1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
sysfs_deprecated_setup(char * arg)40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52
53 #ifdef CONFIG_SRCU
54 static DEFINE_MUTEX(device_links_lock);
55 DEFINE_STATIC_SRCU(device_links_srcu);
56
device_links_write_lock(void)57 static inline void device_links_write_lock(void)
58 {
59 mutex_lock(&device_links_lock);
60 }
61
device_links_write_unlock(void)62 static inline void device_links_write_unlock(void)
63 {
64 mutex_unlock(&device_links_lock);
65 }
66
device_links_read_lock(void)67 int device_links_read_lock(void)
68 {
69 return srcu_read_lock(&device_links_srcu);
70 }
71
device_links_read_unlock(int idx)72 void device_links_read_unlock(int idx)
73 {
74 srcu_read_unlock(&device_links_srcu, idx);
75 }
76
device_links_read_lock_held(void)77 int device_links_read_lock_held(void)
78 {
79 return srcu_read_lock_held(&device_links_srcu);
80 }
81 #else /* !CONFIG_SRCU */
82 static DECLARE_RWSEM(device_links_lock);
83
device_links_write_lock(void)84 static inline void device_links_write_lock(void)
85 {
86 down_write(&device_links_lock);
87 }
88
device_links_write_unlock(void)89 static inline void device_links_write_unlock(void)
90 {
91 up_write(&device_links_lock);
92 }
93
device_links_read_lock(void)94 int device_links_read_lock(void)
95 {
96 down_read(&device_links_lock);
97 return 0;
98 }
99
device_links_read_unlock(int not_used)100 void device_links_read_unlock(int not_used)
101 {
102 up_read(&device_links_lock);
103 }
104
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)106 int device_links_read_lock_held(void)
107 {
108 return lockdep_is_held(&device_links_lock);
109 }
110 #endif
111 #endif /* !CONFIG_SRCU */
112
113 /**
114 * device_is_dependent - Check if one device depends on another one
115 * @dev: Device to check dependencies for.
116 * @target: Device to check against.
117 *
118 * Check if @target depends on @dev or any device dependent on it (its child or
119 * its consumer etc). Return 1 if that is the case or 0 otherwise.
120 */
device_is_dependent(struct device * dev,void * target)121 static int device_is_dependent(struct device *dev, void *target)
122 {
123 struct device_link *link;
124 int ret;
125
126 if (dev == target)
127 return 1;
128
129 ret = device_for_each_child(dev, target, device_is_dependent);
130 if (ret)
131 return ret;
132
133 list_for_each_entry(link, &dev->links.consumers, s_node) {
134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
135 continue;
136
137 if (link->consumer == target)
138 return 1;
139
140 ret = device_is_dependent(link->consumer, target);
141 if (ret)
142 break;
143 }
144 return ret;
145 }
146
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)147 static void device_link_init_status(struct device_link *link,
148 struct device *consumer,
149 struct device *supplier)
150 {
151 switch (supplier->links.status) {
152 case DL_DEV_PROBING:
153 switch (consumer->links.status) {
154 case DL_DEV_PROBING:
155 /*
156 * A consumer driver can create a link to a supplier
157 * that has not completed its probing yet as long as it
158 * knows that the supplier is already functional (for
159 * example, it has just acquired some resources from the
160 * supplier).
161 */
162 link->status = DL_STATE_CONSUMER_PROBE;
163 break;
164 default:
165 link->status = DL_STATE_DORMANT;
166 break;
167 }
168 break;
169 case DL_DEV_DRIVER_BOUND:
170 switch (consumer->links.status) {
171 case DL_DEV_PROBING:
172 link->status = DL_STATE_CONSUMER_PROBE;
173 break;
174 case DL_DEV_DRIVER_BOUND:
175 link->status = DL_STATE_ACTIVE;
176 break;
177 default:
178 link->status = DL_STATE_AVAILABLE;
179 break;
180 }
181 break;
182 case DL_DEV_UNBINDING:
183 link->status = DL_STATE_SUPPLIER_UNBIND;
184 break;
185 default:
186 link->status = DL_STATE_DORMANT;
187 break;
188 }
189 }
190
device_reorder_to_tail(struct device * dev,void * not_used)191 static int device_reorder_to_tail(struct device *dev, void *not_used)
192 {
193 struct device_link *link;
194
195 /*
196 * Devices that have not been registered yet will be put to the ends
197 * of the lists during the registration, so skip them here.
198 */
199 if (device_is_registered(dev))
200 devices_kset_move_last(dev);
201
202 if (device_pm_initialized(dev))
203 device_pm_move_last(dev);
204
205 device_for_each_child(dev, NULL, device_reorder_to_tail);
206 list_for_each_entry(link, &dev->links.consumers, s_node) {
207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
208 continue;
209 device_reorder_to_tail(link->consumer, NULL);
210 }
211
212 return 0;
213 }
214
215 /**
216 * device_pm_move_to_tail - Move set of devices to the end of device lists
217 * @dev: Device to move
218 *
219 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
220 *
221 * It moves the @dev along with all of its children and all of its consumers
222 * to the ends of the device_kset and dpm_list, recursively.
223 */
device_pm_move_to_tail(struct device * dev)224 void device_pm_move_to_tail(struct device *dev)
225 {
226 int idx;
227
228 idx = device_links_read_lock();
229 device_pm_lock();
230 device_reorder_to_tail(dev, NULL);
231 device_pm_unlock();
232 device_links_read_unlock(idx);
233 }
234
235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
236 DL_FLAG_AUTOREMOVE_SUPPLIER | \
237 DL_FLAG_AUTOPROBE_CONSUMER | \
238 DL_FLAG_SYNC_STATE_ONLY)
239
240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
242
243 /**
244 * device_link_add - Create a link between two devices.
245 * @consumer: Consumer end of the link.
246 * @supplier: Supplier end of the link.
247 * @flags: Link flags.
248 *
249 * The caller is responsible for the proper synchronization of the link creation
250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
251 * runtime PM framework to take the link into account. Second, if the
252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
253 * be forced into the active metastate and reference-counted upon the creation
254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
255 * ignored.
256 *
257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
258 * expected to release the link returned by it directly with the help of either
259 * device_link_del() or device_link_remove().
260 *
261 * If that flag is not set, however, the caller of this function is handing the
262 * management of the link over to the driver core entirely and its return value
263 * can only be used to check whether or not the link is present. In that case,
264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
265 * flags can be used to indicate to the driver core when the link can be safely
266 * deleted. Namely, setting one of them in @flags indicates to the driver core
267 * that the link is not going to be used (by the given caller of this function)
268 * after unbinding the consumer or supplier driver, respectively, from its
269 * device, so the link can be deleted at that point. If none of them is set,
270 * the link will be maintained until one of the devices pointed to by it (either
271 * the consumer or the supplier) is unregistered.
272 *
273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
276 * be used to request the driver core to automaticall probe for a consmer
277 * driver after successfully binding a driver to the supplier device.
278 *
279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
281 * the same time is invalid and will cause NULL to be returned upfront.
282 * However, if a device link between the given @consumer and @supplier pair
283 * exists already when this function is called for them, the existing link will
284 * be returned regardless of its current type and status (the link's flags may
285 * be modified then). The caller of this function is then expected to treat
286 * the link as though it has just been created, so (in particular) if
287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
288 * explicitly when not needed any more (as stated above).
289 *
290 * A side effect of the link creation is re-ordering of dpm_list and the
291 * devices_kset list by moving the consumer device and all devices depending
292 * on it to the ends of these lists (that does not happen to devices that have
293 * not been registered when this function is called).
294 *
295 * The supplier device is required to be registered when this function is called
296 * and NULL will be returned if that is not the case. The consumer device need
297 * not be registered, however.
298 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)299 struct device_link *device_link_add(struct device *consumer,
300 struct device *supplier, u32 flags)
301 {
302 struct device_link *link;
303
304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
306 (flags & DL_FLAG_SYNC_STATE_ONLY &&
307 flags != DL_FLAG_SYNC_STATE_ONLY) ||
308 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
310 DL_FLAG_AUTOREMOVE_SUPPLIER)))
311 return NULL;
312
313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
314 if (pm_runtime_get_sync(supplier) < 0) {
315 pm_runtime_put_noidle(supplier);
316 return NULL;
317 }
318 }
319
320 if (!(flags & DL_FLAG_STATELESS))
321 flags |= DL_FLAG_MANAGED;
322
323 device_links_write_lock();
324 device_pm_lock();
325
326 /*
327 * If the supplier has not been fully registered yet or there is a
328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
329 * the supplier already in the graph, return NULL. If the link is a
330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
331 * because it only affects sync_state() callbacks.
332 */
333 if (!device_pm_initialized(supplier)
334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
335 device_is_dependent(consumer, supplier))) {
336 link = NULL;
337 goto out;
338 }
339
340 /*
341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
344 */
345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
347
348 list_for_each_entry(link, &supplier->links.consumers, s_node) {
349 if (link->consumer != consumer)
350 continue;
351
352 if (flags & DL_FLAG_PM_RUNTIME) {
353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
354 pm_runtime_new_link(consumer);
355 link->flags |= DL_FLAG_PM_RUNTIME;
356 }
357 if (flags & DL_FLAG_RPM_ACTIVE)
358 refcount_inc(&link->rpm_active);
359 }
360
361 if (flags & DL_FLAG_STATELESS) {
362 kref_get(&link->kref);
363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
364 !(link->flags & DL_FLAG_STATELESS)) {
365 link->flags |= DL_FLAG_STATELESS;
366 goto reorder;
367 } else {
368 goto out;
369 }
370 }
371
372 /*
373 * If the life time of the link following from the new flags is
374 * longer than indicated by the flags of the existing link,
375 * update the existing link to stay around longer.
376 */
377 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
378 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
379 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
380 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
381 }
382 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
383 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
384 DL_FLAG_AUTOREMOVE_SUPPLIER);
385 }
386 if (!(link->flags & DL_FLAG_MANAGED)) {
387 kref_get(&link->kref);
388 link->flags |= DL_FLAG_MANAGED;
389 device_link_init_status(link, consumer, supplier);
390 }
391 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
392 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
393 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
394 goto reorder;
395 }
396
397 goto out;
398 }
399
400 link = kzalloc(sizeof(*link), GFP_KERNEL);
401 if (!link)
402 goto out;
403
404 refcount_set(&link->rpm_active, 1);
405
406 if (flags & DL_FLAG_PM_RUNTIME) {
407 if (flags & DL_FLAG_RPM_ACTIVE)
408 refcount_inc(&link->rpm_active);
409
410 pm_runtime_new_link(consumer);
411 }
412
413 get_device(supplier);
414 link->supplier = supplier;
415 INIT_LIST_HEAD(&link->s_node);
416 get_device(consumer);
417 link->consumer = consumer;
418 INIT_LIST_HEAD(&link->c_node);
419 link->flags = flags;
420 kref_init(&link->kref);
421
422 /* Determine the initial link state. */
423 if (flags & DL_FLAG_STATELESS)
424 link->status = DL_STATE_NONE;
425 else
426 device_link_init_status(link, consumer, supplier);
427
428 /*
429 * Some callers expect the link creation during consumer driver probe to
430 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
431 */
432 if (link->status == DL_STATE_CONSUMER_PROBE &&
433 flags & DL_FLAG_PM_RUNTIME)
434 pm_runtime_resume(supplier);
435
436 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
437 dev_dbg(consumer,
438 "Linked as a sync state only consumer to %s\n",
439 dev_name(supplier));
440 goto out;
441 }
442 reorder:
443 /*
444 * Move the consumer and all of the devices depending on it to the end
445 * of dpm_list and the devices_kset list.
446 *
447 * It is necessary to hold dpm_list locked throughout all that or else
448 * we may end up suspending with a wrong ordering of it.
449 */
450 device_reorder_to_tail(consumer, NULL);
451
452 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
453 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
454
455 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
456
457 out:
458 device_pm_unlock();
459 device_links_write_unlock();
460
461 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
462 pm_runtime_put(supplier);
463
464 return link;
465 }
466 EXPORT_SYMBOL_GPL(device_link_add);
467
468 /**
469 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
470 * @consumer: Consumer device
471 *
472 * Marks the @consumer device as waiting for suppliers to become available by
473 * adding it to the wait_for_suppliers list. The consumer device will never be
474 * probed until it's removed from the wait_for_suppliers list.
475 *
476 * The caller is responsible for adding the links to the supplier devices once
477 * they are available and removing the @consumer device from the
478 * wait_for_suppliers list once links to all the suppliers have been created.
479 *
480 * This function is NOT meant to be called from the probe function of the
481 * consumer but rather from code that creates/adds the consumer device.
482 */
device_link_wait_for_supplier(struct device * consumer,bool need_for_probe)483 static void device_link_wait_for_supplier(struct device *consumer,
484 bool need_for_probe)
485 {
486 mutex_lock(&wfs_lock);
487 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
488 consumer->links.need_for_probe = need_for_probe;
489 mutex_unlock(&wfs_lock);
490 }
491
device_link_wait_for_mandatory_supplier(struct device * consumer)492 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
493 {
494 device_link_wait_for_supplier(consumer, true);
495 }
496
device_link_wait_for_optional_supplier(struct device * consumer)497 static void device_link_wait_for_optional_supplier(struct device *consumer)
498 {
499 device_link_wait_for_supplier(consumer, false);
500 }
501
502 /**
503 * device_link_add_missing_supplier_links - Add links from consumer devices to
504 * supplier devices, leaving any
505 * consumer with inactive suppliers on
506 * the wait_for_suppliers list
507 *
508 * Loops through all consumers waiting on suppliers and tries to add all their
509 * supplier links. If that succeeds, the consumer device is removed from
510 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
511 * list. Devices left on the wait_for_suppliers list will not be probed.
512 *
513 * The fwnode add_links callback is expected to return 0 if it has found and
514 * added all the supplier links for the consumer device. It should return an
515 * error if it isn't able to do so.
516 *
517 * The caller of device_link_wait_for_supplier() is expected to call this once
518 * it's aware of potential suppliers becoming available.
