• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 
27 #include "internal.h"
28 
29 ACPI_MODULE_NAME("acpi_lpss");
30 
31 #ifdef CONFIG_X86_INTEL_LPSS
32 
33 #include <asm/cpu_device_id.h>
34 #include <asm/intel-family.h>
35 #include <asm/iosf_mbi.h>
36 
37 #define LPSS_ADDR(desc) ((unsigned long)&desc)
38 
39 #define LPSS_CLK_SIZE	0x04
40 #define LPSS_LTR_SIZE	0x18
41 
42 /* Offsets relative to LPSS_PRIVATE_OFFSET */
43 #define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
44 #define LPSS_RESETS			0x04
45 #define LPSS_RESETS_RESET_FUNC		BIT(0)
46 #define LPSS_RESETS_RESET_APB		BIT(1)
47 #define LPSS_GENERAL			0x08
48 #define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
49 #define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
50 #define LPSS_SW_LTR			0x10
51 #define LPSS_AUTO_LTR			0x14
52 #define LPSS_LTR_SNOOP_REQ		BIT(15)
53 #define LPSS_LTR_SNOOP_MASK		0x0000FFFF
54 #define LPSS_LTR_SNOOP_LAT_1US		0x800
55 #define LPSS_LTR_SNOOP_LAT_32US		0xC00
56 #define LPSS_LTR_SNOOP_LAT_SHIFT	5
57 #define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
58 #define LPSS_LTR_MAX_VAL		0x3FF
59 #define LPSS_TX_INT			0x20
60 #define LPSS_TX_INT_MASK		BIT(1)
61 
62 #define LPSS_PRV_REG_COUNT		9
63 
64 /* LPSS Flags */
65 #define LPSS_CLK			BIT(0)
66 #define LPSS_CLK_GATE			BIT(1)
67 #define LPSS_CLK_DIVIDER		BIT(2)
68 #define LPSS_LTR			BIT(3)
69 #define LPSS_SAVE_CTX			BIT(4)
70 #define LPSS_NO_D3_DELAY		BIT(5)
71 
72 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
73 #define BYT_CRC_HRV			2
74 #define CHT_CRC_HRV			3
75 
76 struct lpss_private_data;
77 
78 struct lpss_device_desc {
79 	unsigned int flags;
80 	const char *clk_con_id;
81 	unsigned int prv_offset;
82 	size_t prv_size_override;
83 	struct property_entry *properties;
84 	void (*setup)(struct lpss_private_data *pdata);
85 	bool resume_from_noirq;
86 };
87 
88 static const struct lpss_device_desc lpss_dma_desc = {
89 	.flags = LPSS_CLK,
90 };
91 
92 struct lpss_private_data {
93 	struct acpi_device *adev;
94 	void __iomem *mmio_base;
95 	resource_size_t mmio_size;
96 	unsigned int fixed_clk_rate;
97 	struct clk *clk;
98 	const struct lpss_device_desc *dev_desc;
99 	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
100 };
101 
102 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
103 static u32 pmc_atom_d3_mask = 0xfe000ffe;
104 
105 /* LPSS run time quirks */
106 static unsigned int lpss_quirks;
107 
108 /*
109  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
110  *
111  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
112  * it can be powered off automatically whenever the last LPSS device goes down.
113  * In case of no power any access to the DMA controller will hang the system.
114  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
115  * well as on ASuS T100TA transformer.
116  *
117  * This quirk overrides power state of entire LPSS island to keep DMA powered
118  * on whenever we have at least one other device in use.
119  */
120 #define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
121 
122 /* UART Component Parameter Register */
123 #define LPSS_UART_CPR			0xF4
124 #define LPSS_UART_CPR_AFCE		BIT(4)
125 
lpss_uart_setup(struct lpss_private_data * pdata)126 static void lpss_uart_setup(struct lpss_private_data *pdata)
127 {
128 	unsigned int offset;
129 	u32 val;
130 
131 	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
132 	val = readl(pdata->mmio_base + offset);
133 	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
134 
135 	val = readl(pdata->mmio_base + LPSS_UART_CPR);
136 	if (!(val & LPSS_UART_CPR_AFCE)) {
137 		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
138 		val = readl(pdata->mmio_base + offset);
139 		val |= LPSS_GENERAL_UART_RTS_OVRD;
140 		writel(val, pdata->mmio_base + offset);
141 	}
142 }
143 
lpss_deassert_reset(struct lpss_private_data * pdata)144 static void lpss_deassert_reset(struct lpss_private_data *pdata)
145 {
146 	unsigned int offset;
147 	u32 val;
148 
149 	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
150 	val = readl(pdata->mmio_base + offset);
151 	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
152 	writel(val, pdata->mmio_base + offset);
153 }
154 
155 /*
156  * BYT PWM used for backlight control by the i915 driver on systems without
157  * the Crystal Cove PMIC.
