1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 A FORE Systems 200E-series driver for ATM on Linux.
4 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8 This driver simultaneously supports PCA-200E and SBA-200E adapters
9 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/atm_suni.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/delay.h>
27 #include <linux/firmware.h>
28 #include <asm/io.h>
29 #include <asm/string.h>
30 #include <asm/page.h>
31 #include <asm/irq.h>
32 #include <asm/dma.h>
33 #include <asm/byteorder.h>
34 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36
37 #ifdef CONFIG_SBUS
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <asm/idprom.h>
41 #include <asm/openprom.h>
42 #include <asm/oplib.h>
43 #include <asm/pgtable.h>
44 #endif
45
46 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
47 #define FORE200E_USE_TASKLET
48 #endif
49
50 #if 0 /* enable the debugging code of the buffer supply queues */
51 #define FORE200E_BSQ_DEBUG
52 #endif
53
54 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
55 #define FORE200E_52BYTE_AAL0_SDU
56 #endif
57
58 #include "fore200e.h"
59 #include "suni.h"
60
61 #define FORE200E_VERSION "0.3e"
62
63 #define FORE200E "fore200e: "
64
65 #if 0 /* override .config */
66 #define CONFIG_ATM_FORE200E_DEBUG 1
67 #endif
68 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
69 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
70 printk(FORE200E format, ##args); } while (0)
71 #else
72 #define DPRINTK(level, format, args...) do {} while (0)
73 #endif
74
75
76 #define FORE200E_ALIGN(addr, alignment) \
77 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
78
79 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
80
81 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
82
83 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
84
85 #if 1
86 #define ASSERT(expr) if (!(expr)) { \
87 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
88 __func__, __LINE__, #expr); \
89 panic(FORE200E "%s", __func__); \
90 }
91 #else
92 #define ASSERT(expr) do {} while (0)
93 #endif
94
95
96 static const struct atmdev_ops fore200e_ops;
97
98 static LIST_HEAD(fore200e_boards);
99
100
101 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
102 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
103 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
104
105
106 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
107 { BUFFER_S1_NBR, BUFFER_L1_NBR },
108 { BUFFER_S2_NBR, BUFFER_L2_NBR }
109 };
110
111 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
112 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
113 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
114 };
115
116
117 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
118 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
119 #endif
120
121
122 #if 0 /* currently unused */
123 static int
124 fore200e_fore2atm_aal(enum fore200e_aal aal)
125 {
126 switch(aal) {
127 case FORE200E_AAL0: return ATM_AAL0;
128 case FORE200E_AAL34: return ATM_AAL34;
129 case FORE200E_AAL5: return ATM_AAL5;
130 }
131
132 return -EINVAL;
133 }
134 #endif
135
136
137 static enum fore200e_aal
fore200e_atm2fore_aal(int aal)138 fore200e_atm2fore_aal(int aal)
139 {
140 switch(aal) {
141 case ATM_AAL0: return FORE200E_AAL0;
142 case ATM_AAL34: return FORE200E_AAL34;
143 case ATM_AAL1:
144 case ATM_AAL2:
145 case ATM_AAL5: return FORE200E_AAL5;
146 }
147
148 return -EINVAL;
149 }
150
151
152 static char*
fore200e_irq_itoa(int irq)153 fore200e_irq_itoa(int irq)
154 {
155 static char str[8];
156 sprintf(str, "%d", irq);
157 return str;
158 }
159
160
161 /* allocate and align a chunk of memory intended to hold the data behing exchanged
162 between the driver and the adapter (using streaming DVMA) */
163
164 static int
fore200e_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int alignment,int direction)165 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
166 {
167 unsigned long offset = 0;
168
169 if (alignment <= sizeof(int))
170 alignment = 0;
171
172 chunk->alloc_size = size + alignment;
173 chunk->direction = direction;
174
175 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
176 if (chunk->alloc_addr == NULL)
177 return -ENOMEM;
178
179 if (alignment > 0)
180 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
181
182 chunk->align_addr = chunk->alloc_addr + offset;
183
184 chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
185 size, direction);
186 if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
187 kfree(chunk->alloc_addr);
188 return -ENOMEM;
189 }
190 return 0;
191 }
192
193
194 /* free a chunk of memory */
195
196 static void
fore200e_chunk_free(struct fore200e * fore200e,struct chunk * chunk)197 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
198 {
199 dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
200 chunk->direction);
201 kfree(chunk->alloc_addr);
202 }
203
204 /*
205 * Allocate a DMA consistent chunk of memory intended to act as a communication
206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
207 * and the adapter.
208 */
209 static int
fore200e_dma_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int nbr,int alignment)210 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
211 int size, int nbr, int alignment)
212 {
213 /* returned chunks are page-aligned */
214 chunk->alloc_size = size * nbr;
215 chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
216 &chunk->dma_addr, GFP_KERNEL);
217 if (!chunk->alloc_addr)
218 return -ENOMEM;
219 chunk->align_addr = chunk->alloc_addr;
220 return 0;
221 }
222
223 /*
224 * Free a DMA consistent chunk of memory.
225 */
226 static void
fore200e_dma_chunk_free(struct fore200e * fore200e,struct chunk * chunk)227 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
228 {
229 dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
230 chunk->dma_addr);
231 }
232
233 static void
fore200e_spin(int msecs)234 fore200e_spin(int msecs)
235 {
236 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
237 while (time_before(jiffies, timeout));
238 }
239
240
241 static int
fore200e_poll(struct fore200e * fore200e,volatile u32 * addr,u32 val,int msecs)242 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
243 {
244 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
245 int ok;
246
247 mb();
248 do {
249 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
250 break;
251
252 } while (time_before(jiffies, timeout));
253
254 #if 1
255 if (!ok) {
256 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
257 *addr, val);
258 }
259 #endif
260
261 return ok;
262 }
263
264
265 static int
fore200e_io_poll(struct fore200e * fore200e,volatile u32 __iomem * addr,u32 val,int msecs)266 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
267 {
268 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
269 int ok;
270
271 do {
272 if ((ok = (fore200e->bus->read(addr) == val)))
273 break;
274
275 } while (time_before(jiffies, timeout));
276
277 #if 1
278 if (!ok) {
279 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
280 fore200e->bus->read(addr), val);
281 }
282 #endif
283
284 return ok;
285 }
286
287
288 static void
fore200e_free_rx_buf(struct fore200e * fore200e)289 fore200e_free_rx_buf(struct fore200e* fore200e)
290 {
291 int scheme, magn, nbr;
292 struct buffer* buffer;
293
294 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
295 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
296
297 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
298
299 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
300
301 struct chunk* data = &buffer[ nbr ].data;
302
303 if (data->alloc_addr != NULL)
304 fore200e_chunk_free(fore200e, data);
305 }
306 }
307 }
308 }
309 }
310
311
312 static void
fore200e_uninit_bs_queue(struct fore200e * fore200e)313 fore200e_uninit_bs_queue(struct fore200e* fore200e)
314 {
315 int scheme, magn;
316
317 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
318 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
319
320 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
321 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
322
323 if (status->alloc_addr)
324 fore200e_dma_chunk_free(fore200e, status);
325
326 if (rbd_block->alloc_addr)
327 fore200e_dma_chunk_free(fore200e, rbd_block);
328 }
329 }
330 }
331
332
333 static int
fore200e_reset(struct fore200e * fore200e,int diag)334 fore200e_reset(struct fore200e* fore200e, int diag)
335 {
336 int ok;
337
338 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
339
340 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
341
342 fore200e->bus->reset(fore200e);
343
344 if (diag) {
345 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
346 if (ok == 0) {
347
348 printk(FORE200E "device %s self-test failed\n", fore200e->name);
349 return -ENODEV;
350 }
351
352 printk(FORE200E "device %s self-test passed\n", fore200e->name);
353
354 fore200e->state = FORE200E_STATE_RESET;
355 }
356
357 return 0;
358 }
359
360
361 static void
fore200e_shutdown(struct fore200e * fore200e)362 fore200e_shutdown(struct fore200e* fore200e)
363 {
364 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
365 fore200e->name, fore200e->phys_base,
366 fore200e_irq_itoa(fore200e->irq));
367
368 if (fore200e->state > FORE200E_STATE_RESET) {
369 /* first, reset the board to prevent further interrupts or data transfers */
370 fore200e_reset(fore200e, 0);
371 }
372
373 /* then, release all allocated resources */
374 switch(fore200e->state) {
375
376 case FORE200E_STATE_COMPLETE:
377 kfree(fore200e->stats);
378
379 /* fall through */
380 case FORE200E_STATE_IRQ:
381 free_irq(fore200e->irq, fore200e->atm_dev);
382
383 /* fall through */
384 case FORE200E_STATE_ALLOC_BUF:
385 fore200e_free_rx_buf(fore200e);
386
387 /* fall through */
388 case FORE200E_STATE_INIT_BSQ:
389 fore200e_uninit_bs_queue(fore200e);
390
391 /* fall through */
392 case FORE200E_STATE_INIT_RXQ:
393 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
394 fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
395
396 /* fall through */
397 case FORE200E_STATE_INIT_TXQ:
398 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
399 fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
400
401 /* fall through */
402 case FORE200E_STATE_INIT_CMDQ:
403 fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
404
405 /* fall through */
406 case FORE200E_STATE_INITIALIZE:
407 /* nothing to do for that state */
408
409 case FORE200E_STATE_START_FW:
410 /* nothing to do for that state */
411
412 case FORE200E_STATE_RESET:
413 /* nothing to do for that state */
414
415 case FORE200E_STATE_MAP:
416 fore200e->bus->unmap(fore200e);
417
418 /* fall through */
419 case FORE200E_STATE_CONFIGURE:
420 /* nothing to do for that state */
421
422 case FORE200E_STATE_REGISTER:
423 /* XXX shouldn't we *start* by deregistering the device? */
424 atm_dev_deregister(fore200e->atm_dev);
425
426 case FORE200E_STATE_BLANK:
427 /* nothing to do for that state */
428 break;
429 }
430 }
431
432
433 #ifdef CONFIG_PCI
434
fore200e_pca_read(volatile u32 __iomem * addr)435 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
436 {
437 /* on big-endian hosts, the board is configured to convert
438 the endianess of slave RAM accesses */
439 return le32_to_cpu(readl(addr));
440 }
441
442
fore200e_pca_write(u32 val,volatile u32 __iomem * addr)443 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
444 {
445 /* on big-endian hosts, the board is configured to convert
446 the endianess of slave RAM accesses */
447 writel(cpu_to_le32(val), addr);
448 }
449
450 static int
fore200e_pca_irq_check(struct fore200e * fore200e)451 fore200e_pca_irq_check(struct fore200e* fore200e)
452 {
453 /* this is a 1 bit register */
454 int irq_posted = readl(fore200e->regs.pca.psr);
