 help 1750 NIST SP800-90A compliant DRBG. In the following submenu, one or 1751 more of the DRBG types must be selected. 1752 1753if CRYPTO_DRBG_MENU 1754 1755config CRYPTO_DRBG_HMAC 1756 bool 1757 default y 1758 select CRYPTO_HMAC 1759 select CRYPTO_SHA256 1760 1761config CRYPTO_DRBG_HASH 1762 bool "Enable Hash DRBG" 1763 select CRYPTO_SHA256 1764 help 1765 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1766 1767config CRYPTO_DRBG_CTR 1768 bool "Enable CTR DRBG" 1769 select CRYPTO_AES 1770 depends on CRYPTO_CTR 1771 help 1772 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1773 1774config CRYPTO_DRBG 1775 tristate 1776 default CRYPTO_DRBG_MENU 1777 select CRYPTO_RNG 1778 select CRYPTO_JITTERENTROPY 1779 1780endif # if CRYPTO_DRBG_MENU 1781 1782config CRYPTO_JITTERENTROPY 1783 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1784 select CRYPTO_RNG 1785 help 1786 The Jitterentropy RNG is a noise that is intended 1787 to provide seed to another RNG. The RNG does not 1788 perform any cryptographic whitening of the generated 1789 random numbers. This Jitterentropy RNG registers with 1790 the kernel crypto API and can be used by any caller. 1791 1792config CRYPTO_USER_API 1793 tristate 1794 1795config CRYPTO_USER_API_HASH 1796 tristate "User-space interface for hash algorithms" 1797 depends on NET 1798 select CRYPTO_HASH 1799 select CRYPTO_USER_API 1800 help 1801 This option enables the user-spaces interface for hash 1802 algorithms. 1803 1804config CRYPTO_USER_API_SKCIPHER 1805 tristate "User-space interface for symmetric key cipher algorithms" 1806 depends on NET 1807 select CRYPTO_BLKCIPHER 1808 select CRYPTO_USER_API 1809 help 1810 This option enables the user-spaces interface for symmetric 1811 key cipher algorithms. 1812 1813config CRYPTO_USER_API_RNG 1814 tristate "User-space interface for random number generator algorithms" 1815 depends on NET 1816 select CRYPTO_RNG 1817 select CRYPTO_USER_API 1818 help 1819 This option enables the user-spaces interface for random 1820 number generator algorithms. 1821 1822config CRYPTO_USER_API_AEAD 1823 tristate "User-space interface for AEAD cipher algorithms" 1824 depends on NET 1825 select CRYPTO_AEAD 1826 select CRYPTO_BLKCIPHER 1827 select CRYPTO_NULL 1828 select CRYPTO_USER_API 1829 help 1830 This option enables the user-spaces interface for AEAD 1831 cipher algorithms. 1832 1833config CRYPTO_STATS 1834 bool "Crypto usage statistics for User-space" 1835 depends on CRYPTO_USER 1836 help 1837 This option enables the gathering of crypto stats. 1838 This will collect: 1839 - encrypt/decrypt size and numbers of symmeric operations 1840 - compress/decompress size and numbers of compress operations 1841 - size and numbers of hash operations 1842 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1843 - generate/seed numbers for rng operations 1844 1845config CRYPTO_HASH_INFO 1846 bool 1847 1848source "drivers/crypto/Kconfig" 1849source "crypto/asymmetric_keys/Kconfig" 1850source "certs/Kconfig" 1851 1852endif # if CRYPTO 1853