1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81
82 #include "loop.h"
83
84 #include <linux/uaccess.h>
85
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88
89 static int max_part;
90 static int part_shift;
91
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)92 static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96 {
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119 }
120
xor_init(struct loop_device * lo,const struct loop_info64 * info)121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126 }
127
128 static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130 };
131
132 static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136 };
137
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142 };
143
get_size(loff_t offset,loff_t sizelimit,struct file * file)144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163 }
164
get_loop_size(struct loop_device * lo,struct file * file)165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169
__loop_update_dio(struct loop_device * lo,bool dio)170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 blk_mq_freeze_queue(lo->lo_queue);
218 lo->use_dio = use_dio;
219 if (use_dio) {
220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 } else {
223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 }
226 blk_mq_unfreeze_queue(lo->lo_queue);
227 }
228
229 static int
figure_loop_size(struct loop_device * lo,loff_t offset,loff_t sizelimit)230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 {
232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 sector_t x = (sector_t)size;
234 struct block_device *bdev = lo->lo_device;
235
236 if (unlikely((loff_t)x != size))
237 return -EFBIG;
238 if (lo->lo_offset != offset)
239 lo->lo_offset = offset;
240 if (lo->lo_sizelimit != sizelimit)
241 lo->lo_sizelimit = sizelimit;
242 set_capacity(lo->lo_disk, x);
243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 /* let user-space know about the new size */
245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 return 0;
247 }
248
249 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)250 lo_do_transfer(struct loop_device *lo, int cmd,
251 struct page *rpage, unsigned roffs,
252 struct page *lpage, unsigned loffs,
253 int size, sector_t rblock)
254 {
255 int ret;
256
257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 if (likely(!ret))
259 return 0;
260
261 printk_ratelimited(KERN_ERR
262 "loop: Transfer error at byte offset %llu, length %i.\n",
263 (unsigned long long)rblock << 9, size);
264 return ret;
265 }
266
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 {
269 struct iov_iter i;
270 ssize_t bw;
271
272 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
273
274 file_start_write(file);
275 bw = vfs_iter_write(file, &i, ppos, 0);
276 file_end_write(file);
277
278 if (likely(bw == bvec->bv_len))
279 return 0;
280
281 printk_ratelimited(KERN_ERR
282 "loop: Write error at byte offset %llu, length %i.\n",
283 (unsigned long long)*ppos, bvec->bv_len);
284 if (bw >= 0)
285 bw = -EIO;
286 return bw;
287 }
288
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)289 static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 loff_t pos)
291 {
292 struct bio_vec bvec;
293 struct req_iterator iter;
294 int ret = 0;
295
296 rq_for_each_segment(bvec, rq, iter) {
297 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 if (ret < 0)
299 break;
300 cond_resched();
301 }
302
303 return ret;
304 }
305
306 /*
307 * This is the slow, transforming version that needs to double buffer the
308 * data as it cannot do the transformations in place without having direct
309 * access to the destination pages of the backing file.
310 */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)311 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 loff_t pos)
313 {
314 struct bio_vec bvec, b;
315 struct req_iterator iter;
316 struct page *page;
317 int ret = 0;
318
319 page = alloc_page(GFP_NOIO);
320 if (unlikely(!page))
321 return -ENOMEM;
322
323 rq_for_each_segment(bvec, rq, iter) {
324 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 bvec.bv_offset, bvec.bv_len, pos >> 9);
326 if (unlikely(ret))
327 break;
328
329 b.bv_page = page;
330 b.bv_offset = 0;
331 b.bv_len = bvec.bv_len;
332 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 if (ret < 0)
334 break;
335 }
336
337 __free_page(page);
338 return ret;
339 }
340
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)341 static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 loff_t pos)
343 {
344 struct bio_vec bvec;
345 struct req_iterator iter;
346 struct iov_iter i;
347 ssize_t len;
348
349 rq_for_each_segment(bvec, rq, iter) {
350 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
351 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 if (len < 0)
353 return len;
354
355 flush_dcache_page(bvec.bv_page);
356
357 if (len != bvec.bv_len) {
358 struct bio *bio;
359
360 __rq_for_each_bio(bio, rq)
361 zero_fill_bio(bio);
362 break;
363 }
364 cond_resched();
365 }
366
367 return 0;
368 }
369
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)370 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 loff_t pos)
372 {
373 struct bio_vec bvec, b;
374 struct req_iterator iter;
375 struct iov_iter i;
376 struct page *page;
377 ssize_t len;
378 int ret = 0;
379
380 page = alloc_page(GFP_NOIO);
381 if (unlikely(!page))
382 return -ENOMEM;
383
384 rq_for_each_segment(bvec, rq, iter) {
385 loff_t offset = pos;
386
387 b.bv_page = page;
388 b.bv_offset = 0;
389 b.bv_len = bvec.bv_len;
390
391 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
392 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 if (len < 0) {
394 ret = len;
395 goto out_free_page;
396 }
397
398 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 bvec.bv_offset, len, offset >> 9);
400 if (ret)
401 goto out_free_page;
402
403 flush_dcache_page(bvec.bv_page);
404
405 if (len != bvec.bv_len) {
406 struct bio *bio;
407
408 __rq_for_each_bio(bio, rq)
409 zero_fill_bio(bio);
410 break;
411 }
412 }
413
414 ret = 0;
415 out_free_page:
416 __free_page(page);
417 return ret;
418 }
419
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)420 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
421 int mode)
422 {
423 /*
424 * We use fallocate to manipulate the space mappings used by the image
425 * a.k.a. discard/zerorange. However we do not support this if
426 * encryption is enabled, because it may give an attacker useful
427 * information.
428 */
429 struct file *file = lo->lo_backing_file;
430 int ret;
431
432 mode |= FALLOC_FL_KEEP_SIZE;
433
434 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
435 ret = -EOPNOTSUPP;
436 goto out;
437 }
438
439 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
440 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
441 ret = -EIO;
442 out:
443 return ret;
444 }
445
lo_req_flush(struct loop_device * lo,struct request * rq)446 static int lo_req_flush(struct loop_device *lo, struct request *rq)
447 {
448 struct file *file = lo->lo_backing_file;
449 int ret = vfs_fsync(file, 0);
450 if (unlikely(ret && ret != -EINVAL))
451 ret = -EIO;
452
453 return ret;
454 }
455
lo_complete_rq(struct request * rq)456 static void lo_complete_rq(struct request *rq)
457 {
458 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
459 blk_status_t ret = BLK_STS_OK;
460
461 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
462 req_op(rq) != REQ_OP_READ) {
463 if (cmd->ret < 0)
464 ret = BLK_STS_IOERR;
465 goto end_io;
466 }
467
468 /*
469 * Short READ - if we got some data, advance our request and
470 * retry it. If we got no data, end the rest with EIO.
471 */
472 if (cmd->ret) {
473 blk_update_request(rq, BLK_STS_OK, cmd->ret);
474 cmd->ret = 0;
475 blk_mq_requeue_request(rq, true);
476 } else {
477 if (cmd->use_aio) {
478 struct bio *bio = rq->bio;
479
480 while (bio) {
481 zero_fill_bio(bio);
482 bio = bio->bi_next;
483 }
484 }
485 ret = BLK_STS_IOERR;
486 end_io:
487 blk_mq_end_request(rq, ret);
488 }
489 }
490
lo_rw_aio_do_completion(struct loop_cmd * cmd)491 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
492 {
493 struct request *rq = blk_mq_rq_from_pdu(cmd);
494
495 if (!atomic_dec_and_test(&cmd->ref))
496 return;
497 kfree(cmd->bvec);
498 cmd->bvec = NULL;
499 blk_mq_complete_request(rq);
500 }
501
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)502 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
503 {
504 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
505
506 if (cmd->css)
507 css_put(cmd->css);
508 cmd->ret = ret;
509 lo_rw_aio_do_completion(cmd);
510 }
511
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)512 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
513 loff_t pos, bool rw)
514 {
515 struct iov_iter iter;
516 struct req_iterator rq_iter;
517 struct bio_vec *bvec;
518 struct request *rq = blk_mq_rq_from_pdu(cmd);
519 struct bio *bio = rq->bio;
520 struct file *file = lo->lo_backing_file;
521 struct bio_vec tmp;
522 unsigned int offset;
523 int nr_bvec = 0;
524 int ret;
525
526 rq_for_each_bvec(tmp, rq, rq_iter)
527 nr_bvec++;
528
529 if (rq->bio != rq->biotail) {
530
531 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
532 GFP_NOIO);
533 if (!bvec)
534 return -EIO;
535 cmd->bvec = bvec;
536
537 /*
538 * The bios of the request may be started from the middle of
539 * the 'bvec' because of bio splitting, so we can't directly
540 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
541 * API will take care of all details for us.