455
456 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
457 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
458 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
459 }
460 #endif
461
462 return irq_posted;
463 }
464
465
466 static void
fore200e_pca_irq_ack(struct fore200e * fore200e)467 fore200e_pca_irq_ack(struct fore200e* fore200e)
468 {
469 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
470 }
471
472
473 static void
fore200e_pca_reset(struct fore200e * fore200e)474 fore200e_pca_reset(struct fore200e* fore200e)
475 {
476 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
477 fore200e_spin(10);
478 writel(0, fore200e->regs.pca.hcr);
479 }
480
481
fore200e_pca_map(struct fore200e * fore200e)482 static int fore200e_pca_map(struct fore200e* fore200e)
483 {
484 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
485
486 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
487
488 if (fore200e->virt_base == NULL) {
489 printk(FORE200E "can't map device %s\n", fore200e->name);
490 return -EFAULT;
491 }
492
493 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
494
495 /* gain access to the PCA specific registers */
496 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
497 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
498 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
499
500 fore200e->state = FORE200E_STATE_MAP;
501 return 0;
502 }
503
504
505 static void
fore200e_pca_unmap(struct fore200e * fore200e)506 fore200e_pca_unmap(struct fore200e* fore200e)
507 {
508 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
509
510 if (fore200e->virt_base != NULL)
511 iounmap(fore200e->virt_base);
512 }
513
514
fore200e_pca_configure(struct fore200e * fore200e)515 static int fore200e_pca_configure(struct fore200e *fore200e)
516 {
517 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
518 u8 master_ctrl, latency;
519
520 DPRINTK(2, "device %s being configured\n", fore200e->name);
521
522 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
523 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
524 return -EIO;
525 }
526
527 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
528
529 master_ctrl = master_ctrl
530 #if defined(__BIG_ENDIAN)
531 /* request the PCA board to convert the endianess of slave RAM accesses */
532 | PCA200E_CTRL_CONVERT_ENDIAN
533 #endif
534 #if 0
535 | PCA200E_CTRL_DIS_CACHE_RD
536 | PCA200E_CTRL_DIS_WRT_INVAL
537 | PCA200E_CTRL_ENA_CONT_REQ_MODE
538 | PCA200E_CTRL_2_CACHE_WRT_INVAL
539 #endif
540 | PCA200E_CTRL_LARGE_PCI_BURSTS;
541
542 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
543
544 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
545 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
546 this may impact the performances of other PCI devices on the same bus, though */
547 latency = 192;
548 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
549
550 fore200e->state = FORE200E_STATE_CONFIGURE;
551 return 0;
552 }
553
554
555 static int __init
fore200e_pca_prom_read(struct fore200e * fore200e,struct prom_data * prom)556 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
557 {
558 struct host_cmdq* cmdq = &fore200e->host_cmdq;
559 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
560 struct prom_opcode opcode;
561 int ok;
562 u32 prom_dma;
563
564 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
565
566 opcode.opcode = OPCODE_GET_PROM;
567 opcode.pad = 0;
568
569 prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
570 DMA_FROM_DEVICE);
571 if (dma_mapping_error(fore200e->dev, prom_dma))
572 return -ENOMEM;
573
574 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
575
576 *entry->status = STATUS_PENDING;
577
578 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
579
580 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
581
582 *entry->status = STATUS_FREE;
583
584 dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
585
586 if (ok == 0) {
587 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
588 return -EIO;
589 }
590
591 #if defined(__BIG_ENDIAN)
592
593 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
594
595 /* MAC address is stored as little-endian */
596 swap_here(&prom->mac_addr[0]);
597 swap_here(&prom->mac_addr[4]);
598 #endif
599
600 return 0;
601 }
602
603
604 static int
fore200e_pca_proc_read(struct fore200e * fore200e,char * page)605 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
606 {
607 struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
608
609 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
610 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
611 }
612
613 static const struct fore200e_bus fore200e_pci_ops = {
614 .model_name = "PCA-200E",
615 .proc_name = "pca200e",
616 .descr_alignment = 32,
617 .buffer_alignment = 4,
618 .status_alignment = 32,
619 .read = fore200e_pca_read,
620 .write = fore200e_pca_write,
621 .configure = fore200e_pca_configure,
622 .map = fore200e_pca_map,
623 .reset = fore200e_pca_reset,
624 .prom_read = fore200e_pca_prom_read,
625 .unmap = fore200e_pca_unmap,
626 .irq_check = fore200e_pca_irq_check,
627 .irq_ack = fore200e_pca_irq_ack,
628 .proc_read = fore200e_pca_proc_read,
629 };
630 #endif /* CONFIG_PCI */
631
632 #ifdef CONFIG_SBUS
633
fore200e_sba_read(volatile u32 __iomem * addr)634 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
635 {
636 return sbus_readl(addr);
637 }
638
fore200e_sba_write(u32 val,volatile u32 __iomem * addr)639 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
640 {
641 sbus_writel(val, addr);
642 }
643
fore200e_sba_irq_enable(struct fore200e * fore200e)644 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
645 {
646 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
647 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
648 }
649
fore200e_sba_irq_check(struct fore200e * fore200e)650 static int fore200e_sba_irq_check(struct fore200e *fore200e)
651 {
652 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
653 }
654
fore200e_sba_irq_ack(struct fore200e * fore200e)655 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
656 {
657 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
658 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
659 }
660
fore200e_sba_reset(struct fore200e * fore200e)661 static void fore200e_sba_reset(struct fore200e *fore200e)
662 {
663 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
664 fore200e_spin(10);
665 fore200e->bus->write(0, fore200e->regs.sba.hcr);
666 }
667
fore200e_sba_map(struct fore200e * fore200e)668 static int __init fore200e_sba_map(struct fore200e *fore200e)
669 {
670 struct platform_device *op = to_platform_device(fore200e->dev);
671 unsigned int bursts;
672
673 /* gain access to the SBA specific registers */
674 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
675 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
676 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
677 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
678
679 if (!fore200e->virt_base) {
680 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
681 return -EFAULT;
682 }
683
684 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
685
686 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
687
688 /* get the supported DVMA burst sizes */
689 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
690
691 if (sbus_can_dma_64bit())
692 sbus_set_sbus64(&op->dev, bursts);
693
694 fore200e->state = FORE200E_STATE_MAP;
695 return 0;
696 }
697
fore200e_sba_unmap(struct fore200e * fore200e)698 static void fore200e_sba_unmap(struct fore200e *fore200e)
699 {
700 struct platform_device *op = to_platform_device(fore200e->dev);
701
702 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
703 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
704 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
705 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
706 }
707
fore200e_sba_configure(struct fore200e * fore200e)708 static int __init fore200e_sba_configure(struct fore200e *fore200e)
709 {
710 fore200e->state = FORE200E_STATE_CONFIGURE;
711 return 0;
712 }
713
fore200e_sba_prom_read(struct fore200e * fore200e,struct prom_data * prom)714 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
715 {
716 struct platform_device *op = to_platform_device(fore200e->dev);
717 const u8 *prop;
718 int len;
719
720 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
721 if (!prop)
722 return -ENODEV;
723 memcpy(&prom->mac_addr[4], prop, 4);
724
725 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
726 if (!prop)
727 return -ENODEV;
728 memcpy(&prom->mac_addr[2], prop, 4);
729
730 prom->serial_number = of_getintprop_default(op->dev.of_node,
731 "serialnumber", 0);
732 prom->hw_revision = of_getintprop_default(op->dev.of_node,
733 "promversion", 0);
734
735 return 0;
736 }
737
fore200e_sba_proc_read(struct fore200e * fore200e,char * page)738 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
739 {
740 struct platform_device *op = to_platform_device(fore200e->dev);
741 const struct linux_prom_registers *regs;
742
743 regs = of_get_property(op->dev.of_node, "reg", NULL);
744
745 return sprintf(page, " SBUS slot/device:\t\t%d/'%pOFn'\n",
746 (regs ? regs->which_io : 0), op->dev.of_node);
747 }
748
749 static const struct fore200e_bus fore200e_sbus_ops = {
750 .model_name = "SBA-200E",
751 .proc_name = "sba200e",
752 .descr_alignment = 32,
753 .buffer_alignment = 64,
754 .status_alignment = 32,
755 .read = fore200e_sba_read,
756 .write = fore200e_sba_write,
757 .configure = fore200e_sba_configure,
758 .map = fore200e_sba_map,
759 .reset = fore200e_sba_reset,
760 .prom_read = fore200e_sba_prom_read,
761 .unmap = fore200e_sba_unmap,
762 .irq_enable = fore200e_sba_irq_enable,
763 .irq_check = fore200e_sba_irq_check,
764 .irq_ack = fore200e_sba_irq_ack,
765 .proc_read = fore200e_sba_proc_read,
766 };
767 #endif /* CONFIG_SBUS */
768
769 static void
fore200e_tx_irq(struct fore200e * fore200e)770 fore200e_tx_irq(struct fore200e* fore200e)
771 {
772 struct host_txq* txq = &fore200e->host_txq;
773 struct host_txq_entry* entry;
774 struct atm_vcc* vcc;
775 struct fore200e_vc_map* vc_map;
776
777 if (fore200e->host_txq.txing == 0)
778 return;
779
780 for (;;) {
781
782 entry = &txq->host_entry[ txq->tail ];
783
784 if ((*entry->status & STATUS_COMPLETE) == 0) {
785 break;
786 }
787
788 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
789 entry, txq->tail, entry->vc_map, entry->skb);
790
791 /* free copy of misaligned data */
792 kfree(entry->data);
793
794 /* remove DMA mapping */
795 dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
796 DMA_TO_DEVICE);
797
798 vc_map = entry->vc_map;
799
800 /* vcc closed since the time the entry was submitted for tx? */
801 if ((vc_map->vcc == NULL) ||
802 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
803
804 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
805 fore200e->atm_dev->number);
806
807 dev_kfree_skb_any(entry->skb);
808 }
809 else {
810 ASSERT(vc_map->vcc);
811
812 /* vcc closed then immediately re-opened? */
813 if (vc_map->incarn != entry->incarn) {
814
815 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
816 if the same vcc is immediately re-opened, those pending PDUs must
817 not be popped after the completion of their emission, as they refer
818 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
819 would be decremented by the size of the (unrelated) skb, possibly
820 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
821 we thus bind the tx entry to the current incarnation of the vcc
822 when the entry is submitted for tx. When the tx later completes,
823 if the incarnation number of the tx entry does not match the one
824 of the vcc, then this implies that the vcc has been closed then re-opened.