158  */
159 static struct pwm_lookup byt_pwm_lookup[] = {
160 	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
161 			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
162 			       "pwm-lpss-platform"),
163 };
164 
byt_pwm_setup(struct lpss_private_data * pdata)165 static void byt_pwm_setup(struct lpss_private_data *pdata)
166 {
167 	struct acpi_device *adev = pdata->adev;
168 
169 	/* Only call pwm_add_table for the first PWM controller */
170 	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
171 		return;
172 
173 	if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
174 		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
175 }
176 
177 #define LPSS_I2C_ENABLE			0x6c
178 
byt_i2c_setup(struct lpss_private_data * pdata)179 static void byt_i2c_setup(struct lpss_private_data *pdata)
180 {
181 	const char *uid_str = acpi_device_uid(pdata->adev);
182 	acpi_handle handle = pdata->adev->handle;
183 	unsigned long long shared_host = 0;
184 	acpi_status status;
185 	long uid = 0;
186 
187 	/* Expected to always be true, but better safe then sorry */
188 	if (uid_str)
189 		uid = simple_strtol(uid_str, NULL, 10);
190 
191 	/* Detect I2C bus shared with PUNIT and ignore its d3 status */
192 	status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
193 	if (ACPI_SUCCESS(status) && shared_host && uid)
194 		pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
195 
196 	lpss_deassert_reset(pdata);
197 
198 	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 		pdata->fixed_clk_rate = 133000000;
200 
201 	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203 
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
208 			       "pwm-lpss-platform"),
209 };
210 
bsw_pwm_setup(struct lpss_private_data * pdata)211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213 	struct acpi_device *adev = pdata->adev;
214 
215 	/* Only call pwm_add_table for the first PWM controller */
216 	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217 		return;
218 
219 	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221 
222 static const struct lpss_device_desc lpt_dev_desc = {
223 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224 			| LPSS_SAVE_CTX,
225 	.prv_offset = 0x800,
226 };
227 
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230 	.prv_offset = 0x800,
231 };
232 
233 static struct property_entry uart_properties[] = {
234 	PROPERTY_ENTRY_U32("reg-io-width", 4),
235 	PROPERTY_ENTRY_U32("reg-shift", 2),
236 	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237 	{ },
238 };
239 
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242 			| LPSS_SAVE_CTX,
243 	.clk_con_id = "baudclk",
244 	.prv_offset = 0x800,
245 	.setup = lpss_uart_setup,
246 	.properties = uart_properties,
247 };
248 
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 	.flags = LPSS_LTR,
251 	.prv_offset = 0x1000,
252 	.prv_size_override = 0x1018,
253 };
254 
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 	.flags = LPSS_SAVE_CTX,
257 	.prv_offset = 0x800,
258 	.setup = byt_pwm_setup,
259 };
260 
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 	.flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
263 	.prv_offset = 0x800,
264 	.setup = bsw_pwm_setup,
265 };
266 
267 static const struct lpss_device_desc byt_uart_dev_desc = {
268 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
269 	.clk_con_id = "baudclk",
270 	.prv_offset = 0x800,
271 	.setup = lpss_uart_setup,
272 	.properties = uart_properties,
273 };
274 
275 static const struct lpss_device_desc bsw_uart_dev_desc = {
276 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
277 			| LPSS_NO_D3_DELAY,
278 	.clk_con_id = "baudclk",
279 	.prv_offset = 0x800,
280 	.setup = lpss_uart_setup,
281 	.properties = uart_properties,
282 };
283 
284 static const struct lpss_device_desc byt_spi_dev_desc = {
285 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
286 	.prv_offset = 0x400,
287 };
288 
289 static const struct lpss_device_desc byt_sdio_dev_desc = {
290 	.flags = LPSS_CLK,
291 };
292 
293 static const struct lpss_device_desc byt_i2c_dev_desc = {
294 	.flags = LPSS_CLK | LPSS_SAVE_CTX,
295 	.prv_offset = 0x800,
296 	.setup = byt_i2c_setup,
297 	.resume_from_noirq = true,
298 };
299 
300 static const struct lpss_device_desc bsw_i2c_dev_desc = {
301 	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
302 	.prv_offset = 0x800,
303 	.setup = byt_i2c_setup,
304 	.resume_from_noirq = true,
305 };
306 
307 static const struct lpss_device_desc bsw_spi_dev_desc = {
308 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
309 			| LPSS_NO_D3_DELAY,
310 	.prv_offset = 0x400,
311 	.setup = lpss_deassert_reset,
312 };
313 
314 #define ICPU(model)	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
315 
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317 	ICPU(INTEL_FAM6_ATOM_SILVERMONT),	/* Valleyview, Bay Trail */
318 	ICPU(INTEL_FAM6_ATOM_AIRMONT),	/* Braswell, Cherry Trail */
319 	{}
320 };
321 
322 #else
323 
324 #define LPSS_ADDR(desc) (0UL)
325 
326 #endif /* CONFIG_X86_INTEL_LPSS */
327 
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 	/* Generic LPSS devices */
330 	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331 
332 	/* Lynxpoint LPSS devices */
333 	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 	{ "INT33C7", },
341 
342 	/* BayTrail LPSS devices */
343 	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 	{ "INT33B2", },
349 	{ "INT33FC", },
350 
351 	/* Braswell LPSS devices */
352 	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
353 	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358 
359 	/* Broadwell LPSS devices */
360 	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 	{ "INT3437", },
