• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23 
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33 
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37 
38 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46 
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49 
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 
52 struct cpuidle_driver acpi_idle_driver = {
53 	.name =		"acpi_idle",
54 	.owner =	THIS_MODULE,
55 };
56 
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 
disabled_by_idle_boot_param(void)61 static int disabled_by_idle_boot_param(void)
62 {
63 	return boot_option_idle_override == IDLE_POLL ||
64 		boot_option_idle_override == IDLE_HALT;
65 }
66 
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
set_max_cstate(const struct dmi_system_id * id)73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 		return 0;
77 
78 	pr_notice("%s detected - limiting to C%ld max_cstate."
79 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 
82 	max_cstate = (long)id->driver_data;
83 
84 	return 0;
85 }
86 
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 	{ set_max_cstate, "Clevo 5600D", {
89 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 	 (void *)2},
92 	{ set_max_cstate, "Pavilion zv5000", {
93 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 	 (void *)1},
96 	{ set_max_cstate, "Asus L8400B", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 	 (void *)1},
100 	{},
101 };
102 
103 
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
acpi_safe_halt(void)108 static void __cpuidle acpi_safe_halt(void)
109 {
110 	if (!tif_need_resched()) {
111 		safe_halt();
112 		local_irq_disable();
113 	}
114 }
115 
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117 
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 				   struct acpi_processor_cx *cx)
126 {
127 	struct acpi_processor_power *pwr = &pr->power;
128 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 
130 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 		return;
132 
133 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 		type = ACPI_STATE_C1;
135 
136 	/*
137 	 * Check, if one of the previous states already marked the lapic
138 	 * unstable
139 	 */
140 	if (pwr->timer_broadcast_on_state < state)
141 		return;
142 
143 	if (cx->type >= type)
144 		pr->power.timer_broadcast_on_state = state;
145 }
146 
__lapic_timer_propagate_broadcast(void * arg)147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 	struct acpi_processor *pr = (struct acpi_processor *) arg;
150 
151 	if (pr->power.timer_broadcast_on_state < INT_MAX)
152 		tick_broadcast_enable();
153 	else
154 		tick_broadcast_disable();
155 }
156 
lapic_timer_propagate_broadcast(struct acpi_processor * pr)157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 				 (void *)pr, 1);
161 }
162 
163 /* Power(C) State timer broadcast control */
lapic_timer_state_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx,int broadcast)164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 				       struct acpi_processor_cx *cx,
166 				       int broadcast)
167 {
168 	int state = cx - pr->power.states;
169 
170 	if (state >= pr->power.timer_broadcast_on_state) {
171 		if (broadcast)
172 			tick_broadcast_enter();
173 		else
174 			tick_broadcast_exit();
175 	}
176 }
177 
178 #else
179 
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 				   struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
lapic_timer_state_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx,int broadcast)183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 				       struct acpi_processor_cx *cx,
185 				       int broadcast)
186 {
187 }
188 
189 #endif
190 
191 #if defined(CONFIG_X86)
tsc_check_state(int state)192 static void tsc_check_state(int state)
193 {
194 	switch (boot_cpu_data.x86_vendor) {
195 	case X86_VENDOR_HYGON:
196 	case X86_VENDOR_AMD:
197 	case X86_VENDOR_INTEL:
198 	case X86_VENDOR_CENTAUR:
199 	case X86_VENDOR_ZHAOXIN:
200 		/*
201 		 * AMD Fam10h TSC will tick in all
202 		 * C/P/S0/S1 states when this bit is set.
203 		 */
204 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205 			return;
206 
207 		/*FALL THROUGH*/
208 	default:
209 		/* TSC could halt in idle, so notify users */
210 		if (state > ACPI_STATE_C1)
211 			mark_tsc_unstable("TSC halts in idle");
212 	}
213 }
214 #else
tsc_check_state(int state)215 static void tsc_check_state(int state) { return; }
216 #endif
217 
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220 
221 	if (!pr->pblk)
222 		return -ENODEV;
223 
224 	/* if info is obtained from pblk/fadt, type equals state */
225 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227 
228 #ifndef CONFIG_HOTPLUG_CPU
229 	/*
230 	 * Check for P_LVL2_UP flag before entering C2 and above on
231 	 * an SMP system.
232 	 */
233 	if ((num_online_cpus() > 1) &&
234 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235 		return -ENODEV;
236 #endif
237 
238 	/* determine C2 and C3 address from pblk */
239 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241 
242 	/* determine latencies from FADT */
243 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245 
246 	/*
247 	 * FADT specified C2 latency must be less than or equal to
248 	 * 100 microseconds.
249 	 */
250 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
252 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
253 		/* invalidate C2 */
254 		pr->power.states[ACPI_STATE_C2].address = 0;
255 	}
256 
257 	/*
258 	 * FADT supplied C3 latency must be less than or equal to
259 	 * 1000 microseconds.
