• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI Three-wire UART driver
5  *
6  *  Copyright (C) 2012  Intel Corporation
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/serdev.h>
15 #include <linux/skbuff.h>
16 
17 #include <net/bluetooth/bluetooth.h>
18 #include <net/bluetooth/hci_core.h>
19 
20 #include "btrtl.h"
21 #include "hci_uart.h"
22 
23 #define HCI_3WIRE_ACK_PKT	0
24 #define HCI_3WIRE_LINK_PKT	15
25 
26 /* Sliding window size */
27 #define H5_TX_WIN_MAX		4
28 
29 #define H5_ACK_TIMEOUT	msecs_to_jiffies(250)
30 #define H5_SYNC_TIMEOUT	msecs_to_jiffies(100)
31 
32 /*
33  * Maximum Three-wire packet:
34  *     4 byte header + max value for 12-bit length + 2 bytes for CRC
35  */
36 #define H5_MAX_LEN (4 + 0xfff + 2)
37 
38 /* Convenience macros for reading Three-wire header values */
39 #define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
40 #define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
41 #define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
42 #define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
43 #define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
44 #define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
45 
46 #define SLIP_DELIMITER	0xc0
47 #define SLIP_ESC	0xdb
48 #define SLIP_ESC_DELIM	0xdc
49 #define SLIP_ESC_ESC	0xdd
50 
51 /* H5 state flags */
52 enum {
53 	H5_RX_ESC,	/* SLIP escape mode */
54 	H5_TX_ACK_REQ,	/* Pending ack to send */
55 };
56 
57 struct h5 {
58 	/* Must be the first member, hci_serdev.c expects this. */
59 	struct hci_uart		serdev_hu;
60 
61 	struct sk_buff_head	unack;		/* Unack'ed packets queue */
62 	struct sk_buff_head	rel;		/* Reliable packets queue */
63 	struct sk_buff_head	unrel;		/* Unreliable packets queue */
64 
65 	unsigned long		flags;
66 
67 	struct sk_buff		*rx_skb;	/* Receive buffer */
68 	size_t			rx_pending;	/* Expecting more bytes */
69 	u8			rx_ack;		/* Last ack number received */
70 
71 	int			(*rx_func)(struct hci_uart *hu, u8 c);
72 
73 	struct timer_list	timer;		/* Retransmission timer */
74 	struct hci_uart		*hu;		/* Parent HCI UART */
75 
76 	u8			tx_seq;		/* Next seq number to send */
77 	u8			tx_ack;		/* Next ack number to send */
78 	u8			tx_win;		/* Sliding window size */
79 
80 	enum {
81 		H5_UNINITIALIZED,
82 		H5_INITIALIZED,
83 		H5_ACTIVE,
84 	} state;
85 
86 	enum {
87 		H5_AWAKE,
88 		H5_SLEEPING,
89 		H5_WAKING_UP,
90 	} sleep;
91 
92 	const struct h5_vnd *vnd;
93 	const char *id;
94 
95 	struct gpio_desc *enable_gpio;
96 	struct gpio_desc *device_wake_gpio;
97 };
98 
99 struct h5_vnd {
100 	int (*setup)(struct h5 *h5);
101 	void (*open)(struct h5 *h5);
102 	void (*close)(struct h5 *h5);
103 	int (*suspend)(struct h5 *h5);
104 	int (*resume)(struct h5 *h5);
105 	const struct acpi_gpio_mapping *acpi_gpio_map;
106 };
107 
108 static void h5_reset_rx(struct h5 *h5);
109 
h5_link_control(struct hci_uart * hu,const void * data,size_t len)110 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
111 {
112 	struct h5 *h5 = hu->priv;
113 	struct sk_buff *nskb;
114 
115 	nskb = alloc_skb(3, GFP_ATOMIC);
116 	if (!nskb)
117 		return;
118 
119 	hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT;
120 
121 	skb_put_data(nskb, data, len);
122 
123 	skb_queue_tail(&h5->unrel, nskb);
124 }
125 
h5_cfg_field(struct h5 * h5)126 static u8 h5_cfg_field(struct h5 *h5)
127 {
128 	/* Sliding window size (first 3 bits) */
129 	return h5->tx_win & 0x07;
130 }
131 