368 
369 	/* Wildcat Point LPSS devices */
370 	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
371 
372 	{ }
373 };
374 
375 #ifdef CONFIG_X86_INTEL_LPSS
376 
is_memory(struct acpi_resource * res,void * not_used)377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379 	struct resource r;
380 	return !acpi_dev_resource_memory(res, &r);
381 }
382 
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385 
lpt_register_clock_device(void)386 static inline void lpt_register_clock_device(void)
387 {
388 	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389 }
390 
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)391 static int register_device_clock(struct acpi_device *adev,
392 				 struct lpss_private_data *pdata)
393 {
394 	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 	const char *devname = dev_name(&adev->dev);
396 	struct clk *clk;
397 	struct lpss_clk_data *clk_data;
398 	const char *parent, *clk_name;
399 	void __iomem *prv_base;
400 
401 	if (!lpss_clk_dev)
402 		lpt_register_clock_device();
403 
404 	clk_data = platform_get_drvdata(lpss_clk_dev);
405 	if (!clk_data)
406 		return -ENODEV;
407 	clk = clk_data->clk;
408 
409 	if (!pdata->mmio_base
410 	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
411 		return -ENODATA;
412 
413 	parent = clk_data->name;
414 	prv_base = pdata->mmio_base + dev_desc->prv_offset;
415 
416 	if (pdata->fixed_clk_rate) {
417 		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
418 					      pdata->fixed_clk_rate);
419 		goto out;
420 	}
421 
422 	if (dev_desc->flags & LPSS_CLK_GATE) {
423 		clk = clk_register_gate(NULL, devname, parent, 0,
424 					prv_base, 0, 0, NULL);
425 		parent = devname;
426 	}
427 
428 	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
429 		/* Prevent division by zero */
430 		if (!readl(prv_base))
431 			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
432 
433 		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
434 		if (!clk_name)
435 			return -ENOMEM;
436 		clk = clk_register_fractional_divider(NULL, clk_name, parent,
437 						      0, prv_base,
438 						      1, 15, 16, 15, 0, NULL);
439 		parent = clk_name;
440 
441 		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
442 		if (!clk_name) {
443 			kfree(parent);
444 			return -ENOMEM;
445 		}
446 		clk = clk_register_gate(NULL, clk_name, parent,
447 					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
448 					prv_base, 31, 0, NULL);
449 		kfree(parent);
450 		kfree(clk_name);
451 	}
452 out:
453 	if (IS_ERR(clk))
454 		return PTR_ERR(clk);
455 
456 	pdata->clk = clk;
457 	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
458 	return 0;
459 }
460 
461 struct lpss_device_links {
462 	const char *supplier_hid;
463 	const char *supplier_uid;
464 	const char *consumer_hid;
465 	const char *consumer_uid;
466 	u32 flags;
467 	const struct dmi_system_id *dep_missing_ids;
468 };
469 
470 /* Please keep this list sorted alphabetically by vendor and model */
471 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
472 	{
473 		.matches = {
474 			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
475 			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
476 		},
477 	},
478 	{}
479 };
480 
481 /*
482  * The _DEP method is used to identify dependencies but instead of creating
483  * device links for every handle in _DEP, only links in the following list are
484  * created. That is necessary because, in the general case, _DEP can refer to
485  * devices that might not have drivers, or that are on different buses, or where
486  * the supplier is not enumerated until after the consumer is probed.
487  */
488 static const struct lpss_device_links lpss_device_links[] = {
489 	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
490 	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
491 	/* CHT iGPU depends on PMIC I2C controller */
492 	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
493 	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
494 	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
495 	 i2c1_dep_missing_dmi_ids},
496 	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
497 	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
498 	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
499 	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
500 };
501 
hid_uid_match(struct acpi_device * adev,const char * hid2,const char * uid2)502 static bool hid_uid_match(struct acpi_device *adev,
503 			  const char *hid2, const char *uid2)
504 {
505 	const char *hid1 = acpi_device_hid(adev);
506 	const char *uid1 = acpi_device_uid(adev);
507 
508 	if (strcmp(hid1, hid2))
509 		return false;
510 
511 	if (!uid2)
512 		return true;
513 
514 	return uid1 && !strcmp(uid1, uid2);
515 }
516 
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)517 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
518 				  const struct lpss_device_links *link)
519 {
520 	return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
521 }
522 
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)523 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
524 				  const struct lpss_device_links *link)
525 {
526 	return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
527 }
528 
529 struct hid_uid {
530 	const char *hid;
531 	const char *uid;
532 };
533 
match_hid_uid(struct device * dev,const void * data)534 static int match_hid_uid(struct device *dev, const void *data)
535 {
536 	struct acpi_device *adev = ACPI_COMPANION(dev);
537 	const struct hid_uid *id = data;
538 
539 	if (!adev)
540 		return 0;
541 
542 	return hid_uid_match(adev, id->hid, id->uid);
543 }
544 