260 	 */
261 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
264 		/* invalidate C3 */
265 		pr->power.states[ACPI_STATE_C3].address = 0;
266 	}
267 
268 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
270 			  pr->power.states[ACPI_STATE_C2].address,
271 			  pr->power.states[ACPI_STATE_C3].address));
272 
273 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
274 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
275 			 pr->power.states[ACPI_STATE_C2].address);
276 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
277 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
278 			 pr->power.states[ACPI_STATE_C3].address);
279 
280 	return 0;
281 }
282 
acpi_processor_get_power_info_default(struct acpi_processor * pr)283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285 	if (!pr->power.states[ACPI_STATE_C1].valid) {
286 		/* set the first C-State to C1 */
287 		/* all processors need to support C1 */
288 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 		pr->power.states[ACPI_STATE_C1].valid = 1;
290 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291 
292 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
293 			 ACPI_CX_DESC_LEN, "ACPI HLT");
294 	}
295 	/* the C0 state only exists as a filler in our array */
296 	pr->power.states[ACPI_STATE_C0].valid = 1;
297 	return 0;
298 }
299 
acpi_processor_get_power_info_cst(struct acpi_processor * pr)300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
301 {
302 	acpi_status status;
303 	u64 count;
304 	int current_count;
305 	int i, ret = 0;
306 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
307 	union acpi_object *cst;
308 
309 	if (nocst)
310 		return -ENODEV;
311 
312 	current_count = 0;
313 
314 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
315 	if (ACPI_FAILURE(status)) {
316 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
317 		return -ENODEV;
318 	}
319 
320 	cst = buffer.pointer;
321 
322 	/* There must be at least 2 elements */
323 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
324 		pr_err("not enough elements in _CST\n");
325 		ret = -EFAULT;
326 		goto end;
327 	}
328 
329 	count = cst->package.elements[0].integer.value;
330 
331 	/* Validate number of power states. */
332 	if (count < 1 || count != cst->package.count - 1) {
333 		pr_err("count given by _CST is not valid\n");
334 		ret = -EFAULT;
335 		goto end;
336 	}
337 
338 	/* Tell driver that at least _CST is supported. */
339 	pr->flags.has_cst = 1;
340 
341 	for (i = 1; i <= count; i++) {
342 		union acpi_object *element;
343 		union acpi_object *obj;
344 		struct acpi_power_register *reg;
345 		struct acpi_processor_cx cx;
346 
347 		memset(&cx, 0, sizeof(cx));
348 
349 		element = &(cst->package.elements[i]);
350 		if (element->type != ACPI_TYPE_PACKAGE)
351 			continue;
352 
353 		if (element->package.count != 4)
354 			continue;
355 
356 		obj = &(element->package.elements[0]);
357 
358 		if (obj->type != ACPI_TYPE_BUFFER)
359 			continue;
360 
361 		reg = (struct acpi_power_register *)obj->buffer.pointer;
362 
363 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
364 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
365 			continue;
366 
367 		/* There should be an easy way to extract an integer... */
368 		obj = &(element->package.elements[1]);
369 		if (obj->type != ACPI_TYPE_INTEGER)
370 			continue;
371 
372 		cx.type = obj->integer.value;
373 		/*
374 		 * Some buggy BIOSes won't list C1 in _CST -
375 		 * Let acpi_processor_get_power_info_default() handle them later
376 		 */
377 		if (i == 1 && cx.type != ACPI_STATE_C1)
378 			current_count++;
379 
380 		cx.address = reg->address;
381 		cx.index = current_count + 1;
382 
383 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
384 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
385 			if (acpi_processor_ffh_cstate_probe
386 					(pr->id, &cx, reg) == 0) {
387 				cx.entry_method = ACPI_CSTATE_FFH;
388 			} else if (cx.type == ACPI_STATE_C1) {
389 				/*
390 				 * C1 is a special case where FIXED_HARDWARE
391 				 * can be handled in non-MWAIT way as well.
392 				 * In that case, save this _CST entry info.
393 				 * Otherwise, ignore this info and continue.
394 				 */
395 				cx.entry_method = ACPI_CSTATE_HALT;
396 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
397 			} else {
398 				continue;
399 			}
400 			if (cx.type == ACPI_STATE_C1 &&
401 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
402 				/*
403 				 * In most cases the C1 space_id obtained from
404 				 * _CST object is FIXED_HARDWARE access mode.
405 				 * But when the option of idle=halt is added,
406 				 * the entry_method type should be changed from
407 				 * CSTATE_FFH to CSTATE_HALT.
408 				 * When the option of idle=nomwait is added,
409 				 * the C1 entry_method type should be
410 				 * CSTATE_HALT.
411 				 */
412 				cx.entry_method = ACPI_CSTATE_HALT;
413 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
414 			}
415 		} else {
416 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
417 				 cx.address);
418 		}
419 
420 		if (cx.type == ACPI_STATE_C1) {
421 			cx.valid = 1;
422 		}
423 
424 		obj = &(element->package.elements[2]);
425 		if (obj->type != ACPI_TYPE_INTEGER)
426 			continue;
427 
428 		cx.latency = obj->integer.value;
429 
430 		obj = &(element->package.elements[3]);
431 		if (obj->type != ACPI_TYPE_INTEGER)
432 			continue;
433 
434 		current_count++;
435 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
436 
437 		/*
438 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
439 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
440 		 */
441 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
442 			pr_warn("Limiting number of power states to max (%d)\n",
443 				ACPI_PROCESSOR_MAX_POWER);
444 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
445 			break;
446 		}
447 	}
448 
449 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
450 			  current_count));
451 
452 	/* Validate number of power states discovered */
453 	if (current_count < 2)
454 		ret = -EFAULT;
455 
456       end:
457 	kfree(buffer.pointer);
458 
459 	return ret;
460 }
461 
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)462 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
463 					   struct acpi_processor_cx *cx)
464 {
465 	static int bm_check_flag = -1;
466 	static int bm_control_flag = -1;
467 
468 
469 	if (!cx->address)
470 		return;
471 
472 	/*
473 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
474 	 * DMA transfers are used by any ISA device to avoid livelock.