h5_timed_event(struct timer_list * t)132 static void h5_timed_event(struct timer_list *t)
133 {
134 	const unsigned char sync_req[] = { 0x01, 0x7e };
135 	unsigned char conf_req[3] = { 0x03, 0xfc };
136 	struct h5 *h5 = from_timer(h5, t, timer);
137 	struct hci_uart *hu = h5->hu;
138 	struct sk_buff *skb;
139 	unsigned long flags;
140 
141 	BT_DBG("%s", hu->hdev->name);
142 
143 	if (h5->state == H5_UNINITIALIZED)
144 		h5_link_control(hu, sync_req, sizeof(sync_req));
145 
146 	if (h5->state == H5_INITIALIZED) {
147 		conf_req[2] = h5_cfg_field(h5);
148 		h5_link_control(hu, conf_req, sizeof(conf_req));
149 	}
150 
151 	if (h5->state != H5_ACTIVE) {
152 		mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
153 		goto wakeup;
154 	}
155 
156 	if (h5->sleep != H5_AWAKE) {
157 		h5->sleep = H5_SLEEPING;
158 		goto wakeup;
159 	}
160 
161 	BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
162 
163 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
164 
165 	while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
166 		h5->tx_seq = (h5->tx_seq - 1) & 0x07;
167 		skb_queue_head(&h5->rel, skb);
168 	}
169 
170 	spin_unlock_irqrestore(&h5->unack.lock, flags);
171 
172 wakeup:
173 	hci_uart_tx_wakeup(hu);
174 }
175 
h5_peer_reset(struct hci_uart * hu)176 static void h5_peer_reset(struct hci_uart *hu)
177 {
178 	struct h5 *h5 = hu->priv;
179 
180 	BT_ERR("Peer device has reset");
181 
182 	h5->state = H5_UNINITIALIZED;
183 
184 	del_timer(&h5->timer);
185 
186 	skb_queue_purge(&h5->rel);
187 	skb_queue_purge(&h5->unrel);
188 	skb_queue_purge(&h5->unack);
189 
190 	h5->tx_seq = 0;
191 	h5->tx_ack = 0;
192 
193 	/* Send reset request to upper stack */
194 	hci_reset_dev(hu->hdev);
195 }
196 
h5_open(struct hci_uart * hu)197 static int h5_open(struct hci_uart *hu)
198 {
199 	struct h5 *h5;
200 	const unsigned char sync[] = { 0x01, 0x7e };
201 
202 	BT_DBG("hu %p", hu);
203 
204 	if (hu->serdev) {
205 		h5 = serdev_device_get_drvdata(hu->serdev);
206 	} else {
207 		h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
208 		if (!h5)
209 			return -ENOMEM;
210 	}
211 
212 	hu->priv = h5;
213 	h5->hu = hu;
214 
215 	skb_queue_head_init(&h5->unack);
216 	skb_queue_head_init(&h5->rel);
217 	skb_queue_head_init(&h5->unrel);
218 
219 	h5_reset_rx(h5);
220 
221 	timer_setup(&h5->timer, h5_timed_event, 0);
222 
223 	h5->tx_win = H5_TX_WIN_MAX;
224 
225 	if (h5->vnd && h5->vnd->open)
226 		h5->vnd->open(h5);
227 
228 	set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);
229 
230 	/* Send initial sync request */
231 	h5_link_control(hu, sync, sizeof(sync));
232 	mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
233 
234 	return 0;
235 }
236 
h5_close(struct hci_uart * hu)237 static int h5_close(struct hci_uart *hu)
238 {
239 	struct h5 *h5 = hu->priv;
240 
241 	del_timer_sync(&h5->timer);
242 
243 	skb_queue_purge(&h5->unack);
244 	skb_queue_purge(&h5->rel);
245 	skb_queue_purge(&h5->unrel);
246 
247 	if (h5->vnd && h5->vnd->close)
248 		h5->vnd->close(h5);
249 
250 	if (!hu->serdev)
251 		kfree(h5);
252 
253 	return 0;
254 }
255 
h5_setup(struct hci_uart * hu)256 static int h5_setup(struct hci_uart *hu)
257 {
258 	struct h5 *h5 = hu->priv;
259 
260 	if (h5->vnd && h5->vnd->setup)
261 		return h5->vnd->setup(h5);
262 
263 	return 0;
264 }
265 
h5_pkt_cull(struct h5 * h5)266 static void h5_pkt_cull(struct h5 *h5)
267 {
268 	struct sk_buff *skb, *tmp;
269 	unsigned long flags;
270 	int i, to_remove;
271 	u8 seq;