825 we thus just drop the skb here. */
826
827 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
828 fore200e->atm_dev->number);
829
830 dev_kfree_skb_any(entry->skb);
831 }
832 else {
833 vcc = vc_map->vcc;
834 ASSERT(vcc);
835
836 /* notify tx completion */
837 if (vcc->pop) {
838 vcc->pop(vcc, entry->skb);
839 }
840 else {
841 dev_kfree_skb_any(entry->skb);
842 }
843
844 /* check error condition */
845 if (*entry->status & STATUS_ERROR)
846 atomic_inc(&vcc->stats->tx_err);
847 else
848 atomic_inc(&vcc->stats->tx);
849 }
850 }
851
852 *entry->status = STATUS_FREE;
853
854 fore200e->host_txq.txing--;
855
856 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
857 }
858 }
859
860
861 #ifdef FORE200E_BSQ_DEBUG
bsq_audit(int where,struct host_bsq * bsq,int scheme,int magn)862 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
863 {
864 struct buffer* buffer;
865 int count = 0;
866
867 buffer = bsq->freebuf;
868 while (buffer) {
869
870 if (buffer->supplied) {
871 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
872 where, scheme, magn, buffer->index);
873 }
874
875 if (buffer->magn != magn) {
876 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
877 where, scheme, magn, buffer->index, buffer->magn);
878 }
879
880 if (buffer->scheme != scheme) {
881 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
882 where, scheme, magn, buffer->index, buffer->scheme);
883 }
884
885 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
886 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
887 where, scheme, magn, buffer->index);
888 }
889
890 count++;
891 buffer = buffer->next;
892 }
893
894 if (count != bsq->freebuf_count) {
895 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
896 where, scheme, magn, count, bsq->freebuf_count);
897 }
898 return 0;
899 }
900 #endif
901
902
903 static void
fore200e_supply(struct fore200e * fore200e)904 fore200e_supply(struct fore200e* fore200e)
905 {
906 int scheme, magn, i;
907
908 struct host_bsq* bsq;
909 struct host_bsq_entry* entry;
910 struct buffer* buffer;
911
912 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
913 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
914
915 bsq = &fore200e->host_bsq[ scheme ][ magn ];
916
917 #ifdef FORE200E_BSQ_DEBUG
918 bsq_audit(1, bsq, scheme, magn);
919 #endif
920 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
921
922 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
923 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
924
925 entry = &bsq->host_entry[ bsq->head ];
926
927 for (i = 0; i < RBD_BLK_SIZE; i++) {
928
929 /* take the first buffer in the free buffer list */
930 buffer = bsq->freebuf;
931 if (!buffer) {
932 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
933 scheme, magn, bsq->freebuf_count);
934 return;
935 }
936 bsq->freebuf = buffer->next;
937
938 #ifdef FORE200E_BSQ_DEBUG
939 if (buffer->supplied)
940 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
941 scheme, magn, buffer->index);
942 buffer->supplied = 1;
943 #endif
944 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
945 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
946 }
947
948 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
949
950 /* decrease accordingly the number of free rx buffers */
951 bsq->freebuf_count -= RBD_BLK_SIZE;
952
953 *entry->status = STATUS_PENDING;
954 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
955 }
956 }
957 }
958 }
959
960
961 static int
fore200e_push_rpd(struct fore200e * fore200e,struct atm_vcc * vcc,struct rpd * rpd)962 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
963 {
964 struct sk_buff* skb;
965 struct buffer* buffer;
966 struct fore200e_vcc* fore200e_vcc;
967 int i, pdu_len = 0;
968 #ifdef FORE200E_52BYTE_AAL0_SDU
969 u32 cell_header = 0;
970 #endif
971
972 ASSERT(vcc);
973
974 fore200e_vcc = FORE200E_VCC(vcc);
975 ASSERT(fore200e_vcc);
976
977 #ifdef FORE200E_52BYTE_AAL0_SDU
978 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
979
980 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
981 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
982 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
983 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
984 rpd->atm_header.clp;
985 pdu_len = 4;
986 }
987 #endif
988
989 /* compute total PDU length */
990 for (i = 0; i < rpd->nseg; i++)
991 pdu_len += rpd->rsd[ i ].length;
992
993 skb = alloc_skb(pdu_len, GFP_ATOMIC);
994 if (skb == NULL) {
995 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
996
997 atomic_inc(&vcc->stats->rx_drop);
998 return -ENOMEM;
999 }
1000
1001 __net_timestamp(skb);
1002
1003 #ifdef FORE200E_52BYTE_AAL0_SDU
1004 if (cell_header) {
1005 *((u32*)skb_put(skb, 4)) = cell_header;
1006 }
1007 #endif
1008
1009 /* reassemble segments */
1010 for (i = 0; i < rpd->nseg; i++) {
1011
1012 /* rebuild rx buffer address from rsd handle */
1013 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014
1015 /* Make device DMA transfer visible to CPU. */
1016 dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017 rpd->rsd[i].length, DMA_FROM_DEVICE);
1018
1019 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021 /* Now let the device get at it again. */
1022 dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023 rpd->rsd[i].length, DMA_FROM_DEVICE);
1024 }
1025
1026 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027
1028 if (pdu_len < fore200e_vcc->rx_min_pdu)
1029 fore200e_vcc->rx_min_pdu = pdu_len;
1030 if (pdu_len > fore200e_vcc->rx_max_pdu)
1031 fore200e_vcc->rx_max_pdu = pdu_len;
1032 fore200e_vcc->rx_pdu++;
1033
1034 /* push PDU */
1035 if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038 vcc->itf, vcc->vpi, vcc->vci);
1039
1040 dev_kfree_skb_any(skb);
1041
1042 atomic_inc(&vcc->stats->rx_drop);
1043 return -ENOMEM;
1044 }
1045
1046 vcc->push(vcc, skb);
1047 atomic_inc(&vcc->stats->rx);
1048
1049 return 0;
1050 }
1051
1052
1053 static void
fore200e_collect_rpd(struct fore200e * fore200e,struct rpd * rpd)1054 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055 {
1056 struct host_bsq* bsq;
1057 struct buffer* buffer;
1058 int i;
1059
1060 for (i = 0; i < rpd->nseg; i++) {
1061
1062 /* rebuild rx buffer address from rsd handle */
1063 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067 #ifdef FORE200E_BSQ_DEBUG
1068 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070 if (buffer->supplied == 0)
1071 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072 buffer->scheme, buffer->magn, buffer->index);
1073 buffer->supplied = 0;
1074 #endif
1075
1076 /* re-insert the buffer into the free buffer list */
1077 buffer->next = bsq->freebuf;
1078 bsq->freebuf = buffer;
1079
1080 /* then increment the number of free rx buffers */
1081 bsq->freebuf_count++;
1082 }
1083 }
1084
1085
1086 static void
fore200e_rx_irq(struct fore200e * fore200e)1087 fore200e_rx_irq(struct fore200e* fore200e)
1088 {
1089 struct host_rxq* rxq = &fore200e->host_rxq;
1090 struct host_rxq_entry* entry;
1091 struct atm_vcc* vcc;
1092 struct fore200e_vc_map* vc_map;
1093
1094 for (;;) {
1095
1096 entry = &rxq->host_entry[ rxq->head ];
1097
1098 /* no more received PDUs */
1099 if ((*entry->status & STATUS_COMPLETE) == 0)
1100 break;
1101
1102 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104 if ((vc_map->vcc == NULL) ||
1105 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108 fore200e->atm_dev->number,
1109 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110 }
1111 else {
1112 vcc = vc_map->vcc;
1113 ASSERT(vcc);
1114
1115 if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118 }
1119 else {
1120 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121 fore200e->atm_dev->number,
1122 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123 atomic_inc(&vcc->stats->rx_err);
1124 }
1125 }
1126
1127 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129 fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131 /* rewrite the rpd address to ack the received PDU */
1132 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133 *entry->status = STATUS_FREE;
1134
1135 fore200e_supply(fore200e);
1136 }
1137 }
1138
1139
1140 #ifndef FORE200E_USE_TASKLET
1141 static void
fore200e_irq(struct fore200e * fore200e)1142 fore200e_irq(struct fore200e* fore200e)
1143 {
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&fore200e->q_lock, flags);
1147 fore200e_rx_irq(fore200e);
1148 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150 spin_lock_irqsave(&fore200e->q_lock, flags);
1151 fore200e_tx_irq(fore200e);
1152 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153 }
1154 #endif
1155
1156
1157 static irqreturn_t
fore200e_interrupt(int irq,void * dev)1158 fore200e_interrupt(int irq, void* dev)
1159 {
1160 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162 if (fore200e->bus->irq_check(fore200e) == 0) {
1163
1164 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165 return IRQ_NONE;
1166 }
1167 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169 #ifdef FORE200E_USE_TASKLET
1170 tasklet_schedule(&fore200e->tx_tasklet);
1171 tasklet_schedule(&fore200e->rx_tasklet);
1172 #else
1173 fore200e_irq(fore200e);
1174 #endif
1175
1176 fore200e->bus->irq_ack(fore200e);
1177 return IRQ_HANDLED;
1178 }
1179
1180
1181 #ifdef FORE200E_USE_TASKLET
1182 static void
fore200e_tx_tasklet(unsigned long data)1183 fore200e_tx_tasklet(unsigned long data)
1184 {
1185 struct fore200e* fore200e = (struct fore200e*) data;
1186 unsigned long flags;
1187
1188 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190 spin_lock_irqsave(&fore200e->q_lock, flags);
1191 fore200e_tx_irq(fore200e);
1192 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193 }
1194
1195
1196 static void
fore200e_rx_tasklet(unsigned long data)1197 fore200e_rx_tasklet(unsigned long data)
1198 {
1199 struct fore200e* fore200e = (struct fore200e*) data;
1200 unsigned long flags;
1201
1202 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204 spin_lock_irqsave(&fore200e->q_lock, flags);
1205 fore200e_rx_irq((struct fore200e*) data);