542 */
543 rq_for_each_bvec(tmp, rq, rq_iter) {
544 *bvec = tmp;
545 bvec++;
546 }
547 bvec = cmd->bvec;
548 offset = 0;
549 } else {
550 /*
551 * Same here, this bio may be started from the middle of the
552 * 'bvec' because of bio splitting, so offset from the bvec
553 * must be passed to iov iterator
554 */
555 offset = bio->bi_iter.bi_bvec_done;
556 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
557 }
558 atomic_set(&cmd->ref, 2);
559
560 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
561 iter.iov_offset = offset;
562
563 cmd->iocb.ki_pos = pos;
564 cmd->iocb.ki_filp = file;
565 cmd->iocb.ki_complete = lo_rw_aio_complete;
566 cmd->iocb.ki_flags = IOCB_DIRECT;
567 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
568 if (cmd->css)
569 kthread_associate_blkcg(cmd->css);
570
571 if (rw == WRITE)
572 ret = call_write_iter(file, &cmd->iocb, &iter);
573 else
574 ret = call_read_iter(file, &cmd->iocb, &iter);
575
576 lo_rw_aio_do_completion(cmd);
577 kthread_associate_blkcg(NULL);
578
579 if (ret != -EIOCBQUEUED)
580 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
581 return 0;
582 }
583
do_req_filebacked(struct loop_device * lo,struct request * rq)584 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
585 {
586 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
587 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
588
589 /*
590 * lo_write_simple and lo_read_simple should have been covered
591 * by io submit style function like lo_rw_aio(), one blocker
592 * is that lo_read_simple() need to call flush_dcache_page after
593 * the page is written from kernel, and it isn't easy to handle
594 * this in io submit style function which submits all segments
595 * of the req at one time. And direct read IO doesn't need to
596 * run flush_dcache_page().
597 */
598 switch (req_op(rq)) {
599 case REQ_OP_FLUSH:
600 return lo_req_flush(lo, rq);
601 case REQ_OP_WRITE_ZEROES:
602 /*
603 * If the caller doesn't want deallocation, call zeroout to
604 * write zeroes the range. Otherwise, punch them out.
605 */
606 return lo_fallocate(lo, rq, pos,
607 (rq->cmd_flags & REQ_NOUNMAP) ?
608 FALLOC_FL_ZERO_RANGE :
609 FALLOC_FL_PUNCH_HOLE);
610 case REQ_OP_DISCARD:
611 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
612 case REQ_OP_WRITE:
613 if (lo->transfer)
614 return lo_write_transfer(lo, rq, pos);
615 else if (cmd->use_aio)
616 return lo_rw_aio(lo, cmd, pos, WRITE);
617 else
618 return lo_write_simple(lo, rq, pos);
619 case REQ_OP_READ:
620 if (lo->transfer)
621 return lo_read_transfer(lo, rq, pos);
622 else if (cmd->use_aio)
623 return lo_rw_aio(lo, cmd, pos, READ);
624 else
625 return lo_read_simple(lo, rq, pos);
626 default:
627 WARN_ON_ONCE(1);
628 return -EIO;
629 }
630 }
631
loop_update_dio(struct loop_device * lo)632 static inline void loop_update_dio(struct loop_device *lo)
633 {
634 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
635 lo->use_dio);
636 }
637
loop_reread_partitions(struct loop_device * lo,struct block_device * bdev)638 static void loop_reread_partitions(struct loop_device *lo,
639 struct block_device *bdev)
640 {
641 int rc;
642
643 rc = blkdev_reread_part(bdev);
644 if (rc)
645 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
646 __func__, lo->lo_number, lo->lo_file_name, rc);
647 }
648
is_loop_device(struct file * file)649 static inline int is_loop_device(struct file *file)
650 {
651 struct inode *i = file->f_mapping->host;
652
653 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
654 }
655
loop_validate_file(struct file * file,struct block_device * bdev)656 static int loop_validate_file(struct file *file, struct block_device *bdev)
657 {
658 struct inode *inode = file->f_mapping->host;
659 struct file *f = file;
660
661 /* Avoid recursion */
662 while (is_loop_device(f)) {
663 struct loop_device *l;
664
665 if (f->f_mapping->host->i_bdev == bdev)
666 return -EBADF;
667
668 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
669 if (l->lo_state != Lo_bound) {
670 return -EINVAL;
671 }
672 f = l->lo_backing_file;
673 }
674 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
675 return -EINVAL;
676 return 0;
677 }
678
679 /*
680 * loop_change_fd switched the backing store of a loopback device to
681 * a new file. This is useful for operating system installers to free up
682 * the original file and in High Availability environments to switch to
683 * an alternative location for the content in case of server meltdown.
684 * This can only work if the loop device is used read-only, and if the
685 * new backing store is the same size and type as the old backing store.
686 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)687 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
688 unsigned int arg)
689 {
690 struct file *file = NULL, *old_file;
691 int error;
692 bool partscan;
693
694 error = mutex_lock_killable(&loop_ctl_mutex);
695 if (error)
696 return error;
697 error = -ENXIO;
698 if (lo->lo_state != Lo_bound)
699 goto out_err;
700
701 /* the loop device has to be read-only */
702 error = -EINVAL;
703 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
704 goto out_err;
705
706 error = -EBADF;
707 file = fget(arg);
708 if (!file)
709 goto out_err;
710
711 error = loop_validate_file(file, bdev);
712 if (error)
713 goto out_err;
714
715 old_file = lo->lo_backing_file;
716
717 error = -EINVAL;
718
719 /* size of the new backing store needs to be the same */
720 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
721 goto out_err;
722
723 /* and ... switch */
724 blk_mq_freeze_queue(lo->lo_queue);
725 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
726 lo->lo_backing_file = file;
727 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
728 mapping_set_gfp_mask(file->f_mapping,
729 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
730 loop_update_dio(lo);
731 blk_mq_unfreeze_queue(lo->lo_queue);
732 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
733 mutex_unlock(&loop_ctl_mutex);
734 /*
735 * We must drop file reference outside of loop_ctl_mutex as dropping
736 * the file ref can take bd_mutex which creates circular locking
737 * dependency.