acpi_lpss_find_device(const char * hid,const char * uid)545 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
546 {
547 	struct device *dev;
548 
549 	struct hid_uid data = {
550 		.hid = hid,
551 		.uid = uid,
552 	};
553 
554 	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
555 	if (dev)
556 		return dev;
557 
558 	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
559 }
560 
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)561 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
562 {
563 	struct acpi_handle_list dep_devices;
564 	acpi_status status;
565 	int i;
566 
567 	if (!acpi_has_method(adev->handle, "_DEP"))
568 		return false;
569 
570 	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
571 					 &dep_devices);
572 	if (ACPI_FAILURE(status)) {
573 		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
574 		return false;
575 	}
576 
577 	for (i = 0; i < dep_devices.count; i++) {
578 		if (dep_devices.handles[i] == handle)
579 			return true;
580 	}
581 
582 	return false;
583 }
584 
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)585 static void acpi_lpss_link_consumer(struct device *dev1,
586 				    const struct lpss_device_links *link)
587 {
588 	struct device *dev2;
589 
590 	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
591 	if (!dev2)
592 		return;
593 
594 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
595 	    || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
596 		device_link_add(dev2, dev1, link->flags);
597 
598 	put_device(dev2);
599 }
600 
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)601 static void acpi_lpss_link_supplier(struct device *dev1,
602 				    const struct lpss_device_links *link)
603 {
604 	struct device *dev2;
605 
606 	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
607 	if (!dev2)
608 		return;
609 
610 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
611 	    || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
612 		device_link_add(dev1, dev2, link->flags);
613 
614 	put_device(dev2);
615 }
616 
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)617 static void acpi_lpss_create_device_links(struct acpi_device *adev,
618 					  struct platform_device *pdev)
619 {
620 	int i;
621 
622 	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
623 		const struct lpss_device_links *link = &lpss_device_links[i];
624 
625 		if (acpi_lpss_is_supplier(adev, link))
626 			acpi_lpss_link_consumer(&pdev->dev, link);
627 
628 		if (acpi_lpss_is_consumer(adev, link))
629 			acpi_lpss_link_supplier(&pdev->dev, link);
630 	}
631 }
632 
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)633 static int acpi_lpss_create_device(struct acpi_device *adev,
634 				   const struct acpi_device_id *id)
635 {
636 	const struct lpss_device_desc *dev_desc;
637 	struct lpss_private_data *pdata;
638 	struct resource_entry *rentry;
639 	struct list_head resource_list;
640 	struct platform_device *pdev;
641 	int ret;
642 
643 	dev_desc = (const struct lpss_device_desc *)id->driver_data;
644 	if (!dev_desc) {
645 		pdev = acpi_create_platform_device(adev, NULL);
646 		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
647 	}
648 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
649 	if (!pdata)
650 		return -ENOMEM;
651 
652 	INIT_LIST_HEAD(&resource_list);
653 	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
654 	if (ret < 0)
655 		goto err_out;
656 
657 	list_for_each_entry(rentry, &resource_list, node)
658 		if (resource_type(rentry->res) == IORESOURCE_MEM) {
659 			if (dev_desc->prv_size_override)
660 				pdata->mmio_size = dev_desc->prv_size_override;
661 			else
662 				pdata->mmio_size = resource_size(rentry->res);
663 			pdata->mmio_base = ioremap(rentry->res->start,
664 						   pdata->mmio_size);
665 			break;
666 		}
667 
668 	acpi_dev_free_resource_list(&resource_list);
669 
670 	if (!pdata->mmio_base) {
671 		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
672 		adev->pnp.type.platform_id = 0;
673 		/* Skip the device, but continue the namespace scan. */
674 		ret = 0;
675 		goto err_out;
676 	}
677 
678 	pdata->adev = adev;
679 	pdata->dev_desc = dev_desc;
680 
681 	if (dev_desc->setup)
682 		dev_desc->setup(pdata);
683 
684 	if (dev_desc->flags & LPSS_CLK) {
685 		ret = register_device_clock(adev, pdata);
686 		if (ret) {
687 			/* Skip the device, but continue the namespace scan. */
688 			ret = 0;
689 			goto err_out;
690 		}
691 	}
692 
693 	/*
694 	 * This works around a known issue in ACPI tables where LPSS devices
695 	 * have _PS0 and _PS3 without _PSC (and no power resources), so
696 	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
697 	 */
698 	acpi_device_fix_up_power(adev);
699 
700 	adev->driver_data = pdata;
701 	pdev = acpi_create_platform_device(adev, dev_desc->properties);
702 	if (!IS_ERR_OR_NULL(pdev)) {
703 		acpi_lpss_create_device_links(adev, pdev);
704 		return 1;
705 	}
706 
707 	ret = PTR_ERR(pdev);
708 	adev->driver_data = NULL;
709 
710  err_out:
711 	kfree(pdata);
712 	return ret;
713 }
714 
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)715 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
716 {
717 	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
718 }
719 
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)720 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
721 			     unsigned int reg)
722 {
723 	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
724 }
725 
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)726 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
727 {
728 	struct acpi_device *adev;
729 	struct lpss_private_data *pdata;
730 	unsigned long flags;
731 	int ret;
732 
733 	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