272 
273 	spin_lock_irqsave(&h5->unack.lock, flags);
274 
275 	to_remove = skb_queue_len(&h5->unack);
276 	if (to_remove == 0)
277 		goto unlock;
278 
279 	seq = h5->tx_seq;
280 
281 	while (to_remove > 0) {
282 		if (h5->rx_ack == seq)
283 			break;
284 
285 		to_remove--;
286 		seq = (seq - 1) & 0x07;
287 	}
288 
289 	if (seq != h5->rx_ack)
290 		BT_ERR("Controller acked invalid packet");
291 
292 	i = 0;
293 	skb_queue_walk_safe(&h5->unack, skb, tmp) {
294 		if (i++ >= to_remove)
295 			break;
296 
297 		__skb_unlink(skb, &h5->unack);
298 		kfree_skb(skb);
299 	}
300 
301 	if (skb_queue_empty(&h5->unack))
302 		del_timer(&h5->timer);
303 
304 unlock:
305 	spin_unlock_irqrestore(&h5->unack.lock, flags);
306 }
307 
h5_handle_internal_rx(struct hci_uart * hu)308 static void h5_handle_internal_rx(struct hci_uart *hu)
309 {
310 	struct h5 *h5 = hu->priv;
311 	const unsigned char sync_req[] = { 0x01, 0x7e };
312 	const unsigned char sync_rsp[] = { 0x02, 0x7d };
313 	unsigned char conf_req[3] = { 0x03, 0xfc };
314 	const unsigned char conf_rsp[] = { 0x04, 0x7b };
315 	const unsigned char wakeup_req[] = { 0x05, 0xfa };
316 	const unsigned char woken_req[] = { 0x06, 0xf9 };
317 	const unsigned char sleep_req[] = { 0x07, 0x78 };
318 	const unsigned char *hdr = h5->rx_skb->data;
319 	const unsigned char *data = &h5->rx_skb->data[4];
320 
321 	BT_DBG("%s", hu->hdev->name);
322 
323 	if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
324 		return;
325 
326 	if (H5_HDR_LEN(hdr) < 2)
327 		return;
328 
329 	conf_req[2] = h5_cfg_field(h5);
330 
331 	if (memcmp(data, sync_req, 2) == 0) {
332 		if (h5->state == H5_ACTIVE)
333 			h5_peer_reset(hu);
334 		h5_link_control(hu, sync_rsp, 2);
335 	} else if (memcmp(data, sync_rsp, 2) == 0) {
336 		if (h5->state == H5_ACTIVE)
337 			h5_peer_reset(hu);
338 		h5->state = H5_INITIALIZED;
339 		h5_link_control(hu, conf_req, 3);
340 	} else if (memcmp(data, conf_req, 2) == 0) {
341 		h5_link_control(hu, conf_rsp, 2);
342 		h5_link_control(hu, conf_req, 3);
343 	} else if (memcmp(data, conf_rsp, 2) == 0) {
344 		if (H5_HDR_LEN(hdr) > 2)
345 			h5->tx_win = (data[2] & 0x07);
346 		BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
347 		h5->state = H5_ACTIVE;
348 		hci_uart_init_ready(hu);
349 		return;
350 	} else if (memcmp(data, sleep_req, 2) == 0) {
351 		BT_DBG("Peer went to sleep");
352 		h5->sleep = H5_SLEEPING;
353 		return;
354 	} else if (memcmp(data, woken_req, 2) == 0) {
355 		BT_DBG("Peer woke up");
356 		h5->sleep = H5_AWAKE;
357 	} else if (memcmp(data, wakeup_req, 2) == 0) {
358 		BT_DBG("Peer requested wakeup");
359 		h5_link_control(hu, woken_req, 2);
360 		h5->sleep = H5_AWAKE;
361 	} else {
362 		BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
363 		return;
364 	}
365 
366 	hci_uart_tx_wakeup(hu);
367 }
368 
h5_complete_rx_pkt(struct hci_uart * hu)369 static void h5_complete_rx_pkt(struct hci_uart *hu)
370 {
371 	struct h5 *h5 = hu->priv;
372 	const unsigned char *hdr = h5->rx_skb->data;
373 
374 	if (H5_HDR_RELIABLE(hdr)) {
375 		h5->tx_ack = (h5->tx_ack + 1) % 8;
376 		set_bit(H5_TX_ACK_REQ, &h5->flags);
377 		hci_uart_tx_wakeup(hu);
378 	}
379 
380 	h5->rx_ack = H5_HDR_ACK(hdr);
381 
382 	h5_pkt_cull(h5);
383 
384 	switch (H5_HDR_PKT_TYPE(hdr)) {
385 	case HCI_EVENT_PKT:
386 	case HCI_ACLDATA_PKT:
387 	case HCI_SCODATA_PKT:
388 		hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr);
389 
390 		/* Remove Three-wire header */