738 */
739 fput(old_file);
740 if (partscan)
741 loop_reread_partitions(lo, bdev);
742 return 0;
743
744 out_err:
745 mutex_unlock(&loop_ctl_mutex);
746 if (file)
747 fput(file);
748 return error;
749 }
750
751 /* loop sysfs attributes */
752
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))753 static ssize_t loop_attr_show(struct device *dev, char *page,
754 ssize_t (*callback)(struct loop_device *, char *))
755 {
756 struct gendisk *disk = dev_to_disk(dev);
757 struct loop_device *lo = disk->private_data;
758
759 return callback(lo, page);
760 }
761
762 #define LOOP_ATTR_RO(_name) \
763 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
764 static ssize_t loop_attr_do_show_##_name(struct device *d, \
765 struct device_attribute *attr, char *b) \
766 { \
767 return loop_attr_show(d, b, loop_attr_##_name##_show); \
768 } \
769 static struct device_attribute loop_attr_##_name = \
770 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
771
loop_attr_backing_file_show(struct loop_device * lo,char * buf)772 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
773 {
774 ssize_t ret;
775 char *p = NULL;
776
777 spin_lock_irq(&lo->lo_lock);
778 if (lo->lo_backing_file)
779 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
780 spin_unlock_irq(&lo->lo_lock);
781
782 if (IS_ERR_OR_NULL(p))
783 ret = PTR_ERR(p);
784 else {
785 ret = strlen(p);
786 memmove(buf, p, ret);
787 buf[ret++] = '\n';
788 buf[ret] = 0;
789 }
790
791 return ret;
792 }
793
loop_attr_offset_show(struct loop_device * lo,char * buf)794 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
795 {
796 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
797 }
798
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)799 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
800 {
801 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
802 }
803
loop_attr_autoclear_show(struct loop_device * lo,char * buf)804 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
805 {
806 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
807
808 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
809 }
810
loop_attr_partscan_show(struct loop_device * lo,char * buf)811 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
812 {
813 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
814
815 return sprintf(buf, "%s\n", partscan ? "1" : "0");
816 }
817
loop_attr_dio_show(struct loop_device * lo,char * buf)818 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
819 {
820 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
821
822 return sprintf(buf, "%s\n", dio ? "1" : "0");
823 }
824
825 LOOP_ATTR_RO(backing_file);
826 LOOP_ATTR_RO(offset);
827 LOOP_ATTR_RO(sizelimit);
828 LOOP_ATTR_RO(autoclear);
829 LOOP_ATTR_RO(partscan);
830 LOOP_ATTR_RO(dio);
831
832 static struct attribute *loop_attrs[] = {
833 &loop_attr_backing_file.attr,
834 &loop_attr_offset.attr,
835 &loop_attr_sizelimit.attr,
836 &loop_attr_autoclear.attr,
837 &loop_attr_partscan.attr,
838 &loop_attr_dio.attr,
839 NULL,
840 };
841
842 static struct attribute_group loop_attribute_group = {
843 .name = "loop",
844 .attrs= loop_attrs,
845 };
846
loop_sysfs_init(struct loop_device * lo)847 static void loop_sysfs_init(struct loop_device *lo)
848 {
849 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
850 &loop_attribute_group);
851 }
852
loop_sysfs_exit(struct loop_device * lo)853 static void loop_sysfs_exit(struct loop_device *lo)
854 {
855 if (lo->sysfs_inited)
856 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
857 &loop_attribute_group);
858 }
859
loop_config_discard(struct loop_device * lo)860 static void loop_config_discard(struct loop_device *lo)
861 {
862 struct file *file = lo->lo_backing_file;
863 struct inode *inode = file->f_mapping->host;
864 struct request_queue *q = lo->lo_queue;
865
866 /*
867 * We use punch hole to reclaim the free space used by the
868 * image a.k.a. discard. However we do not support discard if
869 * encryption is enabled, because it may give an attacker
870 * useful information.
871 */
872 if ((!file->f_op->fallocate) ||
873 lo->lo_encrypt_key_size) {
874 q->limits.discard_granularity = 0;
875 q->limits.discard_alignment = 0;
876 blk_queue_max_discard_sectors(q, 0);
877 blk_queue_max_write_zeroes_sectors(q, 0);
878 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
879 return;
880 }
881
882 q->limits.discard_granularity = inode->i_sb->s_blocksize;
883 q->limits.discard_alignment = 0;
884
885 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
886 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
887 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
888 }
889
loop_unprepare_queue(struct loop_device * lo)890 static void loop_unprepare_queue(struct loop_device *lo)
891 {
892 kthread_flush_worker(&lo->worker);
893 kthread_stop(lo->worker_task);
894 }
895
loop_kthread_worker_fn(void * worker_ptr)896 static int loop_kthread_worker_fn(void *worker_ptr)
897 {
898 current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
899 return kthread_worker_fn(worker_ptr);
900 }
901
loop_prepare_queue(struct loop_device * lo)902 static int loop_prepare_queue(struct loop_device *lo)
903 {
904 kthread_init_worker(&lo->worker);
905 lo->worker_task = kthread_run(loop_kthread_worker_fn,
906 &lo->worker, "loop%d", lo->lo_number);
907 if (IS_ERR(lo->worker_task))
908 return -ENOMEM;
909 set_user_nice(lo->worker_task, MIN_NICE);
910 return 0;
911 }
912
loop_update_rotational(struct loop_device * lo)913 static void loop_update_rotational(struct loop_device *lo)
914 {
915 struct file *file = lo->lo_backing_file;
916 struct inode *file_inode = file->f_mapping->host;
917 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
918 struct request_queue *q = lo->lo_queue;
919 bool nonrot = true;
920
921 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
922 if (file_bdev)
923 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
924
925 if (nonrot)
926 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
927 else
928 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
929 }
930
loop_set_fd(struct loop_device * lo,fmode_t mode,struct block_device * bdev,unsigned int arg)931 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
932 struct block_device *bdev, unsigned int arg)
933 {
934 struct file *file;
935 struct inode *inode;
936 struct address_space *mapping;
937 struct block_device *claimed_bdev = NULL;
938 int lo_flags = 0;
939 int error;
940 loff_t size;
941 bool partscan;
942
943 /* This is safe, since we have a reference from open(). */
944 __module_get(THIS_MODULE);
945
946 error = -EBADF;
947 file = fget(arg);
948 if (!file)
949 goto out;
950
951 /*
952 * If we don't hold exclusive handle for the device, upgrade to it
953 * here to avoid changing device under exclusive owner.
954 */
955 if (!(mode & FMODE_EXCL)) {
956 claimed_bdev = bd_start_claiming(bdev, loop_set_fd);
957 if (IS_ERR(claimed_bdev)) {
958 error = PTR_ERR(claimed_bdev);
959 goto out_putf;
960 }
961 }
962
963 error = mutex_lock_killable(&loop_ctl_mutex);
964 if (error)
965 goto out_bdev;
966
967 error = -EBUSY;
968 if (lo->lo_state != Lo_unbound)
969 goto out_unlock;
970
971 error = loop_validate_file(file, bdev);
972 if (error)
973 goto out_unlock;
974
975 mapping = file->f_mapping;
976 inode = mapping->host;
977
978 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
979 !file->f_op->write_iter)
980 lo_flags |= LO_FLAGS_READ_ONLY;
981
982 error = -EFBIG;