519 */
device_link_add_missing_supplier_links(void)520 static void device_link_add_missing_supplier_links(void)
521 {
522 struct device *dev, *tmp;
523
524 mutex_lock(&wfs_lock);
525 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
526 links.needs_suppliers)
527 if (!fwnode_call_int_op(dev->fwnode, add_links, dev))
528 list_del_init(&dev->links.needs_suppliers);
529 mutex_unlock(&wfs_lock);
530 }
531
device_link_free(struct device_link * link)532 static void device_link_free(struct device_link *link)
533 {
534 while (refcount_dec_not_one(&link->rpm_active))
535 pm_runtime_put(link->supplier);
536
537 put_device(link->consumer);
538 put_device(link->supplier);
539 kfree(link);
540 }
541
542 #ifdef CONFIG_SRCU
__device_link_free_srcu(struct rcu_head * rhead)543 static void __device_link_free_srcu(struct rcu_head *rhead)
544 {
545 device_link_free(container_of(rhead, struct device_link, rcu_head));
546 }
547
__device_link_del(struct kref * kref)548 static void __device_link_del(struct kref *kref)
549 {
550 struct device_link *link = container_of(kref, struct device_link, kref);
551
552 dev_dbg(link->consumer, "Dropping the link to %s\n",
553 dev_name(link->supplier));
554
555 if (link->flags & DL_FLAG_PM_RUNTIME)
556 pm_runtime_drop_link(link->consumer);
557
558 list_del_rcu(&link->s_node);
559 list_del_rcu(&link->c_node);
560 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
561 }
562 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)563 static void __device_link_del(struct kref *kref)
564 {
565 struct device_link *link = container_of(kref, struct device_link, kref);
566
567 dev_info(link->consumer, "Dropping the link to %s\n",
568 dev_name(link->supplier));
569
570 if (link->flags & DL_FLAG_PM_RUNTIME)
571 pm_runtime_drop_link(link->consumer);
572
573 list_del(&link->s_node);
574 list_del(&link->c_node);
575 device_link_free(link);
576 }
577 #endif /* !CONFIG_SRCU */
578
device_link_put_kref(struct device_link * link)579 static void device_link_put_kref(struct device_link *link)
580 {
581 if (link->flags & DL_FLAG_STATELESS)
582 kref_put(&link->kref, __device_link_del);
583 else
584 WARN(1, "Unable to drop a managed device link reference\n");
585 }
586
587 /**
588 * device_link_del - Delete a stateless link between two devices.
589 * @link: Device link to delete.
590 *
591 * The caller must ensure proper synchronization of this function with runtime
592 * PM. If the link was added multiple times, it needs to be deleted as often.
593 * Care is required for hotplugged devices: Their links are purged on removal
594 * and calling device_link_del() is then no longer allowed.
595 */
device_link_del(struct device_link * link)596 void device_link_del(struct device_link *link)
597 {
598 device_links_write_lock();
599 device_pm_lock();
600 device_link_put_kref(link);
601 device_pm_unlock();
602 device_links_write_unlock();
603 }
604 EXPORT_SYMBOL_GPL(device_link_del);
605
606 /**
607 * device_link_remove - Delete a stateless link between two devices.
608 * @consumer: Consumer end of the link.
609 * @supplier: Supplier end of the link.
610 *
611 * The caller must ensure proper synchronization of this function with runtime
612 * PM.
613 */
device_link_remove(void * consumer,struct device * supplier)614 void device_link_remove(void *consumer, struct device *supplier)
615 {
616 struct device_link *link;
617
618 if (WARN_ON(consumer == supplier))
619 return;
620
621 device_links_write_lock();
622 device_pm_lock();
623
624 list_for_each_entry(link, &supplier->links.consumers, s_node) {
625 if (link->consumer == consumer) {
626 device_link_put_kref(link);
627 break;
628 }
629 }
630
631 device_pm_unlock();
632 device_links_write_unlock();
633 }
634 EXPORT_SYMBOL_GPL(device_link_remove);
635
device_links_missing_supplier(struct device * dev)636 static void device_links_missing_supplier(struct device *dev)
637 {
638 struct device_link *link;
639
640 list_for_each_entry(link, &dev->links.suppliers, c_node)
641 if (link->status == DL_STATE_CONSUMER_PROBE)
642 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
643 }
644
645 /**
646 * device_links_check_suppliers - Check presence of supplier drivers.
647 * @dev: Consumer device.
648 *
649 * Check links from this device to any suppliers. Walk the list of the device's
650 * links to suppliers and see if all of them are available. If not, simply
651 * return -EPROBE_DEFER.
652 *
653 * We need to guarantee that the supplier will not go away after the check has
654 * been positive here. It only can go away in __device_release_driver() and
655 * that function checks the device's links to consumers. This means we need to
656 * mark the link as "consumer probe in progress" to make the supplier removal
657 * wait for us to complete (or bad things may happen).
658 *
659 * Links without the DL_FLAG_MANAGED flag set are ignored.
660 */
device_links_check_suppliers(struct device * dev)661 int device_links_check_suppliers(struct device *dev)
662 {
663 struct device_link *link;
664 int ret = 0;
665
666 /*
667 * Device waiting for supplier to become available is not allowed to
668 * probe.
669 */
670 mutex_lock(&wfs_lock);
671 if (!list_empty(&dev->links.needs_suppliers) &&
672 dev->links.need_for_probe) {
673 mutex_unlock(&wfs_lock);
674 return -EPROBE_DEFER;
675 }
676 mutex_unlock(&wfs_lock);
677
678 device_links_write_lock();
679
680 list_for_each_entry(link, &dev->links.suppliers, c_node) {
681 if (!(link->flags & DL_FLAG_MANAGED) ||
682 link->flags & DL_FLAG_SYNC_STATE_ONLY)
683 continue;
684
685 if (link->status != DL_STATE_AVAILABLE) {
686 device_links_missing_supplier(dev);
687 ret = -EPROBE_DEFER;
688 break;
689 }
690 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
691 }
692 dev->links.status = DL_DEV_PROBING;
693
694 device_links_write_unlock();
695 return ret;
696 }
697
698 /**
699 * __device_links_queue_sync_state - Queue a device for sync_state() callback
700 * @dev: Device to call sync_state() on
701 * @list: List head to queue the @dev on
702 *
703 * Queues a device for a sync_state() callback when the device links write lock
704 * isn't held. This allows the sync_state() execution flow to use device links
705 * APIs. The caller must ensure this function is called with
706 * device_links_write_lock() held.
707 *
708 * This function does a get_device() to make sure the device is not freed while
709 * on this list.
710 *
711 * So the caller must also ensure that device_links_flush_sync_list() is called
712 * as soon as the caller releases device_links_write_lock(). This is necessary
713 * to make sure the sync_state() is called in a timely fashion and the
714 * put_device() is called on this device.
715 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)716 static void __device_links_queue_sync_state(struct device *dev,
717 struct list_head *list)
718 {
719 struct device_link *link;
720
721 if (dev->state_synced)
722 return;
723
724 list_for_each_entry(link, &dev->links.consumers, s_node) {
725 if (!(link->flags & DL_FLAG_MANAGED))
726 continue;
727 if (link->status != DL_STATE_ACTIVE)
728 return;
729 }
730
731 /*
732 * Set the flag here to avoid adding the same device to a list more
733 * than once. This can happen if new consumers get added to the device
734 * and probed before the list is flushed.
735 */
736 dev->state_synced = true;
737
738 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
739 return;
740
741 get_device(dev);
742 list_add_tail(&dev->links.defer_sync, list);
743 }
744
745 /**
746 * device_links_flush_sync_list - Call sync_state() on a list of devices
747 * @list: List of devices to call sync_state() on
748 *
749 * Calls sync_state() on all the devices that have been queued for it. This
750 * function is used in conjunction with __device_links_queue_sync_state().
751 */
device_links_flush_sync_list(struct list_head * list)752 static void device_links_flush_sync_list(struct list_head *list)
753 {
754 struct device *dev, *tmp;
755
756 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
757 list_del_init(&dev->links.defer_sync);
758
759 device_lock(dev);
760
761 if (dev->bus->sync_state)
762 dev->bus->sync_state(dev);
763 else if (dev->driver && dev->driver->sync_state)
764 dev->driver->sync_state(dev);
765
766 device_unlock(dev);
767
768 put_device(dev);
769 }
770 }
771
device_links_supplier_sync_state_pause(void)772 void device_links_supplier_sync_state_pause(void)
773 {
774 device_links_write_lock();
775 defer_sync_state_count++;
776 device_links_write_unlock();
777 }
778
device_links_supplier_sync_state_resume(void)779 void device_links_supplier_sync_state_resume(void)
780 {
781 struct device *dev, *tmp;
782 LIST_HEAD(sync_list);
783
784 device_links_write_lock();
785 if (!defer_sync_state_count) {
786 WARN(true, "Unmatched sync_state pause/resume!");
787 goto out;
788 }
789 defer_sync_state_count--;
790 if (defer_sync_state_count)
791 goto out;
792
793 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
794 /*
795 * Delete from deferred_sync list before queuing it to
796 * sync_list because defer_sync is used for both lists.
797 */
798 list_del_init(&dev->links.defer_sync);
799 __device_links_queue_sync_state(dev, &sync_list);
800 }
801 out:
802 device_links_write_unlock();
803
804 device_links_flush_sync_list(&sync_list);
805 }
806
sync_state_resume_initcall(void)807 static int sync_state_resume_initcall(void)
808 {
809 device_links_supplier_sync_state_resume();
810 return 0;
811 }
812 late_initcall(sync_state_resume_initcall);
813
__device_links_supplier_defer_sync(struct device * sup)814 static void __device_links_supplier_defer_sync(struct device *sup)
815 {
816 if (list_empty(&sup->links.defer_sync))
817 list_add_tail(&sup->links.defer_sync, &deferred_sync);
818 }
819
820 /**
821 * device_links_driver_bound - Update device links after probing its driver.
822 * @dev: Device to update the links for.
823 *
824 * The probe has been successful, so update links from this device to any
825 * consumers by changing their status to "available".
826 *
827 * Also change the status of @dev's links to suppliers to "active".
828 *
829 * Links without the DL_FLAG_MANAGED flag set are ignored.
830 */
device_links_driver_bound(struct device * dev)831 void device_links_driver_bound(struct device *dev)
832 {
833 struct device_link *link;
834 LIST_HEAD(sync_list);
835
836 /*
837 * If a device probes successfully, it's expected to have created all
838 * the device links it needs to or make new device links as it needs
839 * them. So, it no longer needs to wait on any suppliers.
840 */
841 mutex_lock(&wfs_lock);
842 list_del_init(&dev->links.needs_suppliers);
843 mutex_unlock(&wfs_lock);
844
845 device_links_write_lock();
846
847 list_for_each_entry(link, &dev->links.consumers, s_node) {
848 if (!(link->flags & DL_FLAG_MANAGED))
849 continue;
850
851 /*
852 * Links created during consumer probe may be in the "consumer
853 * probe" state to start with if the supplier is still probing
854 * when they are created and they may become "active" if the
855 * consumer probe returns first. Skip them here.
856 */
857 if (link->status == DL_STATE_CONSUMER_PROBE ||
858 link->status == DL_STATE_ACTIVE)
859 continue;
860
861 WARN_ON(link->status != DL_STATE_DORMANT);
862 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
863
864 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
865 driver_deferred_probe_add(link->consumer);
866 }
867
868 list_for_each_entry(link, &dev->links.suppliers, c_node) {
869 if (!(link->flags & DL_FLAG_MANAGED))
870 continue;
871
872 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
873 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
874
875 if (defer_sync_state_count)
876 __device_links_supplier_defer_sync(link->supplier);
877 else
878 __device_links_queue_sync_state(link->supplier,
879 &sync_list);
880 }
881
882 dev->links.status = DL_DEV_DRIVER_BOUND;
883
884 device_links_write_unlock();
885
886 device_links_flush_sync_list(&sync_list);
887 }
888
device_link_drop_managed(struct device_link * link)889 static void device_link_drop_managed(struct device_link *link)
890 {
891 link->flags &= ~DL_FLAG_MANAGED;
892 WRITE_ONCE(link->status, DL_STATE_NONE);
893 kref_put(&link->kref, __device_link_del);
894 }
895
896 /**
897 * __device_links_no_driver - Update links of a device without a driver.
898 * @dev: Device without a drvier.
899 *
900 * Delete all non-persistent links from this device to any suppliers.
901 *
902 * Persistent links stay around, but their status is changed to "available",
903 * unless they already are in the "supplier unbind in progress" state in which
904 * case they need not be updated.
905 *
906 * Links without the DL_FLAG_MANAGED flag set are ignored.
907 */
__device_links_no_driver(struct device * dev)908 static void __device_links_no_driver(struct device *dev)
909 {
910 struct device_link *link, *ln;
911
912 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
913 if (!(link->flags & DL_FLAG_MANAGED))
914 continue;
915
916 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
917 device_link_drop_managed(link);
918 else if (link->status == DL_STATE_CONSUMER_PROBE ||
919 link->status == DL_STATE_ACTIVE)
920 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
921 }
922
923 dev->links.status = DL_DEV_NO_DRIVER;
924 }
925
926 /**
927 * device_links_no_driver - Update links after failing driver probe.
928 * @dev: Device whose driver has just failed to probe.
929 *
930 * Clean up leftover links to consumers for @dev and invoke
931 * %__device_links_no_driver() to update links to suppliers for it as
932 * appropriate.
933 *
934 * Links without the DL_FLAG_MANAGED flag set are ignored.
935 */
device_links_no_driver(struct device * dev)936 void device_links_no_driver(struct device *dev)
937 {
938 struct device_link *link;
939
940 device_links_write_lock();
941
942 list_for_each_entry(link, &dev->links.consumers, s_node) {
943 if (!(link->flags & DL_FLAG_MANAGED))
944 continue;
945
946 /*
947 * The probe has failed, so if the status of the link is
948 * "consumer probe" or "active", it must have been added by
949 * a probing consumer while this device was still probing.
950 * Change its state to "dormant", as it represents a valid
951 * relationship, but it is not functionally meaningful.
952 */
953 if (link->status == DL_STATE_CONSUMER_PROBE ||
954 link->status == DL_STATE_ACTIVE)
955 WRITE_ONCE(link->status, DL_STATE_DORMANT);
956 }
957
958 __device_links_no_driver(dev);
959
960 device_links_write_unlock();
961 }
962
963 /**
964 * device_links_driver_cleanup - Update links after driver removal.
965 * @dev: Device whose driver has just gone away.
966 *
967 * Update links to consumers for @dev by changing their status to "dormant" and
968 * invoke %__device_links_no_driver() to update links to suppliers for it as
969 * appropriate.
970 *
971 * Links without the DL_FLAG_MANAGED flag set are ignored.
972 */
device_links_driver_cleanup(struct device * dev)973 void device_links_driver_cleanup(struct device *dev)
974 {
975 struct device_link *link, *ln;
976
977 device_links_write_lock();
978
979 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
980 if (!(link->flags & DL_FLAG_MANAGED))
981 continue;
982
983 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
984 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
985
986 /*
987 * autoremove the links between this @dev and its consumer
988 * devices that are not active, i.e. where the link state
989 * has moved to DL_STATE_SUPPLIER_UNBIND.
990 */
991 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
992 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
993 device_link_drop_managed(link);
994
995 WRITE_ONCE(link->status, DL_STATE_DORMANT);
996 }
997
998 list_del_init(&dev->links.defer_sync);
999 __device_links_no_driver(dev);
1000
1001 device_links_write_unlock();
1002 }
1003
1004 /**
1005 * device_links_busy - Check if there are any busy links to consumers.
1006 * @dev: Device to check.