391 		skb_pull(h5->rx_skb, 4);
392 
393 		hci_recv_frame(hu->hdev, h5->rx_skb);
394 		h5->rx_skb = NULL;
395 
396 		break;
397 
398 	default:
399 		h5_handle_internal_rx(hu);
400 		break;
401 	}
402 
403 	h5_reset_rx(h5);
404 }
405 
h5_rx_crc(struct hci_uart * hu,unsigned char c)406 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
407 {
408 	h5_complete_rx_pkt(hu);
409 
410 	return 0;
411 }
412 
h5_rx_payload(struct hci_uart * hu,unsigned char c)413 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
414 {
415 	struct h5 *h5 = hu->priv;
416 	const unsigned char *hdr = h5->rx_skb->data;
417 
418 	if (H5_HDR_CRC(hdr)) {
419 		h5->rx_func = h5_rx_crc;
420 		h5->rx_pending = 2;
421 	} else {
422 		h5_complete_rx_pkt(hu);
423 	}
424 
425 	return 0;
426 }
427 
h5_rx_3wire_hdr(struct hci_uart * hu,unsigned char c)428 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
429 {
430 	struct h5 *h5 = hu->priv;
431 	const unsigned char *hdr = h5->rx_skb->data;
432 
433 	BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
434 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
435 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
436 	       H5_HDR_LEN(hdr));
437 
438 	if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
439 		BT_ERR("Invalid header checksum");
440 		h5_reset_rx(h5);
441 		return 0;
442 	}
443 
444 	if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
445 		BT_ERR("Out-of-order packet arrived (%u != %u)",
446 		       H5_HDR_SEQ(hdr), h5->tx_ack);
447 		h5_reset_rx(h5);
448 		return 0;
449 	}
450 
451 	if (h5->state != H5_ACTIVE &&
452 	    H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
453 		BT_ERR("Non-link packet received in non-active state");
454 		h5_reset_rx(h5);
455 		return 0;
456 	}
457 
458 	h5->rx_func = h5_rx_payload;
459 	h5->rx_pending = H5_HDR_LEN(hdr);
460 
461 	return 0;
462 }
463 
h5_rx_pkt_start(struct hci_uart * hu,unsigned char c)464 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
465 {
466 	struct h5 *h5 = hu->priv;
467 
468 	if (c == SLIP_DELIMITER)
469 		return 1;
470 
471 	h5->rx_func = h5_rx_3wire_hdr;
472 	h5->rx_pending = 4;
473 
474 	h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
475 	if (!h5->rx_skb) {
476 		BT_ERR("Can't allocate mem for new packet");
477 		h5_reset_rx(h5);
478 		return -ENOMEM;
479 	}
480 
481 	h5->rx_skb->dev = (void *)hu->hdev;
482 
483 	return 0;
484 }
485 
h5_rx_delimiter(struct hci_uart * hu,unsigned char c)486 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
487 {
488 	struct h5 *h5 = hu->priv;
489 
490 	if (c == SLIP_DELIMITER)
491 		h5->rx_func = h5_rx_pkt_start;
492 
493 	return 1;
494 }
495 
h5_unslip_one_byte(struct h5 * h5,unsigned char c)496 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
497 {
498 	const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
499 	const u8 *byte = &c;
500 
501 	if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
502 		set_bit(H5_RX_ESC, &h5->flags);
503 		return;
504 	}
505 
506 	if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
507 		switch (c) {
508 		case SLIP_ESC_DELIM:
509 			byte = &delim;
510 			break;
511 		case SLIP_ESC_ESC:
512 			byte = &esc;
513 			break;
514 		default:
515 			BT_ERR("Invalid esc byte 0x%02hhx", c);
516 			h5_reset_rx(h5);
517 			return;
518 		}
519 	}
520 
521 	skb_put_data(h5->rx_skb, byte, 1);
522 	h5->rx_pending--;
523 
524 	BT_DBG("unslipped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
525 }