475 	 * Note that we could disable Type-F DMA (as recommended by
476 	 * the erratum), but this is known to disrupt certain ISA
477 	 * devices thus we take the conservative approach.
478 	 */
479 	else if (errata.piix4.fdma) {
480 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
481 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
482 		return;
483 	}
484 
485 	/* All the logic here assumes flags.bm_check is same across all CPUs */
486 	if (bm_check_flag == -1) {
487 		/* Determine whether bm_check is needed based on CPU  */
488 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
489 		bm_check_flag = pr->flags.bm_check;
490 		bm_control_flag = pr->flags.bm_control;
491 	} else {
492 		pr->flags.bm_check = bm_check_flag;
493 		pr->flags.bm_control = bm_control_flag;
494 	}
495 
496 	if (pr->flags.bm_check) {
497 		if (!pr->flags.bm_control) {
498 			if (pr->flags.has_cst != 1) {
499 				/* bus mastering control is necessary */
500 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
501 					"C3 support requires BM control\n"));
502 				return;
503 			} else {
504 				/* Here we enter C3 without bus mastering */
505 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
506 					"C3 support without BM control\n"));
507 			}
508 		}
509 	} else {
510 		/*
511 		 * WBINVD should be set in fadt, for C3 state to be
512 		 * supported on when bm_check is not required.
513 		 */
514 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
515 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
516 					  "Cache invalidation should work properly"
517 					  " for C3 to be enabled on SMP systems\n"));
518 			return;
519 		}
520 	}
521 
522 	/*
523 	 * Otherwise we've met all of our C3 requirements.
524 	 * Normalize the C3 latency to expidite policy.  Enable
525 	 * checking of bus mastering status (bm_check) so we can
526 	 * use this in our C3 policy
527 	 */
528 	cx->valid = 1;
529 
530 	/*
531 	 * On older chipsets, BM_RLD needs to be set
532 	 * in order for Bus Master activity to wake the
533 	 * system from C3.  Newer chipsets handle DMA
534 	 * during C3 automatically and BM_RLD is a NOP.
535 	 * In either case, the proper way to
536 	 * handle BM_RLD is to set it and leave it set.
537 	 */
538 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
539 
540 	return;
541 }
542 
acpi_processor_power_verify(struct acpi_processor * pr)543 static int acpi_processor_power_verify(struct acpi_processor *pr)
544 {
545 	unsigned int i;
546 	unsigned int working = 0;
547 
548 	pr->power.timer_broadcast_on_state = INT_MAX;
549 
550 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
551 		struct acpi_processor_cx *cx = &pr->power.states[i];
552 
553 		switch (cx->type) {
554 		case ACPI_STATE_C1:
555 			cx->valid = 1;
556 			break;
557 
558 		case ACPI_STATE_C2:
559 			if (!cx->address)
560 				break;
561 			cx->valid = 1;
562 			break;
563 
564 		case ACPI_STATE_C3:
565 			acpi_processor_power_verify_c3(pr, cx);
566 			break;
567 		}
568 		if (!cx->valid)
569 			continue;
570 
571 		lapic_timer_check_state(i, pr, cx);
572 		tsc_check_state(cx->type);
573 		working++;
574 	}
575 
576 	lapic_timer_propagate_broadcast(pr);
577 
578 	return (working);
579 }
580 
acpi_processor_get_cstate_info(struct acpi_processor * pr)581 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
582 {
583 	unsigned int i;
584 	int result;
585 
586 
587 	/* NOTE: the idle thread may not be running while calling
588 	 * this function */
589 
590 	/* Zero initialize all the C-states info. */
591 	memset(pr->power.states, 0, sizeof(pr->power.states));
592 
593 	result = acpi_processor_get_power_info_cst(pr);
594 	if (result == -ENODEV)
595 		result = acpi_processor_get_power_info_fadt(pr);
596 
597 	if (result)
598 		return result;
599 
600 	acpi_processor_get_power_info_default(pr);
601 
602 	pr->power.count = acpi_processor_power_verify(pr);
603 
604 	/*
605 	 * if one state of type C2 or C3 is available, mark this
606 	 * CPU as being "idle manageable"
607 	 */
608 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
609 		if (pr->power.states[i].valid) {
610 			pr->power.count = i;
611 			if (pr->power.states[i].type >= ACPI_STATE_C2)
612 				pr->flags.power = 1;
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 /**
620  * acpi_idle_bm_check - checks if bus master activity was detected
621  */
acpi_idle_bm_check(void)622 static int acpi_idle_bm_check(void)
623 {
624 	u32 bm_status = 0;
625 
626 	if (bm_check_disable)
627 		return 0;
628 
629 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
630 	if (bm_status)
631 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
632 	/*
633 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
634 	 * the true state of bus mastering activity; forcing us to
635 	 * manually check the BMIDEA bit of each IDE channel.
636 	 */
637 	else if (errata.piix4.bmisx) {
638 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
639 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
640 			bm_status = 1;
641 	}
642 	return bm_status;
643 }
644 
645 /**
646  * acpi_idle_do_entry - enter idle state using the appropriate method
647  * @cx: cstate data
648  *
649  * Caller disables interrupt before call and enables interrupt after return.