1206 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207 }
1208 #endif
1209
1210
1211 static int
fore200e_select_scheme(struct atm_vcc * vcc)1212 fore200e_select_scheme(struct atm_vcc* vcc)
1213 {
1214 /* fairly balance the VCs over (identical) buffer schemes */
1215 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218 vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220 return scheme;
1221 }
1222
1223
1224 static int
fore200e_activate_vcin(struct fore200e * fore200e,int activate,struct atm_vcc * vcc,int mtu)1225 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226 {
1227 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1228 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1229 struct activate_opcode activ_opcode;
1230 struct deactivate_opcode deactiv_opcode;
1231 struct vpvc vpvc;
1232 int ok;
1233 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236
1237 if (activate) {
1238 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239
1240 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241 activ_opcode.aal = aal;
1242 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243 activ_opcode.pad = 0;
1244 }
1245 else {
1246 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247 deactiv_opcode.pad = 0;
1248 }
1249
1250 vpvc.vci = vcc->vci;
1251 vpvc.vpi = vcc->vpi;
1252
1253 *entry->status = STATUS_PENDING;
1254
1255 if (activate) {
1256
1257 #ifdef FORE200E_52BYTE_AAL0_SDU
1258 mtu = 48;
1259 #endif
1260 /* the MTU is not used by the cp, except in the case of AAL0 */
1261 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1262 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264 }
1265 else {
1266 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268 }
1269
1270 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272 *entry->status = STATUS_FREE;
1273
1274 if (ok == 0) {
1275 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277 return -EIO;
1278 }
1279
1280 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1281 activate ? "open" : "clos");
1282
1283 return 0;
1284 }
1285
1286
1287 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1288
1289 static void
fore200e_rate_ctrl(struct atm_qos * qos,struct tpd_rate * rate)1290 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291 {
1292 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293
1294 /* compute the data cells to idle cells ratio from the tx PCR */
1295 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297 }
1298 else {
1299 /* disable rate control */
1300 rate->data_cells = rate->idle_cells = 0;
1301 }
1302 }
1303
1304
1305 static int
fore200e_open(struct atm_vcc * vcc)1306 fore200e_open(struct atm_vcc *vcc)
1307 {
1308 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1309 struct fore200e_vcc* fore200e_vcc;
1310 struct fore200e_vc_map* vc_map;
1311 unsigned long flags;
1312 int vci = vcc->vci;
1313 short vpi = vcc->vpi;
1314
1315 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318 spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321 if (vc_map->vcc) {
1322
1323 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325 printk(FORE200E "VC %d.%d.%d already in use\n",
1326 fore200e->atm_dev->number, vpi, vci);
1327
1328 return -EINVAL;
1329 }
1330
1331 vc_map->vcc = vcc;
1332
1333 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336 if (fore200e_vcc == NULL) {
1337 vc_map->vcc = NULL;
1338 return -ENOMEM;
1339 }
1340
1341 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348
1349 /* pseudo-CBR bandwidth requested? */
1350 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351
1352 mutex_lock(&fore200e->rate_mtx);
1353 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354 mutex_unlock(&fore200e->rate_mtx);
1355
1356 kfree(fore200e_vcc);
1357 vc_map->vcc = NULL;
1358 return -EAGAIN;
1359 }
1360
1361 /* reserve bandwidth */
1362 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363 mutex_unlock(&fore200e->rate_mtx);
1364 }
1365
1366 vcc->itf = vcc->dev->number;
1367
1368 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369 set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371 vcc->dev_data = fore200e_vcc;
1372
1373 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375 vc_map->vcc = NULL;
1376
1377 clear_bit(ATM_VF_ADDR, &vcc->flags);
1378 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380 vcc->dev_data = NULL;
1381
1382 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384 kfree(fore200e_vcc);
1385 return -EINVAL;
1386 }
1387
1388 /* compute rate control parameters */
1389 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390
1391 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392 set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1397 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398 }
1399
1400 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1403
1404 /* new incarnation of the vcc */
1405 vc_map->incarn = ++fore200e->incarn_count;
1406
1407 /* VC unusable before this flag is set */
1408 set_bit(ATM_VF_READY, &vcc->flags);
1409
1410 return 0;
1411 }
1412
1413
1414 static void
fore200e_close(struct atm_vcc * vcc)1415 fore200e_close(struct atm_vcc* vcc)
1416 {
1417 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1418 struct fore200e_vcc* fore200e_vcc;
1419 struct fore200e_vc_map* vc_map;
1420 unsigned long flags;
1421
1422 ASSERT(vcc);
1423 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428 clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432 spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436 /* the vc is no longer considered as "in use" by fore200e_open() */
1437 vc_map->vcc = NULL;
1438
1439 vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441 fore200e_vcc = FORE200E_VCC(vcc);
1442 vcc->dev_data = NULL;
1443
1444 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446 /* release reserved bandwidth, if any */
1447 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449 mutex_lock(&fore200e->rate_mtx);
1450 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451 mutex_unlock(&fore200e->rate_mtx);
1452
1453 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454 }
1455
1456 clear_bit(ATM_VF_ADDR, &vcc->flags);
1457 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459 ASSERT(fore200e_vcc);
1460 kfree(fore200e_vcc);
1461 }
1462
1463
1464 static int
fore200e_send(struct atm_vcc * vcc,struct sk_buff * skb)1465 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466 {
1467 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1468 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1469 struct fore200e_vc_map* vc_map;
1470 struct host_txq* txq = &fore200e->host_txq;
1471 struct host_txq_entry* entry;
1472 struct tpd* tpd;
1473 struct tpd_haddr tpd_haddr;
1474 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1475 int tx_copy = 0;
1476 int tx_len = skb->len;
1477 u32* cell_header = NULL;
1478 unsigned char* skb_data;
1479 int skb_len;
1480 unsigned char* data;
1481 unsigned long flags;
1482
1483 ASSERT(vcc);
1484 ASSERT(fore200e);
1485 ASSERT(fore200e_vcc);
1486
1487 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1488 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1489 dev_kfree_skb_any(skb);
1490 return -EINVAL;
1491 }
1492
1493 #ifdef FORE200E_52BYTE_AAL0_SDU
1494 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1495 cell_header = (u32*) skb->data;
1496 skb_data = skb->data + 4; /* skip 4-byte cell header */
1497 skb_len = tx_len = skb->len - 4;
1498
1499 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1500 }
1501 else
1502 #endif
1503 {
1504 skb_data = skb->data;
1505 skb_len = skb->len;
1506 }
1507
1508 if (((unsigned long)skb_data) & 0x3) {
1509
1510 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1511 tx_copy = 1;
1512 tx_len = skb_len;
1513 }
1514
1515 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1516
1517 /* this simply NUKES the PCA board */
1518 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1519 tx_copy = 1;
1520 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1521 }
1522
1523 if (tx_copy) {
1524 data = kmalloc(tx_len, GFP_ATOMIC);
1525 if (data == NULL) {
1526 if (vcc->pop) {
1527 vcc->pop(vcc, skb);
1528 }
1529 else {
1530 dev_kfree_skb_any(skb);
1531 }
1532 return -ENOMEM;
1533 }
1534
1535 memcpy(data, skb_data, skb_len);
1536 if (skb_len < tx_len)
1537 memset(data + skb_len, 0x00, tx_len - skb_len);
1538 }
1539 else {
1540 data = skb_data;
1541 }
1542
1543 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1544 ASSERT(vc_map->vcc == vcc);
1545
1546 retry_here:
1547
1548 spin_lock_irqsave(&fore200e->q_lock, flags);
1549
1550 entry = &txq->host_entry[ txq->head ];
1551
1552 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1553
1554 /* try to free completed tx queue entries */
1555 fore200e_tx_irq(fore200e);
1556
1557 if (*entry->status != STATUS_FREE) {
1558
1559 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1560
1561 /* retry once again? */
1562 if (--retry > 0) {
1563 udelay(50);
1564 goto retry_here;
1565 }
1566
1567 atomic_inc(&vcc->stats->tx_err);
1568
1569 fore200e->tx_sat++;
1570 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1571 fore200e->name, fore200e->cp_queues->heartbeat);
1572 if (vcc->pop) {
1573 vcc->pop(vcc, skb);
1574 }
1575 else {
1576 dev_kfree_skb_any(skb);
1577 }
1578
1579 if (tx_copy)
1580 kfree(data);
1581
1582 return -ENOBUFS;
1583 }
1584 }
1585
1586 entry->incarn = vc_map->incarn;
1587 entry->vc_map = vc_map;
1588 entry->skb = skb;
1589 entry->data = tx_copy ? data : NULL;
1590
1591 tpd = entry->tpd;
1592 tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1593 DMA_TO_DEVICE);
1594 if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1595 if (tx_copy)
1596 kfree(data);
1597 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1598 return -ENOMEM;
1599 }
1600 tpd->tsd[ 0 ].length = tx_len;
1601
1602 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1603 txq->txing++;
1604
1605 /* The dma_map call above implies a dma_sync so the device can use it,
1606 * thus no explicit dma_sync call is necessary here.