983 size = get_loop_size(lo, file);
984 if ((loff_t)(sector_t)size != size)
985 goto out_unlock;
986 error = loop_prepare_queue(lo);
987 if (error)
988 goto out_unlock;
989
990 error = 0;
991
992 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
993
994 lo->use_dio = false;
995 lo->lo_device = bdev;
996 lo->lo_flags = lo_flags;
997 lo->lo_backing_file = file;
998 lo->transfer = NULL;
999 lo->ioctl = NULL;
1000 lo->lo_sizelimit = 0;
1001 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1002 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1003
1004 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1005 blk_queue_write_cache(lo->lo_queue, true, false);
1006
1007 if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) {
1008 /* In case of direct I/O, match underlying block size */
1009 unsigned short bsize = bdev_logical_block_size(
1010 inode->i_sb->s_bdev);
1011
1012 blk_queue_logical_block_size(lo->lo_queue, bsize);
1013 blk_queue_physical_block_size(lo->lo_queue, bsize);
1014 blk_queue_io_min(lo->lo_queue, bsize);
1015 }
1016
1017 loop_update_rotational(lo);
1018 loop_update_dio(lo);
1019 set_capacity(lo->lo_disk, size);
1020 bd_set_size(bdev, size << 9);
1021 loop_sysfs_init(lo);
1022 /* let user-space know about the new size */
1023 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1024
1025 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1026 block_size(inode->i_bdev) : PAGE_SIZE);
1027
1028 lo->lo_state = Lo_bound;
1029 if (part_shift)
1030 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1031 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1032
1033 /* Grab the block_device to prevent its destruction after we
1034 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1035 */
1036 bdgrab(bdev);
1037 mutex_unlock(&loop_ctl_mutex);
1038 if (partscan)
1039 loop_reread_partitions(lo, bdev);
1040 if (claimed_bdev)
1041 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1042 return 0;
1043
1044 out_unlock:
1045 mutex_unlock(&loop_ctl_mutex);
1046 out_bdev:
1047 if (claimed_bdev)
1048 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1049 out_putf:
1050 fput(file);
1051 out:
1052 /* This is safe: open() is still holding a reference. */
1053 module_put(THIS_MODULE);
1054 return error;
1055 }
1056
1057 static int
loop_release_xfer(struct loop_device * lo)1058 loop_release_xfer(struct loop_device *lo)
1059 {
1060 int err = 0;
1061 struct loop_func_table *xfer = lo->lo_encryption;
1062
1063 if (xfer) {
1064 if (xfer->release)
1065 err = xfer->release(lo);
1066 lo->transfer = NULL;
1067 lo->lo_encryption = NULL;
1068 module_put(xfer->owner);
1069 }
1070 return err;
1071 }
1072
1073 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)1074 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1075 const struct loop_info64 *i)
1076 {
1077 int err = 0;
1078
1079 if (xfer) {
1080 struct module *owner = xfer->owner;
1081
1082 if (!try_module_get(owner))
1083 return -EINVAL;
1084 if (xfer->init)
1085 err = xfer->init(lo, i);
1086 if (err)
1087 module_put(owner);
1088 else
1089 lo->lo_encryption = xfer;
1090 }
1091 return err;
1092 }
1093
__loop_clr_fd(struct loop_device * lo,bool release)1094 static int __loop_clr_fd(struct loop_device *lo, bool release)
1095 {
1096 struct file *filp = NULL;
1097 gfp_t gfp = lo->old_gfp_mask;
1098 struct block_device *bdev = lo->lo_device;
1099 int err = 0;
1100 bool partscan = false;
1101 int lo_number;
1102
1103 mutex_lock(&loop_ctl_mutex);
1104 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1105 err = -ENXIO;
1106 goto out_unlock;
1107 }
1108
1109 filp = lo->lo_backing_file;
1110 if (filp == NULL) {
1111 err = -EINVAL;
1112 goto out_unlock;
1113 }
1114
1115 /* freeze request queue during the transition */
1116 blk_mq_freeze_queue(lo->lo_queue);
1117
1118 spin_lock_irq(&lo->lo_lock);
1119 lo->lo_backing_file = NULL;
1120 spin_unlock_irq(&lo->lo_lock);
1121
1122 loop_release_xfer(lo);
1123 lo->transfer = NULL;
1124 lo->ioctl = NULL;
1125 lo->lo_device = NULL;
1126 lo->lo_encryption = NULL;
1127 lo->lo_offset = 0;
1128 lo->lo_sizelimit = 0;
1129 lo->lo_encrypt_key_size = 0;
1130 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1131 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1132 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1133 blk_queue_logical_block_size(lo->lo_queue, 512);
1134 blk_queue_physical_block_size(lo->lo_queue, 512);
1135 blk_queue_io_min(lo->lo_queue, 512);
1136 if (bdev) {
1137 bdput(bdev);
1138 invalidate_bdev(bdev);
1139 bdev->bd_inode->i_mapping->wb_err = 0;
1140 }
1141 set_capacity(lo->lo_disk, 0);
1142 loop_sysfs_exit(lo);
1143 if (bdev) {
1144 bd_set_size(bdev, 0);
1145 /* let user-space know about this change */
1146 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1147 }
1148 mapping_set_gfp_mask(filp->f_mapping, gfp);
1149 /* This is safe: open() is still holding a reference. */
1150 module_put(THIS_MODULE);
1151 blk_mq_unfreeze_queue(lo->lo_queue);
1152
1153 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1154 lo_number = lo->lo_number;
1155 loop_unprepare_queue(lo);
1156 out_unlock:
1157 mutex_unlock(&loop_ctl_mutex);
1158 if (partscan) {
1159 /*
1160 * bd_mutex has been held already in release path, so don't
1161 * acquire it if this function is called in such case.
1162 *
1163 * If the reread partition isn't from release path, lo_refcnt
1164 * must be at least one and it can only become zero when the
1165 * current holder is released.
1166 */
1167 if (release)
1168 err = __blkdev_reread_part(bdev);
1169 else
1170 err = blkdev_reread_part(bdev);
1171 if (err)
1172 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1173 __func__, lo_number, err);
1174 /* Device is gone, no point in returning error */
1175 err = 0;
1176 }
1177
1178 /*
1179 * lo->lo_state is set to Lo_unbound here after above partscan has
1180 * finished.
1181 *
1182 * There cannot be anybody else entering __loop_clr_fd() as
1183 * lo->lo_backing_file is already cleared and Lo_rundown state
1184 * protects us from all the other places trying to change the 'lo'
1185 * device.
1186 */
1187 mutex_lock(&loop_ctl_mutex);
1188 lo->lo_flags = 0;
1189 if (!part_shift)
1190 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1191 lo->lo_state = Lo_unbound;
1192 mutex_unlock(&loop_ctl_mutex);
1193
1194 /*
1195 * Need not hold loop_ctl_mutex to fput backing file.
1196 * Calling fput holding loop_ctl_mutex triggers a circular
1197 * lock dependency possibility warning as fput can take
1198 * bd_mutex which is usually taken before loop_ctl_mutex.
1199 */
1200 if (filp)
1201 fput(filp);
1202 return err;
1203 }
1204
loop_clr_fd(struct loop_device * lo)1205 static int loop_clr_fd(struct loop_device *lo)
1206 {
1207 int err;
1208
1209 err = mutex_lock_killable(&loop_ctl_mutex);
1210 if (err)
1211 return err;
1212 if (lo->lo_state != Lo_bound) {
1213 mutex_unlock(&loop_ctl_mutex);
1214 return -ENXIO;
1215 }
1216 /*
1217 * If we've explicitly asked to tear down the loop device,
1218 * and it has an elevated reference count, set it for auto-teardown when
1219 * the last reference goes away. This stops $!~#$@ udev from
1220 * preventing teardown because it decided that it needs to run blkid on
1221 * the loopback device whenever they appear. xfstests is notorious for
1222 * failing tests because blkid via udev races with a losetup
1223 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1224 * command to fail with EBUSY.