650  */
acpi_idle_do_entry(struct acpi_processor_cx * cx)651 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
652 {
653 	if (cx->entry_method == ACPI_CSTATE_FFH) {
654 		/* Call into architectural FFH based C-state */
655 		acpi_processor_ffh_cstate_enter(cx);
656 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
657 		acpi_safe_halt();
658 	} else {
659 		/* IO port based C-state */
660 		inb(cx->address);
661 		/* Dummy wait op - must do something useless after P_LVL2 read
662 		   because chipsets cannot guarantee that STPCLK# signal
663 		   gets asserted in time to freeze execution properly. */
664 		inl(acpi_gbl_FADT.xpm_timer_block.address);
665 	}
666 }
667 
668 /**
669  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
670  * @dev: the target CPU
671  * @index: the index of suggested state
672  */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)673 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
674 {
675 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
676 
677 	ACPI_FLUSH_CPU_CACHE();
678 
679 	while (1) {
680 
681 		if (cx->entry_method == ACPI_CSTATE_HALT)
682 			safe_halt();
683 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
684 			inb(cx->address);
685 			/* See comment in acpi_idle_do_entry() */
686 			inl(acpi_gbl_FADT.xpm_timer_block.address);
687 		} else
688 			return -ENODEV;
689 	}
690 
691 	/* Never reached */
692 	return 0;
693 }
694 
acpi_idle_fallback_to_c1(struct acpi_processor * pr)695 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
696 {
697 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
698 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
699 }
700 
701 static int c3_cpu_count;
702 static DEFINE_RAW_SPINLOCK(c3_lock);
703 
704 /**
705  * acpi_idle_enter_bm - enters C3 with proper BM handling
706  * @pr: Target processor
707  * @cx: Target state context
708  * @timer_bc: Whether or not to change timer mode to broadcast
709  */
acpi_idle_enter_bm(struct acpi_processor * pr,struct acpi_processor_cx * cx,bool timer_bc)710 static void acpi_idle_enter_bm(struct acpi_processor *pr,
711 			       struct acpi_processor_cx *cx, bool timer_bc)
712 {
713 	acpi_unlazy_tlb(smp_processor_id());
714 
715 	/*
716 	 * Must be done before busmaster disable as we might need to
717 	 * access HPET !
718 	 */
719 	if (timer_bc)
720 		lapic_timer_state_broadcast(pr, cx, 1);
721 
722 	/*
723 	 * disable bus master
724 	 * bm_check implies we need ARB_DIS
725 	 * bm_control implies whether we can do ARB_DIS
726 	 *
727 	 * That leaves a case where bm_check is set and bm_control is
728 	 * not set. In that case we cannot do much, we enter C3
729 	 * without doing anything.
730 	 */
731 	if (pr->flags.bm_control) {
732 		raw_spin_lock(&c3_lock);
733 		c3_cpu_count++;
734 		/* Disable bus master arbitration when all CPUs are in C3 */
735 		if (c3_cpu_count == num_online_cpus())
736 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
737 		raw_spin_unlock(&c3_lock);
738 	}
739 
740 	acpi_idle_do_entry(cx);
741 
742 	/* Re-enable bus master arbitration */
743 	if (pr->flags.bm_control) {
744 		raw_spin_lock(&c3_lock);
745 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
746 		c3_cpu_count--;
747 		raw_spin_unlock(&c3_lock);
748 	}
749 
750 	if (timer_bc)
751 		lapic_timer_state_broadcast(pr, cx, 0);
752 }
753 
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)754 static int acpi_idle_enter(struct cpuidle_device *dev,
755 			   struct cpuidle_driver *drv, int index)
756 {
757 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
758 	struct acpi_processor *pr;
759 
760 	pr = __this_cpu_read(processors);
761 	if (unlikely(!pr))
762 		return -EINVAL;
763 
764 	if (cx->type != ACPI_STATE_C1) {
765 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
766 			index = ACPI_IDLE_STATE_START;
767 			cx = per_cpu(acpi_cstate[index], dev->cpu);
768 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
769 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
770 				acpi_idle_enter_bm(pr, cx, true);
771 				return index;
772 			} else if (drv->safe_state_index >= 0) {
773 				index = drv->safe_state_index;
774 				cx = per_cpu(acpi_cstate[index], dev->cpu);
775 			} else {
776 				acpi_safe_halt();
777 				return -EBUSY;
778 			}
779 		}
780 	}
781 
782 	lapic_timer_state_broadcast(pr, cx, 1);
783 
784 	if (cx->type == ACPI_STATE_C3)
785 		ACPI_FLUSH_CPU_CACHE();
786 
787 	acpi_idle_do_entry(cx);
788 
789 	lapic_timer_state_broadcast(pr, cx, 0);
790 
791 	return index;
792 }
793 
acpi_idle_enter_s2idle(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)794 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
795 				   struct cpuidle_driver *drv, int index)
796 {
797 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
798 
799 	if (cx->type == ACPI_STATE_C3) {
800 		struct acpi_processor *pr = __this_cpu_read(processors);
801 
802 		if (unlikely(!pr))
803 			return;
804 
805 		if (pr->flags.bm_check) {
806 			acpi_idle_enter_bm(pr, cx, false);
807 			return;
808 		} else {
809 			ACPI_FLUSH_CPU_CACHE();
810 		}
811 	}
812 	acpi_idle_do_entry(cx);
813 }
814 
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)815 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
816 					   struct cpuidle_device *dev)
817 {
818 	int i, count = ACPI_IDLE_STATE_START;
819 	struct acpi_processor_cx *cx;
820 
821 	if (max_cstate == 0)
822 		max_cstate = 1;
823 
824 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
825 		cx = &pr->power.states[i];
826 
827 		if (!cx->valid)
828 			continue;
829 
830 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
831 
832 		count++;
833 		if (count == CPUIDLE_STATE_MAX)
834 			break;
835 	}
836 
837 	if (!count)
838 		return -EINVAL;
839 
840 	return 0;
841 }
842 