1607 */
1608
1609 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1610 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1611 tpd->tsd[0].length, skb_len);
1612
1613 if (skb_len < fore200e_vcc->tx_min_pdu)
1614 fore200e_vcc->tx_min_pdu = skb_len;
1615 if (skb_len > fore200e_vcc->tx_max_pdu)
1616 fore200e_vcc->tx_max_pdu = skb_len;
1617 fore200e_vcc->tx_pdu++;
1618
1619 /* set tx rate control information */
1620 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1621 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1622
1623 if (cell_header) {
1624 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1625 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1626 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1627 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1628 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1629 }
1630 else {
1631 /* set the ATM header, common to all cells conveying the PDU */
1632 tpd->atm_header.clp = 0;
1633 tpd->atm_header.plt = 0;
1634 tpd->atm_header.vci = vcc->vci;
1635 tpd->atm_header.vpi = vcc->vpi;
1636 tpd->atm_header.gfc = 0;
1637 }
1638
1639 tpd->spec.length = tx_len;
1640 tpd->spec.nseg = 1;
1641 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1642 tpd->spec.intr = 1;
1643
1644 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1645 tpd_haddr.pad = 0;
1646 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1647
1648 *entry->status = STATUS_PENDING;
1649 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1650
1651 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653 return 0;
1654 }
1655
1656
1657 static int
fore200e_getstats(struct fore200e * fore200e)1658 fore200e_getstats(struct fore200e* fore200e)
1659 {
1660 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1661 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1662 struct stats_opcode opcode;
1663 int ok;
1664 u32 stats_dma_addr;
1665
1666 if (fore200e->stats == NULL) {
1667 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1668 if (fore200e->stats == NULL)
1669 return -ENOMEM;
1670 }
1671
1672 stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1673 sizeof(struct stats), DMA_FROM_DEVICE);
1674 if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1675 return -ENOMEM;
1676
1677 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1678
1679 opcode.opcode = OPCODE_GET_STATS;
1680 opcode.pad = 0;
1681
1682 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1683
1684 *entry->status = STATUS_PENDING;
1685
1686 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1687
1688 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1689
1690 *entry->status = STATUS_FREE;
1691
1692 dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1693
1694 if (ok == 0) {
1695 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1696 return -EIO;
1697 }
1698
1699 return 0;
1700 }
1701
1702
1703 static int
fore200e_getsockopt(struct atm_vcc * vcc,int level,int optname,void __user * optval,int optlen)1704 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1705 {
1706 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1707
1708 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1709 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1710
1711 return -EINVAL;
1712 }
1713
1714
1715 static int
fore200e_setsockopt(struct atm_vcc * vcc,int level,int optname,void __user * optval,unsigned int optlen)1716 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1717 {
1718 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1719
1720 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1721 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1722
1723 return -EINVAL;
1724 }
1725
1726
1727 #if 0 /* currently unused */
1728 static int
1729 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1730 {
1731 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1732 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1733 struct oc3_opcode opcode;
1734 int ok;
1735 u32 oc3_regs_dma_addr;
1736
1737 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738
1739 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1740
1741 opcode.opcode = OPCODE_GET_OC3;
1742 opcode.reg = 0;
1743 opcode.value = 0;
1744 opcode.mask = 0;
1745
1746 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1747
1748 *entry->status = STATUS_PENDING;
1749
1750 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1751
1752 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1753
1754 *entry->status = STATUS_FREE;
1755
1756 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1757
1758 if (ok == 0) {
1759 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1760 return -EIO;
1761 }
1762
1763 return 0;
1764 }
1765 #endif
1766
1767
1768 static int
fore200e_set_oc3(struct fore200e * fore200e,u32 reg,u32 value,u32 mask)1769 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1770 {
1771 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1772 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1773 struct oc3_opcode opcode;
1774 int ok;
1775
1776 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1777
1778 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1779
1780 opcode.opcode = OPCODE_SET_OC3;
1781 opcode.reg = reg;
1782 opcode.value = value;
1783 opcode.mask = mask;
1784
1785 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1786
1787 *entry->status = STATUS_PENDING;
1788
1789 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1790
1791 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1792
1793 *entry->status = STATUS_FREE;
1794
1795 if (ok == 0) {
1796 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1797 return -EIO;
1798 }
1799
1800 return 0;
1801 }
1802
1803
1804 static int
fore200e_setloop(struct fore200e * fore200e,int loop_mode)1805 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1806 {
1807 u32 mct_value, mct_mask;
1808 int error;
1809
1810 if (!capable(CAP_NET_ADMIN))
1811 return -EPERM;
1812
1813 switch (loop_mode) {
1814
1815 case ATM_LM_NONE:
1816 mct_value = 0;
1817 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1818 break;
1819
1820 case ATM_LM_LOC_PHY:
1821 mct_value = mct_mask = SUNI_MCT_DLE;
1822 break;
1823
1824 case ATM_LM_RMT_PHY:
1825 mct_value = mct_mask = SUNI_MCT_LLE;
1826 break;
1827
1828 default:
1829 return -EINVAL;
1830 }
1831
1832 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1833 if (error == 0)
1834 fore200e->loop_mode = loop_mode;
1835
1836 return error;
1837 }
1838
1839
1840 static int
fore200e_fetch_stats(struct fore200e * fore200e,struct sonet_stats __user * arg)1841 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1842 {
1843 struct sonet_stats tmp;
1844
1845 if (fore200e_getstats(fore200e) < 0)
1846 return -EIO;
1847
1848 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1849 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1850 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1851 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1852 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1853 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1854 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1855 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1856 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1857 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1858 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1859 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1860 be32_to_cpu(fore200e->stats->aal5.cells_received);
1861
1862 if (arg)
1863 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1864
1865 return 0;
1866 }
1867
1868
1869 static int
fore200e_ioctl(struct atm_dev * dev,unsigned int cmd,void __user * arg)1870 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1871 {
1872 struct fore200e* fore200e = FORE200E_DEV(dev);
1873
1874 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1875
1876 switch (cmd) {
1877
1878 case SONET_GETSTAT:
1879 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1880
1881 case SONET_GETDIAG:
1882 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1883
1884 case ATM_SETLOOP:
1885 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1886
1887 case ATM_GETLOOP:
1888 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1889
1890 case ATM_QUERYLOOP:
1891 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1892 }
1893
1894 return -ENOSYS; /* not implemented */
1895 }
1896
1897
1898 static int
fore200e_change_qos(struct atm_vcc * vcc,struct atm_qos * qos,int flags)1899 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1900 {
1901 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1902 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1903
1904 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1905 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1906 return -EINVAL;
1907 }
1908
1909 DPRINTK(2, "change_qos %d.%d.%d, "
1910 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1911 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1912 "available_cell_rate = %u",
1913 vcc->itf, vcc->vpi, vcc->vci,
1914 fore200e_traffic_class[ qos->txtp.traffic_class ],
1915 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1916 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1917 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1918 flags, fore200e->available_cell_rate);
1919
1920 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1921
1922 mutex_lock(&fore200e->rate_mtx);
1923 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1924 mutex_unlock(&fore200e->rate_mtx);
1925 return -EAGAIN;
1926 }
1927
1928 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1929 fore200e->available_cell_rate -= qos->txtp.max_pcr;
1930
1931 mutex_unlock(&fore200e->rate_mtx);
1932
1933 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1934
1935 /* update rate control parameters */
1936 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1937
1938 set_bit(ATM_VF_HASQOS, &vcc->flags);
1939
1940 return 0;
1941 }
1942
1943 return -EINVAL;
1944 }
1945
1946
fore200e_irq_request(struct fore200e * fore200e)1947 static int fore200e_irq_request(struct fore200e *fore200e)
1948 {
1949 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1950
1951 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1952 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1953 return -EBUSY;
1954 }
1955
1956 printk(FORE200E "IRQ %s reserved for device %s\n",
1957 fore200e_irq_itoa(fore200e->irq), fore200e->name);
1958
1959 #ifdef FORE200E_USE_TASKLET
1960 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1961 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1962 #endif