1225 */
1226 if (atomic_read(&lo->lo_refcnt) > 1) {
1227 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1228 mutex_unlock(&loop_ctl_mutex);
1229 return 0;
1230 }
1231 lo->lo_state = Lo_rundown;
1232 mutex_unlock(&loop_ctl_mutex);
1233
1234 return __loop_clr_fd(lo, false);
1235 }
1236
1237 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1238 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1239 {
1240 int err;
1241 struct loop_func_table *xfer;
1242 kuid_t uid = current_uid();
1243 struct block_device *bdev;
1244 bool partscan = false;
1245
1246 err = mutex_lock_killable(&loop_ctl_mutex);
1247 if (err)
1248 return err;
1249 if (lo->lo_encrypt_key_size &&
1250 !uid_eq(lo->lo_key_owner, uid) &&
1251 !capable(CAP_SYS_ADMIN)) {
1252 err = -EPERM;
1253 goto out_unlock;
1254 }
1255 if (lo->lo_state != Lo_bound) {
1256 err = -ENXIO;
1257 goto out_unlock;
1258 }
1259 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1260 err = -EINVAL;
1261 goto out_unlock;
1262 }
1263
1264 if (lo->lo_offset != info->lo_offset ||
1265 lo->lo_sizelimit != info->lo_sizelimit) {
1266 sync_blockdev(lo->lo_device);
1267 kill_bdev(lo->lo_device);
1268 }
1269
1270 /* I/O need to be drained during transfer transition */
1271 blk_mq_freeze_queue(lo->lo_queue);
1272
1273 err = loop_release_xfer(lo);
1274 if (err)
1275 goto out_unfreeze;
1276
1277 if (info->lo_encrypt_type) {
1278 unsigned int type = info->lo_encrypt_type;
1279
1280 if (type >= MAX_LO_CRYPT) {
1281 err = -EINVAL;
1282 goto out_unfreeze;
1283 }
1284 xfer = xfer_funcs[type];
1285 if (xfer == NULL) {
1286 err = -EINVAL;
1287 goto out_unfreeze;
1288 }
1289 } else
1290 xfer = NULL;
1291
1292 err = loop_init_xfer(lo, xfer, info);
1293 if (err)
1294 goto out_unfreeze;
1295
1296 if (lo->lo_offset != info->lo_offset ||
1297 lo->lo_sizelimit != info->lo_sizelimit) {
1298 /* kill_bdev should have truncated all the pages */
1299 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1300 err = -EAGAIN;
1301 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1302 __func__, lo->lo_number, lo->lo_file_name,
1303 lo->lo_device->bd_inode->i_mapping->nrpages);
1304 goto out_unfreeze;
1305 }
1306 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1307 err = -EFBIG;
1308 goto out_unfreeze;
1309 }
1310 }
1311
1312 loop_config_discard(lo);
1313
1314 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1315 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1316 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1317 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1318
1319 if (!xfer)
1320 xfer = &none_funcs;
1321 lo->transfer = xfer->transfer;
1322 lo->ioctl = xfer->ioctl;
1323
1324 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1325 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1326 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1327
1328 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1329 lo->lo_init[0] = info->lo_init[0];
1330 lo->lo_init[1] = info->lo_init[1];
1331 if (info->lo_encrypt_key_size) {
1332 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1333 info->lo_encrypt_key_size);
1334 lo->lo_key_owner = uid;
1335 }
1336
1337 /* update dio if lo_offset or transfer is changed */
1338 __loop_update_dio(lo, lo->use_dio);
1339
1340 out_unfreeze:
1341 blk_mq_unfreeze_queue(lo->lo_queue);
1342
1343 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1344 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1345 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1346 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1347 bdev = lo->lo_device;
1348 partscan = true;
1349 }
1350 out_unlock:
1351 mutex_unlock(&loop_ctl_mutex);
1352 if (partscan)
1353 loop_reread_partitions(lo, bdev);
1354
1355 return err;
1356 }
1357
1358 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1359 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1360 {
1361 struct path path;
1362 struct kstat stat;
1363 int ret;
1364
1365 ret = mutex_lock_killable(&loop_ctl_mutex);
1366 if (ret)
1367 return ret;
1368 if (lo->lo_state != Lo_bound) {
1369 mutex_unlock(&loop_ctl_mutex);
1370 return -ENXIO;
1371 }
1372
1373 memset(info, 0, sizeof(*info));
1374 info->lo_number = lo->lo_number;
1375 info->lo_offset = lo->lo_offset;
1376 info->lo_sizelimit = lo->lo_sizelimit;
1377 info->lo_flags = lo->lo_flags;
1378 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1379 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1380 info->lo_encrypt_type =
1381 lo->lo_encryption ? lo->lo_encryption->number : 0;
1382 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1383 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1384 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1385 lo->lo_encrypt_key_size);
1386 }
1387
1388 /* Drop loop_ctl_mutex while we call into the filesystem. */
1389 path = lo->lo_backing_file->f_path;
1390 path_get(&path);
1391 mutex_unlock(&loop_ctl_mutex);
1392 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1393 if (!ret) {
1394 info->lo_device = huge_encode_dev(stat.dev);
1395 info->lo_inode = stat.ino;
1396 info->lo_rdevice = huge_encode_dev(stat.rdev);
1397 }
1398 path_put(&path);
1399 return ret;
1400 }
1401
1402 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1403 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1404 {
1405 memset(info64, 0, sizeof(*info64));
1406 info64->lo_number = info->lo_number;
1407 info64->lo_device = info->lo_device;
1408 info64->lo_inode = info->lo_inode;
1409 info64->lo_rdevice = info->lo_rdevice;
1410 info64->lo_offset = info->lo_offset;
1411 info64->lo_sizelimit = 0;
1412 info64->lo_encrypt_type = info->lo_encrypt_type;
1413 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1414 info64->lo_flags = info->lo_flags;
1415 info64->lo_init[0] = info->lo_init[0];
1416 info64->lo_init[1] = info->lo_init[1];
1417 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1418 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1419 else
1420 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1421 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1422 }
1423
1424 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1425 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1426 {
1427 memset(info, 0, sizeof(*info));
1428 info->lo_number = info64->lo_number;
1429 info->lo_device = info64->lo_device;
1430 info->lo_inode = info64->lo_inode;
1431 info->lo_rdevice = info64->lo_rdevice;
1432 info->lo_offset = info64->lo_offset;
1433 info->lo_encrypt_type = info64->lo_encrypt_type;
1434 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1435 info->lo_flags = info64->lo_flags;
1436 info->lo_init[0] = info64->lo_init[0];
1437 info->lo_init[1] = info64->lo_init[1];
1438 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1439 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1440 else
1441 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1442 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1443
1444 /* error in case values were truncated */
1445 if (info->lo_device != info64->lo_device ||
1446 info->lo_rdevice != info64->lo_rdevice ||
1447 info->lo_inode != info64->lo_inode ||
1448 info->lo_offset != info64->lo_offset)
1449 return -EOVERFLOW;
1450
1451 return 0;
1452 }
1453
1454 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1455 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1456 {
1457 struct loop_info info;
1458 struct loop_info64 info64;
1459
1460 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1461 return -EFAULT;
1462 loop_info64_from_old(&info, &info64);
1463 return loop_set_status(lo, &info64);
1464 }
1465
1466 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1467 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1468 {
1469 struct loop_info64 info64;
1470
1471 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1472 return -EFAULT;
1473 return loop_set_status(lo, &info64);
1474 }
1475
1476 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1477 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1478 struct loop_info info;
1479 struct loop_info64 info64;
1480 int err;
1481
1482 if (!arg)
1483 return -EINVAL;
1484 err = loop_get_status(lo, &info64);
1485 if (!err)
1486 err = loop_info64_to_old(&info64, &info);
1487 if (!err && copy_to_user(arg, &info, sizeof(info)))
1488 err = -EFAULT;
1489
1490 return err;
1491 }
1492
1493 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1494 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1495 struct loop_info64 info64;
1496 int err;
1497
1498 if (!arg)
1499 return -EINVAL;
1500 err = loop_get_status(lo, &info64);
1501 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1502 err = -EFAULT;
1503
1504 return err;
1505 }
1506
loop_set_capacity(struct loop_device * lo)1507 static int loop_set_capacity(struct loop_device *lo)
1508 {
1509 if (unlikely(lo->lo_state != Lo_bound))
1510 return -ENXIO;
1511
1512 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1513 }
1514
loop_set_dio(struct loop_device * lo,unsigned long arg)1515 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1516 {
1517 int error = -ENXIO;
1518 if (lo->lo_state != Lo_bound)
1519 goto out;
1520
1521 __loop_update_dio(lo, !!arg);
1522 if (lo->use_dio == !!arg)