acpi_processor_setup_cstates(struct acpi_processor * pr)843 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
844 {
845 	int i, count;
846 	struct acpi_processor_cx *cx;
847 	struct cpuidle_state *state;
848 	struct cpuidle_driver *drv = &acpi_idle_driver;
849 
850 	if (max_cstate == 0)
851 		max_cstate = 1;
852 
853 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
854 		cpuidle_poll_state_init(drv);
855 		count = 1;
856 	} else {
857 		count = 0;
858 	}
859 
860 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
861 		cx = &pr->power.states[i];
862 
863 		if (!cx->valid)
864 			continue;
865 
866 		state = &drv->states[count];
867 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
868 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
869 		state->exit_latency = cx->latency;
870 		state->target_residency = cx->latency * latency_factor;
871 		state->enter = acpi_idle_enter;
872 
873 		state->flags = 0;
874 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
875 			state->enter_dead = acpi_idle_play_dead;
876 			drv->safe_state_index = count;
877 		}
878 		/*
879 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
880 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
881 		 * particularly interesting from the suspend-to-idle angle, so
882 		 * avoid C1 and the situations in which we may need to fall back
883 		 * to it altogether.
884 		 */
885 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
886 			state->enter_s2idle = acpi_idle_enter_s2idle;
887 
888 		count++;
889 		if (count == CPUIDLE_STATE_MAX)
890 			break;
891 	}
892 
893 	drv->state_count = count;
894 
895 	if (!count)
896 		return -EINVAL;
897 
898 	return 0;
899 }
900 
acpi_processor_cstate_first_run_checks(void)901 static inline void acpi_processor_cstate_first_run_checks(void)
902 {
903 	acpi_status status;
904 	static int first_run;
905 
906 	if (first_run)
907 		return;
908 	dmi_check_system(processor_power_dmi_table);
909 	max_cstate = acpi_processor_cstate_check(max_cstate);
910 	if (max_cstate < ACPI_C_STATES_MAX)
911 		pr_notice("ACPI: processor limited to max C-state %d\n",
912 			  max_cstate);
913 	first_run++;
914 
915 	if (acpi_gbl_FADT.cst_control && !nocst) {
916 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
917 					    acpi_gbl_FADT.cst_control, 8);
918 		if (ACPI_FAILURE(status))
919 			ACPI_EXCEPTION((AE_INFO, status,
920 					"Notifying BIOS of _CST ability failed"));
921 	}
922 }
923 #else
924 
disabled_by_idle_boot_param(void)925 static inline int disabled_by_idle_boot_param(void) { return 0; }
acpi_processor_cstate_first_run_checks(void)926 static inline void acpi_processor_cstate_first_run_checks(void) { }
acpi_processor_get_cstate_info(struct acpi_processor * pr)927 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
928 {
929 	return -ENODEV;
930 }
931 
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)932 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
933 					   struct cpuidle_device *dev)
934 {
935 	return -EINVAL;
936 }
937 
acpi_processor_setup_cstates(struct acpi_processor * pr)938 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
939 {
940 	return -EINVAL;
941 }
942 
943 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
944 
945 struct acpi_lpi_states_array {
946 	unsigned int size;
947 	unsigned int composite_states_size;
948 	struct acpi_lpi_state *entries;
949 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
950 };
951 
obj_get_integer(union acpi_object * obj,u32 * value)952 static int obj_get_integer(union acpi_object *obj, u32 *value)
953 {
954 	if (obj->type != ACPI_TYPE_INTEGER)
955 		return -EINVAL;
956 
957 	*value = obj->integer.value;
958 	return 0;
959 }
960 
acpi_processor_evaluate_lpi(acpi_handle handle,struct acpi_lpi_states_array * info)961 static int acpi_processor_evaluate_lpi(acpi_handle handle,
962 				       struct acpi_lpi_states_array *info)
963 {
964 	acpi_status status;
965 	int ret = 0;
966 	int pkg_count, state_idx = 1, loop;
967 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
968 	union acpi_object *lpi_data;
969 	struct acpi_lpi_state *lpi_state;
970 
971 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
972 	if (ACPI_FAILURE(status)) {
973 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
974 		return -ENODEV;
975 	}
976 
977 	lpi_data = buffer.pointer;
978 
979 	/* There must be at least 4 elements = 3 elements + 1 package */
980 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
981 	    lpi_data->package.count < 4) {
982 		pr_debug("not enough elements in _LPI\n");
983 		ret = -ENODATA;
984 		goto end;
985 	}
986 
987 	pkg_count = lpi_data->package.elements[2].integer.value;
988 
989 	/* Validate number of power states. */
990 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
991 		pr_debug("count given by _LPI is not valid\n");
992 		ret = -ENODATA;
993 		goto end;
994 	}
995 
996 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
997 	if (!lpi_state) {
998 		ret = -ENOMEM;
999 		goto end;
1000 	}
1001 
1002 	info->size = pkg_count;
1003 	info->entries = lpi_state;
1004 
1005 	/* LPI States start at index 3 */
1006 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1007 		union acpi_object *element, *pkg_elem, *obj;
1008 
1009 		element = &lpi_data->package.elements[loop];
1010 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1011 			continue;
1012 
1013 		pkg_elem = element->package.elements;
1014 
1015 		obj = pkg_elem + 6;
1016 		if (obj->type == ACPI_TYPE_BUFFER) {
1017 			struct acpi_power_register *reg;
1018 
1019 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1020 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1021 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1022 				continue;
1023 
1024 			lpi_state->address = reg->address;