526 
h5_reset_rx(struct h5 * h5)527 static void h5_reset_rx(struct h5 *h5)
528 {
529 	if (h5->rx_skb) {
530 		kfree_skb(h5->rx_skb);
531 		h5->rx_skb = NULL;
532 	}
533 
534 	h5->rx_func = h5_rx_delimiter;
535 	h5->rx_pending = 0;
536 	clear_bit(H5_RX_ESC, &h5->flags);
537 }
538 
h5_recv(struct hci_uart * hu,const void * data,int count)539 static int h5_recv(struct hci_uart *hu, const void *data, int count)
540 {
541 	struct h5 *h5 = hu->priv;
542 	const unsigned char *ptr = data;
543 
544 	BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
545 	       count);
546 
547 	while (count > 0) {
548 		int processed;
549 
550 		if (h5->rx_pending > 0) {
551 			if (*ptr == SLIP_DELIMITER) {
552 				BT_ERR("Too short H5 packet");
553 				h5_reset_rx(h5);
554 				continue;
555 			}
556 
557 			h5_unslip_one_byte(h5, *ptr);
558 
559 			ptr++; count--;
560 			continue;
561 		}
562 
563 		processed = h5->rx_func(hu, *ptr);
564 		if (processed < 0)
565 			return processed;
566 
567 		ptr += processed;
568 		count -= processed;
569 	}
570 
571 	return 0;
572 }
573 
h5_enqueue(struct hci_uart * hu,struct sk_buff * skb)574 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
575 {
576 	struct h5 *h5 = hu->priv;
577 
578 	if (skb->len > 0xfff) {
579 		BT_ERR("Packet too long (%u bytes)", skb->len);
580 		kfree_skb(skb);
581 		return 0;
582 	}
583 
584 	if (h5->state != H5_ACTIVE) {
585 		BT_ERR("Ignoring HCI data in non-active state");
586 		kfree_skb(skb);
587 		return 0;
588 	}
589 
590 	switch (hci_skb_pkt_type(skb)) {
591 	case HCI_ACLDATA_PKT:
592 	case HCI_COMMAND_PKT:
593 		skb_queue_tail(&h5->rel, skb);
594 		break;
595 
596 	case HCI_SCODATA_PKT:
597 		skb_queue_tail(&h5->unrel, skb);
598 		break;
599 
600 	default:
601 		BT_ERR("Unknown packet type %u", hci_skb_pkt_type(skb));
602 		kfree_skb(skb);
603 		break;
604 	}
605 
606 	return 0;
607 }
608 
h5_slip_delim(struct sk_buff * skb)609 static void h5_slip_delim(struct sk_buff *skb)
610 {
611 	const char delim = SLIP_DELIMITER;
612 
613 	skb_put_data(skb, &delim, 1);
614 }
615 
h5_slip_one_byte(struct sk_buff * skb,u8 c)616 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
617 {
618 	const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
619 	const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
620 
621 	switch (c) {
622 	case SLIP_DELIMITER:
623 		skb_put_data(skb, &esc_delim, 2);
624 		break;
625 	case SLIP_ESC:
626 		skb_put_data(skb, &esc_esc, 2);
627 		break;
628 	default:
629 		skb_put_data(skb, &c, 1);
630 	}
631 }
632 
valid_packet_type(u8 type)633 static bool valid_packet_type(u8 type)
634 {
635 	switch (type) {
636 	case HCI_ACLDATA_PKT:
637 	case HCI_COMMAND_PKT:
638 	case HCI_SCODATA_PKT:
639 	case HCI_3WIRE_LINK_PKT:
640 	case HCI_3WIRE_ACK_PKT:
641 		return true;
642 	default:
643 		return false;
644 	}
645 }
646 
h5_prepare_pkt(struct hci_uart * hu,u8 pkt_type,const u8 * data,size_t len)647 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
648 				      const u8 *data, size_t len)
649 {
650 	struct h5 *h5 = hu->priv;
651 	struct sk_buff *nskb;
652 	u8 hdr[4];
653 	int i;
654 
655 	if (!valid_packet_type(pkt_type)) {
656 		BT_ERR("Unknown packet type %u", pkt_type);
657 		return NULL;
658 	}
659 
660 	/*
661 	 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
662 	 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
663 	 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
664 	 * delimiters at start and end).