1963
1964 fore200e->state = FORE200E_STATE_IRQ;
1965 return 0;
1966 }
1967
1968
fore200e_get_esi(struct fore200e * fore200e)1969 static int fore200e_get_esi(struct fore200e *fore200e)
1970 {
1971 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1972 int ok, i;
1973
1974 if (!prom)
1975 return -ENOMEM;
1976
1977 ok = fore200e->bus->prom_read(fore200e, prom);
1978 if (ok < 0) {
1979 kfree(prom);
1980 return -EBUSY;
1981 }
1982
1983 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1984 fore200e->name,
1985 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
1986 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1987
1988 for (i = 0; i < ESI_LEN; i++) {
1989 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1990 }
1991
1992 kfree(prom);
1993
1994 return 0;
1995 }
1996
1997
fore200e_alloc_rx_buf(struct fore200e * fore200e)1998 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1999 {
2000 int scheme, magn, nbr, size, i;
2001
2002 struct host_bsq* bsq;
2003 struct buffer* buffer;
2004
2005 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2006 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2007
2008 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2009
2010 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2011 size = fore200e_rx_buf_size[ scheme ][ magn ];
2012
2013 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2014
2015 /* allocate the array of receive buffers */
2016 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2017 GFP_KERNEL);
2018
2019 if (buffer == NULL)
2020 return -ENOMEM;
2021
2022 bsq->freebuf = NULL;
2023
2024 for (i = 0; i < nbr; i++) {
2025
2026 buffer[ i ].scheme = scheme;
2027 buffer[ i ].magn = magn;
2028 #ifdef FORE200E_BSQ_DEBUG
2029 buffer[ i ].index = i;
2030 buffer[ i ].supplied = 0;
2031 #endif
2032
2033 /* allocate the receive buffer body */
2034 if (fore200e_chunk_alloc(fore200e,
2035 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2036 DMA_FROM_DEVICE) < 0) {
2037
2038 while (i > 0)
2039 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2040 kfree(buffer);
2041
2042 return -ENOMEM;
2043 }
2044
2045 /* insert the buffer into the free buffer list */
2046 buffer[ i ].next = bsq->freebuf;
2047 bsq->freebuf = &buffer[ i ];
2048 }
2049 /* all the buffers are free, initially */
2050 bsq->freebuf_count = nbr;
2051
2052 #ifdef FORE200E_BSQ_DEBUG
2053 bsq_audit(3, bsq, scheme, magn);
2054 #endif
2055 }
2056 }
2057
2058 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2059 return 0;
2060 }
2061
2062
fore200e_init_bs_queue(struct fore200e * fore200e)2063 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2064 {
2065 int scheme, magn, i;
2066
2067 struct host_bsq* bsq;
2068 struct cp_bsq_entry __iomem * cp_entry;
2069
2070 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2071 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2072
2073 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2074
2075 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2076
2077 /* allocate and align the array of status words */
2078 if (fore200e_dma_chunk_alloc(fore200e,
2079 &bsq->status,
2080 sizeof(enum status),
2081 QUEUE_SIZE_BS,
2082 fore200e->bus->status_alignment) < 0) {
2083 return -ENOMEM;
2084 }
2085
2086 /* allocate and align the array of receive buffer descriptors */
2087 if (fore200e_dma_chunk_alloc(fore200e,
2088 &bsq->rbd_block,
2089 sizeof(struct rbd_block),
2090 QUEUE_SIZE_BS,
2091 fore200e->bus->descr_alignment) < 0) {
2092
2093 fore200e_dma_chunk_free(fore200e, &bsq->status);
2094 return -ENOMEM;
2095 }
2096
2097 /* get the base address of the cp resident buffer supply queue entries */
2098 cp_entry = fore200e->virt_base +
2099 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2100
2101 /* fill the host resident and cp resident buffer supply queue entries */
2102 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2103
2104 bsq->host_entry[ i ].status =
2105 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2106 bsq->host_entry[ i ].rbd_block =
2107 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2108 bsq->host_entry[ i ].rbd_block_dma =
2109 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2110 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2111
2112 *bsq->host_entry[ i ].status = STATUS_FREE;
2113
2114 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2115 &cp_entry[ i ].status_haddr);
2116 }
2117 }
2118 }
2119
2120 fore200e->state = FORE200E_STATE_INIT_BSQ;
2121 return 0;
2122 }
2123
2124
fore200e_init_rx_queue(struct fore200e * fore200e)2125 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2126 {
2127 struct host_rxq* rxq = &fore200e->host_rxq;
2128 struct cp_rxq_entry __iomem * cp_entry;
2129 int i;
2130
2131 DPRINTK(2, "receive queue is being initialized\n");
2132
2133 /* allocate and align the array of status words */
2134 if (fore200e_dma_chunk_alloc(fore200e,
2135 &rxq->status,
2136 sizeof(enum status),
2137 QUEUE_SIZE_RX,
2138 fore200e->bus->status_alignment) < 0) {
2139 return -ENOMEM;
2140 }
2141
2142 /* allocate and align the array of receive PDU descriptors */
2143 if (fore200e_dma_chunk_alloc(fore200e,
2144 &rxq->rpd,
2145 sizeof(struct rpd),
2146 QUEUE_SIZE_RX,
2147 fore200e->bus->descr_alignment) < 0) {
2148
2149 fore200e_dma_chunk_free(fore200e, &rxq->status);
2150 return -ENOMEM;
2151 }
2152
2153 /* get the base address of the cp resident rx queue entries */
2154 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2155
2156 /* fill the host resident and cp resident rx entries */
2157 for (i=0; i < QUEUE_SIZE_RX; i++) {
2158
2159 rxq->host_entry[ i ].status =
2160 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2161 rxq->host_entry[ i ].rpd =
2162 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2163 rxq->host_entry[ i ].rpd_dma =
2164 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2165 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2166
2167 *rxq->host_entry[ i ].status = STATUS_FREE;
2168
2169 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2170 &cp_entry[ i ].status_haddr);
2171
2172 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2173 &cp_entry[ i ].rpd_haddr);
2174 }
2175
2176 /* set the head entry of the queue */
2177 rxq->head = 0;
2178
2179 fore200e->state = FORE200E_STATE_INIT_RXQ;
2180 return 0;
2181 }
2182
2183
fore200e_init_tx_queue(struct fore200e * fore200e)2184 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2185 {
2186 struct host_txq* txq = &fore200e->host_txq;
2187 struct cp_txq_entry __iomem * cp_entry;
2188 int i;
2189
2190 DPRINTK(2, "transmit queue is being initialized\n");
2191
2192 /* allocate and align the array of status words */
2193 if (fore200e_dma_chunk_alloc(fore200e,
2194 &txq->status,
2195 sizeof(enum status),
2196 QUEUE_SIZE_TX,
2197 fore200e->bus->status_alignment) < 0) {
2198 return -ENOMEM;
2199 }
2200
2201 /* allocate and align the array of transmit PDU descriptors */
2202 if (fore200e_dma_chunk_alloc(fore200e,
2203 &txq->tpd,
2204 sizeof(struct tpd),
2205 QUEUE_SIZE_TX,
2206 fore200e->bus->descr_alignment) < 0) {
2207
2208 fore200e_dma_chunk_free(fore200e, &txq->status);
2209 return -ENOMEM;
2210 }
2211
2212 /* get the base address of the cp resident tx queue entries */
2213 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2214
2215 /* fill the host resident and cp resident tx entries */
2216 for (i=0; i < QUEUE_SIZE_TX; i++) {
2217
2218 txq->host_entry[ i ].status =
2219 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2220 txq->host_entry[ i ].tpd =
2221 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2222 txq->host_entry[ i ].tpd_dma =
2223 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2224 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2225
2226 *txq->host_entry[ i ].status = STATUS_FREE;
2227
2228 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2229 &cp_entry[ i ].status_haddr);
2230
2231 /* although there is a one-to-one mapping of tx queue entries and tpds,
2232 we do not write here the DMA (physical) base address of each tpd into
2233 the related cp resident entry, because the cp relies on this write
2234 operation to detect that a new pdu has been submitted for tx */
2235 }
2236
2237 /* set the head and tail entries of the queue */
2238 txq->head = 0;
2239 txq->tail = 0;
2240
2241 fore200e->state = FORE200E_STATE_INIT_TXQ;
2242 return 0;
2243 }
2244
2245
fore200e_init_cmd_queue(struct fore200e * fore200e)2246 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2247 {
2248 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2249 struct cp_cmdq_entry __iomem * cp_entry;
2250 int i;
2251
2252 DPRINTK(2, "command queue is being initialized\n");
2253
2254 /* allocate and align the array of status words */
2255 if (fore200e_dma_chunk_alloc(fore200e,
2256 &cmdq->status,
2257 sizeof(enum status),
2258 QUEUE_SIZE_CMD,
2259 fore200e->bus->status_alignment) < 0) {
2260 return -ENOMEM;
2261 }
2262
2263 /* get the base address of the cp resident cmd queue entries */
2264 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2265
2266 /* fill the host resident and cp resident cmd entries */
2267 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2268
2269 cmdq->host_entry[ i ].status =
2270 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2271 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2272
2273 *cmdq->host_entry[ i ].status = STATUS_FREE;
2274
2275 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2276 &cp_entry[ i ].status_haddr);
2277 }
2278
2279 /* set the head entry of the queue */
2280 cmdq->head = 0;
2281
2282 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2283 return 0;
2284 }
2285
2286
fore200e_param_bs_queue(struct fore200e * fore200e,enum buffer_scheme scheme,enum buffer_magn magn,int queue_length,int pool_size,int supply_blksize)2287 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2288 enum buffer_scheme scheme,
2289 enum buffer_magn magn, int queue_length,
2290 int pool_size, int supply_blksize)
2291 {
2292 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2293
2294 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2295 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2296 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2297 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2298 }
2299
2300
fore200e_initialize(struct fore200e * fore200e)2301 static int fore200e_initialize(struct fore200e *fore200e)
2302 {
2303 struct cp_queues __iomem * cpq;
2304 int ok, scheme, magn;
2305
2306 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2307
2308 mutex_init(&fore200e->rate_mtx);