1025 			lpi_state->entry_method =
1026 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1027 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1028 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1029 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1030 			lpi_state->address = obj->integer.value;
1031 		} else {
1032 			continue;
1033 		}
1034 
1035 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1036 
1037 		obj = pkg_elem + 9;
1038 		if (obj->type == ACPI_TYPE_STRING)
1039 			strlcpy(lpi_state->desc, obj->string.pointer,
1040 				ACPI_CX_DESC_LEN);
1041 
1042 		lpi_state->index = state_idx;
1043 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1044 			pr_debug("No min. residency found, assuming 10 us\n");
1045 			lpi_state->min_residency = 10;
1046 		}
1047 
1048 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1049 			pr_debug("No wakeup residency found, assuming 10 us\n");
1050 			lpi_state->wake_latency = 10;
1051 		}
1052 
1053 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1054 			lpi_state->flags = 0;
1055 
1056 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1057 			lpi_state->arch_flags = 0;
1058 
1059 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1060 			lpi_state->res_cnt_freq = 1;
1061 
1062 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1063 			lpi_state->enable_parent_state = 0;
1064 	}
1065 
1066 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1067 end:
1068 	kfree(buffer.pointer);
1069 	return ret;
1070 }
1071 
1072 /*
1073  * flat_state_cnt - the number of composite LPI states after the process of flattening
1074  */
1075 static int flat_state_cnt;
1076 
1077 /**
1078  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1079  *
1080  * @local: local LPI state
1081  * @parent: parent LPI state
1082  * @result: composite LPI state
1083  */
combine_lpi_states(struct acpi_lpi_state * local,struct acpi_lpi_state * parent,struct acpi_lpi_state * result)1084 static bool combine_lpi_states(struct acpi_lpi_state *local,
1085 			       struct acpi_lpi_state *parent,
1086 			       struct acpi_lpi_state *result)
1087 {
1088 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1089 		if (!parent->address) /* 0 means autopromotable */
1090 			return false;
1091 		result->address = local->address + parent->address;
1092 	} else {
1093 		result->address = parent->address;
1094 	}
1095 
1096 	result->min_residency = max(local->min_residency, parent->min_residency);
1097 	result->wake_latency = local->wake_latency + parent->wake_latency;
1098 	result->enable_parent_state = parent->enable_parent_state;
1099 	result->entry_method = local->entry_method;
1100 
1101 	result->flags = parent->flags;
1102 	result->arch_flags = parent->arch_flags;
1103 	result->index = parent->index;
1104 
1105 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1106 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1107 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1108 	return true;
1109 }
1110 
1111 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1112 
stash_composite_state(struct acpi_lpi_states_array * curr_level,struct acpi_lpi_state * t)1113 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1114 				  struct acpi_lpi_state *t)
1115 {
1116 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1117 }
1118 
flatten_lpi_states(struct acpi_processor * pr,struct acpi_lpi_states_array * curr_level,struct acpi_lpi_states_array * prev_level)1119 static int flatten_lpi_states(struct acpi_processor *pr,
1120 			      struct acpi_lpi_states_array *curr_level,
1121 			      struct acpi_lpi_states_array *prev_level)
1122 {
1123 	int i, j, state_count = curr_level->size;
1124 	struct acpi_lpi_state *p, *t = curr_level->entries;
1125 
1126 	curr_level->composite_states_size = 0;
1127 	for (j = 0; j < state_count; j++, t++) {
1128 		struct acpi_lpi_state *flpi;
1129 
1130 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1131 			continue;
1132 
1133 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1134 			pr_warn("Limiting number of LPI states to max (%d)\n",
1135 				ACPI_PROCESSOR_MAX_POWER);
1136 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1137 			break;
1138 		}
1139 
1140 		flpi = &pr->power.lpi_states[flat_state_cnt];
1141 
1142 		if (!prev_level) { /* leaf/processor node */
1143 			memcpy(flpi, t, sizeof(*t));
1144 			stash_composite_state(curr_level, flpi);
1145 			flat_state_cnt++;
1146 			continue;
1147 		}
1148 
1149 		for (i = 0; i < prev_level->composite_states_size; i++) {
1150 			p = prev_level->composite_states[i];
1151 			if (t->index <= p->enable_parent_state &&
1152 			    combine_lpi_states(p, t, flpi)) {
1153 				stash_composite_state(curr_level, flpi);
1154 				flat_state_cnt++;
1155 				flpi++;
1156 			}
1157 		}
1158 	}
1159 
1160 	kfree(curr_level->entries);
1161 	return 0;
1162 }
1163 
acpi_processor_get_lpi_info(struct acpi_processor * pr)1164 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1165 {
1166 	int ret, i;
1167 	acpi_status status;
1168 	acpi_handle handle = pr->handle, pr_ahandle;
1169 	struct acpi_device *d = NULL;
1170 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1171 
1172 	if (!osc_pc_lpi_support_confirmed)
1173 		return -EOPNOTSUPP;
1174 
1175 	if (!acpi_has_method(handle, "_LPI"))
1176 		return -EINVAL;
1177 
1178 	flat_state_cnt = 0;
1179 	prev = &info[0];
1180 	curr = &info[1];
1181 	handle = pr->handle;
1182 	ret = acpi_processor_evaluate_lpi(handle, prev);
1183 	if (ret)
1184 		return ret;
1185 	flatten_lpi_states(pr, prev, NULL);
1186 
1187 	status = acpi_get_parent(handle, &pr_ahandle);
1188 	while (ACPI_SUCCESS(status)) {
1189 		acpi_bus_get_device(pr_ahandle, &d);
1190 		handle = pr_ahandle;
1191 