1007 *
1008 * Check each consumer of the device and return 'true' if its link's status
1009 * is one of "consumer probe" or "active" (meaning that the given consumer is
1010 * probing right now or its driver is present). Otherwise, change the link
1011 * state to "supplier unbind" to prevent the consumer from being probed
1012 * successfully going forward.
1013 *
1014 * Return 'false' if there are no probing or active consumers.
1015 *
1016 * Links without the DL_FLAG_MANAGED flag set are ignored.
1017 */
device_links_busy(struct device * dev)1018 bool device_links_busy(struct device *dev)
1019 {
1020 struct device_link *link;
1021 bool ret = false;
1022
1023 device_links_write_lock();
1024
1025 list_for_each_entry(link, &dev->links.consumers, s_node) {
1026 if (!(link->flags & DL_FLAG_MANAGED))
1027 continue;
1028
1029 if (link->status == DL_STATE_CONSUMER_PROBE
1030 || link->status == DL_STATE_ACTIVE) {
1031 ret = true;
1032 break;
1033 }
1034 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1035 }
1036
1037 dev->links.status = DL_DEV_UNBINDING;
1038
1039 device_links_write_unlock();
1040 return ret;
1041 }
1042
1043 /**
1044 * device_links_unbind_consumers - Force unbind consumers of the given device.
1045 * @dev: Device to unbind the consumers of.
1046 *
1047 * Walk the list of links to consumers for @dev and if any of them is in the
1048 * "consumer probe" state, wait for all device probes in progress to complete
1049 * and start over.
1050 *
1051 * If that's not the case, change the status of the link to "supplier unbind"
1052 * and check if the link was in the "active" state. If so, force the consumer
1053 * driver to unbind and start over (the consumer will not re-probe as we have
1054 * changed the state of the link already).
1055 *
1056 * Links without the DL_FLAG_MANAGED flag set are ignored.
1057 */
device_links_unbind_consumers(struct device * dev)1058 void device_links_unbind_consumers(struct device *dev)
1059 {
1060 struct device_link *link;
1061
1062 start:
1063 device_links_write_lock();
1064
1065 list_for_each_entry(link, &dev->links.consumers, s_node) {
1066 enum device_link_state status;
1067
1068 if (!(link->flags & DL_FLAG_MANAGED) ||
1069 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1070 continue;
1071
1072 status = link->status;
1073 if (status == DL_STATE_CONSUMER_PROBE) {
1074 device_links_write_unlock();
1075
1076 wait_for_device_probe();
1077 goto start;
1078 }
1079 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1080 if (status == DL_STATE_ACTIVE) {
1081 struct device *consumer = link->consumer;
1082
1083 get_device(consumer);
1084
1085 device_links_write_unlock();
1086
1087 device_release_driver_internal(consumer, NULL,
1088 consumer->parent);
1089 put_device(consumer);
1090 goto start;
1091 }
1092 }
1093
1094 device_links_write_unlock();
1095 }
1096
1097 /**
1098 * device_links_purge - Delete existing links to other devices.
1099 * @dev: Target device.
1100 */
device_links_purge(struct device * dev)1101 static void device_links_purge(struct device *dev)
1102 {
1103 struct device_link *link, *ln;
1104
1105 mutex_lock(&wfs_lock);
1106 list_del(&dev->links.needs_suppliers);
1107 mutex_unlock(&wfs_lock);
1108
1109 /*
1110 * Delete all of the remaining links from this device to any other
1111 * devices (either consumers or suppliers).
1112 */
1113 device_links_write_lock();
1114
1115 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1116 WARN_ON(link->status == DL_STATE_ACTIVE);
1117 __device_link_del(&link->kref);
1118 }
1119
1120 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1121 WARN_ON(link->status != DL_STATE_DORMANT &&
1122 link->status != DL_STATE_NONE);
1123 __device_link_del(&link->kref);
1124 }
1125
1126 device_links_write_unlock();
1127 }
1128
1129 /* Device links support end. */
1130
1131 int (*platform_notify)(struct device *dev) = NULL;
1132 int (*platform_notify_remove)(struct device *dev) = NULL;
1133 static struct kobject *dev_kobj;
1134 struct kobject *sysfs_dev_char_kobj;
1135 struct kobject *sysfs_dev_block_kobj;
1136
1137 static DEFINE_MUTEX(device_hotplug_lock);
1138
lock_device_hotplug(void)1139 void lock_device_hotplug(void)
1140 {
1141 mutex_lock(&device_hotplug_lock);
1142 }
1143
unlock_device_hotplug(void)1144 void unlock_device_hotplug(void)
1145 {
1146 mutex_unlock(&device_hotplug_lock);
1147 }
1148
lock_device_hotplug_sysfs(void)1149 int lock_device_hotplug_sysfs(void)
1150 {
1151 if (mutex_trylock(&device_hotplug_lock))
1152 return 0;
1153
1154 /* Avoid busy looping (5 ms of sleep should do). */
1155 msleep(5);
1156 return restart_syscall();
1157 }
1158
1159 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)1160 static inline int device_is_not_partition(struct device *dev)
1161 {
1162 return !(dev->type == &part_type);
1163 }
1164 #else
device_is_not_partition(struct device * dev)1165 static inline int device_is_not_partition(struct device *dev)
1166 {
1167 return 1;
1168 }
1169 #endif
1170
1171 static int
device_platform_notify(struct device * dev,enum kobject_action action)1172 device_platform_notify(struct device *dev, enum kobject_action action)
1173 {
1174 int ret;
1175
1176 ret = acpi_platform_notify(dev, action);
1177 if (ret)
1178 return ret;
1179
1180 ret = software_node_notify(dev, action);
1181 if (ret)
1182 return ret;
1183
1184 if (platform_notify && action == KOBJ_ADD)
1185 platform_notify(dev);
1186 else if (platform_notify_remove && action == KOBJ_REMOVE)
1187 platform_notify_remove(dev);
1188 return 0;
1189 }
1190
1191 /**
1192 * dev_driver_string - Return a device's driver name, if at all possible
1193 * @dev: struct device to get the name of
1194 *
1195 * Will return the device's driver's name if it is bound to a device. If
1196 * the device is not bound to a driver, it will return the name of the bus
1197 * it is attached to. If it is not attached to a bus either, an empty
1198 * string will be returned.
1199 */
dev_driver_string(const struct device * dev)1200 const char *dev_driver_string(const struct device *dev)
1201 {
1202 struct device_driver *drv;
1203
1204 /* dev->driver can change to NULL underneath us because of unbinding,
1205 * so be careful about accessing it. dev->bus and dev->class should
1206 * never change once they are set, so they don't need special care.
1207 */
1208 drv = READ_ONCE(dev->driver);
1209 return drv ? drv->name :
1210 (dev->bus ? dev->bus->name :
1211 (dev->class ? dev->class->name : ""));
1212 }
1213 EXPORT_SYMBOL(dev_driver_string);
1214
1215 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1216
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1217 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1218 char *buf)
1219 {
1220 struct device_attribute *dev_attr = to_dev_attr(attr);
1221 struct device *dev = kobj_to_dev(kobj);
1222 ssize_t ret = -EIO;
1223
1224 if (dev_attr->show)
1225 ret = dev_attr->show(dev, dev_attr, buf);
1226 if (ret >= (ssize_t)PAGE_SIZE) {
1227 printk("dev_attr_show: %pS returned bad count\n",
1228 dev_attr->show);
1229 }
1230 return ret;
1231 }
1232
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1233 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1234 const char *buf, size_t count)
1235 {
1236 struct device_attribute *dev_attr = to_dev_attr(attr);
1237 struct device *dev = kobj_to_dev(kobj);
1238 ssize_t ret = -EIO;
1239
1240 if (dev_attr->store)
1241 ret = dev_attr->store(dev, dev_attr, buf, count);
1242 return ret;
1243 }
1244
1245 static const struct sysfs_ops dev_sysfs_ops = {
1246 .show = dev_attr_show,
1247 .store = dev_attr_store,
1248 };
1249
1250 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1251
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1252 ssize_t device_store_ulong(struct device *dev,
1253 struct device_attribute *attr,
1254 const char *buf, size_t size)
1255 {
1256 struct dev_ext_attribute *ea = to_ext_attr(attr);
1257 int ret;
1258 unsigned long new;
1259
1260 ret = kstrtoul(buf, 0, &new);
1261 if (ret)
1262 return ret;
1263 *(unsigned long *)(ea->var) = new;
1264 /* Always return full write size even if we didn't consume all */
1265 return size;
1266 }
1267 EXPORT_SYMBOL_GPL(device_store_ulong);
1268
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)1269 ssize_t device_show_ulong(struct device *dev,
1270 struct device_attribute *attr,
1271 char *buf)
1272 {
1273 struct dev_ext_attribute *ea = to_ext_attr(attr);
1274 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1275 }
1276 EXPORT_SYMBOL_GPL(device_show_ulong);
1277
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1278 ssize_t device_store_int(struct device *dev,
1279 struct device_attribute *attr,
1280 const char *buf, size_t size)
1281 {
1282 struct dev_ext_attribute *ea = to_ext_attr(attr);
1283 int ret;
1284 long new;
1285
1286 ret = kstrtol(buf, 0, &new);
1287 if (ret)
1288 return ret;
1289
1290 if (new > INT_MAX || new < INT_MIN)
1291 return -EINVAL;
1292 *(int *)(ea->var) = new;
1293 /* Always return full write size even if we didn't consume all */
1294 return size;
1295 }
1296 EXPORT_SYMBOL_GPL(device_store_int);
1297
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)1298 ssize_t device_show_int(struct device *dev,
1299 struct device_attribute *attr,
1300 char *buf)
1301 {
1302 struct dev_ext_attribute *ea = to_ext_attr(attr);
1303
1304 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1305 }
1306 EXPORT_SYMBOL_GPL(device_show_int);
1307
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1308 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1309 const char *buf, size_t size)
1310 {
1311 struct dev_ext_attribute *ea = to_ext_attr(attr);
1312
1313 if (strtobool(buf, ea->var) < 0)
1314 return -EINVAL;
1315
1316 return size;
1317 }
1318 EXPORT_SYMBOL_GPL(device_store_bool);
1319
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)1320 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1321 char *buf)
1322 {
1323 struct dev_ext_attribute *ea = to_ext_attr(attr);
1324
1325 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1326 }
1327 EXPORT_SYMBOL_GPL(device_show_bool);
1328
1329 /**
1330 * device_release - free device structure.
1331 * @kobj: device's kobject.
1332 *
1333 * This is called once the reference count for the object
1334 * reaches 0. We forward the call to the device's release
1335 * method, which should handle actually freeing the structure.
1336 */
device_release(struct kobject * kobj)1337 static void device_release(struct kobject *kobj)
1338 {
1339 struct device *dev = kobj_to_dev(kobj);
1340 struct device_private *p = dev->p;
1341
1342 /*
1343 * Some platform devices are driven without driver attached
1344 * and managed resources may have been acquired. Make sure
1345 * all resources are released.
1346 *
1347 * Drivers still can add resources into device after device
1348 * is deleted but alive, so release devres here to avoid
1349 * possible memory leak.