734 	if (WARN_ON(ret))
735 		return ret;
736 
737 	spin_lock_irqsave(&dev->power.lock, flags);
738 	if (pm_runtime_suspended(dev)) {
739 		ret = -EAGAIN;
740 		goto out;
741 	}
742 	pdata = acpi_driver_data(adev);
743 	if (WARN_ON(!pdata || !pdata->mmio_base)) {
744 		ret = -ENODEV;
745 		goto out;
746 	}
747 	*val = __lpss_reg_read(pdata, reg);
748 
749  out:
750 	spin_unlock_irqrestore(&dev->power.lock, flags);
751 	return ret;
752 }
753 
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)754 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
755 			     char *buf)
756 {
757 	u32 ltr_value = 0;
758 	unsigned int reg;
759 	int ret;
760 
761 	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
762 	ret = lpss_reg_read(dev, reg, &ltr_value);
763 	if (ret)
764 		return ret;
765 
766 	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
767 }
768 
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)769 static ssize_t lpss_ltr_mode_show(struct device *dev,
770 				  struct device_attribute *attr, char *buf)
771 {
772 	u32 ltr_mode = 0;
773 	char *outstr;
774 	int ret;
775 
776 	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
777 	if (ret)
778 		return ret;
779 
780 	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
781 	return sprintf(buf, "%s\n", outstr);
782 }
783 
784 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
785 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
786 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
787 
788 static struct attribute *lpss_attrs[] = {
789 	&dev_attr_auto_ltr.attr,
790 	&dev_attr_sw_ltr.attr,
791 	&dev_attr_ltr_mode.attr,
792 	NULL,
793 };
794 
795 static const struct attribute_group lpss_attr_group = {
796 	.attrs = lpss_attrs,
797 	.name = "lpss_ltr",
798 };
799 
acpi_lpss_set_ltr(struct device * dev,s32 val)800 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
801 {
802 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
803 	u32 ltr_mode, ltr_val;
804 
805 	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
806 	if (val < 0) {
807 		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
808 			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
809 			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
810 		}
811 		return;
812 	}
813 	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
814 	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
815 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
816 		val = LPSS_LTR_MAX_VAL;
817 	} else if (val > LPSS_LTR_MAX_VAL) {
818 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
819 		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
820 	} else {
821 		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
822 	}
823 	ltr_val |= val;
824 	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
825 	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
826 		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
827 		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
828 	}
829 }
830 
831 #ifdef CONFIG_PM
832 /**
833  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
834  * @dev: LPSS device
835  * @pdata: pointer to the private data of the LPSS device
836  *
837  * Most LPSS devices have private registers which may loose their context when
838  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
839  * prv_reg_ctx array.
840  */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)841 static void acpi_lpss_save_ctx(struct device *dev,
842 			       struct lpss_private_data *pdata)
843 {
844 	unsigned int i;
845 
846 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
847 		unsigned long offset = i * sizeof(u32);
848 
849 		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
850 		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
851 			pdata->prv_reg_ctx[i], offset);
852 	}
853 }
854 
855 /**
856  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
857  * @dev: LPSS device
858  * @pdata: pointer to the private data of the LPSS device
859  *
860  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
861  */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)862 static void acpi_lpss_restore_ctx(struct device *dev,
863 				  struct lpss_private_data *pdata)
864 {
865 	unsigned int i;
866 
867 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
868 		unsigned long offset = i * sizeof(u32);
869 
870 		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
871 		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
872 			pdata->prv_reg_ctx[i], offset);
873 	}
874 }
875 
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)876 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
877 {
878 	/*
879 	 * The following delay is needed or the subsequent write operations may
880 	 * fail. The LPSS devices are actually PCI devices and the PCI spec
881 	 * expects 10ms delay before the device can be accessed after D3 to D0
882 	 * transition. However some platforms like BSW does not need this delay.
883 	 */
884 	unsigned int delay = 10;	/* default 10ms delay */
885 
886 	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
887 		delay = 0;
888 
889 	msleep(delay);
890 }
891 
acpi_lpss_activate(struct device * dev)892 static int acpi_lpss_activate(struct device *dev)
893 {
894 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
895 	int ret;
896 
897 	ret = acpi_dev_resume(dev);
898 	if (ret)
899 		return ret;
900 
901 	acpi_lpss_d3_to_d0_delay(pdata);
902 
903 	/*
904 	 * This is called only on ->probe() stage where a device is either in
905 	 * known state defined by BIOS or most likely powered off. Due to this
906 	 * we have to deassert reset line to be sure that ->probe() will
907 	 * recognize the device.