2309 spin_lock_init(&fore200e->q_lock);
2310
2311 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2312
2313 /* enable cp to host interrupts */
2314 fore200e->bus->write(1, &cpq->imask);
2315
2316 if (fore200e->bus->irq_enable)
2317 fore200e->bus->irq_enable(fore200e);
2318
2319 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2320
2321 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2322 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2323 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2324
2325 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2326 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2327
2328 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2329 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2330 fore200e_param_bs_queue(fore200e, scheme, magn,
2331 QUEUE_SIZE_BS,
2332 fore200e_rx_buf_nbr[ scheme ][ magn ],
2333 RBD_BLK_SIZE);
2334
2335 /* issue the initialize command */
2336 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2337 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2338
2339 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2340 if (ok == 0) {
2341 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2342 return -ENODEV;
2343 }
2344
2345 printk(FORE200E "device %s initialized\n", fore200e->name);
2346
2347 fore200e->state = FORE200E_STATE_INITIALIZE;
2348 return 0;
2349 }
2350
2351
fore200e_monitor_putc(struct fore200e * fore200e,char c)2352 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2353 {
2354 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2355
2356 #if 0
2357 printk("%c", c);
2358 #endif
2359 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2360 }
2361
2362
fore200e_monitor_getc(struct fore200e * fore200e)2363 static int fore200e_monitor_getc(struct fore200e *fore200e)
2364 {
2365 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2366 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2367 int c;
2368
2369 while (time_before(jiffies, timeout)) {
2370
2371 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2372
2373 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2374
2375 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2376 #if 0
2377 printk("%c", c & 0xFF);
2378 #endif
2379 return c & 0xFF;
2380 }
2381 }
2382
2383 return -1;
2384 }
2385
2386
fore200e_monitor_puts(struct fore200e * fore200e,char * str)2387 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2388 {
2389 while (*str) {
2390
2391 /* the i960 monitor doesn't accept any new character if it has something to say */
2392 while (fore200e_monitor_getc(fore200e) >= 0);
2393
2394 fore200e_monitor_putc(fore200e, *str++);
2395 }
2396
2397 while (fore200e_monitor_getc(fore200e) >= 0);
2398 }
2399
2400 #ifdef __LITTLE_ENDIAN
2401 #define FW_EXT ".bin"
2402 #else
2403 #define FW_EXT "_ecd.bin2"
2404 #endif
2405
fore200e_load_and_start_fw(struct fore200e * fore200e)2406 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2407 {
2408 const struct firmware *firmware;
2409 const struct fw_header *fw_header;
2410 const __le32 *fw_data;
2411 u32 fw_size;
2412 u32 __iomem *load_addr;
2413 char buf[48];
2414 int err;
2415
2416 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2417 if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2418 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2419 return err;
2420 }
2421
2422 fw_data = (const __le32 *)firmware->data;
2423 fw_size = firmware->size / sizeof(u32);
2424 fw_header = (const struct fw_header *)firmware->data;
2425 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2426
2427 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2428 fore200e->name, load_addr, fw_size);
2429
2430 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2431 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2432 goto release;
2433 }
2434
2435 for (; fw_size--; fw_data++, load_addr++)
2436 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2437
2438 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2439
2440 #if defined(__sparc_v9__)
2441 /* reported to be required by SBA cards on some sparc64 hosts */
2442 fore200e_spin(100);
2443 #endif
2444
2445 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2446 fore200e_monitor_puts(fore200e, buf);
2447
2448 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2449 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2450 goto release;
2451 }
2452
2453 printk(FORE200E "device %s firmware started\n", fore200e->name);
2454
2455 fore200e->state = FORE200E_STATE_START_FW;
2456 err = 0;
2457
2458 release:
2459 release_firmware(firmware);
2460 return err;
2461 }
2462
2463
fore200e_register(struct fore200e * fore200e,struct device * parent)2464 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2465 {
2466 struct atm_dev* atm_dev;
2467
2468 DPRINTK(2, "device %s being registered\n", fore200e->name);
2469
2470 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2471 -1, NULL);
2472 if (atm_dev == NULL) {
2473 printk(FORE200E "unable to register device %s\n", fore200e->name);
2474 return -ENODEV;
2475 }
2476
2477 atm_dev->dev_data = fore200e;
2478 fore200e->atm_dev = atm_dev;
2479
2480 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2481 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2482
2483 fore200e->available_cell_rate = ATM_OC3_PCR;
2484
2485 fore200e->state = FORE200E_STATE_REGISTER;
2486 return 0;
2487 }
2488
2489
fore200e_init(struct fore200e * fore200e,struct device * parent)2490 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2491 {
2492 if (fore200e_register(fore200e, parent) < 0)
2493 return -ENODEV;
2494
2495 if (fore200e->bus->configure(fore200e) < 0)
2496 return -ENODEV;
2497
2498 if (fore200e->bus->map(fore200e) < 0)
2499 return -ENODEV;
2500
2501 if (fore200e_reset(fore200e, 1) < 0)
2502 return -ENODEV;
2503
2504 if (fore200e_load_and_start_fw(fore200e) < 0)
2505 return -ENODEV;
2506
2507 if (fore200e_initialize(fore200e) < 0)
2508 return -ENODEV;
2509
2510 if (fore200e_init_cmd_queue(fore200e) < 0)
2511 return -ENOMEM;
2512
2513 if (fore200e_init_tx_queue(fore200e) < 0)
2514 return -ENOMEM;
2515
2516 if (fore200e_init_rx_queue(fore200e) < 0)
2517 return -ENOMEM;
2518
2519 if (fore200e_init_bs_queue(fore200e) < 0)
2520 return -ENOMEM;
2521
2522 if (fore200e_alloc_rx_buf(fore200e) < 0)
2523 return -ENOMEM;
2524
2525 if (fore200e_get_esi(fore200e) < 0)
2526 return -EIO;
2527
2528 if (fore200e_irq_request(fore200e) < 0)
2529 return -EBUSY;
2530
2531 fore200e_supply(fore200e);
2532
2533 /* all done, board initialization is now complete */
2534 fore200e->state = FORE200E_STATE_COMPLETE;
2535 return 0;
2536 }
2537
2538 #ifdef CONFIG_SBUS
2539 static const struct of_device_id fore200e_sba_match[];
fore200e_sba_probe(struct platform_device * op)2540 static int fore200e_sba_probe(struct platform_device *op)
2541 {
2542 const struct of_device_id *match;
2543 struct fore200e *fore200e;
2544 static int index = 0;
2545 int err;
2546
2547 match = of_match_device(fore200e_sba_match, &op->dev);
2548 if (!match)
2549 return -EINVAL;
2550
2551 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2552 if (!fore200e)
2553 return -ENOMEM;
2554
2555 fore200e->bus = &fore200e_sbus_ops;
2556 fore200e->dev = &op->dev;
2557 fore200e->irq = op->archdata.irqs[0];
2558 fore200e->phys_base = op->resource[0].start;
2559
2560 sprintf(fore200e->name, "SBA-200E-%d", index);
2561
2562 err = fore200e_init(fore200e, &op->dev);
2563 if (err < 0) {
2564 fore200e_shutdown(fore200e);
2565 kfree(fore200e);
2566 return err;
2567 }
2568
2569 index++;
2570 dev_set_drvdata(&op->dev, fore200e);
2571
2572 return 0;
2573 }
2574
fore200e_sba_remove(struct platform_device * op)2575 static int fore200e_sba_remove(struct platform_device *op)
2576 {
2577 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2578
2579 fore200e_shutdown(fore200e);
2580 kfree(fore200e);
2581
2582 return 0;
2583 }
2584
2585 static const struct of_device_id fore200e_sba_match[] = {
2586 {
2587 .name = SBA200E_PROM_NAME,
2588 },
2589 {},
2590 };
2591 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2592
2593 static struct platform_driver fore200e_sba_driver = {
2594 .driver = {
2595 .name = "fore_200e",
2596 .of_match_table = fore200e_sba_match,
2597 },
2598 .probe = fore200e_sba_probe,
2599 .remove = fore200e_sba_remove,
2600 };
2601 #endif
2602
2603 #ifdef CONFIG_PCI
fore200e_pca_detect(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2604 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2605 const struct pci_device_id *pci_ent)
2606 {
2607 struct fore200e* fore200e;
2608 int err = 0;
2609 static int index = 0;
2610
2611 if (pci_enable_device(pci_dev)) {
2612 err = -EINVAL;
2613 goto out;
2614 }
2615
2616 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2617 err = -EINVAL;
2618 goto out;
2619 }
2620
2621 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2622 if (fore200e == NULL) {
2623 err = -ENOMEM;
2624 goto out_disable;
2625 }
2626
2627 fore200e->bus = &fore200e_pci_ops;
2628 fore200e->dev = &pci_dev->dev;
2629 fore200e->irq = pci_dev->irq;
2630 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2631
2632 sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2633
2634 pci_set_master(pci_dev);
2635
2636 printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2637 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2638
2639 sprintf(fore200e->name, "PCA-200E-%d", index);
2640
2641 err = fore200e_init(fore200e, &pci_dev->dev);
2642 if (err < 0) {
2643 fore200e_shutdown(fore200e);
2644 goto out_free;
2645 }
2646
2647 ++index;
2648 pci_set_drvdata(pci_dev, fore200e);
2649
2650 out:
2651 return err;
2652
2653 out_free:
2654 kfree(fore200e);
2655 out_disable:
2656 pci_disable_device(pci_dev);
2657 goto out;
2658 }
2659
2660
fore200e_pca_remove_one(struct pci_dev * pci_dev)2661 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2662 {
2663 struct fore200e *fore200e;
2664
2665 fore200e = pci_get_drvdata(pci_dev);
2666
2667 fore200e_shutdown(fore200e);
2668 kfree(fore200e);
2669 pci_disable_device(pci_dev);
2670 }
2671
2672
2673 static const struct pci_device_id fore200e_pca_tbl[] = {
2674 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2675 { 0, }
2676 };
2677
2678 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2679
2680 static struct pci_driver fore200e_pca_driver = {
2681 .name = "fore_200e",
2682 .probe = fore200e_pca_detect,
2683 .remove = fore200e_pca_remove_one,
2684 .id_table = fore200e_pca_tbl,
2685 };
2686 #endif
2687
fore200e_module_init(void)2688 static int __init fore200e_module_init(void)
2689 {
2690 int err = 0;
2691