1350 */
1351 devres_release_all(dev);
1352
1353 if (dev->release)
1354 dev->release(dev);
1355 else if (dev->type && dev->type->release)
1356 dev->type->release(dev);
1357 else if (dev->class && dev->class->dev_release)
1358 dev->class->dev_release(dev);
1359 else
1360 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1361 dev_name(dev));
1362 kfree(p);
1363 }
1364
device_namespace(struct kobject * kobj)1365 static const void *device_namespace(struct kobject *kobj)
1366 {
1367 struct device *dev = kobj_to_dev(kobj);
1368 const void *ns = NULL;
1369
1370 if (dev->class && dev->class->ns_type)
1371 ns = dev->class->namespace(dev);
1372
1373 return ns;
1374 }
1375
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1376 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1377 {
1378 struct device *dev = kobj_to_dev(kobj);
1379
1380 if (dev->class && dev->class->get_ownership)
1381 dev->class->get_ownership(dev, uid, gid);
1382 }
1383
1384 static struct kobj_type device_ktype = {
1385 .release = device_release,
1386 .sysfs_ops = &dev_sysfs_ops,
1387 .namespace = device_namespace,
1388 .get_ownership = device_get_ownership,
1389 };
1390
1391
dev_uevent_filter(struct kset * kset,struct kobject * kobj)1392 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1393 {
1394 struct kobj_type *ktype = get_ktype(kobj);
1395
1396 if (ktype == &device_ktype) {
1397 struct device *dev = kobj_to_dev(kobj);
1398 if (dev->bus)
1399 return 1;
1400 if (dev->class)
1401 return 1;
1402 }
1403 return 0;
1404 }
1405
dev_uevent_name(struct kset * kset,struct kobject * kobj)1406 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1407 {
1408 struct device *dev = kobj_to_dev(kobj);
1409
1410 if (dev->bus)
1411 return dev->bus->name;
1412 if (dev->class)
1413 return dev->class->name;
1414 return NULL;
1415 }
1416
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)1417 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1418 struct kobj_uevent_env *env)
1419 {
1420 struct device *dev = kobj_to_dev(kobj);
1421 int retval = 0;
1422
1423 /* add device node properties if present */
1424 if (MAJOR(dev->devt)) {
1425 const char *tmp;
1426 const char *name;
1427 umode_t mode = 0;
1428 kuid_t uid = GLOBAL_ROOT_UID;
1429 kgid_t gid = GLOBAL_ROOT_GID;
1430
1431 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1432 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1433 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1434 if (name) {
1435 add_uevent_var(env, "DEVNAME=%s", name);
1436 if (mode)
1437 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1438 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1439 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1440 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1441 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1442 kfree(tmp);
1443 }
1444 }
1445
1446 if (dev->type && dev->type->name)
1447 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1448
1449 if (dev->driver)
1450 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1451
1452 /* Add common DT information about the device */
1453 of_device_uevent(dev, env);
1454
1455 /* have the bus specific function add its stuff */
1456 if (dev->bus && dev->bus->uevent) {
1457 retval = dev->bus->uevent(dev, env);
1458 if (retval)
1459 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1460 dev_name(dev), __func__, retval);
1461 }
1462
1463 /* have the class specific function add its stuff */
1464 if (dev->class && dev->class->dev_uevent) {
1465 retval = dev->class->dev_uevent(dev, env);
1466 if (retval)
1467 pr_debug("device: '%s': %s: class uevent() "
1468 "returned %d\n", dev_name(dev),
1469 __func__, retval);
1470 }
1471
1472 /* have the device type specific function add its stuff */
1473 if (dev->type && dev->type->uevent) {
1474 retval = dev->type->uevent(dev, env);
1475 if (retval)
1476 pr_debug("device: '%s': %s: dev_type uevent() "
1477 "returned %d\n", dev_name(dev),
1478 __func__, retval);
1479 }
1480
1481 return retval;
1482 }
1483
1484 static const struct kset_uevent_ops device_uevent_ops = {
1485 .filter = dev_uevent_filter,
1486 .name = dev_uevent_name,
1487 .uevent = dev_uevent,
1488 };
1489
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1490 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1491 char *buf)
1492 {
1493 struct kobject *top_kobj;
1494 struct kset *kset;
1495 struct kobj_uevent_env *env = NULL;
1496 int i;
1497 size_t count = 0;
1498 int retval;
1499
1500 /* search the kset, the device belongs to */
1501 top_kobj = &dev->kobj;
1502 while (!top_kobj->kset && top_kobj->parent)
1503 top_kobj = top_kobj->parent;
1504 if (!top_kobj->kset)
1505 goto out;
1506
1507 kset = top_kobj->kset;
1508 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1509 goto out;
1510
1511 /* respect filter */
1512 if (kset->uevent_ops && kset->uevent_ops->filter)
1513 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1514 goto out;
1515
1516 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1517 if (!env)
1518 return -ENOMEM;
1519
1520 /* let the kset specific function add its keys */
1521 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1522 if (retval)
1523 goto out;
1524
1525 /* copy keys to file */
1526 for (i = 0; i < env->envp_idx; i++)
1527 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1528 out:
1529 kfree(env);
1530 return count;
1531 }
1532
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1533 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1534 const char *buf, size_t count)
1535 {
1536 int rc;
1537
1538 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1539
1540 if (rc) {
1541 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1542 return rc;
1543 }
1544
1545 return count;
1546 }
1547 static DEVICE_ATTR_RW(uevent);
1548
online_show(struct device * dev,struct device_attribute * attr,char * buf)1549 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1550 char *buf)
1551 {
1552 bool val;
1553
1554 device_lock(dev);
1555 val = !dev->offline;
1556 device_unlock(dev);
1557 return sprintf(buf, "%u\n", val);
1558 }
1559
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1560 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1561 const char *buf, size_t count)
1562 {
1563 bool val;
1564 int ret;
1565
1566 ret = strtobool(buf, &val);
1567 if (ret < 0)
1568 return ret;
1569
1570 ret = lock_device_hotplug_sysfs();
1571 if (ret)
1572 return ret;
1573
1574 ret = val ? device_online(dev) : device_offline(dev);
1575 unlock_device_hotplug();
1576 return ret < 0 ? ret : count;
1577 }
1578 static DEVICE_ATTR_RW(online);
1579
device_add_groups(struct device * dev,const struct attribute_group ** groups)1580 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1581 {
1582 return sysfs_create_groups(&dev->kobj, groups);
1583 }
1584 EXPORT_SYMBOL_GPL(device_add_groups);
1585
device_remove_groups(struct device * dev,const struct attribute_group ** groups)1586 void device_remove_groups(struct device *dev,
1587 const struct attribute_group **groups)
1588 {
1589 sysfs_remove_groups(&dev->kobj, groups);
1590 }
1591 EXPORT_SYMBOL_GPL(device_remove_groups);
1592
1593 union device_attr_group_devres {
1594 const struct attribute_group *group;
1595 const struct attribute_group **groups;
1596 };
1597
devm_attr_group_match(struct device * dev,void * res,void * data)1598 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1599 {
1600 return ((union device_attr_group_devres *)res)->group == data;
1601 }
1602
devm_attr_group_remove(struct device * dev,void * res)1603 static void devm_attr_group_remove(struct device *dev, void *res)
1604 {
1605 union device_attr_group_devres *devres = res;
1606 const struct attribute_group *group = devres->group;
1607
1608 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1609 sysfs_remove_group(&dev->kobj, group);
1610 }
1611
devm_attr_groups_remove(struct device * dev,void * res)1612 static void devm_attr_groups_remove(struct device *dev, void *res)
1613 {
1614 union device_attr_group_devres *devres = res;
1615 const struct attribute_group **groups = devres->groups;
1616
1617 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1618 sysfs_remove_groups(&dev->kobj, groups);
1619 }
1620
1621 /**
1622 * devm_device_add_group - given a device, create a managed attribute group
1623 * @dev: The device to create the group for
1624 * @grp: The attribute group to create
1625 *
1626 * This function creates a group for the first time. It will explicitly
1627 * warn and error if any of the attribute files being created already exist.
1628 *
1629 * Returns 0 on success or error code on failure.
1630 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)1631 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1632 {
1633 union device_attr_group_devres *devres;
1634 int error;
1635
1636 devres = devres_alloc(devm_attr_group_remove,
1637 sizeof(*devres), GFP_KERNEL);
1638 if (!devres)
1639 return -ENOMEM;
1640
1641 error = sysfs_create_group(&dev->kobj, grp);
1642 if (error) {
1643 devres_free(devres);
1644 return error;
1645 }
1646
1647 devres->group = grp;
1648 devres_add(dev, devres);
1649 return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(devm_device_add_group);
1652
1653 /**
1654 * devm_device_remove_group: remove a managed group from a device
1655 * @dev: device to remove the group from
1656 * @grp: group to remove
1657 *
1658 * This function removes a group of attributes from a device. The attributes
1659 * previously have to have been created for this group, otherwise it will fail.
1660 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)1661 void devm_device_remove_group(struct device *dev,
1662 const struct attribute_group *grp)
1663 {
1664 WARN_ON(devres_release(dev, devm_attr_group_remove,
1665 devm_attr_group_match,
1666 /* cast away const */ (void *)grp));
1667 }
1668 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1669
1670 /**
1671 * devm_device_add_groups - create a bunch of managed attribute groups
1672 * @dev: The device to create the group for
1673 * @groups: The attribute groups to create, NULL terminated
1674 *
1675 * This function creates a bunch of managed attribute groups. If an error
1676 * occurs when creating a group, all previously created groups will be
1677 * removed, unwinding everything back to the original state when this
1678 * function was called. It will explicitly warn and error if any of the
1679 * attribute files being created already exist.
1680 *
1681 * Returns 0 on success or error code from sysfs_create_group on failure.
1682 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)1683 int devm_device_add_groups(struct device *dev,
1684 const struct attribute_group **groups)
1685 {
1686 union device_attr_group_devres *devres;
1687 int error;
1688
1689 devres = devres_alloc(devm_attr_groups_remove,
1690 sizeof(*devres), GFP_KERNEL);
1691 if (!devres)
1692 return -ENOMEM;
1693
1694 error = sysfs_create_groups(&dev->kobj, groups);
1695 if (error) {
1696 devres_free(devres);
1697 return error;
1698 }
1699
1700 devres->groups = groups;
1701 devres_add(dev, devres);
1702 return 0;
1703 }
1704 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1705
1706 /**
1707 * devm_device_remove_groups - remove a list of managed groups
1708 *
1709 * @dev: The device for the groups to be removed from
1710 * @groups: NULL terminated list of groups to be removed
1711 *
1712 * If groups is not NULL, remove the specified groups from the device.
1713 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)1714 void devm_device_remove_groups(struct device *dev,
1715 const struct attribute_group **groups)
1716 {
1717 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1718 devm_attr_group_match,
1719 /* cast away const */ (void *)groups));
1720 }
1721 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1722
device_add_attrs(struct device * dev)1723 static int device_add_attrs(struct device *dev)
1724 {
1725 struct class *class = dev->class;
1726 const struct device_type *type = dev->type;
1727 int error;
1728
1729 if (class) {
1730 error = device_add_groups(dev, class->dev_groups);
1731 if (error)
1732 return error;
1733 }
1734
1735 if (type) {
1736 error = device_add_groups(dev, type->groups);
1737 if (error)
1738 goto err_remove_class_groups;
1739 }
1740
1741 error = device_add_groups(dev, dev->groups);
1742 if (error)
1743 goto err_remove_type_groups;
1744
1745 if (device_supports_offline(dev) && !dev->offline_disabled) {
1746 error = device_create_file(dev, &dev_attr_online);
1747 if (error)
1748 goto err_remove_dev_groups;
1749 }
1750
1751 return 0;
1752
1753 err_remove_dev_groups:
1754 device_remove_groups(dev, dev->groups);
1755 err_remove_type_groups:
1756 if (type)
1757 device_remove_groups(dev, type->groups);
1758 err_remove_class_groups:
1759 if (class)
1760 device_remove_groups(dev, class->dev_groups);
1761
1762 return error;
1763 }
1764
device_remove_attrs(struct device * dev)1765 static void device_remove_attrs(struct device *dev)
1766 {
1767 struct class *class = dev->class;
1768 const struct device_type *type = dev->type;
1769
1770 device_remove_file(dev, &dev_attr_online);
1771 device_remove_groups(dev, dev->groups);
1772
1773 if (type)
1774 device_remove_groups(dev, type->groups);
1775
1776 if (class)
1777 device_remove_groups(dev, class->dev_groups);
1778 }
1779
dev_show(struct device * dev,struct device_attribute * attr,char * buf)1780 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1781 char *buf)
1782 {
1783 return print_dev_t(buf, dev->devt);
1784 }
1785 static DEVICE_ATTR_RO(dev);
1786
1787 /* /sys/devices/ */
1788 struct kset *devices_kset;
1789
1790 /**
1791 * devices_kset_move_before - Move device in the devices_kset's list.
1792 * @deva: Device to move.
1793 * @devb: Device @deva should come before.
1794 */
devices_kset_move_before(struct device * deva,struct device * devb)1795 static void devices_kset_move_before(struct device *deva, struct device *devb)
1796 {
1797 if (!devices_kset)
1798 return;
1799 pr_debug("devices_kset: Moving %s before %s\n",
1800 dev_name(deva), dev_name(devb));
1801 spin_lock(&devices_kset->list_lock);
1802 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1803 spin_unlock(&devices_kset->list_lock);
1804 }
1805
1806 /**
1807 * devices_kset_move_after - Move device in the devices_kset's list.
1808 * @deva: Device to move
1809 * @devb: Device @deva should come after.
1810 */
devices_kset_move_after(struct device * deva,struct device * devb)1811 static void devices_kset_move_after(struct device *deva, struct device *devb)
1812 {
1813 if (!devices_kset)
1814 return;
1815 pr_debug("devices_kset: Moving %s after %s\n",
1816 dev_name(deva), dev_name(devb));
1817 spin_lock(&devices_kset->list_lock);
1818 list_move(&deva->kobj.entry, &devb->kobj.entry);
1819 spin_unlock(&devices_kset->list_lock);
1820 }
1821
1822 /**
1823 * devices_kset_move_last - move the device to the end of devices_kset's list.
1824 * @dev: device to move
1825 */
devices_kset_move_last(struct device * dev)1826 void devices_kset_move_last(struct device *dev)
1827 {
1828 if (!devices_kset)
1829 return;
1830 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1831 spin_lock(&devices_kset->list_lock);
1832 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1833 spin_unlock(&devices_kset->list_lock);
1834 }
1835
1836 /**
1837 * device_create_file - create sysfs attribute file for device.
1838 * @dev: device.
1839 * @attr: device attribute descriptor.
1840 */
device_create_file(struct device * dev,const struct device_attribute * attr)1841 int device_create_file(struct device *dev,
1842 const struct device_attribute *attr)
1843 {
1844 int error = 0;
1845
1846 if (dev) {
1847 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1848 "Attribute %s: write permission without 'store'\n",
1849 attr->attr.name);
1850 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1851 "Attribute %s: read permission without 'show'\n",
1852 attr->attr.name);
1853 error = sysfs_create_file(&dev->kobj, &attr->attr);
1854 }
1855
1856 return error;
1857 }
1858 EXPORT_SYMBOL_GPL(device_create_file);
1859
1860 /**
1861 * device_remove_file - remove sysfs attribute file.
1862 * @dev: device.
1863 * @attr: device attribute descriptor.
1864 */
device_remove_file(struct device * dev,const struct device_attribute * attr)1865 void device_remove_file(struct device *dev,
1866 const struct device_attribute *attr)
1867 {
1868 if (dev)
1869 sysfs_remove_file(&dev->kobj, &attr->attr);
1870 }
1871 EXPORT_SYMBOL_GPL(device_remove_file);
1872
1873 /**
1874 * device_remove_file_self - remove sysfs attribute file from its own method.
1875 * @dev: device.
1876 * @attr: device attribute descriptor.
1877 *
1878 * See kernfs_remove_self() for details.
1879 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)1880 bool device_remove_file_self(struct device *dev,
1881 const struct device_attribute *attr)
1882 {
1883 if (dev)
1884 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1885 else
1886 return false;
1887 }
1888 EXPORT_SYMBOL_GPL(device_remove_file_self);
1889
1890 /**
1891 * device_create_bin_file - create sysfs binary attribute file for device.
1892 * @dev: device.
1893 * @attr: device binary attribute descriptor.
1894 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)1895 int device_create_bin_file(struct device *dev,
1896 const struct bin_attribute *attr)
1897 {
1898 int error = -EINVAL;
1899 if (dev)
1900 error = sysfs_create_bin_file(&dev->kobj, attr);
1901 return error;
1902 }
1903 EXPORT_SYMBOL_GPL(device_create_bin_file);
1904
1905 /**
1906 * device_remove_bin_file - remove sysfs binary attribute file
1907 * @dev: device.
1908 * @attr: device binary attribute descriptor.
1909 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)1910 void device_remove_bin_file(struct device *dev,
1911 const struct bin_attribute *attr)
1912 {
1913 if (dev)
1914 sysfs_remove_bin_file(&dev->kobj, attr);
1915 }
1916 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1917
klist_children_get(struct klist_node * n)1918 static void klist_children_get(struct klist_node *n)
1919 {
1920 struct device_private *p = to_device_private_parent(n);
1921 struct device *dev = p->device;
1922
1923 get_device(dev);
1924 }
1925
klist_children_put(struct klist_node * n)1926 static void klist_children_put(struct klist_node *n)
1927 {
1928 struct device_private *p = to_device_private_parent(n);
1929 struct device *dev = p->device;
1930
1931 put_device(dev);
1932 }
1933
1934 /**
1935 * device_initialize - init device structure.
1936 * @dev: device.
1937 *
1938 * This prepares the device for use by other layers by initializing
1939 * its fields.
1940 * It is the first half of device_register(), if called by
1941 * that function, though it can also be called separately, so one
1942 * may use @dev's fields. In particular, get_device()/put_device()
1943 * may be used for reference counting of @dev after calling this
1944 * function.
1945 *
1946 * All fields in @dev must be initialized by the caller to 0, except
1947 * for those explicitly set to some other value. The simplest
1948 * approach is to use kzalloc() to allocate the structure containing
1949 * @dev.
1950 *
1951 * NOTE: Use put_device() to give up your reference instead of freeing
1952 * @dev directly once you have called this function.