1523 return 0;
1524 error = -EINVAL;
1525 out:
1526 return error;
1527 }
1528
loop_set_block_size(struct loop_device * lo,unsigned long arg)1529 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1530 {
1531 int err = 0;
1532
1533 if (lo->lo_state != Lo_bound)
1534 return -ENXIO;
1535
1536 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1537 return -EINVAL;
1538
1539 if (lo->lo_queue->limits.logical_block_size != arg) {
1540 sync_blockdev(lo->lo_device);
1541 kill_bdev(lo->lo_device);
1542 }
1543
1544 blk_mq_freeze_queue(lo->lo_queue);
1545
1546 /* kill_bdev should have truncated all the pages */
1547 if (lo->lo_queue->limits.logical_block_size != arg &&
1548 lo->lo_device->bd_inode->i_mapping->nrpages) {
1549 err = -EAGAIN;
1550 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1551 __func__, lo->lo_number, lo->lo_file_name,
1552 lo->lo_device->bd_inode->i_mapping->nrpages);
1553 goto out_unfreeze;
1554 }
1555
1556 blk_queue_logical_block_size(lo->lo_queue, arg);
1557 blk_queue_physical_block_size(lo->lo_queue, arg);
1558 blk_queue_io_min(lo->lo_queue, arg);
1559 loop_update_dio(lo);
1560 out_unfreeze:
1561 blk_mq_unfreeze_queue(lo->lo_queue);
1562
1563 return err;
1564 }
1565
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1566 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1567 unsigned long arg)
1568 {
1569 int err;
1570
1571 err = mutex_lock_killable(&loop_ctl_mutex);
1572 if (err)
1573 return err;
1574 switch (cmd) {
1575 case LOOP_SET_CAPACITY:
1576 err = loop_set_capacity(lo);
1577 break;
1578 case LOOP_SET_DIRECT_IO:
1579 err = loop_set_dio(lo, arg);
1580 break;
1581 case LOOP_SET_BLOCK_SIZE:
1582 err = loop_set_block_size(lo, arg);
1583 break;
1584 default:
1585 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1586 }
1587 mutex_unlock(&loop_ctl_mutex);
1588 return err;
1589 }
1590
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1591 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1592 unsigned int cmd, unsigned long arg)
1593 {
1594 struct loop_device *lo = bdev->bd_disk->private_data;
1595 int err;
1596
1597 switch (cmd) {
1598 case LOOP_SET_FD:
1599 return loop_set_fd(lo, mode, bdev, arg);
1600 case LOOP_CHANGE_FD:
1601 return loop_change_fd(lo, bdev, arg);
1602 case LOOP_CLR_FD:
1603 return loop_clr_fd(lo);
1604 case LOOP_SET_STATUS:
1605 err = -EPERM;
1606 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1607 err = loop_set_status_old(lo,
1608 (struct loop_info __user *)arg);
1609 }
1610 break;
1611 case LOOP_GET_STATUS:
1612 return loop_get_status_old(lo, (struct loop_info __user *) arg);
1613 case LOOP_SET_STATUS64:
1614 err = -EPERM;
1615 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1616 err = loop_set_status64(lo,
1617 (struct loop_info64 __user *) arg);
1618 }
1619 break;
1620 case LOOP_GET_STATUS64:
1621 return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1622 case LOOP_SET_CAPACITY:
1623 case LOOP_SET_DIRECT_IO:
1624 case LOOP_SET_BLOCK_SIZE:
1625 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1626 return -EPERM;
1627 /* Fall through */
1628 default:
1629 err = lo_simple_ioctl(lo, cmd, arg);
1630 break;
1631 }
1632
1633 return err;
1634 }
1635
1636 #ifdef CONFIG_COMPAT
1637 struct compat_loop_info {
1638 compat_int_t lo_number; /* ioctl r/o */
1639 compat_dev_t lo_device; /* ioctl r/o */
1640 compat_ulong_t lo_inode; /* ioctl r/o */
1641 compat_dev_t lo_rdevice; /* ioctl r/o */
1642 compat_int_t lo_offset;
1643 compat_int_t lo_encrypt_type;
1644 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1645 compat_int_t lo_flags; /* ioctl r/o */
1646 char lo_name[LO_NAME_SIZE];
1647 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1648 compat_ulong_t lo_init[2];
1649 char reserved[4];
1650 };
1651
1652 /*
1653 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1654 * - noinlined to reduce stack space usage in main part of driver
1655 */
1656 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1657 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1658 struct loop_info64 *info64)
1659 {
1660 struct compat_loop_info info;
1661
1662 if (copy_from_user(&info, arg, sizeof(info)))
1663 return -EFAULT;
1664
1665 memset(info64, 0, sizeof(*info64));
1666 info64->lo_number = info.lo_number;
1667 info64->lo_device = info.lo_device;
1668 info64->lo_inode = info.lo_inode;
1669 info64->lo_rdevice = info.lo_rdevice;
1670 info64->lo_offset = info.lo_offset;
1671 info64->lo_sizelimit = 0;
1672 info64->lo_encrypt_type = info.lo_encrypt_type;
1673 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1674 info64->lo_flags = info.lo_flags;
1675 info64->lo_init[0] = info.lo_init[0];
1676 info64->lo_init[1] = info.lo_init[1];
1677 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1678 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1679 else
1680 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1681 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1682 return 0;
1683 }
1684
1685 /*
1686 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1687 * - noinlined to reduce stack space usage in main part of driver
1688 */
1689 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1690 loop_info64_to_compat(const struct loop_info64 *info64,
1691 struct compat_loop_info __user *arg)
1692 {
1693 struct compat_loop_info info;
1694
1695 memset(&info, 0, sizeof(info));
1696 info.lo_number = info64->lo_number;
1697 info.lo_device = info64->lo_device;
1698 info.lo_inode = info64->lo_inode;
1699 info.lo_rdevice = info64->lo_rdevice;
1700 info.lo_offset = info64->lo_offset;
1701 info.lo_encrypt_type = info64->lo_encrypt_type;
1702 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1703 info.lo_flags = info64->lo_flags;
1704 info.lo_init[0] = info64->lo_init[0];
1705 info.lo_init[1] = info64->lo_init[1];
1706 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1707 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1708 else
1709 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1710 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1711
1712 /* error in case values were truncated */
1713 if (info.lo_device != info64->lo_device ||
1714 info.lo_rdevice != info64->lo_rdevice ||
1715 info.lo_inode != info64->lo_inode ||
1716 info.lo_offset != info64->lo_offset ||
1717 info.lo_init[0] != info64->lo_init[0] ||
1718 info.lo_init[1] != info64->lo_init[1])
1719 return -EOVERFLOW;
1720
1721 if (copy_to_user(arg, &info, sizeof(info)))
1722 return -EFAULT;
1723 return 0;
1724 }
1725
1726 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1727 loop_set_status_compat(struct loop_device *lo,
1728 const struct compat_loop_info __user *arg)
1729 {
1730 struct loop_info64 info64;
1731 int ret;
1732
1733 ret = loop_info64_from_compat(arg, &info64);
1734 if (ret < 0)
1735 return ret;
1736 return loop_set_status(lo, &info64);
1737 }
1738
1739 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1740 loop_get_status_compat(struct loop_device *lo,
1741 struct compat_loop_info __user *arg)
1742 {
1743 struct loop_info64 info64;
1744 int err;
1745
1746 if (!arg)
1747 return -EINVAL;
1748 err = loop_get_status(lo, &info64);
1749 if (!err)
1750 err = loop_info64_to_compat(&info64, arg);
1751 return err;
1752 }
1753
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1754 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1755 unsigned int cmd, unsigned long arg)
1756 {
1757 struct loop_device *lo = bdev->bd_disk->private_data;
1758 int err;
1759
1760 switch(cmd) {
1761 case LOOP_SET_STATUS:
1762 err = loop_set_status_compat(lo,
1763 (const struct compat_loop_info __user *)arg);
1764 break;
1765 case LOOP_GET_STATUS:
1766 err = loop_get_status_compat(lo,
1767 (struct compat_loop_info __user *)arg);
1768 break;
1769 case LOOP_SET_CAPACITY:
1770 case LOOP_CLR_FD:
1771 case LOOP_GET_STATUS64:
1772 case LOOP_SET_STATUS64:
1773 arg = (unsigned long) compat_ptr(arg);
1774 /* fall through */
1775 case LOOP_SET_FD:
1776 case LOOP_CHANGE_FD:
1777 case LOOP_SET_BLOCK_SIZE:
1778 case LOOP_SET_DIRECT_IO:
1779 err = lo_ioctl(bdev, mode, cmd, arg);
1780 break;
1781 default:
1782 err = -ENOIOCTLCMD;
1783 break;
1784 }
1785 return err;
1786 }
1787 #endif
1788
lo_open(struct block_device * bdev,fmode_t mode)1789 static int lo_open(struct block_device *bdev, fmode_t mode)
1790 {
1791 struct loop_device *lo;
1792 int err;
1793
1794 err = mutex_lock_killable(&loop_ctl_mutex);
1795 if (err)
1796 return err;
1797 lo = bdev->bd_disk->private_data;
1798 if (!lo) {
1799 err = -ENXIO;
1800 goto out;
1801 }
1802
1803 atomic_inc(&lo->lo_refcnt);
1804 out:
1805 mutex_unlock(&loop_ctl_mutex);
1806 return err;
1807 }
1808
lo_release(struct gendisk * disk,fmode_t mode)1809 static void lo_release(struct gendisk *disk, fmode_t mode)
1810 {
1811 struct loop_device *lo;
1812
1813 mutex_lock(&loop_ctl_mutex);
1814 lo = disk->private_data;
1815 if (atomic_dec_return(&lo->lo_refcnt))
1816 goto out_unlock;
1817
1818 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1819 if (lo->lo_state != Lo_bound)
1820 goto out_unlock;
1821 lo->lo_state = Lo_rundown;
1822 mutex_unlock(&loop_ctl_mutex);
1823 /*
1824 * In autoclear mode, stop the loop thread
1825 * and remove configuration after last close.