1192 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1193 			break;
1194 
1195 		/* can be optional ? */
1196 		if (!acpi_has_method(handle, "_LPI"))
1197 			break;
1198 
1199 		ret = acpi_processor_evaluate_lpi(handle, curr);
1200 		if (ret)
1201 			break;
1202 
1203 		/* flatten all the LPI states in this level of hierarchy */
1204 		flatten_lpi_states(pr, curr, prev);
1205 
1206 		tmp = prev, prev = curr, curr = tmp;
1207 
1208 		status = acpi_get_parent(handle, &pr_ahandle);
1209 	}
1210 
1211 	pr->power.count = flat_state_cnt;
1212 	/* reset the index after flattening */
1213 	for (i = 0; i < pr->power.count; i++)
1214 		pr->power.lpi_states[i].index = i;
1215 
1216 	/* Tell driver that _LPI is supported. */
1217 	pr->flags.has_lpi = 1;
1218 	pr->flags.power = 1;
1219 
1220 	return 0;
1221 }
1222 
acpi_processor_ffh_lpi_probe(unsigned int cpu)1223 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1224 {
1225 	return -ENODEV;
1226 }
1227 
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state * lpi)1228 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1229 {
1230 	return -ENODEV;
1231 }
1232 
1233 /**
1234  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1235  * @dev: the target CPU
1236  * @drv: cpuidle driver containing cpuidle state info
1237  * @index: index of target state
1238  *
1239  * Return: 0 for success or negative value for error
1240  */
acpi_idle_lpi_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)1241 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1242 			       struct cpuidle_driver *drv, int index)
1243 {
1244 	struct acpi_processor *pr;
1245 	struct acpi_lpi_state *lpi;
1246 
1247 	pr = __this_cpu_read(processors);
1248 
1249 	if (unlikely(!pr))
1250 		return -EINVAL;
1251 
1252 	lpi = &pr->power.lpi_states[index];
1253 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1254 		return acpi_processor_ffh_lpi_enter(lpi);
1255 
1256 	return -EINVAL;
1257 }
1258 
acpi_processor_setup_lpi_states(struct acpi_processor * pr)1259 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1260 {
1261 	int i;
1262 	struct acpi_lpi_state *lpi;
1263 	struct cpuidle_state *state;
1264 	struct cpuidle_driver *drv = &acpi_idle_driver;
1265 
1266 	if (!pr->flags.has_lpi)
1267 		return -EOPNOTSUPP;
1268 
1269 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1270 		lpi = &pr->power.lpi_states[i];
1271 
1272 		state = &drv->states[i];
1273 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1274 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1275 		state->exit_latency = lpi->wake_latency;
1276 		state->target_residency = lpi->min_residency;
1277 		if (lpi->arch_flags)
1278 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1279 		state->enter = acpi_idle_lpi_enter;
1280 		drv->safe_state_index = i;
1281 	}
1282 
1283 	drv->state_count = i;
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1290  * global state data i.e. idle routines
1291  *
1292  * @pr: the ACPI processor
1293  */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)1294 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1295 {
1296 	int i;
1297 	struct cpuidle_driver *drv = &acpi_idle_driver;
1298 
1299 	if (!pr->flags.power_setup_done || !pr->flags.power)
1300 		return -EINVAL;
1301 
1302 	drv->safe_state_index = -1;
1303 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1304 		drv->states[i].name[0] = '\0';
1305 		drv->states[i].desc[0] = '\0';
1306 	}
1307 
1308 	if (pr->flags.has_lpi)
1309 		return acpi_processor_setup_lpi_states(pr);
1310 
1311 	return acpi_processor_setup_cstates(pr);
1312 }
1313 
1314 /**
1315  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1316  * device i.e. per-cpu data
1317  *
1318  * @pr: the ACPI processor
1319  * @dev : the cpuidle device
1320  */
acpi_processor_setup_cpuidle_dev(struct acpi_processor * pr,struct cpuidle_device * dev)1321 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1322 					    struct cpuidle_device *dev)
1323 {
1324 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1325 		return -EINVAL;
1326 
1327 	dev->cpu = pr->id;
1328 	if (pr->flags.has_lpi)
1329 		return acpi_processor_ffh_lpi_probe(pr->id);
1330 
1331 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1332 }
1333 
acpi_processor_get_power_info(struct acpi_processor * pr)1334 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1335 {
1336 	int ret;
1337 
1338 	ret = acpi_processor_get_lpi_info(pr);
1339 	if (ret)
1340 		ret = acpi_processor_get_cstate_info(pr);
1341 
1342 	return ret;
1343 }
1344 
acpi_processor_hotplug(struct acpi_processor * pr)1345 int acpi_processor_hotplug(struct acpi_processor *pr)
1346 {
1347 	int ret = 0;
1348 	struct cpuidle_device *dev;
1349 
1350 	if (disabled_by_idle_boot_param())
1351 		return 0;
1352 
1353 	if (!pr->flags.power_setup_done)
1354 		return -ENODEV;
1355 
1356 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1357 	cpuidle_pause_and_lock();
1358 	cpuidle_disable_device(dev);
1359 	ret = acpi_processor_get_power_info(pr);
1360 	if (!ret && pr->flags.power) {
1361 		acpi_processor_setup_cpuidle_dev(pr, dev);
1362 		ret = cpuidle_enable_device(dev);
1363 	}
1364 	cpuidle_resume_and_unlock();
1365 
1366 	return ret;
1367 }
1368 
acpi_processor_power_state_has_changed(struct acpi_processor * pr)1369 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1370 {
1371 	int cpu;
1372 	struct acpi_processor *_pr;
1373 	struct cpuidle_device *dev;
1374 
1375 	if (disabled_by_idle_boot_param())
1376 		return 0;
1377 
1378 	if (!pr->flags.power_setup_done)
1379 		return -ENODEV;
1380 
1381 	/*
1382 	 * FIXME:  Design the ACPI notification to make it once per
1383 	 * system instead of once per-cpu.  This condition is a hack
1384 	 * to make the code that updates C-States be called once.