908 	 */
909 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
910 		lpss_deassert_reset(pdata);
911 
912 	return 0;
913 }
914 
acpi_lpss_dismiss(struct device * dev)915 static void acpi_lpss_dismiss(struct device *dev)
916 {
917 	acpi_dev_suspend(dev, false);
918 }
919 
920 /* IOSF SB for LPSS island */
921 #define LPSS_IOSF_UNIT_LPIOEP		0xA0
922 #define LPSS_IOSF_UNIT_LPIO1		0xAB
923 #define LPSS_IOSF_UNIT_LPIO2		0xAC
924 
925 #define LPSS_IOSF_PMCSR			0x84
926 #define LPSS_PMCSR_D0			0
927 #define LPSS_PMCSR_D3hot		3
928 #define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
929 
930 #define LPSS_IOSF_GPIODEF0		0x154
931 #define LPSS_GPIODEF0_DMA1_D3		BIT(2)
932 #define LPSS_GPIODEF0_DMA2_D3		BIT(3)
933 #define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
934 #define LPSS_GPIODEF0_DMA_LLP		BIT(13)
935 
936 static DEFINE_MUTEX(lpss_iosf_mutex);
937 static bool lpss_iosf_d3_entered = true;
938 
lpss_iosf_enter_d3_state(void)939 static void lpss_iosf_enter_d3_state(void)
940 {
941 	u32 value1 = 0;
942 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
943 	u32 value2 = LPSS_PMCSR_D3hot;
944 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
945 	/*
946 	 * PMC provides an information about actual status of the LPSS devices.
947 	 * Here we read the values related to LPSS power island, i.e. LPSS
948 	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
949 	 */
950 	u32 func_dis, d3_sts_0, pmc_status;
951 	int ret;
952 
953 	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
954 	if (ret)
955 		return;
956 
957 	mutex_lock(&lpss_iosf_mutex);
958 
959 	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
960 	if (ret)
961 		goto exit;
962 
963 	/*
964 	 * Get the status of entire LPSS power island per device basis.
965 	 * Shutdown both LPSS DMA controllers if and only if all other devices
966 	 * are already in D3hot.
967 	 */
968 	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
969 	if (pmc_status)
970 		goto exit;
971 
972 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
973 			LPSS_IOSF_PMCSR, value2, mask2);
974 
975 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
976 			LPSS_IOSF_PMCSR, value2, mask2);
977 
978 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
979 			LPSS_IOSF_GPIODEF0, value1, mask1);
980 
981 	lpss_iosf_d3_entered = true;
982 
983 exit:
984 	mutex_unlock(&lpss_iosf_mutex);
985 }
986 
lpss_iosf_exit_d3_state(void)987 static void lpss_iosf_exit_d3_state(void)
988 {
989 	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
990 		     LPSS_GPIODEF0_DMA_LLP;
991 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
992 	u32 value2 = LPSS_PMCSR_D0;
993 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
994 
995 	mutex_lock(&lpss_iosf_mutex);
996 
997 	if (!lpss_iosf_d3_entered)
998 		goto exit;
999 
1000 	lpss_iosf_d3_entered = false;
1001 
1002 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1003 			LPSS_IOSF_GPIODEF0, value1, mask1);
1004 
1005 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1006 			LPSS_IOSF_PMCSR, value2, mask2);
1007 
1008 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1009 			LPSS_IOSF_PMCSR, value2, mask2);
1010 
1011 exit:
1012 	mutex_unlock(&lpss_iosf_mutex);
1013 }
1014 
acpi_lpss_suspend(struct device * dev,bool wakeup)1015 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1016 {
1017 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1018 	int ret;
1019 
1020 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1021 		acpi_lpss_save_ctx(dev, pdata);
1022 
1023 	ret = acpi_dev_suspend(dev, wakeup);
1024 
1025 	/*
1026 	 * This call must be last in the sequence, otherwise PMC will return
1027 	 * wrong status for devices being about to be powered off. See
1028 	 * lpss_iosf_enter_d3_state() for further information.
1029 	 */
1030 	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1031 	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1032 		lpss_iosf_enter_d3_state();
1033 
1034 	return ret;
1035 }
1036 
acpi_lpss_resume(struct device * dev)1037 static int acpi_lpss_resume(struct device *dev)
1038 {
1039 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1040 	int ret;
1041 
1042 	/*
1043 	 * This call is kept first to be in symmetry with
1044 	 * acpi_lpss_runtime_suspend() one.
1045 	 */
1046 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1047 		lpss_iosf_exit_d3_state();
1048 
1049 	ret = acpi_dev_resume(dev);
1050 	if (ret)
1051 		return ret;
1052 
1053 	acpi_lpss_d3_to_d0_delay(pdata);
1054 
1055 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1056 		acpi_lpss_restore_ctx(dev, pdata);
1057 
1058 	return 0;
1059 }
1060 
1061 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1062 static int acpi_lpss_do_suspend_late(struct device *dev)
1063 {
1064 	int ret;
1065 
1066 	if (dev_pm_smart_suspend_and_suspended(dev))
1067 		return 0;
1068 
1069 	ret = pm_generic_suspend_late(dev);
1070 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1071 }
1072 
acpi_lpss_suspend_late(struct device * dev)1073 static int acpi_lpss_suspend_late(struct device *dev)
1074 {
1075 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1076 
1077 	if (pdata->dev_desc->resume_from_noirq)
1078 		return 0;
1079 
1080 	return acpi_lpss_do_suspend_late(dev);
1081 }
1082 
acpi_lpss_suspend_noirq(struct device * dev)1083 static int acpi_lpss_suspend_noirq(struct device *dev)
1084 {
1085 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1086 	int ret;
1087 
1088 	if (pdata->dev_desc->resume_from_noirq) {
1089 		/*
1090 		 * The driver's ->suspend_late callback will be invoked by
1091 		 * acpi_lpss_do_suspend_late(), with the assumption that the
1092 		 * driver really wanted to run that code in ->suspend_noirq, but
1093 		 * it could not run after acpi_dev_suspend() and the driver
1094 		 * expected the latter to be called in the "late" phase.