1953 */
device_initialize(struct device * dev)1954 void device_initialize(struct device *dev)
1955 {
1956 dev->kobj.kset = devices_kset;
1957 kobject_init(&dev->kobj, &device_ktype);
1958 INIT_LIST_HEAD(&dev->dma_pools);
1959 mutex_init(&dev->mutex);
1960 #ifdef CONFIG_PROVE_LOCKING
1961 mutex_init(&dev->lockdep_mutex);
1962 #endif
1963 lockdep_set_novalidate_class(&dev->mutex);
1964 spin_lock_init(&dev->devres_lock);
1965 INIT_LIST_HEAD(&dev->devres_head);
1966 device_pm_init(dev);
1967 set_dev_node(dev, -1);
1968 #ifdef CONFIG_GENERIC_MSI_IRQ
1969 INIT_LIST_HEAD(&dev->msi_list);
1970 #endif
1971 INIT_LIST_HEAD(&dev->links.consumers);
1972 INIT_LIST_HEAD(&dev->links.suppliers);
1973 INIT_LIST_HEAD(&dev->links.needs_suppliers);
1974 INIT_LIST_HEAD(&dev->links.defer_sync);
1975 dev->links.status = DL_DEV_NO_DRIVER;
1976 }
1977 EXPORT_SYMBOL_GPL(device_initialize);
1978
virtual_device_parent(struct device * dev)1979 struct kobject *virtual_device_parent(struct device *dev)
1980 {
1981 static struct kobject *virtual_dir = NULL;
1982
1983 if (!virtual_dir)
1984 virtual_dir = kobject_create_and_add("virtual",
1985 &devices_kset->kobj);
1986
1987 return virtual_dir;
1988 }
1989
1990 struct class_dir {
1991 struct kobject kobj;
1992 struct class *class;
1993 };
1994
1995 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1996
class_dir_release(struct kobject * kobj)1997 static void class_dir_release(struct kobject *kobj)
1998 {
1999 struct class_dir *dir = to_class_dir(kobj);
2000 kfree(dir);
2001 }
2002
2003 static const
class_dir_child_ns_type(struct kobject * kobj)2004 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2005 {
2006 struct class_dir *dir = to_class_dir(kobj);
2007 return dir->class->ns_type;
2008 }
2009
2010 static struct kobj_type class_dir_ktype = {
2011 .release = class_dir_release,
2012 .sysfs_ops = &kobj_sysfs_ops,
2013 .child_ns_type = class_dir_child_ns_type
2014 };
2015
2016 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2017 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2018 {
2019 struct class_dir *dir;
2020 int retval;
2021
2022 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2023 if (!dir)
2024 return ERR_PTR(-ENOMEM);
2025
2026 dir->class = class;
2027 kobject_init(&dir->kobj, &class_dir_ktype);
2028
2029 dir->kobj.kset = &class->p->glue_dirs;
2030
2031 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2032 if (retval < 0) {
2033 kobject_put(&dir->kobj);
2034 return ERR_PTR(retval);
2035 }
2036 return &dir->kobj;
2037 }
2038
2039 static DEFINE_MUTEX(gdp_mutex);
2040
get_device_parent(struct device * dev,struct device * parent)2041 static struct kobject *get_device_parent(struct device *dev,
2042 struct device *parent)
2043 {
2044 if (dev->class) {
2045 struct kobject *kobj = NULL;
2046 struct kobject *parent_kobj;
2047 struct kobject *k;
2048
2049 #ifdef CONFIG_BLOCK
2050 /* block disks show up in /sys/block */
2051 if (sysfs_deprecated && dev->class == &block_class) {
2052 if (parent && parent->class == &block_class)
2053 return &parent->kobj;
2054 return &block_class.p->subsys.kobj;
2055 }
2056 #endif
2057
2058 /*
2059 * If we have no parent, we live in "virtual".
2060 * Class-devices with a non class-device as parent, live
2061 * in a "glue" directory to prevent namespace collisions.
2062 */
2063 if (parent == NULL)
2064 parent_kobj = virtual_device_parent(dev);
2065 else if (parent->class && !dev->class->ns_type)
2066 return &parent->kobj;
2067 else
2068 parent_kobj = &parent->kobj;
2069
2070 mutex_lock(&gdp_mutex);
2071
2072 /* find our class-directory at the parent and reference it */
2073 spin_lock(&dev->class->p->glue_dirs.list_lock);
2074 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2075 if (k->parent == parent_kobj) {
2076 kobj = kobject_get(k);
2077 break;
2078 }
2079 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2080 if (kobj) {
2081 mutex_unlock(&gdp_mutex);
2082 return kobj;
2083 }
2084
2085 /* or create a new class-directory at the parent device */
2086 k = class_dir_create_and_add(dev->class, parent_kobj);
2087 /* do not emit an uevent for this simple "glue" directory */
2088 mutex_unlock(&gdp_mutex);
2089 return k;
2090 }
2091
2092 /* subsystems can specify a default root directory for their devices */
2093 if (!parent && dev->bus && dev->bus->dev_root)
2094 return &dev->bus->dev_root->kobj;
2095
2096 if (parent)
2097 return &parent->kobj;
2098 return NULL;
2099 }
2100
live_in_glue_dir(struct kobject * kobj,struct device * dev)2101 static inline bool live_in_glue_dir(struct kobject *kobj,
2102 struct device *dev)
2103 {
2104 if (!kobj || !dev->class ||
2105 kobj->kset != &dev->class->p->glue_dirs)
2106 return false;
2107 return true;
2108 }
2109
get_glue_dir(struct device * dev)2110 static inline struct kobject *get_glue_dir(struct device *dev)
2111 {
2112 return dev->kobj.parent;
2113 }
2114
2115 /*
2116 * make sure cleaning up dir as the last step, we need to make
2117 * sure .release handler of kobject is run with holding the
2118 * global lock
2119 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)2120 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2121 {
2122 unsigned int ref;
2123
2124 /* see if we live in a "glue" directory */
2125 if (!live_in_glue_dir(glue_dir, dev))
2126 return;
2127
2128 mutex_lock(&gdp_mutex);
2129 /**
2130 * There is a race condition between removing glue directory
2131 * and adding a new device under the glue directory.
2132 *
2133 * CPU1: CPU2:
2134 *
2135 * device_add()
2136 * get_device_parent()
2137 * class_dir_create_and_add()
2138 * kobject_add_internal()
2139 * create_dir() // create glue_dir
2140 *
2141 * device_add()
2142 * get_device_parent()
2143 * kobject_get() // get glue_dir
2144 *
2145 * device_del()
2146 * cleanup_glue_dir()
2147 * kobject_del(glue_dir)
2148 *
2149 * kobject_add()
2150 * kobject_add_internal()
2151 * create_dir() // in glue_dir
2152 * sysfs_create_dir_ns()
2153 * kernfs_create_dir_ns(sd)
2154 *
2155 * sysfs_remove_dir() // glue_dir->sd=NULL
2156 * sysfs_put() // free glue_dir->sd
2157 *
2158 * // sd is freed
2159 * kernfs_new_node(sd)
2160 * kernfs_get(glue_dir)
2161 * kernfs_add_one()
2162 * kernfs_put()
2163 *
2164 * Before CPU1 remove last child device under glue dir, if CPU2 add
2165 * a new device under glue dir, the glue_dir kobject reference count
2166 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2167 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2168 * and sysfs_put(). This result in glue_dir->sd is freed.
2169 *
2170 * Then the CPU2 will see a stale "empty" but still potentially used
2171 * glue dir around in kernfs_new_node().
2172 *
2173 * In order to avoid this happening, we also should make sure that
2174 * kernfs_node for glue_dir is released in CPU1 only when refcount
2175 * for glue_dir kobj is 1.
2176 */
2177 ref = kref_read(&glue_dir->kref);
2178 if (!kobject_has_children(glue_dir) && !--ref)
2179 kobject_del(glue_dir);
2180 kobject_put(glue_dir);
2181 mutex_unlock(&gdp_mutex);
2182 }
2183
device_add_class_symlinks(struct device * dev)2184 static int device_add_class_symlinks(struct device *dev)
2185 {
2186 struct device_node *of_node = dev_of_node(dev);
2187 int error;
2188
2189 if (of_node) {
2190 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2191 if (error)
2192 dev_warn(dev, "Error %d creating of_node link\n",error);
2193 /* An error here doesn't warrant bringing down the device */
2194 }
2195
2196 if (!dev->class)
2197 return 0;
2198
2199 error = sysfs_create_link(&dev->kobj,
2200 &dev->class->p->subsys.kobj,
2201 "subsystem");
2202 if (error)
2203 goto out_devnode;
2204
2205 if (dev->parent && device_is_not_partition(dev)) {
2206 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2207 "device");
2208 if (error)
2209 goto out_subsys;
2210 }
2211
2212 #ifdef CONFIG_BLOCK
2213 /* /sys/block has directories and does not need symlinks */
2214 if (sysfs_deprecated && dev->class == &block_class)
2215 return 0;
2216 #endif
2217
2218 /* link in the class directory pointing to the device */
2219 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2220 &dev->kobj, dev_name(dev));
2221 if (error)
2222 goto out_device;
2223
2224 return 0;
2225
2226 out_device:
2227 sysfs_remove_link(&dev->kobj, "device");
2228
2229 out_subsys:
2230 sysfs_remove_link(&dev->kobj, "subsystem");
2231 out_devnode:
2232 sysfs_remove_link(&dev->kobj, "of_node");
2233 return error;
2234 }
2235
device_remove_class_symlinks(struct device * dev)2236 static void device_remove_class_symlinks(struct device *dev)
2237 {
2238 if (dev_of_node(dev))
2239 sysfs_remove_link(&dev->kobj, "of_node");
2240
2241 if (!dev->class)
2242 return;
2243
2244 if (dev->parent && device_is_not_partition(dev))
2245 sysfs_remove_link(&dev->kobj, "device");
2246 sysfs_remove_link(&dev->kobj, "subsystem");
2247 #ifdef CONFIG_BLOCK
2248 if (sysfs_deprecated && dev->class == &block_class)
2249 return;
2250 #endif
2251 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2252 }
2253
2254 /**
2255 * dev_set_name - set a device name
2256 * @dev: device
2257 * @fmt: format string for the device's name
2258 */
dev_set_name(struct device * dev,const char * fmt,...)2259 int dev_set_name(struct device *dev, const char *fmt, ...)
2260 {
2261 va_list vargs;
2262 int err;
2263
2264 va_start(vargs, fmt);
2265 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2266 va_end(vargs);
2267 return err;
2268 }
2269 EXPORT_SYMBOL_GPL(dev_set_name);
2270
2271 /**
2272 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2273 * @dev: device
2274 *
2275 * By default we select char/ for new entries. Setting class->dev_obj
2276 * to NULL prevents an entry from being created. class->dev_kobj must
2277 * be set (or cleared) before any devices are registered to the class
2278 * otherwise device_create_sys_dev_entry() and
2279 * device_remove_sys_dev_entry() will disagree about the presence of
2280 * the link.
2281 */
device_to_dev_kobj(struct device * dev)2282 static struct kobject *device_to_dev_kobj(struct device *dev)
2283 {
2284 struct kobject *kobj;
2285
2286 if (dev->class)
2287 kobj = dev->class->dev_kobj;
2288 else
2289 kobj = sysfs_dev_char_kobj;
2290
2291 return kobj;
2292 }
2293
device_create_sys_dev_entry(struct device * dev)2294 static int device_create_sys_dev_entry(struct device *dev)
2295 {
2296 struct kobject *kobj = device_to_dev_kobj(dev);
2297 int error = 0;
2298 char devt_str[15];
2299
2300 if (kobj) {
2301 format_dev_t(devt_str, dev->devt);
2302 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2303 }
2304
2305 return error;
2306 }
2307
device_remove_sys_dev_entry(struct device * dev)2308 static void device_remove_sys_dev_entry(struct device *dev)
2309 {
2310 struct kobject *kobj = device_to_dev_kobj(dev);
2311 char devt_str[15];
2312
2313 if (kobj) {
2314 format_dev_t(devt_str, dev->devt);
2315 sysfs_remove_link(kobj, devt_str);
2316 }
2317 }
2318
device_private_init(struct device * dev)2319 static int device_private_init(struct device *dev)
2320 {
2321 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2322 if (!dev->p)
2323 return -ENOMEM;
2324 dev->p->device = dev;
2325 klist_init(&dev->p->klist_children, klist_children_get,
2326 klist_children_put);
2327 INIT_LIST_HEAD(&dev->p->deferred_probe);
2328 return 0;
2329 }
2330
2331 /**
2332 * device_add - add device to device hierarchy.
2333 * @dev: device.
2334 *
2335 * This is part 2 of device_register(), though may be called
2336 * separately _iff_ device_initialize() has been called separately.
2337 *
2338 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2339 * to the global and sibling lists for the device, then
2340 * adds it to the other relevant subsystems of the driver model.
2341 *
2342 * Do not call this routine or device_register() more than once for
2343 * any device structure. The driver model core is not designed to work
2344 * with devices that get unregistered and then spring back to life.
2345 * (Among other things, it's very hard to guarantee that all references
2346 * to the previous incarnation of @dev have been dropped.) Allocate
2347 * and register a fresh new struct device instead.
2348 *
2349 * NOTE: _Never_ directly free @dev after calling this function, even
2350 * if it returned an error! Always use put_device() to give up your
2351 * reference instead.
2352 *
2353 * Rule of thumb is: if device_add() succeeds, you should call
2354 * device_del() when you want to get rid of it. If device_add() has
2355 * *not* succeeded, use *only* put_device() to drop the reference
2356 * count.
2357 */
device_add(struct device * dev)2358 int device_add(struct device *dev)
2359 {
2360 struct device *parent;
2361 struct kobject *kobj;
2362 struct class_interface *class_intf;
2363 int error = -EINVAL, fw_ret;
2364 struct kobject *glue_dir = NULL;
2365
2366 dev = get_device(dev);
2367 if (!dev)
2368 goto done;
2369
2370 if (!dev->p) {
2371 error = device_private_init(dev);
2372 if (error)
2373 goto done;
2374 }
2375
2376 /*
2377 * for statically allocated devices, which should all be converted
2378 * some day, we need to initialize the name. We prevent reading back
2379 * the name, and force the use of dev_name()
2380 */
2381 if (dev->init_name) {
2382 dev_set_name(dev, "%s", dev->init_name);
2383 dev->init_name = NULL;
2384 }
2385
2386 /* subsystems can specify simple device enumeration */
2387 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2388 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2389
2390 if (!dev_name(dev)) {
2391 error = -EINVAL;
2392 goto name_error;
2393 }
2394
2395 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2396
2397 parent = get_device(dev->parent);
2398 kobj = get_device_parent(dev, parent);
2399 if (IS_ERR(kobj)) {
2400 error = PTR_ERR(kobj);
2401 goto parent_error;
2402 }
2403 if (kobj)
2404 dev->kobj.parent = kobj;
2405
2406 /* use parent numa_node */
2407 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2408 set_dev_node(dev, dev_to_node(parent));
2409
2410 /* first, register with generic layer. */
2411 /* we require the name to be set before, and pass NULL */
2412 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2413 if (error) {
2414 glue_dir = get_glue_dir(dev);
2415 goto Error;
2416 }
2417
2418 /* notify platform of device entry */
2419 error = device_platform_notify(dev, KOBJ_ADD);
2420 if (error)
2421 goto platform_error;
2422
2423 error = device_create_file(dev, &dev_attr_uevent);
2424 if (error)
2425 goto attrError;
2426
2427 error = device_add_class_symlinks(dev);
2428 if (error)
2429 goto SymlinkError;
2430 error = device_add_attrs(dev);
2431 if (error)
2432 goto AttrsError;
2433 error = bus_add_device(dev);
2434 if (error)
2435 goto BusError;
2436 error = dpm_sysfs_add(dev);
2437 if (error)
2438 goto DPMError;
2439 device_pm_add(dev);
2440
2441 if (MAJOR(dev->devt)) {
2442 error = device_create_file(dev, &dev_attr_dev);
2443 if (error)
2444 goto DevAttrError;
2445
2446 error = device_create_sys_dev_entry(dev);
2447 if (error)
2448 goto SysEntryError;
2449
2450 devtmpfs_create_node(dev);
2451 }
2452
2453 /* Notify clients of device addition. This call must come
2454 * after dpm_sysfs_add() and before kobject_uevent().