665 	 */
666 	nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
667 	if (!nskb)
668 		return NULL;
669 
670 	hci_skb_pkt_type(nskb) = pkt_type;
671 
672 	h5_slip_delim(nskb);
673 
674 	hdr[0] = h5->tx_ack << 3;
675 	clear_bit(H5_TX_ACK_REQ, &h5->flags);
676 
677 	/* Reliable packet? */
678 	if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
679 		hdr[0] |= 1 << 7;
680 		hdr[0] |= h5->tx_seq;
681 		h5->tx_seq = (h5->tx_seq + 1) % 8;
682 	}
683 
684 	hdr[1] = pkt_type | ((len & 0x0f) << 4);
685 	hdr[2] = len >> 4;
686 	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
687 
688 	BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
689 	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
690 	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
691 	       H5_HDR_LEN(hdr));
692 
693 	for (i = 0; i < 4; i++)
694 		h5_slip_one_byte(nskb, hdr[i]);
695 
696 	for (i = 0; i < len; i++)
697 		h5_slip_one_byte(nskb, data[i]);
698 
699 	h5_slip_delim(nskb);
700 
701 	return nskb;
702 }
703 
h5_dequeue(struct hci_uart * hu)704 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
705 {
706 	struct h5 *h5 = hu->priv;
707 	unsigned long flags;
708 	struct sk_buff *skb, *nskb;
709 
710 	if (h5->sleep != H5_AWAKE) {
711 		const unsigned char wakeup_req[] = { 0x05, 0xfa };
712 
713 		if (h5->sleep == H5_WAKING_UP)
714 			return NULL;
715 
716 		h5->sleep = H5_WAKING_UP;
717 		BT_DBG("Sending wakeup request");
718 
719 		mod_timer(&h5->timer, jiffies + HZ / 100);
720 		return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
721 	}
722 
723 	skb = skb_dequeue(&h5->unrel);
724 	if (skb) {
725 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
726 				      skb->data, skb->len);
727 		if (nskb) {
728 			kfree_skb(skb);
729 			return nskb;
730 		}
731 
732 		skb_queue_head(&h5->unrel, skb);
733 		BT_ERR("Could not dequeue pkt because alloc_skb failed");
734 	}
735 
736 	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
737 
738 	if (h5->unack.qlen >= h5->tx_win)
739 		goto unlock;
740 
741 	skb = skb_dequeue(&h5->rel);
742 	if (skb) {
743 		nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
744 				      skb->data, skb->len);
745 		if (nskb) {
746 			__skb_queue_tail(&h5->unack, skb);
747 			mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
748 			spin_unlock_irqrestore(&h5->unack.lock, flags);
749 			return nskb;
750 		}
751 
752 		skb_queue_head(&h5->rel, skb);
753 		BT_ERR("Could not dequeue pkt because alloc_skb failed");
754 	}
755 
756 unlock:
757 	spin_unlock_irqrestore(&h5->unack.lock, flags);
758 
759 	if (test_bit(H5_TX_ACK_REQ, &h5->flags))
760 		return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
761 
762 	return NULL;
763 }
764 
h5_flush(struct hci_uart * hu)765 static int h5_flush(struct hci_uart *hu)
766 {
767 	BT_DBG("hu %p", hu);
768 	return 0;
769 }
770 
771 static const struct hci_uart_proto h5p = {
772 	.id		= HCI_UART_3WIRE,
773 	.name		= "Three-wire (H5)",
774 	.open		= h5_open,
775 	.close		= h5_close,
776 	.setup		= h5_setup,
777 	.recv		= h5_recv,
778 	.enqueue	= h5_enqueue,
779 	.dequeue	= h5_dequeue,
780 	.flush		= h5_flush,
781 };
782 
h5_serdev_probe(struct serdev_device * serdev)783 static int h5_serdev_probe(struct serdev_device *serdev)
784 {
785 	const struct acpi_device_id *match;
786 	struct device *dev = &serdev->dev;
787 	struct h5 *h5;
788 
789 	h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL);
790 	if (!h5)
791 		return -ENOMEM;
792 
793 	set_bit(HCI_UART_RESET_ON_INIT, &h5->serdev_hu.flags);
794 
795 	h5->hu = &h5->serdev_hu;
796 	h5->serdev_hu.serdev = serdev;
797 	serdev_device_set_drvdata(serdev, h5);
798 
799 	if (has_acpi_companion(dev)) {
800 		match = acpi_match_device(dev->driver->acpi_match_table, dev);
801 		if (!match)
802 			return -ENODEV;
803 
804 		h5->vnd = (const struct h5_vnd *)match->driver_data;
805 		h5->id  = (char *)match->id;
806 