1826 */
1827 __loop_clr_fd(lo, true);
1828 return;
1829 } else if (lo->lo_state == Lo_bound) {
1830 /*
1831 * Otherwise keep thread (if running) and config,
1832 * but flush possible ongoing bios in thread.
1833 */
1834 blk_mq_freeze_queue(lo->lo_queue);
1835 blk_mq_unfreeze_queue(lo->lo_queue);
1836 }
1837
1838 out_unlock:
1839 mutex_unlock(&loop_ctl_mutex);
1840 }
1841
1842 static const struct block_device_operations lo_fops = {
1843 .owner = THIS_MODULE,
1844 .open = lo_open,
1845 .release = lo_release,
1846 .ioctl = lo_ioctl,
1847 #ifdef CONFIG_COMPAT
1848 .compat_ioctl = lo_compat_ioctl,
1849 #endif
1850 };
1851
1852 /*
1853 * And now the modules code and kernel interface.
1854 */
1855 static int max_loop;
1856 module_param(max_loop, int, 0444);
1857 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1858 module_param(max_part, int, 0444);
1859 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1860 MODULE_LICENSE("GPL");
1861 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1862
loop_register_transfer(struct loop_func_table * funcs)1863 int loop_register_transfer(struct loop_func_table *funcs)
1864 {
1865 unsigned int n = funcs->number;
1866
1867 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1868 return -EINVAL;
1869 xfer_funcs[n] = funcs;
1870 return 0;
1871 }
1872
unregister_transfer_cb(int id,void * ptr,void * data)1873 static int unregister_transfer_cb(int id, void *ptr, void *data)
1874 {
1875 struct loop_device *lo = ptr;
1876 struct loop_func_table *xfer = data;
1877
1878 mutex_lock(&loop_ctl_mutex);
1879 if (lo->lo_encryption == xfer)
1880 loop_release_xfer(lo);
1881 mutex_unlock(&loop_ctl_mutex);
1882 return 0;
1883 }
1884
loop_unregister_transfer(int number)1885 int loop_unregister_transfer(int number)
1886 {
1887 unsigned int n = number;
1888 struct loop_func_table *xfer;
1889
1890 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1891 return -EINVAL;
1892
1893 xfer_funcs[n] = NULL;
1894 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1895 return 0;
1896 }
1897
1898 EXPORT_SYMBOL(loop_register_transfer);
1899 EXPORT_SYMBOL(loop_unregister_transfer);
1900
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1901 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1902 const struct blk_mq_queue_data *bd)
1903 {
1904 struct request *rq = bd->rq;
1905 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1906 struct loop_device *lo = rq->q->queuedata;
1907
1908 blk_mq_start_request(rq);
1909
1910 if (lo->lo_state != Lo_bound)
1911 return BLK_STS_IOERR;
1912
1913 switch (req_op(rq)) {
1914 case REQ_OP_FLUSH:
1915 case REQ_OP_DISCARD:
1916 case REQ_OP_WRITE_ZEROES:
1917 cmd->use_aio = false;
1918 break;
1919 default:
1920 cmd->use_aio = lo->use_dio;
1921 break;
1922 }
1923
1924 /* always use the first bio's css */
1925 #ifdef CONFIG_BLK_CGROUP
1926 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1927 cmd->css = &bio_blkcg(rq->bio)->css;
1928 css_get(cmd->css);
1929 } else
1930 #endif
1931 cmd->css = NULL;
1932 kthread_queue_work(&lo->worker, &cmd->work);
1933
1934 return BLK_STS_OK;
1935 }
1936
loop_handle_cmd(struct loop_cmd * cmd)1937 static void loop_handle_cmd(struct loop_cmd *cmd)
1938 {
1939 struct request *rq = blk_mq_rq_from_pdu(cmd);
1940 const bool write = op_is_write(req_op(rq));
1941 struct loop_device *lo = rq->q->queuedata;
1942 int ret = 0;
1943
1944 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1945 ret = -EIO;
1946 goto failed;
1947 }
1948
1949 ret = do_req_filebacked(lo, rq);
1950 failed:
1951 /* complete non-aio request */
1952 if (!cmd->use_aio || ret) {
1953 cmd->ret = ret ? -EIO : 0;
1954 blk_mq_complete_request(rq);
1955 }
1956 }
1957
loop_queue_work(struct kthread_work * work)1958 static void loop_queue_work(struct kthread_work *work)
1959 {
1960 struct loop_cmd *cmd =
1961 container_of(work, struct loop_cmd, work);
1962
1963 loop_handle_cmd(cmd);
1964 }
1965
loop_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1966 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1967 unsigned int hctx_idx, unsigned int numa_node)
1968 {
1969 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1970
1971 kthread_init_work(&cmd->work, loop_queue_work);
1972 return 0;
1973 }
1974
1975 static const struct blk_mq_ops loop_mq_ops = {
1976 .queue_rq = loop_queue_rq,
1977 .init_request = loop_init_request,
1978 .complete = lo_complete_rq,
1979 };
1980
loop_add(struct loop_device ** l,int i)1981 static int loop_add(struct loop_device **l, int i)
1982 {
1983 struct loop_device *lo;
1984 struct gendisk *disk;
1985 int err;
1986
1987 err = -ENOMEM;
1988 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1989 if (!lo)
1990 goto out;
1991
1992 lo->lo_state = Lo_unbound;
1993
1994 /* allocate id, if @id >= 0, we're requesting that specific id */
1995 if (i >= 0) {
1996 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1997 if (err == -ENOSPC)
1998 err = -EEXIST;
1999 } else {
2000 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2001 }
2002 if (err < 0)
2003 goto out_free_dev;
2004 i = err;
2005
2006 err = -ENOMEM;
2007 lo->tag_set.ops = &loop_mq_ops;
2008 lo->tag_set.nr_hw_queues = 1;
2009 lo->tag_set.queue_depth = 128;
2010 lo->tag_set.numa_node = NUMA_NO_NODE;
2011 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2012 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2013 lo->tag_set.driver_data = lo;
2014
2015 err = blk_mq_alloc_tag_set(&lo->tag_set);
2016 if (err)
2017 goto out_free_idr;
2018
2019 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2020 if (IS_ERR(lo->lo_queue)) {
2021 err = PTR_ERR(lo->lo_queue);
2022 goto out_cleanup_tags;
2023 }
2024 lo->lo_queue->queuedata = lo;
2025
2026 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2027
2028 /*
2029 * By default, we do buffer IO, so it doesn't make sense to enable
2030 * merge because the I/O submitted to backing file is handled page by
2031 * page. For directio mode, merge does help to dispatch bigger request
2032 * to underlayer disk. We will enable merge once directio is enabled.
2033 */
2034 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2035
2036 err = -ENOMEM;
2037 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2038 if (!disk)
2039 goto out_free_queue;
2040
2041 /*
2042 * Disable partition scanning by default. The in-kernel partition
2043 * scanning can be requested individually per-device during its
2044 * setup. Userspace can always add and remove partitions from all
2045 * devices. The needed partition minors are allocated from the
2046 * extended minor space, the main loop device numbers will continue
2047 * to match the loop minors, regardless of the number of partitions
2048 * used.
2049 *
2050 * If max_part is given, partition scanning is globally enabled for
2051 * all loop devices. The minors for the main loop devices will be
2052 * multiples of max_part.
2053 *
2054 * Note: Global-for-all-devices, set-only-at-init, read-only module
2055 * parameteters like 'max_loop' and 'max_part' make things needlessly
2056 * complicated, are too static, inflexible and may surprise
2057 * userspace tools. Parameters like this in general should be avoided.