1095 		 */
1096 		ret = acpi_lpss_do_suspend_late(dev);
1097 		if (ret)
1098 			return ret;
1099 	}
1100 
1101 	return acpi_subsys_suspend_noirq(dev);
1102 }
1103 
acpi_lpss_do_resume_early(struct device * dev)1104 static int acpi_lpss_do_resume_early(struct device *dev)
1105 {
1106 	int ret = acpi_lpss_resume(dev);
1107 
1108 	return ret ? ret : pm_generic_resume_early(dev);
1109 }
1110 
acpi_lpss_resume_early(struct device * dev)1111 static int acpi_lpss_resume_early(struct device *dev)
1112 {
1113 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1114 
1115 	if (pdata->dev_desc->resume_from_noirq)
1116 		return 0;
1117 
1118 	return acpi_lpss_do_resume_early(dev);
1119 }
1120 
acpi_lpss_resume_noirq(struct device * dev)1121 static int acpi_lpss_resume_noirq(struct device *dev)
1122 {
1123 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1124 	int ret;
1125 
1126 	/* Follow acpi_subsys_resume_noirq(). */
1127 	if (dev_pm_may_skip_resume(dev))
1128 		return 0;
1129 
1130 	if (dev_pm_smart_suspend_and_suspended(dev))
1131 		pm_runtime_set_active(dev);
1132 
1133 	ret = pm_generic_resume_noirq(dev);
1134 	if (ret)
1135 		return ret;
1136 
1137 	if (!pdata->dev_desc->resume_from_noirq)
1138 		return 0;
1139 
1140 	/*
1141 	 * The driver's ->resume_early callback will be invoked by
1142 	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1143 	 * really wanted to run that code in ->resume_noirq, but it could not
1144 	 * run before acpi_dev_resume() and the driver expected the latter to be
1145 	 * called in the "early" phase.
1146 	 */
1147 	return acpi_lpss_do_resume_early(dev);
1148 }
1149 
acpi_lpss_do_restore_early(struct device * dev)1150 static int acpi_lpss_do_restore_early(struct device *dev)
1151 {
1152 	int ret = acpi_lpss_resume(dev);
1153 
1154 	return ret ? ret : pm_generic_restore_early(dev);
1155 }
1156 
acpi_lpss_restore_early(struct device * dev)1157 static int acpi_lpss_restore_early(struct device *dev)
1158 {
1159 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1160 
1161 	if (pdata->dev_desc->resume_from_noirq)
1162 		return 0;
1163 
1164 	return acpi_lpss_do_restore_early(dev);
1165 }
1166 
acpi_lpss_restore_noirq(struct device * dev)1167 static int acpi_lpss_restore_noirq(struct device *dev)
1168 {
1169 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170 	int ret;
1171 
1172 	ret = pm_generic_restore_noirq(dev);
1173 	if (ret)
1174 		return ret;
1175 
1176 	if (!pdata->dev_desc->resume_from_noirq)
1177 		return 0;
1178 
1179 	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1180 	return acpi_lpss_do_restore_early(dev);
1181 }
1182 
acpi_lpss_do_poweroff_late(struct device * dev)1183 static int acpi_lpss_do_poweroff_late(struct device *dev)
1184 {
1185 	int ret = pm_generic_poweroff_late(dev);
1186 
1187 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1188 }
1189 
acpi_lpss_poweroff_late(struct device * dev)1190 static int acpi_lpss_poweroff_late(struct device *dev)
1191 {
1192 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1193 
1194 	if (dev_pm_smart_suspend_and_suspended(dev))
1195 		return 0;
1196 
1197 	if (pdata->dev_desc->resume_from_noirq)
1198 		return 0;
1199 
1200 	return acpi_lpss_do_poweroff_late(dev);
1201 }
1202 
acpi_lpss_poweroff_noirq(struct device * dev)1203 static int acpi_lpss_poweroff_noirq(struct device *dev)
1204 {
1205 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1206 
1207 	if (dev_pm_smart_suspend_and_suspended(dev))
1208 		return 0;
1209 
1210 	if (pdata->dev_desc->resume_from_noirq) {
1211 		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1212 		int ret = acpi_lpss_do_poweroff_late(dev);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 
1217 	return pm_generic_poweroff_noirq(dev);
1218 }
1219 #endif /* CONFIG_PM_SLEEP */
1220 
acpi_lpss_runtime_suspend(struct device * dev)1221 static int acpi_lpss_runtime_suspend(struct device *dev)
1222 {
1223 	int ret = pm_generic_runtime_suspend(dev);
1224 
1225 	return ret ? ret : acpi_lpss_suspend(dev, true);
1226 }
1227 
acpi_lpss_runtime_resume(struct device * dev)1228 static int acpi_lpss_runtime_resume(struct device *dev)
1229 {
1230 	int ret = acpi_lpss_resume(dev);
1231 
1232 	return ret ? ret : pm_generic_runtime_resume(dev);