807 		if (h5->vnd->acpi_gpio_map)
808 			devm_acpi_dev_add_driver_gpios(dev,
809 						       h5->vnd->acpi_gpio_map);
810 	}
811 
812 	h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
813 	if (IS_ERR(h5->enable_gpio))
814 		return PTR_ERR(h5->enable_gpio);
815 
816 	h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake",
817 						       GPIOD_OUT_LOW);
818 	if (IS_ERR(h5->device_wake_gpio))
819 		return PTR_ERR(h5->device_wake_gpio);
820 
821 	return hci_uart_register_device(&h5->serdev_hu, &h5p);
822 }
823 
h5_serdev_remove(struct serdev_device * serdev)824 static void h5_serdev_remove(struct serdev_device *serdev)
825 {
826 	struct h5 *h5 = serdev_device_get_drvdata(serdev);
827 
828 	hci_uart_unregister_device(&h5->serdev_hu);
829 }
830 
h5_serdev_suspend(struct device * dev)831 static int __maybe_unused h5_serdev_suspend(struct device *dev)
832 {
833 	struct h5 *h5 = dev_get_drvdata(dev);
834 	int ret = 0;
835 
836 	if (h5->vnd && h5->vnd->suspend)
837 		ret = h5->vnd->suspend(h5);
838 
839 	return ret;
840 }
841 
h5_serdev_resume(struct device * dev)842 static int __maybe_unused h5_serdev_resume(struct device *dev)
843 {
844 	struct h5 *h5 = dev_get_drvdata(dev);
845 	int ret = 0;
846 
847 	if (h5->vnd && h5->vnd->resume)
848 		ret = h5->vnd->resume(h5);
849 
850 	return ret;
851 }
852 
853 #ifdef CONFIG_BT_HCIUART_RTL
h5_btrtl_setup(struct h5 * h5)854 static int h5_btrtl_setup(struct h5 *h5)
855 {
856 	struct btrtl_device_info *btrtl_dev;
857 	struct sk_buff *skb;
858 	__le32 baudrate_data;
859 	u32 device_baudrate;
860 	unsigned int controller_baudrate;
861 	bool flow_control;
862 	int err;
863 
864 	btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id);
865 	if (IS_ERR(btrtl_dev))
866 		return PTR_ERR(btrtl_dev);
867 
868 	err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev,
869 				      &controller_baudrate, &device_baudrate,
870 				      &flow_control);
871 	if (err)
872 		goto out_free;
873 
874 	baudrate_data = cpu_to_le32(device_baudrate);
875 	skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data),
876 			     &baudrate_data, HCI_INIT_TIMEOUT);
877 	if (IS_ERR(skb)) {
878 		rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n");
879 		err = PTR_ERR(skb);
880 		goto out_free;
881 	} else {
882 		kfree_skb(skb);
883 	}
884 	/* Give the device some time to set up the new baudrate. */
885 	usleep_range(10000, 20000);
886 
887 	serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate);
888 	serdev_device_set_flow_control(h5->hu->serdev, flow_control);
889 
890 	err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev);
891 	/* Give the device some time before the hci-core sends it a reset */
892 	usleep_range(10000, 20000);
893 
894 out_free:
895 	btrtl_free(btrtl_dev);
896 
897 	return err;
898 }
899 
h5_btrtl_open(struct h5 * h5)900 static void h5_btrtl_open(struct h5 *h5)
901 {
902 	/* Devices always start with these fixed parameters */
903 	serdev_device_set_flow_control(h5->hu->serdev, false);
904 	serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN);
905 	serdev_device_set_baudrate(h5->hu->serdev, 115200);
906 
907 	/* The controller needs up to 500ms to wakeup */
908 	gpiod_set_value_cansleep(h5->enable_gpio, 1);
909 	gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
910 	msleep(500);
911 }
912 
h5_btrtl_close(struct h5 * h5)913 static void h5_btrtl_close(struct h5 *h5)
914 {
915 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
916 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
917 }
918 
919 /* Suspend/resume support. On many devices the RTL BT device loses power during
920  * suspend/resume, causing it to lose its firmware and all state. So we simply
921  * turn it off on suspend and reprobe on resume.  This mirrors how RTL devices
922  * are handled in the USB driver, where the USB_QUIRK_RESET_RESUME is used which
923  * also causes a reprobe on resume.