2455 */
2456 if (dev->bus)
2457 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2458 BUS_NOTIFY_ADD_DEVICE, dev);
2459
2460 kobject_uevent(&dev->kobj, KOBJ_ADD);
2461
2462 if (dev->fwnode && !dev->fwnode->dev)
2463 dev->fwnode->dev = dev;
2464
2465 /*
2466 * Check if any of the other devices (consumers) have been waiting for
2467 * this device (supplier) to be added so that they can create a device
2468 * link to it.
2469 *
2470 * This needs to happen after device_pm_add() because device_link_add()
2471 * requires the supplier be registered before it's called.
2472 *
2473 * But this also needs to happe before bus_probe_device() to make sure
2474 * waiting consumers can link to it before the driver is bound to the
2475 * device and the driver sync_state callback is called for this device.
2476 */
2477 device_link_add_missing_supplier_links();
2478
2479 if (fwnode_has_op(dev->fwnode, add_links)) {
2480 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
2481 if (fw_ret == -ENODEV)
2482 device_link_wait_for_mandatory_supplier(dev);
2483 else if (fw_ret)
2484 device_link_wait_for_optional_supplier(dev);
2485 }
2486
2487 bus_probe_device(dev);
2488 if (parent)
2489 klist_add_tail(&dev->p->knode_parent,
2490 &parent->p->klist_children);
2491
2492 if (dev->class) {
2493 mutex_lock(&dev->class->p->mutex);
2494 /* tie the class to the device */
2495 klist_add_tail(&dev->p->knode_class,
2496 &dev->class->p->klist_devices);
2497
2498 /* notify any interfaces that the device is here */
2499 list_for_each_entry(class_intf,
2500 &dev->class->p->interfaces, node)
2501 if (class_intf->add_dev)
2502 class_intf->add_dev(dev, class_intf);
2503 mutex_unlock(&dev->class->p->mutex);
2504 }
2505 done:
2506 put_device(dev);
2507 return error;
2508 SysEntryError:
2509 if (MAJOR(dev->devt))
2510 device_remove_file(dev, &dev_attr_dev);
2511 DevAttrError:
2512 device_pm_remove(dev);
2513 dpm_sysfs_remove(dev);
2514 DPMError:
2515 bus_remove_device(dev);
2516 BusError:
2517 device_remove_attrs(dev);
2518 AttrsError:
2519 device_remove_class_symlinks(dev);
2520 SymlinkError:
2521 device_remove_file(dev, &dev_attr_uevent);
2522 attrError:
2523 device_platform_notify(dev, KOBJ_REMOVE);
2524 platform_error:
2525 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2526 glue_dir = get_glue_dir(dev);
2527 kobject_del(&dev->kobj);
2528 Error:
2529 cleanup_glue_dir(dev, glue_dir);
2530 parent_error:
2531 put_device(parent);
2532 name_error:
2533 kfree(dev->p);
2534 dev->p = NULL;
2535 goto done;
2536 }
2537 EXPORT_SYMBOL_GPL(device_add);
2538
2539 /**
2540 * device_register - register a device with the system.
2541 * @dev: pointer to the device structure
2542 *
2543 * This happens in two clean steps - initialize the device
2544 * and add it to the system. The two steps can be called
2545 * separately, but this is the easiest and most common.
2546 * I.e. you should only call the two helpers separately if
2547 * have a clearly defined need to use and refcount the device
2548 * before it is added to the hierarchy.
2549 *
2550 * For more information, see the kerneldoc for device_initialize()
2551 * and device_add().
2552 *
2553 * NOTE: _Never_ directly free @dev after calling this function, even
2554 * if it returned an error! Always use put_device() to give up the
2555 * reference initialized in this function instead.
2556 */
device_register(struct device * dev)2557 int device_register(struct device *dev)
2558 {
2559 device_initialize(dev);
2560 return device_add(dev);
2561 }
2562 EXPORT_SYMBOL_GPL(device_register);
2563
2564 /**
2565 * get_device - increment reference count for device.
2566 * @dev: device.
2567 *
2568 * This simply forwards the call to kobject_get(), though
2569 * we do take care to provide for the case that we get a NULL
2570 * pointer passed in.
2571 */
get_device(struct device * dev)2572 struct device *get_device(struct device *dev)
2573 {
2574 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2575 }
2576 EXPORT_SYMBOL_GPL(get_device);
2577
2578 /**
2579 * put_device - decrement reference count.
2580 * @dev: device in question.
2581 */
put_device(struct device * dev)2582 void put_device(struct device *dev)
2583 {
2584 /* might_sleep(); */
2585 if (dev)
2586 kobject_put(&dev->kobj);
2587 }
2588 EXPORT_SYMBOL_GPL(put_device);
2589
kill_device(struct device * dev)2590 bool kill_device(struct device *dev)
2591 {
2592 /*
2593 * Require the device lock and set the "dead" flag to guarantee that
2594 * the update behavior is consistent with the other bitfields near
2595 * it and that we cannot have an asynchronous probe routine trying
2596 * to run while we are tearing out the bus/class/sysfs from
2597 * underneath the device.
2598 */
2599 lockdep_assert_held(&dev->mutex);
2600
2601 if (dev->p->dead)
2602 return false;
2603 dev->p->dead = true;
2604 return true;
2605 }
2606 EXPORT_SYMBOL_GPL(kill_device);
2607
2608 /**
2609 * device_del - delete device from system.
2610 * @dev: device.
2611 *
2612 * This is the first part of the device unregistration
2613 * sequence. This removes the device from the lists we control
2614 * from here, has it removed from the other driver model
2615 * subsystems it was added to in device_add(), and removes it
2616 * from the kobject hierarchy.
2617 *
2618 * NOTE: this should be called manually _iff_ device_add() was
2619 * also called manually.
2620 */
device_del(struct device * dev)2621 void device_del(struct device *dev)
2622 {
2623 struct device *parent = dev->parent;
2624 struct kobject *glue_dir = NULL;
2625 struct class_interface *class_intf;
2626
2627 device_lock(dev);
2628 kill_device(dev);
2629 device_unlock(dev);
2630
2631 if (dev->fwnode && dev->fwnode->dev == dev)
2632 dev->fwnode->dev = NULL;
2633
2634 /* Notify clients of device removal. This call must come
2635 * before dpm_sysfs_remove().
2636 */
2637 if (dev->bus)
2638 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2639 BUS_NOTIFY_DEL_DEVICE, dev);
2640
2641 dpm_sysfs_remove(dev);
2642 if (parent)
2643 klist_del(&dev->p->knode_parent);
2644 if (MAJOR(dev->devt)) {
2645 devtmpfs_delete_node(dev);
2646 device_remove_sys_dev_entry(dev);
2647 device_remove_file(dev, &dev_attr_dev);
2648 }
2649 if (dev->class) {
2650 device_remove_class_symlinks(dev);
2651
2652 mutex_lock(&dev->class->p->mutex);
2653 /* notify any interfaces that the device is now gone */
2654 list_for_each_entry(class_intf,
2655 &dev->class->p->interfaces, node)
2656 if (class_intf->remove_dev)
2657 class_intf->remove_dev(dev, class_intf);
2658 /* remove the device from the class list */
2659 klist_del(&dev->p->knode_class);
2660 mutex_unlock(&dev->class->p->mutex);
2661 }
2662 device_remove_file(dev, &dev_attr_uevent);
2663 device_remove_attrs(dev);
2664 bus_remove_device(dev);
2665 device_pm_remove(dev);
2666 driver_deferred_probe_del(dev);
2667 device_platform_notify(dev, KOBJ_REMOVE);
2668 device_remove_properties(dev);
2669 device_links_purge(dev);
2670
2671 if (dev->bus)
2672 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2673 BUS_NOTIFY_REMOVED_DEVICE, dev);
2674 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2675 glue_dir = get_glue_dir(dev);
2676 kobject_del(&dev->kobj);
2677 cleanup_glue_dir(dev, glue_dir);
2678 put_device(parent);
2679 }
2680 EXPORT_SYMBOL_GPL(device_del);
2681
2682 /**
2683 * device_unregister - unregister device from system.
2684 * @dev: device going away.
2685 *
2686 * We do this in two parts, like we do device_register(). First,
2687 * we remove it from all the subsystems with device_del(), then
2688 * we decrement the reference count via put_device(). If that
2689 * is the final reference count, the device will be cleaned up
2690 * via device_release() above. Otherwise, the structure will
2691 * stick around until the final reference to the device is dropped.
2692 */
device_unregister(struct device * dev)2693 void device_unregister(struct device *dev)
2694 {
2695 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2696 device_del(dev);
2697 put_device(dev);
2698 }
2699 EXPORT_SYMBOL_GPL(device_unregister);
2700
prev_device(struct klist_iter * i)2701 static struct device *prev_device(struct klist_iter *i)
2702 {
2703 struct klist_node *n = klist_prev(i);
2704 struct device *dev = NULL;
2705 struct device_private *p;
2706
2707 if (n) {
2708 p = to_device_private_parent(n);
2709 dev = p->device;
2710 }
2711 return dev;
2712 }
2713
next_device(struct klist_iter * i)2714 static struct device *next_device(struct klist_iter *i)
2715 {
2716 struct klist_node *n = klist_next(i);
2717 struct device *dev = NULL;
2718 struct device_private *p;
2719
2720 if (n) {
2721 p = to_device_private_parent(n);
2722 dev = p->device;
2723 }
2724 return dev;
2725 }
2726
2727 /**
2728 * device_get_devnode - path of device node file
2729 * @dev: device
2730 * @mode: returned file access mode
2731 * @uid: returned file owner
2732 * @gid: returned file group
2733 * @tmp: possibly allocated string
2734 *
2735 * Return the relative path of a possible device node.
2736 * Non-default names may need to allocate a memory to compose
2737 * a name. This memory is returned in tmp and needs to be
2738 * freed by the caller.
2739 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)2740 const char *device_get_devnode(struct device *dev,
2741 umode_t *mode, kuid_t *uid, kgid_t *gid,
2742 const char **tmp)
2743 {
2744 char *s;
2745
2746 *tmp = NULL;
2747
2748 /* the device type may provide a specific name */
2749 if (dev->type && dev->type->devnode)
2750 *tmp = dev->type->devnode(dev, mode, uid, gid);
2751 if (*tmp)
2752 return *tmp;
2753
2754 /* the class may provide a specific name */
2755 if (dev->class && dev->class->devnode)
2756 *tmp = dev->class->devnode(dev, mode);
2757 if (*tmp)
2758 return *tmp;
2759
2760 /* return name without allocation, tmp == NULL */
2761 if (strchr(dev_name(dev), '!') == NULL)
2762 return dev_name(dev);
2763
2764 /* replace '!' in the name with '/' */
2765 s = kstrdup(dev_name(dev), GFP_KERNEL);
2766 if (!s)
2767 return NULL;
2768 strreplace(s, '!', '/');
2769 return *tmp = s;
2770 }
2771
2772 /**
2773 * device_for_each_child - device child iterator.
2774 * @parent: parent struct device.
2775 * @fn: function to be called for each device.
2776 * @data: data for the callback.
2777 *
2778 * Iterate over @parent's child devices, and call @fn for each,
2779 * passing it @data.
2780 *
2781 * We check the return of @fn each time. If it returns anything
2782 * other than 0, we break out and return that value.
2783 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2784 int device_for_each_child(struct device *parent, void *data,
2785 int (*fn)(struct device *dev, void *data))
2786 {
2787 struct klist_iter i;
2788 struct device *child;
2789 int error = 0;
2790
2791 if (!parent->p)
2792 return 0;
2793
2794 klist_iter_init(&parent->p->klist_children, &i);
2795 while (!error && (child = next_device(&i)))
2796 error = fn(child, data);
2797 klist_iter_exit(&i);
2798 return error;
2799 }
2800 EXPORT_SYMBOL_GPL(device_for_each_child);
2801
2802 /**
2803 * device_for_each_child_reverse - device child iterator in reversed order.
2804 * @parent: parent struct device.
2805 * @fn: function to be called for each device.
2806 * @data: data for the callback.
2807 *
2808 * Iterate over @parent's child devices, and call @fn for each,
2809 * passing it @data.
2810 *
2811 * We check the return of @fn each time. If it returns anything
2812 * other than 0, we break out and return that value.
2813 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2814 int device_for_each_child_reverse(struct device *parent, void *data,
2815 int (*fn)(struct device *dev, void *data))
2816 {
2817 struct klist_iter i;
2818 struct device *child;
2819 int error = 0;
2820
2821 if (!parent->p)
2822 return 0;
2823
2824 klist_iter_init(&parent->p->klist_children, &i);
2825 while ((child = prev_device(&i)) && !error)
2826 error = fn(child, data);
2827 klist_iter_exit(&i);
2828 return error;
2829 }
2830 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2831
2832 /**
2833 * device_find_child - device iterator for locating a particular device.
2834 * @parent: parent struct device
2835 * @match: Callback function to check device
2836 * @data: Data to pass to match function
2837 *
2838 * This is similar to the device_for_each_child() function above, but it
2839 * returns a reference to a device that is 'found' for later use, as
2840 * determined by the @match callback.
2841 *
2842 * The callback should return 0 if the device doesn't match and non-zero
2843 * if it does. If the callback returns non-zero and a reference to the
2844 * current device can be obtained, this function will return to the caller
2845 * and not iterate over any more devices.
2846 *
2847 * NOTE: you will need to drop the reference with put_device() after use.