1233 }
1234 #endif /* CONFIG_PM */
1235 
1236 static struct dev_pm_domain acpi_lpss_pm_domain = {
1237 #ifdef CONFIG_PM
1238 	.activate = acpi_lpss_activate,
1239 	.dismiss = acpi_lpss_dismiss,
1240 #endif
1241 	.ops = {
1242 #ifdef CONFIG_PM
1243 #ifdef CONFIG_PM_SLEEP
1244 		.prepare = acpi_subsys_prepare,
1245 		.complete = acpi_subsys_complete,
1246 		.suspend = acpi_subsys_suspend,
1247 		.suspend_late = acpi_lpss_suspend_late,
1248 		.suspend_noirq = acpi_lpss_suspend_noirq,
1249 		.resume_noirq = acpi_lpss_resume_noirq,
1250 		.resume_early = acpi_lpss_resume_early,
1251 		.freeze = acpi_subsys_freeze,
1252 		.poweroff = acpi_subsys_poweroff,
1253 		.poweroff_late = acpi_lpss_poweroff_late,
1254 		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1255 		.restore_noirq = acpi_lpss_restore_noirq,
1256 		.restore_early = acpi_lpss_restore_early,
1257 #endif
1258 		.runtime_suspend = acpi_lpss_runtime_suspend,
1259 		.runtime_resume = acpi_lpss_runtime_resume,
1260 #endif
1261 	},
1262 };
1263 
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1264 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1265 				     unsigned long action, void *data)
1266 {
1267 	struct platform_device *pdev = to_platform_device(data);
1268 	struct lpss_private_data *pdata;
1269 	struct acpi_device *adev;
1270 	const struct acpi_device_id *id;
1271 
1272 	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1273 	if (!id || !id->driver_data)
1274 		return 0;
1275 
1276 	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1277 		return 0;
1278 
1279 	pdata = acpi_driver_data(adev);
1280 	if (!pdata)
1281 		return 0;
1282 
1283 	if (pdata->mmio_base &&
1284 	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1285 		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1286 		return 0;
1287 	}
1288 
1289 	switch (action) {
1290 	case BUS_NOTIFY_BIND_DRIVER:
1291 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292 		break;
1293 	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1294 	case BUS_NOTIFY_UNBOUND_DRIVER:
1295 		dev_pm_domain_set(&pdev->dev, NULL);
1296 		break;
1297 	case BUS_NOTIFY_ADD_DEVICE:
1298 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1299 		if (pdata->dev_desc->flags & LPSS_LTR)
1300 			return sysfs_create_group(&pdev->dev.kobj,
1301 						  &lpss_attr_group);
1302 		break;
1303 	case BUS_NOTIFY_DEL_DEVICE:
1304 		if (pdata->dev_desc->flags & LPSS_LTR)
1305 			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1306 		dev_pm_domain_set(&pdev->dev, NULL);
1307 		break;
1308 	default:
1309 		break;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 static struct notifier_block acpi_lpss_nb = {
1316 	.notifier_call = acpi_lpss_platform_notify,
1317 };
1318 
acpi_lpss_bind(struct device * dev)1319 static void acpi_lpss_bind(struct device *dev)
1320 {
1321 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1322 
1323 	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1324 		return;
1325 
1326 	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1327 		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1328 	else
1329 		dev_err(dev, "MMIO size insufficient to access LTR\n");
1330 }
1331 
acpi_lpss_unbind(struct device * dev)1332 static void acpi_lpss_unbind(struct device *dev)
1333 {
1334 	dev->power.set_latency_tolerance = NULL;
1335 }
1336 
1337 static struct acpi_scan_handler lpss_handler = {
1338 	.ids = acpi_lpss_device_ids,
1339 	.attach = acpi_lpss_create_device,
1340 	.bind = acpi_lpss_bind,
1341 	.unbind = acpi_lpss_unbind,
1342 };
1343 
acpi_lpss_init(void)1344 void __init acpi_lpss_init(void)
1345 {
1346 	const struct x86_cpu_id *id;
1347 	int ret;
1348 
1349 	ret = lpt_clk_init();
1350 	if (ret)
1351 		return;
1352 
1353 	id = x86_match_cpu(lpss_cpu_ids);
1354 	if (id)
1355 		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1356 
1357 	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1358 	acpi_scan_add_handler(&lpss_handler);
1359 }
1360 
1361 #else
1362 
1363 static struct acpi_scan_handler lpss_handler = {
1364 	.ids = acpi_lpss_device_ids,
1365 };
1366 
acpi_lpss_init(void)1367 void __init acpi_lpss_init(void)
1368 {
1369 	acpi_scan_add_handler(&lpss_handler);
1370 }
1371 
1372 #endif /* CONFIG_X86_INTEL_LPSS */
1373