2058 */
2059 if (!part_shift)
2060 disk->flags |= GENHD_FL_NO_PART_SCAN;
2061 disk->flags |= GENHD_FL_EXT_DEVT;
2062 atomic_set(&lo->lo_refcnt, 0);
2063 lo->lo_number = i;
2064 spin_lock_init(&lo->lo_lock);
2065 disk->major = LOOP_MAJOR;
2066 disk->first_minor = i << part_shift;
2067 disk->fops = &lo_fops;
2068 disk->private_data = lo;
2069 disk->queue = lo->lo_queue;
2070 sprintf(disk->disk_name, "loop%d", i);
2071 add_disk(disk);
2072 *l = lo;
2073 return lo->lo_number;
2074
2075 out_free_queue:
2076 blk_cleanup_queue(lo->lo_queue);
2077 out_cleanup_tags:
2078 blk_mq_free_tag_set(&lo->tag_set);
2079 out_free_idr:
2080 idr_remove(&loop_index_idr, i);
2081 out_free_dev:
2082 kfree(lo);
2083 out:
2084 return err;
2085 }
2086
loop_remove(struct loop_device * lo)2087 static void loop_remove(struct loop_device *lo)
2088 {
2089 del_gendisk(lo->lo_disk);
2090 blk_cleanup_queue(lo->lo_queue);
2091 blk_mq_free_tag_set(&lo->tag_set);
2092 put_disk(lo->lo_disk);
2093 kfree(lo);
2094 }
2095
find_free_cb(int id,void * ptr,void * data)2096 static int find_free_cb(int id, void *ptr, void *data)
2097 {
2098 struct loop_device *lo = ptr;
2099 struct loop_device **l = data;
2100
2101 if (lo->lo_state == Lo_unbound) {
2102 *l = lo;
2103 return 1;
2104 }
2105 return 0;
2106 }
2107
loop_lookup(struct loop_device ** l,int i)2108 static int loop_lookup(struct loop_device **l, int i)
2109 {
2110 struct loop_device *lo;
2111 int ret = -ENODEV;
2112
2113 if (i < 0) {
2114 int err;
2115
2116 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2117 if (err == 1) {
2118 *l = lo;
2119 ret = lo->lo_number;
2120 }
2121 goto out;
2122 }
2123
2124 /* lookup and return a specific i */
2125 lo = idr_find(&loop_index_idr, i);
2126 if (lo) {
2127 *l = lo;
2128 ret = lo->lo_number;
2129 }
2130 out:
2131 return ret;
2132 }
2133
loop_probe(dev_t dev,int * part,void * data)2134 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2135 {
2136 struct loop_device *lo;
2137 struct kobject *kobj;
2138 int err;
2139
2140 mutex_lock(&loop_ctl_mutex);
2141 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2142 if (err < 0)
2143 err = loop_add(&lo, MINOR(dev) >> part_shift);
2144 if (err < 0)
2145 kobj = NULL;
2146 else
2147 kobj = get_disk_and_module(lo->lo_disk);
2148 mutex_unlock(&loop_ctl_mutex);
2149
2150 *part = 0;
2151 return kobj;
2152 }
2153
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2154 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2155 unsigned long parm)
2156 {
2157 struct loop_device *lo;
2158 int ret;
2159
2160 ret = mutex_lock_killable(&loop_ctl_mutex);
2161 if (ret)
2162 return ret;
2163
2164 ret = -ENOSYS;
2165 switch (cmd) {
2166 case LOOP_CTL_ADD:
2167 ret = loop_lookup(&lo, parm);
2168 if (ret >= 0) {
2169 ret = -EEXIST;
2170 break;
2171 }
2172 ret = loop_add(&lo, parm);
2173 break;
2174 case LOOP_CTL_REMOVE:
2175 ret = loop_lookup(&lo, parm);
2176 if (ret < 0)
2177 break;
2178 if (lo->lo_state != Lo_unbound) {
2179 ret = -EBUSY;
2180 break;
2181 }
2182 if (atomic_read(&lo->lo_refcnt) > 0) {
2183 ret = -EBUSY;
2184 break;
2185 }
2186 lo->lo_disk->private_data = NULL;
2187 idr_remove(&loop_index_idr, lo->lo_number);
2188 loop_remove(lo);
2189 break;
2190 case LOOP_CTL_GET_FREE:
2191 ret = loop_lookup(&lo, -1);
2192 if (ret >= 0)
2193 break;
2194 ret = loop_add(&lo, -1);
2195 }
2196 mutex_unlock(&loop_ctl_mutex);
2197
2198 return ret;
2199 }
2200
2201 static const struct file_operations loop_ctl_fops = {
2202 .open = nonseekable_open,
2203 .unlocked_ioctl = loop_control_ioctl,
2204 .compat_ioctl = loop_control_ioctl,
2205 .owner = THIS_MODULE,
2206 .llseek = noop_llseek,
2207 };
2208
2209 static struct miscdevice loop_misc = {
2210 .minor = LOOP_CTRL_MINOR,
2211 .name = "loop-control",
2212 .fops = &loop_ctl_fops,
2213 };
2214
2215 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2216 MODULE_ALIAS("devname:loop-control");
2217
loop_init(void)2218 static int __init loop_init(void)
2219 {
2220 int i, nr;
2221 unsigned long range;
2222 struct loop_device *lo;
2223 int err;
2224
2225 part_shift = 0;
2226 if (max_part > 0) {
2227 part_shift = fls(max_part);
2228
2229 /*
2230 * Adjust max_part according to part_shift as it is exported
2231 * to user space so that user can decide correct minor number
2232 * if [s]he want to create more devices.
2233 *
2234 * Note that -1 is required because partition 0 is reserved
2235 * for the whole disk.
2236 */
2237 max_part = (1UL << part_shift) - 1;
2238 }
2239
2240 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2241 err = -EINVAL;
2242 goto err_out;
2243 }
2244
2245 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2246 err = -EINVAL;
2247 goto err_out;
2248 }
2249
2250 /*
2251 * If max_loop is specified, create that many devices upfront.
2252 * This also becomes a hard limit. If max_loop is not specified,
2253 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2254 * init time. Loop devices can be requested on-demand with the
2255 * /dev/loop-control interface, or be instantiated by accessing
2256 * a 'dead' device node.
2257 */
2258 if (max_loop) {
2259 nr = max_loop;
2260 range = max_loop << part_shift;
2261 } else {
2262 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2263 range = 1UL << MINORBITS;
2264 }
2265
2266 err = misc_register(&loop_misc);
2267 if (err < 0)
2268 goto err_out;
2269
2270
2271 if (register_blkdev(LOOP_MAJOR, "loop")) {
2272 err = -EIO;
2273 goto misc_out;
2274 }
2275
2276 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2277 THIS_MODULE, loop_probe, NULL, NULL);
2278
2279 /* pre-create number of devices given by config or max_loop */
2280 mutex_lock(&loop_ctl_mutex);
2281 for (i = 0; i < nr; i++)
2282 loop_add(&lo, i);
2283 mutex_unlock(&loop_ctl_mutex);
2284
2285 printk(KERN_INFO "loop: module loaded\n");
2286 return 0;
2287
2288 misc_out:
2289 misc_deregister(&loop_misc);
2290 err_out:
2291 return err;
2292 }
2293
loop_exit_cb(int id,void * ptr,void * data)2294 static int loop_exit_cb(int id, void *ptr, void *data)
2295 {
2296 struct loop_device *lo = ptr;
2297
2298 loop_remove(lo);
2299 return 0;
2300 }
2301
loop_exit(void)2302 static void __exit loop_exit(void)
2303 {
2304 unsigned long range;
2305
2306 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2307
2308 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2309 idr_destroy(&loop_index_idr);
2310
2311 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2312 unregister_blkdev(LOOP_MAJOR, "loop");
2313
2314 misc_deregister(&loop_misc);
2315 }
2316
2317 module_init(loop_init);
2318 module_exit(loop_exit);
2319
2320 #ifndef MODULE
max_loop_setup(char * str)2321 static int __init max_loop_setup(char *str)
2322 {
2323 max_loop = simple_strtol(str, NULL, 0);
2324 return 1;
2325 }
2326
2327 __setup("max_loop=", max_loop_setup);
2328 #endif
2329