924  */
h5_btrtl_suspend(struct h5 * h5)925 static int h5_btrtl_suspend(struct h5 *h5)
926 {
927 	serdev_device_set_flow_control(h5->hu->serdev, false);
928 	gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
929 	gpiod_set_value_cansleep(h5->enable_gpio, 0);
930 	return 0;
931 }
932 
933 struct h5_btrtl_reprobe {
934 	struct device *dev;
935 	struct work_struct work;
936 };
937 
h5_btrtl_reprobe_worker(struct work_struct * work)938 static void h5_btrtl_reprobe_worker(struct work_struct *work)
939 {
940 	struct h5_btrtl_reprobe *reprobe =
941 		container_of(work, struct h5_btrtl_reprobe, work);
942 	int ret;
943 
944 	ret = device_reprobe(reprobe->dev);
945 	if (ret && ret != -EPROBE_DEFER)
946 		dev_err(reprobe->dev, "Reprobe error %d\n", ret);
947 
948 	put_device(reprobe->dev);
949 	kfree(reprobe);
950 	module_put(THIS_MODULE);
951 }
952 
h5_btrtl_resume(struct h5 * h5)953 static int h5_btrtl_resume(struct h5 *h5)
954 {
955 	struct h5_btrtl_reprobe *reprobe;
956 
957 	reprobe = kzalloc(sizeof(*reprobe), GFP_KERNEL);
958 	if (!reprobe)
959 		return -ENOMEM;
960 
961 	__module_get(THIS_MODULE);
962 
963 	INIT_WORK(&reprobe->work, h5_btrtl_reprobe_worker);
964 	reprobe->dev = get_device(&h5->hu->serdev->dev);
965 	queue_work(system_long_wq, &reprobe->work);
966 	return 0;
967 }
968 
969 static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false };
970 static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false };
971 static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false };
972 static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = {
973 	{ "device-wake-gpios", &btrtl_device_wake_gpios, 1 },
974 	{ "enable-gpios", &btrtl_enable_gpios, 1 },
975 	{ "host-wake-gpios", &btrtl_host_wake_gpios, 1 },
976 	{},
977 };
978 
979 static struct h5_vnd rtl_vnd = {
980 	.setup		= h5_btrtl_setup,
981 	.open		= h5_btrtl_open,
982 	.close		= h5_btrtl_close,
983 	.suspend	= h5_btrtl_suspend,
984 	.resume		= h5_btrtl_resume,
985 	.acpi_gpio_map	= acpi_btrtl_gpios,
986 };
987 #endif
988 
989 #ifdef CONFIG_ACPI
990 static const struct acpi_device_id h5_acpi_match[] = {
991 #ifdef CONFIG_BT_HCIUART_RTL
992 	{ "OBDA8723", (kernel_ulong_t)&rtl_vnd },
993 #endif
994 	{ },
995 };
996 MODULE_DEVICE_TABLE(acpi, h5_acpi_match);
997 #endif
998 
999 static const struct dev_pm_ops h5_serdev_pm_ops = {
1000 	SET_SYSTEM_SLEEP_PM_OPS(h5_serdev_suspend, h5_serdev_resume)
1001 };
1002 
1003 static struct serdev_device_driver h5_serdev_driver = {
1004 	.probe = h5_serdev_probe,
1005 	.remove = h5_serdev_remove,
1006 	.driver = {
1007 		.name = "hci_uart_h5",
1008 		.acpi_match_table = ACPI_PTR(h5_acpi_match),
1009 		.pm = &h5_serdev_pm_ops,
1010 	},
1011 };
1012 
h5_init(void)1013 int __init h5_init(void)
1014 {
1015 	serdev_device_driver_register(&h5_serdev_driver);
1016 	return hci_uart_register_proto(&h5p);
1017 }
1018 
h5_deinit(void)1019 int __exit h5_deinit(void)
1020 {
1021 	serdev_device_driver_unregister(&h5_serdev_driver);
1022 	return hci_uart_unregister_proto(&h5p);
1023 }
1024