2692 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2693
2694 #ifdef CONFIG_SBUS
2695 err = platform_driver_register(&fore200e_sba_driver);
2696 if (err)
2697 return err;
2698 #endif
2699
2700 #ifdef CONFIG_PCI
2701 err = pci_register_driver(&fore200e_pca_driver);
2702 #endif
2703
2704 #ifdef CONFIG_SBUS
2705 if (err)
2706 platform_driver_unregister(&fore200e_sba_driver);
2707 #endif
2708
2709 return err;
2710 }
2711
fore200e_module_cleanup(void)2712 static void __exit fore200e_module_cleanup(void)
2713 {
2714 #ifdef CONFIG_PCI
2715 pci_unregister_driver(&fore200e_pca_driver);
2716 #endif
2717 #ifdef CONFIG_SBUS
2718 platform_driver_unregister(&fore200e_sba_driver);
2719 #endif
2720 }
2721
2722 static int
fore200e_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2723 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2724 {
2725 struct fore200e* fore200e = FORE200E_DEV(dev);
2726 struct fore200e_vcc* fore200e_vcc;
2727 struct atm_vcc* vcc;
2728 int i, len, left = *pos;
2729 unsigned long flags;
2730
2731 if (!left--) {
2732
2733 if (fore200e_getstats(fore200e) < 0)
2734 return -EIO;
2735
2736 len = sprintf(page,"\n"
2737 " device:\n"
2738 " internal name:\t\t%s\n", fore200e->name);
2739
2740 /* print bus-specific information */
2741 if (fore200e->bus->proc_read)
2742 len += fore200e->bus->proc_read(fore200e, page + len);
2743
2744 len += sprintf(page + len,
2745 " interrupt line:\t\t%s\n"
2746 " physical base address:\t0x%p\n"
2747 " virtual base address:\t0x%p\n"
2748 " factory address (ESI):\t%pM\n"
2749 " board serial number:\t\t%d\n\n",
2750 fore200e_irq_itoa(fore200e->irq),
2751 (void*)fore200e->phys_base,
2752 fore200e->virt_base,
2753 fore200e->esi,
2754 fore200e->esi[4] * 256 + fore200e->esi[5]);
2755
2756 return len;
2757 }
2758
2759 if (!left--)
2760 return sprintf(page,
2761 " free small bufs, scheme 1:\t%d\n"
2762 " free large bufs, scheme 1:\t%d\n"
2763 " free small bufs, scheme 2:\t%d\n"
2764 " free large bufs, scheme 2:\t%d\n",
2765 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2766 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2767 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2768 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2769
2770 if (!left--) {
2771 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2772
2773 len = sprintf(page,"\n\n"
2774 " cell processor:\n"
2775 " heartbeat state:\t\t");
2776
2777 if (hb >> 16 != 0xDEAD)
2778 len += sprintf(page + len, "0x%08x\n", hb);
2779 else
2780 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2781
2782 return len;
2783 }
2784
2785 if (!left--) {
2786 static const char* media_name[] = {
2787 "unshielded twisted pair",
2788 "multimode optical fiber ST",
2789 "multimode optical fiber SC",
2790 "single-mode optical fiber ST",
2791 "single-mode optical fiber SC",
2792 "unknown"
2793 };
2794
2795 static const char* oc3_mode[] = {
2796 "normal operation",
2797 "diagnostic loopback",
2798 "line loopback",
2799 "unknown"
2800 };
2801
2802 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2803 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2804 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2805 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2806 u32 oc3_index;
2807
2808 if (media_index > 4)
2809 media_index = 5;
2810
2811 switch (fore200e->loop_mode) {
2812 case ATM_LM_NONE: oc3_index = 0;
2813 break;
2814 case ATM_LM_LOC_PHY: oc3_index = 1;
2815 break;
2816 case ATM_LM_RMT_PHY: oc3_index = 2;
2817 break;
2818 default: oc3_index = 3;
2819 }
2820
2821 return sprintf(page,
2822 " firmware release:\t\t%d.%d.%d\n"
2823 " monitor release:\t\t%d.%d\n"
2824 " media type:\t\t\t%s\n"
2825 " OC-3 revision:\t\t0x%x\n"
2826 " OC-3 mode:\t\t\t%s",
2827 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2828 mon960_release >> 16, mon960_release << 16 >> 16,
2829 media_name[ media_index ],
2830 oc3_revision,
2831 oc3_mode[ oc3_index ]);
2832 }
2833
2834 if (!left--) {
2835 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2836
2837 return sprintf(page,
2838 "\n\n"
2839 " monitor:\n"
2840 " version number:\t\t%d\n"
2841 " boot status word:\t\t0x%08x\n",
2842 fore200e->bus->read(&cp_monitor->mon_version),
2843 fore200e->bus->read(&cp_monitor->bstat));
2844 }
2845
2846 if (!left--)
2847 return sprintf(page,
2848 "\n"
2849 " device statistics:\n"
2850 " 4b5b:\n"
2851 " crc_header_errors:\t\t%10u\n"
2852 " framing_errors:\t\t%10u\n",
2853 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2854 be32_to_cpu(fore200e->stats->phy.framing_errors));
2855
2856 if (!left--)
2857 return sprintf(page, "\n"
2858 " OC-3:\n"
2859 " section_bip8_errors:\t%10u\n"
2860 " path_bip8_errors:\t\t%10u\n"
2861 " line_bip24_errors:\t\t%10u\n"
2862 " line_febe_errors:\t\t%10u\n"
2863 " path_febe_errors:\t\t%10u\n"
2864 " corr_hcs_errors:\t\t%10u\n"
2865 " ucorr_hcs_errors:\t\t%10u\n",
2866 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2867 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2868 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2869 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2870 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2871 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2872 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2873
2874 if (!left--)
2875 return sprintf(page,"\n"
2876 " ATM:\t\t\t\t cells\n"
2877 " TX:\t\t\t%10u\n"
2878 " RX:\t\t\t%10u\n"
2879 " vpi out of range:\t\t%10u\n"
2880 " vpi no conn:\t\t%10u\n"
2881 " vci out of range:\t\t%10u\n"
2882 " vci no conn:\t\t%10u\n",
2883 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2884 be32_to_cpu(fore200e->stats->atm.cells_received),
2885 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2886 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2887 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2888 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2889
2890 if (!left--)
2891 return sprintf(page,"\n"
2892 " AAL0:\t\t\t cells\n"
2893 " TX:\t\t\t%10u\n"
2894 " RX:\t\t\t%10u\n"
2895 " dropped:\t\t\t%10u\n",
2896 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2897 be32_to_cpu(fore200e->stats->aal0.cells_received),
2898 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2899
2900 if (!left--)
2901 return sprintf(page,"\n"
2902 " AAL3/4:\n"
2903 " SAR sublayer:\t\t cells\n"
2904 " TX:\t\t\t%10u\n"
2905 " RX:\t\t\t%10u\n"
2906 " dropped:\t\t\t%10u\n"
2907 " CRC errors:\t\t%10u\n"
2908 " protocol errors:\t\t%10u\n\n"
2909 " CS sublayer:\t\t PDUs\n"
2910 " TX:\t\t\t%10u\n"
2911 " RX:\t\t\t%10u\n"
2912 " dropped:\t\t\t%10u\n"
2913 " protocol errors:\t\t%10u\n",
2914 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2915 be32_to_cpu(fore200e->stats->aal34.cells_received),
2916 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2917 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2918 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2919 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2920 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2921 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2922 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2923
2924 if (!left--)
2925 return sprintf(page,"\n"
2926 " AAL5:\n"
2927 " SAR sublayer:\t\t cells\n"
2928 " TX:\t\t\t%10u\n"
2929 " RX:\t\t\t%10u\n"
2930 " dropped:\t\t\t%10u\n"
2931 " congestions:\t\t%10u\n\n"
2932 " CS sublayer:\t\t PDUs\n"
2933 " TX:\t\t\t%10u\n"
2934 " RX:\t\t\t%10u\n"
2935 " dropped:\t\t\t%10u\n"
2936 " CRC errors:\t\t%10u\n"
2937 " protocol errors:\t\t%10u\n",
2938 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2939 be32_to_cpu(fore200e->stats->aal5.cells_received),
2940 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2941 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2942 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2943 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2944 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2945 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2946 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2947
2948 if (!left--)
2949 return sprintf(page,"\n"
2950 " AUX:\t\t allocation failures\n"
2951 " small b1:\t\t\t%10u\n"
2952 " large b1:\t\t\t%10u\n"
2953 " small b2:\t\t\t%10u\n"
2954 " large b2:\t\t\t%10u\n"
2955 " RX PDUs:\t\t\t%10u\n"
2956 " TX PDUs:\t\t\t%10lu\n",
2957 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2958 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2959 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2960 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2961 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2962 fore200e->tx_sat);
2963
2964 if (!left--)
2965 return sprintf(page,"\n"
2966 " receive carrier:\t\t\t%s\n",
2967 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2968
2969 if (!left--) {
2970 return sprintf(page,"\n"
2971 " VCCs:\n address VPI VCI AAL "
2972 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
2973 }
2974
2975 for (i = 0; i < NBR_CONNECT; i++) {
2976
2977 vcc = fore200e->vc_map[i].vcc;
2978
2979 if (vcc == NULL)
2980 continue;
2981
2982 spin_lock_irqsave(&fore200e->q_lock, flags);
2983
2984 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2985
2986 fore200e_vcc = FORE200E_VCC(vcc);
2987 ASSERT(fore200e_vcc);
2988
2989 len = sprintf(page,
2990 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
2991 vcc,
2992 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2993 fore200e_vcc->tx_pdu,
2994 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2995 fore200e_vcc->tx_max_pdu,
2996 fore200e_vcc->rx_pdu,
2997 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2998 fore200e_vcc->rx_max_pdu);
2999
3000 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3001 return len;
3002 }
3003
3004 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3005 }
3006
3007 return 0;
3008 }
3009
3010 module_init(fore200e_module_init);
3011 module_exit(fore200e_module_cleanup);
3012
3013
3014 static const struct atmdev_ops fore200e_ops = {
3015 .open = fore200e_open,
3016 .close = fore200e_close,
3017 .ioctl = fore200e_ioctl,
3018 .getsockopt = fore200e_getsockopt,
3019 .setsockopt = fore200e_setsockopt,
3020 .send = fore200e_send,
3021 .change_qos = fore200e_change_qos,
3022 .proc_read = fore200e_proc_read,
3023 .owner = THIS_MODULE
3024 };
3025
3026 MODULE_LICENSE("GPL");
3027 #ifdef CONFIG_PCI
3028 #ifdef __LITTLE_ENDIAN__
3029 MODULE_FIRMWARE("pca200e.bin");
3030 #else
3031 MODULE_FIRMWARE("pca200e_ecd.bin2");
3032 #endif
3033 #endif /* CONFIG_PCI */
3034 #ifdef CONFIG_SBUS
3035 MODULE_FIRMWARE("sba200e_ecd.bin2");
3036 #endif
3037