1385 	 */
1386 
1387 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1388 
1389 		/* Protect against cpu-hotplug */
1390 		get_online_cpus();
1391 		cpuidle_pause_and_lock();
1392 
1393 		/* Disable all cpuidle devices */
1394 		for_each_online_cpu(cpu) {
1395 			_pr = per_cpu(processors, cpu);
1396 			if (!_pr || !_pr->flags.power_setup_done)
1397 				continue;
1398 			dev = per_cpu(acpi_cpuidle_device, cpu);
1399 			cpuidle_disable_device(dev);
1400 		}
1401 
1402 		/* Populate Updated C-state information */
1403 		acpi_processor_get_power_info(pr);
1404 		acpi_processor_setup_cpuidle_states(pr);
1405 
1406 		/* Enable all cpuidle devices */
1407 		for_each_online_cpu(cpu) {
1408 			_pr = per_cpu(processors, cpu);
1409 			if (!_pr || !_pr->flags.power_setup_done)
1410 				continue;
1411 			acpi_processor_get_power_info(_pr);
1412 			if (_pr->flags.power) {
1413 				dev = per_cpu(acpi_cpuidle_device, cpu);
1414 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1415 				cpuidle_enable_device(dev);
1416 			}
1417 		}
1418 		cpuidle_resume_and_unlock();
1419 		put_online_cpus();
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int acpi_processor_registered;
1426 
acpi_processor_power_init(struct acpi_processor * pr)1427 int acpi_processor_power_init(struct acpi_processor *pr)
1428 {
1429 	int retval;
1430 	struct cpuidle_device *dev;
1431 
1432 	if (disabled_by_idle_boot_param())
1433 		return 0;
1434 
1435 	acpi_processor_cstate_first_run_checks();
1436 
1437 	if (!acpi_processor_get_power_info(pr))
1438 		pr->flags.power_setup_done = 1;
1439 
1440 	/*
1441 	 * Install the idle handler if processor power management is supported.
1442 	 * Note that we use previously set idle handler will be used on
1443 	 * platforms that only support C1.
1444 	 */
1445 	if (pr->flags.power) {
1446 		/* Register acpi_idle_driver if not already registered */
1447 		if (!acpi_processor_registered) {
1448 			acpi_processor_setup_cpuidle_states(pr);
1449 			retval = cpuidle_register_driver(&acpi_idle_driver);
1450 			if (retval)
1451 				return retval;
1452 			pr_debug("%s registered with cpuidle\n",
1453 				 acpi_idle_driver.name);
1454 		}
1455 
1456 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1457 		if (!dev)
1458 			return -ENOMEM;
1459 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1460 
1461 		acpi_processor_setup_cpuidle_dev(pr, dev);
1462 
1463 		/* Register per-cpu cpuidle_device. Cpuidle driver
1464 		 * must already be registered before registering device
1465 		 */
1466 		retval = cpuidle_register_device(dev);
1467 		if (retval) {
1468 			if (acpi_processor_registered == 0)
1469 				cpuidle_unregister_driver(&acpi_idle_driver);
1470 			return retval;
1471 		}
1472 		acpi_processor_registered++;
1473 	}
1474 	return 0;
1475 }
1476 
acpi_processor_power_exit(struct acpi_processor * pr)1477 int acpi_processor_power_exit(struct acpi_processor *pr)
1478 {
1479 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1480 
1481 	if (disabled_by_idle_boot_param())
1482 		return 0;
1483 
1484 	if (pr->flags.power) {
1485 		cpuidle_unregister_device(dev);
1486 		acpi_processor_registered--;
1487 		if (acpi_processor_registered == 0)
1488 			cpuidle_unregister_driver(&acpi_idle_driver);
1489 	}
1490 
1491 	pr->flags.power_setup_done = 0;
1492 	return 0;
1493 }
1494