2848 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))2849 struct device *device_find_child(struct device *parent, void *data,
2850 int (*match)(struct device *dev, void *data))
2851 {
2852 struct klist_iter i;
2853 struct device *child;
2854
2855 if (!parent)
2856 return NULL;
2857
2858 klist_iter_init(&parent->p->klist_children, &i);
2859 while ((child = next_device(&i)))
2860 if (match(child, data) && get_device(child))
2861 break;
2862 klist_iter_exit(&i);
2863 return child;
2864 }
2865 EXPORT_SYMBOL_GPL(device_find_child);
2866
2867 /**
2868 * device_find_child_by_name - device iterator for locating a child device.
2869 * @parent: parent struct device
2870 * @name: name of the child device
2871 *
2872 * This is similar to the device_find_child() function above, but it
2873 * returns a reference to a device that has the name @name.
2874 *
2875 * NOTE: you will need to drop the reference with put_device() after use.
2876 */
device_find_child_by_name(struct device * parent,const char * name)2877 struct device *device_find_child_by_name(struct device *parent,
2878 const char *name)
2879 {
2880 struct klist_iter i;
2881 struct device *child;
2882
2883 if (!parent)
2884 return NULL;
2885
2886 klist_iter_init(&parent->p->klist_children, &i);
2887 while ((child = next_device(&i)))
2888 if (!strcmp(dev_name(child), name) && get_device(child))
2889 break;
2890 klist_iter_exit(&i);
2891 return child;
2892 }
2893 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2894
devices_init(void)2895 int __init devices_init(void)
2896 {
2897 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2898 if (!devices_kset)
2899 return -ENOMEM;
2900 dev_kobj = kobject_create_and_add("dev", NULL);
2901 if (!dev_kobj)
2902 goto dev_kobj_err;
2903 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2904 if (!sysfs_dev_block_kobj)
2905 goto block_kobj_err;
2906 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2907 if (!sysfs_dev_char_kobj)
2908 goto char_kobj_err;
2909
2910 return 0;
2911
2912 char_kobj_err:
2913 kobject_put(sysfs_dev_block_kobj);
2914 block_kobj_err:
2915 kobject_put(dev_kobj);
2916 dev_kobj_err:
2917 kset_unregister(devices_kset);
2918 return -ENOMEM;
2919 }
2920
device_check_offline(struct device * dev,void * not_used)2921 static int device_check_offline(struct device *dev, void *not_used)
2922 {
2923 int ret;
2924
2925 ret = device_for_each_child(dev, NULL, device_check_offline);
2926 if (ret)
2927 return ret;
2928
2929 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2930 }
2931
2932 /**
2933 * device_offline - Prepare the device for hot-removal.
2934 * @dev: Device to be put offline.
2935 *
2936 * Execute the device bus type's .offline() callback, if present, to prepare
2937 * the device for a subsequent hot-removal. If that succeeds, the device must
2938 * not be used until either it is removed or its bus type's .online() callback
2939 * is executed.
2940 *
2941 * Call under device_hotplug_lock.
2942 */
device_offline(struct device * dev)2943 int device_offline(struct device *dev)
2944 {
2945 int ret;
2946
2947 if (dev->offline_disabled)
2948 return -EPERM;
2949
2950 ret = device_for_each_child(dev, NULL, device_check_offline);
2951 if (ret)
2952 return ret;
2953
2954 device_lock(dev);
2955 if (device_supports_offline(dev)) {
2956 if (dev->offline) {
2957 ret = 1;
2958 } else {
2959 ret = dev->bus->offline(dev);
2960 if (!ret) {
2961 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2962 dev->offline = true;
2963 }
2964 }
2965 }
2966 device_unlock(dev);
2967
2968 return ret;
2969 }
2970
2971 /**
2972 * device_online - Put the device back online after successful device_offline().
2973 * @dev: Device to be put back online.
2974 *
2975 * If device_offline() has been successfully executed for @dev, but the device
2976 * has not been removed subsequently, execute its bus type's .online() callback
2977 * to indicate that the device can be used again.
2978 *
2979 * Call under device_hotplug_lock.
2980 */
device_online(struct device * dev)2981 int device_online(struct device *dev)
2982 {
2983 int ret = 0;
2984
2985 device_lock(dev);
2986 if (device_supports_offline(dev)) {
2987 if (dev->offline) {
2988 ret = dev->bus->online(dev);
2989 if (!ret) {
2990 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2991 dev->offline = false;
2992 }
2993 } else {
2994 ret = 1;
2995 }
2996 }
2997 device_unlock(dev);
2998
2999 return ret;
3000 }
3001
3002 struct root_device {
3003 struct device dev;
3004 struct module *owner;
3005 };
3006
to_root_device(struct device * d)3007 static inline struct root_device *to_root_device(struct device *d)
3008 {
3009 return container_of(d, struct root_device, dev);
3010 }
3011
root_device_release(struct device * dev)3012 static void root_device_release(struct device *dev)
3013 {
3014 kfree(to_root_device(dev));
3015 }
3016
3017 /**
3018 * __root_device_register - allocate and register a root device
3019 * @name: root device name
3020 * @owner: owner module of the root device, usually THIS_MODULE
3021 *
3022 * This function allocates a root device and registers it
3023 * using device_register(). In order to free the returned
3024 * device, use root_device_unregister().
3025 *
3026 * Root devices are dummy devices which allow other devices
3027 * to be grouped under /sys/devices. Use this function to
3028 * allocate a root device and then use it as the parent of
3029 * any device which should appear under /sys/devices/{name}
3030 *
3031 * The /sys/devices/{name} directory will also contain a
3032 * 'module' symlink which points to the @owner directory
3033 * in sysfs.
3034 *
3035 * Returns &struct device pointer on success, or ERR_PTR() on error.
3036 *
3037 * Note: You probably want to use root_device_register().
3038 */
__root_device_register(const char * name,struct module * owner)3039 struct device *__root_device_register(const char *name, struct module *owner)
3040 {
3041 struct root_device *root;
3042 int err = -ENOMEM;
3043
3044 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3045 if (!root)
3046 return ERR_PTR(err);
3047
3048 err = dev_set_name(&root->dev, "%s", name);
3049 if (err) {
3050 kfree(root);
3051 return ERR_PTR(err);
3052 }
3053
3054 root->dev.release = root_device_release;
3055
3056 err = device_register(&root->dev);
3057 if (err) {
3058 put_device(&root->dev);
3059 return ERR_PTR(err);
3060 }
3061
3062 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3063 if (owner) {
3064 struct module_kobject *mk = &owner->mkobj;
3065
3066 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3067 if (err) {
3068 device_unregister(&root->dev);
3069 return ERR_PTR(err);
3070 }
3071 root->owner = owner;
3072 }
3073 #endif
3074
3075 return &root->dev;
3076 }
3077 EXPORT_SYMBOL_GPL(__root_device_register);
3078
3079 /**
3080 * root_device_unregister - unregister and free a root device
3081 * @dev: device going away
3082 *
3083 * This function unregisters and cleans up a device that was created by
3084 * root_device_register().
3085 */
root_device_unregister(struct device * dev)3086 void root_device_unregister(struct device *dev)
3087 {
3088 struct root_device *root = to_root_device(dev);
3089
3090 if (root->owner)
3091 sysfs_remove_link(&root->dev.kobj, "module");
3092
3093 device_unregister(dev);
3094 }
3095 EXPORT_SYMBOL_GPL(root_device_unregister);
3096
3097
device_create_release(struct device * dev)3098 static void device_create_release(struct device *dev)
3099 {
3100 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3101 kfree(dev);
3102 }
3103
3104 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)3105 device_create_groups_vargs(struct class *class, struct device *parent,
3106 dev_t devt, void *drvdata,
3107 const struct attribute_group **groups,
3108 const char *fmt, va_list args)
3109 {
3110 struct device *dev = NULL;
3111 int retval = -ENODEV;
3112
3113 if (class == NULL || IS_ERR(class))
3114 goto error;
3115
3116 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3117 if (!dev) {
3118 retval = -ENOMEM;
3119 goto error;
3120 }
3121
3122 device_initialize(dev);
3123 dev->devt = devt;
3124 dev->class = class;
3125 dev->parent = parent;
3126 dev->groups = groups;
3127 dev->release = device_create_release;
3128 dev_set_drvdata(dev, drvdata);
3129
3130 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3131 if (retval)
3132 goto error;
3133
3134 retval = device_add(dev);
3135 if (retval)
3136 goto error;
3137
3138 return dev;
3139
3140 error:
3141 put_device(dev);
3142 return ERR_PTR(retval);
3143 }
3144
3145 /**
3146 * device_create_vargs - creates a device and registers it with sysfs
3147 * @class: pointer to the struct class that this device should be registered to
3148 * @parent: pointer to the parent struct device of this new device, if any
3149 * @devt: the dev_t for the char device to be added
3150 * @drvdata: the data to be added to the device for callbacks
3151 * @fmt: string for the device's name
3152 * @args: va_list for the device's name
3153 *
3154 * This function can be used by char device classes. A struct device
3155 * will be created in sysfs, registered to the specified class.
3156 *
3157 * A "dev" file will be created, showing the dev_t for the device, if
3158 * the dev_t is not 0,0.
3159 * If a pointer to a parent struct device is passed in, the newly created
3160 * struct device will be a child of that device in sysfs.
3161 * The pointer to the struct device will be returned from the call.
3162 * Any further sysfs files that might be required can be created using this
3163 * pointer.
3164 *
3165 * Returns &struct device pointer on success, or ERR_PTR() on error.
3166 *
3167 * Note: the struct class passed to this function must have previously
3168 * been created with a call to class_create().
3169 */
device_create_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,va_list args)3170 struct device *device_create_vargs(struct class *class, struct device *parent,
3171 dev_t devt, void *drvdata, const char *fmt,
3172 va_list args)
3173 {
3174 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3175 fmt, args);
3176 }
3177 EXPORT_SYMBOL_GPL(device_create_vargs);
3178
3179 /**
3180 * device_create - creates a device and registers it with sysfs
3181 * @class: pointer to the struct class that this device should be registered to
3182 * @parent: pointer to the parent struct device of this new device, if any
3183 * @devt: the dev_t for the char device to be added
3184 * @drvdata: the data to be added to the device for callbacks
3185 * @fmt: string for the device's name
3186 *
3187 * This function can be used by char device classes. A struct device
3188 * will be created in sysfs, registered to the specified class.
3189 *
3190 * A "dev" file will be created, showing the dev_t for the device, if
3191 * the dev_t is not 0,0.
3192 * If a pointer to a parent struct device is passed in, the newly created
3193 * struct device will be a child of that device in sysfs.
3194 * The pointer to the struct device will be returned from the call.
3195 * Any further sysfs files that might be required can be created using this
3196 * pointer.
3197 *
3198 * Returns &struct device pointer on success, or ERR_PTR() on error.
3199 *
3200 * Note: the struct class passed to this function must have previously
3201 * been created with a call to class_create().
3202 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)3203 struct device *device_create(struct class *class, struct device *parent,
3204 dev_t devt, void *drvdata, const char *fmt, ...)
3205 {
3206 va_list vargs;
3207 struct device *dev;
3208
3209 va_start(vargs, fmt);
3210 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
3211 va_end(vargs);
3212 return dev;
3213 }
3214 EXPORT_SYMBOL_GPL(device_create);
3215
3216 /**
3217 * device_create_with_groups - creates a device and registers it with sysfs
3218 * @class: pointer to the struct class that this device should be registered to
3219 * @parent: pointer to the parent struct device of this new device, if any
3220 * @devt: the dev_t for the char device to be added
3221 * @drvdata: the data to be added to the device for callbacks
3222 * @groups: NULL-terminated list of attribute groups to be created
3223 * @fmt: string for the device's name
3224 *
3225 * This function can be used by char device classes. A struct device
3226 * will be created in sysfs, registered to the specified class.
3227 * Additional attributes specified in the groups parameter will also
3228 * be created automatically.
3229 *
3230 * A "dev" file will be created, showing the dev_t for the device, if
3231 * the dev_t is not 0,0.
3232 * If a pointer to a parent struct device is passed in, the newly created
3233 * struct device will be a child of that device in sysfs.
3234 * The pointer to the struct device will be returned from the call.
3235 * Any further sysfs files that might be required can be created using this
3236 * pointer.
3237 *
3238 * Returns &struct device pointer on success, or ERR_PTR() on error.
3239 *
3240 * Note: the struct class passed to this function must have previously
3241 * been created with a call to class_create().
3242 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)3243 struct device *device_create_with_groups(struct class *class,
3244 struct device *parent, dev_t devt,
3245 void *drvdata,
3246 const struct attribute_group **groups,
3247 const char *fmt, ...)
3248 {
3249 va_list vargs;
3250 struct device *dev;
3251
3252 va_start(vargs, fmt);
3253 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3254 fmt, vargs);
3255 va_end(vargs);
3256 return dev;
3257 }
3258 EXPORT_SYMBOL_GPL(device_create_with_groups);
3259
3260 /**
3261 * device_destroy - removes a device that was created with device_create()
3262 * @class: pointer to the struct class that this device was registered with
3263 * @devt: the dev_t of the device that was previously registered
3264 *
3265 * This call unregisters and cleans up a device that was created with a
3266 * call to device_create().
3267 */
device_destroy(struct class * class,dev_t devt)3268 void device_destroy(struct class *class, dev_t devt)
3269 {
3270 struct device *dev;
3271
3272 dev = class_find_device_by_devt(class, devt);
3273 if (dev) {
3274 put_device(dev);
3275 device_unregister(dev);
3276 }
3277 }
3278 EXPORT_SYMBOL_GPL(device_destroy);
3279
3280 /**
3281 * device_rename - renames a device
3282 * @dev: the pointer to the struct device to be renamed
3283 * @new_name: the new name of the device
3284 *
3285 * It is the responsibility of the caller to provide mutual
3286 * exclusion between two different calls of device_rename
3287 * on the same device to ensure that new_name is valid and
3288 * won't conflict with other devices.
3289 *
3290 * Note: Don't call this function. Currently, the networking layer calls this
3291 * function, but that will change. The following text from Kay Sievers offers
3292 * some insight:
3293 *
3294 * Renaming devices is racy at many levels, symlinks and other stuff are not
3295 * replaced atomically, and you get a "move" uevent, but it's not easy to
3296 * connect the event to the old and new device. Device nodes are not renamed at
3297 * all, there isn't even support for that in the kernel now.
3298 *
3299 * In the meantime, during renaming, your target name might be taken by another
3300 * driver, creating conflicts. Or the old name is taken directly after you
3301 * renamed it -- then you get events for the same DEVPATH, before you even see
3302 * the "move" event. It's just a mess, and nothing new should ever rely on
3303 * kernel device renaming. Besides that, it's not even implemented now for
3304 * other things than (driver-core wise very simple) network devices.
3305 *
3306 * We are currently about to change network renaming in udev to completely
3307 * disallow renaming of devices in the same namespace as the kernel uses,
3308 * because we can't solve the problems properly, that arise with swapping names
3309 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3310 * be allowed to some other name than eth[0-9]*, for the aforementioned
3311 * reasons.
3312 *
3313 * Make up a "real" name in the driver before you register anything, or add
3314 * some other attributes for userspace to find the device, or use udev to add
3315 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3316 * don't even want to get into that and try to implement the missing pieces in
3317 * the core. We really have other pieces to fix in the driver core mess. :)
3318 */
device_rename(struct device * dev,const char * new_name)3319 int device_rename(struct device *dev, const char *new_name)
3320 {
3321 struct kobject *kobj = &dev->kobj;
3322 char *old_device_name = NULL;
3323 int error;
3324
3325 dev = get_device(dev);
3326 if (!dev)
3327 return -EINVAL;
3328
3329 dev_dbg(dev, "renaming to %s\n", new_name);
3330
3331 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3332 if (!old_device_name) {
3333 error = -ENOMEM;
3334 goto out;
3335 }
3336
3337 if (dev->class) {
3338 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3339 kobj, old_device_name,
3340 new_name, kobject_namespace(kobj));
3341 if (error)
3342 goto out;
3343 }
3344
3345 error = kobject_rename(kobj, new_name);
3346 if (error)
3347 goto out;
3348
3349 out:
3350 put_device(dev);
3351
3352 kfree(old_device_name);
3353
3354 return error;
3355 }
3356 EXPORT_SYMBOL_GPL(device_rename);
3357
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)3358 static int device_move_class_links(struct device *dev,
3359 struct device *old_parent,
3360 struct device *new_parent)
3361 {
3362 int error = 0;
3363
3364 if (old_parent)
3365 sysfs_remove_link(&dev->kobj, "device");
3366 if (new_parent)
3367 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3368 "device");
3369 return error;
3370 }
3371
3372 /**
3373 * device_move - moves a device to a new parent
3374 * @dev: the pointer to the struct device to be moved
3375 * @new_parent: the new parent of the device (can be NULL)
3376 * @dpm_order: how to reorder the dpm_list
3377 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)3378 int device_move(struct device *dev, struct device *new_parent,
3379 enum dpm_order dpm_order)
3380 {
3381 int error;
3382 struct device *old_parent;
3383 struct kobject *new_parent_kobj;
3384
3385 dev = get_device(dev);
3386 if (!dev)
3387 return -EINVAL;
3388
3389 device_pm_lock();
3390 new_parent = get_device(new_parent);
3391 new_parent_kobj = get_device_parent(dev, new_parent);
3392 if (IS_ERR(new_parent_kobj)) {
3393 error = PTR_ERR(new_parent_kobj);
3394 put_device(new_parent);
3395 goto out;
3396 }
3397
3398 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3399 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3400 error = kobject_move(&dev->kobj, new_parent_kobj);
3401 if (error) {
3402 cleanup_glue_dir(dev, new_parent_kobj);
3403 put_device(new_parent);
3404 goto out;
3405 }
3406 old_parent = dev->parent;
3407 dev->parent = new_parent;
3408 if (old_parent)
3409 klist_remove(&dev->p->knode_parent);
3410 if (new_parent) {
3411 klist_add_tail(&dev->p->knode_parent,
3412 &new_parent->p->klist_children);
3413 set_dev_node(dev, dev_to_node(new_parent));
3414 }
3415
3416 if (dev->class) {
3417 error = device_move_class_links(dev, old_parent, new_parent);
3418 if (error) {
3419 /* We ignore errors on cleanup since we're hosed anyway... */
3420 device_move_class_links(dev, new_parent, old_parent);
3421 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3422 if (new_parent)
3423 klist_remove(&dev->p->knode_parent);
3424 dev->parent = old_parent;
3425 if (old_parent) {
3426 klist_add_tail(&dev->p->knode_parent,
3427 &old_parent->p->klist_children);
3428 set_dev_node(dev, dev_to_node(old_parent));
3429 }
3430 }
3431 cleanup_glue_dir(dev, new_parent_kobj);
3432 put_device(new_parent);
3433 goto out;
3434 }
3435 }
3436 switch (dpm_order) {
3437 case DPM_ORDER_NONE:
3438 break;
3439 case DPM_ORDER_DEV_AFTER_PARENT:
3440 device_pm_move_after(dev, new_parent);
3441 devices_kset_move_after(dev, new_parent);
3442 break;
3443 case DPM_ORDER_PARENT_BEFORE_DEV:
3444 device_pm_move_before(new_parent, dev);
3445 devices_kset_move_before(new_parent, dev);
3446 break;
3447 case DPM_ORDER_DEV_LAST:
3448 device_pm_move_last(dev);
3449 devices_kset_move_last(dev);
3450 break;
3451 }
3452
3453 put_device(old_parent);
3454 out:
3455 device_pm_unlock();
3456 put_device(dev);
3457 return error;
3458 }
3459 EXPORT_SYMBOL_GPL(device_move);
3460
3461 /**
3462 * device_shutdown - call ->shutdown() on each device to shutdown.
3463 */
device_shutdown(void)3464 void device_shutdown(void)
3465 {
3466 struct device *dev, *parent;
3467
3468 wait_for_device_probe();
3469 device_block_probing();
3470
3471 cpufreq_suspend();
3472
3473 spin_lock(&devices_kset->list_lock);
3474 /*
3475 * Walk the devices list backward, shutting down each in turn.
3476 * Beware that device unplug events may also start pulling
3477 * devices offline, even as the system is shutting down.
3478 */
3479 while (!list_empty(&devices_kset->list)) {
3480 dev = list_entry(devices_kset->list.prev, struct device,
3481 kobj.entry);
3482
3483 /*
3484 * hold reference count of device's parent to
3485 * prevent it from being freed because parent's
3486 * lock is to be held
3487 */
3488 parent = get_device(dev->parent);
3489 get_device(dev);
3490 /*
3491 * Make sure the device is off the kset list, in the
3492 * event that dev->*->shutdown() doesn't remove it.
3493 */
3494 list_del_init(&dev->kobj.entry);
3495 spin_unlock(&devices_kset->list_lock);
3496
3497 /* hold lock to avoid race with probe/release */
3498 if (parent)
3499 device_lock(parent);
3500 device_lock(dev);
3501
3502 /* Don't allow any more runtime suspends */
3503 pm_runtime_get_noresume(dev);
3504 pm_runtime_barrier(dev);
3505
3506 if (dev->class && dev->class->shutdown_pre) {
3507 if (initcall_debug)
3508 dev_info(dev, "shutdown_pre\n");
3509 dev->class->shutdown_pre(dev);
3510 }
3511 if (dev->bus && dev->bus->shutdown) {
3512 if (initcall_debug)
3513 dev_info(dev, "shutdown\n");
3514 dev->bus->shutdown(dev);
3515 } else if (dev->driver && dev->driver->shutdown) {
3516 if (initcall_debug)
3517 dev_info(dev, "shutdown\n");
3518 dev->driver->shutdown(dev);
3519 }
3520
3521 device_unlock(dev);
3522 if (parent)
3523 device_unlock(parent);
3524
3525 put_device(dev);
3526 put_device(parent);
3527
3528 spin_lock(&devices_kset->list_lock);
3529 }
3530 spin_unlock(&devices_kset->list_lock);
3531 }
3532
3533 /*
3534 * Device logging functions
3535 */
3536
3537 #ifdef CONFIG_PRINTK
3538 static int
create_syslog_header(const struct device * dev,char * hdr,size_t hdrlen)3539 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3540 {
3541 const char *subsys;
3542 size_t pos = 0;
3543
3544 if (dev->class)
3545 subsys = dev->class->name;
3546 else if (dev->bus)
3547 subsys = dev->bus->name;
3548 else
3549 return 0;
3550
3551 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3552 if (pos >= hdrlen)
3553 goto overflow;
3554
3555 /*
3556 * Add device identifier DEVICE=:
3557 * b12:8 block dev_t
3558 * c127:3 char dev_t
3559 * n8 netdev ifindex
3560 * +sound:card0 subsystem:devname
3561 */
3562 if (MAJOR(dev->devt)) {
3563 char c;
3564
3565 if (strcmp(subsys, "block") == 0)
3566 c = 'b';
3567 else
3568 c = 'c';
3569 pos++;
3570 pos += snprintf(hdr + pos, hdrlen - pos,
3571 "DEVICE=%c%u:%u",
3572 c, MAJOR(dev->devt), MINOR(dev->devt));
3573 } else if (strcmp(subsys, "net") == 0) {
3574 struct net_device *net = to_net_dev(dev);
3575
3576 pos++;
3577 pos += snprintf(hdr + pos, hdrlen - pos,
3578 "DEVICE=n%u", net->ifindex);
3579 } else {
3580 pos++;
3581 pos += snprintf(hdr + pos, hdrlen - pos,
3582 "DEVICE=+%s:%s", subsys, dev_name(dev));
3583 }
3584
3585 if (pos >= hdrlen)
3586 goto overflow;
3587
3588 return pos;
3589
3590 overflow:
3591 dev_WARN(dev, "device/subsystem name too long");
3592 return 0;
3593 }
3594
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)3595 int dev_vprintk_emit(int level, const struct device *dev,
3596 const char *fmt, va_list args)
3597 {
3598 char hdr[128];
3599 size_t hdrlen;
3600
3601 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3602
3603 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3604 }
3605 EXPORT_SYMBOL(dev_vprintk_emit);
3606
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)3607 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3608 {
3609 va_list args;
3610 int r;
3611
3612 va_start(args, fmt);
3613
3614 r = dev_vprintk_emit(level, dev, fmt, args);
3615
3616 va_end(args);
3617
3618 return r;
3619 }
3620 EXPORT_SYMBOL(dev_printk_emit);
3621
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)3622 static void __dev_printk(const char *level, const struct device *dev,
3623 struct va_format *vaf)
3624 {
3625 if (dev)
3626 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3627 dev_driver_string(dev), dev_name(dev), vaf);
3628 else
3629 printk("%s(NULL device *): %pV", level, vaf);
3630 }
3631
dev_printk(const char * level,const struct device * dev,const char * fmt,...)3632 void dev_printk(const char *level, const struct device *dev,
3633 const char *fmt, ...)
3634 {
3635 struct va_format vaf;
3636 va_list args;
3637
3638 va_start(args, fmt);
3639
3640 vaf.fmt = fmt;
3641 vaf.va = &args;
3642
3643 __dev_printk(level, dev, &vaf);
3644
3645 va_end(args);
3646 }
3647 EXPORT_SYMBOL(dev_printk);
3648
3649 #define define_dev_printk_level(func, kern_level) \
3650 void func(const struct device *dev, const char *fmt, ...) \
3651 { \
3652 struct va_format vaf; \
3653 va_list args; \
3654 \
3655 va_start(args, fmt); \
3656 \
3657 vaf.fmt = fmt; \
3658 vaf.va = &args; \
3659 \
3660 __dev_printk(kern_level, dev, &vaf); \
3661 \
3662 va_end(args); \
3663 } \
3664 EXPORT_SYMBOL(func);
3665
3666 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3667 define_dev_printk_level(_dev_alert, KERN_ALERT);
3668 define_dev_printk_level(_dev_crit, KERN_CRIT);
3669 define_dev_printk_level(_dev_err, KERN_ERR);
3670 define_dev_printk_level(_dev_warn, KERN_WARNING);
3671 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3672 define_dev_printk_level(_dev_info, KERN_INFO);
3673
3674 #endif
3675
fwnode_is_primary(struct fwnode_handle * fwnode)3676 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3677 {
3678 return fwnode && !IS_ERR(fwnode->secondary);
3679 }
3680
3681 /**
3682 * set_primary_fwnode - Change the primary firmware node of a given device.
3683 * @dev: Device to handle.
3684 * @fwnode: New primary firmware node of the device.
3685 *
3686 * Set the device's firmware node pointer to @fwnode, but if a secondary
3687 * firmware node of the device is present, preserve it.
3688 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3689 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3690 {
3691 if (fwnode) {
3692 struct fwnode_handle *fn = dev->fwnode;
3693
3694 if (fwnode_is_primary(fn))
3695 fn = fn->secondary;
3696
3697 if (fn) {
3698 WARN_ON(fwnode->secondary);
3699 fwnode->secondary = fn;
3700 }
3701 dev->fwnode = fwnode;
3702 } else {
3703 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3704 dev->fwnode->secondary : NULL;
3705 }
3706 }
3707 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3708
3709 /**
3710 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3711 * @dev: Device to handle.
3712 * @fwnode: New secondary firmware node of the device.
3713 *
3714 * If a primary firmware node of the device is present, set its secondary
3715 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3716 * @fwnode.
3717 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3718 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3719 {
3720 if (fwnode)
3721 fwnode->secondary = ERR_PTR(-ENODEV);
3722
3723 if (fwnode_is_primary(dev->fwnode))
3724 dev->fwnode->secondary = fwnode;
3725 else
3726 dev->fwnode = fwnode;
3727 }
3728
3729 /**
3730 * device_set_of_node_from_dev - reuse device-tree node of another device
3731 * @dev: device whose device-tree node is being set
3732 * @dev2: device whose device-tree node is being reused
3733 *
3734 * Takes another reference to the new device-tree node after first dropping
3735 * any reference held to the old node.
3736 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)3737 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3738 {
3739 of_node_put(dev->of_node);
3740 dev->of_node = of_node_get(dev2->of_node);
3741 dev->of_node_reused = true;
3742 }
3743 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3744
device_match_name(struct device * dev,const void * name)3745 int device_match_name(struct device *dev, const void *name)
3746 {
3747 return sysfs_streq(dev_name(dev), name);
3748 }
3749 EXPORT_SYMBOL_GPL(device_match_name);
3750
device_match_of_node(struct device * dev,const void * np)3751 int device_match_of_node(struct device *dev, const void *np)
3752 {
3753 return dev->of_node == np;
3754 }
3755 EXPORT_SYMBOL_GPL(device_match_of_node);
3756
device_match_fwnode(struct device * dev,const void * fwnode)3757 int device_match_fwnode(struct device *dev, const void *fwnode)
3758 {
3759 return dev_fwnode(dev) == fwnode;
3760 }
3761 EXPORT_SYMBOL_GPL(device_match_fwnode);
3762
device_match_devt(struct device * dev,const void * pdevt)3763 int device_match_devt(struct device *dev, const void *pdevt)
3764 {
3765 return dev->devt == *(dev_t *)pdevt;
3766 }
3767 EXPORT_SYMBOL_GPL(device_match_devt);
3768
device_match_acpi_dev(struct device * dev,const void * adev)3769 int device_match_acpi_dev(struct device *dev, const void *adev)
3770 {
3771 return ACPI_COMPANION(dev) == adev;
3772 }
3773 EXPORT_SYMBOL(device_match_acpi_dev);
3774
device_match_any(struct device * dev,const void * unused)3775 int device_match_any(struct device *dev, const void *unused)
3776 {
3777 return 1;
3778 }
3779 EXPORT_SYMBOL_GPL(device_match_any);
3780