• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 
37 #define IPMI_DRIVER_VERSION "39.2"
38 
39 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
40 static int ipmi_init_msghandler(void);
41 static void smi_recv_tasklet(unsigned long);
42 static void handle_new_recv_msgs(struct ipmi_smi *intf);
43 static void need_waiter(struct ipmi_smi *intf);
44 static int handle_one_recv_msg(struct ipmi_smi *intf,
45 			       struct ipmi_smi_msg *msg);
46 
47 #ifdef DEBUG
ipmi_debug_msg(const char * title,unsigned char * data,unsigned int len)48 static void ipmi_debug_msg(const char *title, unsigned char *data,
49 			   unsigned int len)
50 {
51 	int i, pos;
52 	char buf[100];
53 
54 	pos = snprintf(buf, sizeof(buf), "%s: ", title);
55 	for (i = 0; i < len; i++)
56 		pos += snprintf(buf + pos, sizeof(buf) - pos,
57 				" %2.2x", data[i]);
58 	pr_debug("%s\n", buf);
59 }
60 #else
ipmi_debug_msg(const char * title,unsigned char * data,unsigned int len)61 static void ipmi_debug_msg(const char *title, unsigned char *data,
62 			   unsigned int len)
63 { }
64 #endif
65 
66 static bool initialized;
67 static bool drvregistered;
68 
69 enum ipmi_panic_event_op {
70 	IPMI_SEND_PANIC_EVENT_NONE,
71 	IPMI_SEND_PANIC_EVENT,
72 	IPMI_SEND_PANIC_EVENT_STRING
73 };
74 #ifdef CONFIG_IPMI_PANIC_STRING
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
76 #elif defined(CONFIG_IPMI_PANIC_EVENT)
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
78 #else
79 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
80 #endif
81 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
82 
panic_op_write_handler(const char * val,const struct kernel_param * kp)83 static int panic_op_write_handler(const char *val,
84 				  const struct kernel_param *kp)
85 {
86 	char valcp[16];
87 	char *s;
88 
89 	strncpy(valcp, val, 15);
90 	valcp[15] = '\0';
91 
92 	s = strstrip(valcp);
93 
94 	if (strcmp(s, "none") == 0)
95 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
96 	else if (strcmp(s, "event") == 0)
97 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
98 	else if (strcmp(s, "string") == 0)
99 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
100 	else
101 		return -EINVAL;
102 
103 	return 0;
104 }
105 
panic_op_read_handler(char * buffer,const struct kernel_param * kp)106 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
107 {
108 	switch (ipmi_send_panic_event) {
109 	case IPMI_SEND_PANIC_EVENT_NONE:
110 		strcpy(buffer, "none");
111 		break;
112 
113 	case IPMI_SEND_PANIC_EVENT:
114 		strcpy(buffer, "event");
115 		break;
116 
117 	case IPMI_SEND_PANIC_EVENT_STRING:
118 		strcpy(buffer, "string");
119 		break;
120 
121 	default:
122 		strcpy(buffer, "???");
123 		break;
124 	}
125 
126 	return strlen(buffer);
127 }
128 
129 static const struct kernel_param_ops panic_op_ops = {
130 	.set = panic_op_write_handler,
131 	.get = panic_op_read_handler
132 };
133 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
134 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
135 
136 
137 #define MAX_EVENTS_IN_QUEUE	25
138 
139 /* Remain in auto-maintenance mode for this amount of time (in ms). */
140 static unsigned long maintenance_mode_timeout_ms = 30000;
141 module_param(maintenance_mode_timeout_ms, ulong, 0644);
142 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
143 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
144 
145 /*
146  * Don't let a message sit in a queue forever, always time it with at lest
147  * the max message timer.  This is in milliseconds.
148  */
149 #define MAX_MSG_TIMEOUT		60000
150 
151 /*
152  * Timeout times below are in milliseconds, and are done off a 1
153  * second timer.  So setting the value to 1000 would mean anything
154  * between 0 and 1000ms.  So really the only reasonable minimum
155  * setting it 2000ms, which is between 1 and 2 seconds.
156  */
157 
158 /* The default timeout for message retries. */
159 static unsigned long default_retry_ms = 2000;
160 module_param(default_retry_ms, ulong, 0644);
161 MODULE_PARM_DESC(default_retry_ms,
162 		 "The time (milliseconds) between retry sends");
163 
164 /* The default timeout for maintenance mode message retries. */
165 static unsigned long default_maintenance_retry_ms = 3000;
166 module_param(default_maintenance_retry_ms, ulong, 0644);
167 MODULE_PARM_DESC(default_maintenance_retry_ms,
168 		 "The time (milliseconds) between retry sends in maintenance mode");
169 
170 /* The default maximum number of retries */
171 static unsigned int default_max_retries = 4;
172 module_param(default_max_retries, uint, 0644);
173 MODULE_PARM_DESC(default_max_retries,
174 		 "The time (milliseconds) between retry sends in maintenance mode");
175 
176 /* Call every ~1000 ms. */
177 #define IPMI_TIMEOUT_TIME	1000
178 
179 /* How many jiffies does it take to get to the timeout time. */
180 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
181 
182 /*
183  * Request events from the queue every second (this is the number of
184  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
185  * future, IPMI will add a way to know immediately if an event is in
186  * the queue and this silliness can go away.
187  */
188 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
189 
190 /* How long should we cache dynamic device IDs? */
191 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
192 
193 /*
194  * The main "user" data structure.
195  */
196 struct ipmi_user {
197 	struct list_head link;
198 
199 	/*
200 	 * Set to NULL when the user is destroyed, a pointer to myself
201 	 * so srcu_dereference can be used on it.
202 	 */
203 	struct ipmi_user *self;
204 	struct srcu_struct release_barrier;
205 
206 	struct kref refcount;
207 
208 	/* The upper layer that handles receive messages. */
209 	const struct ipmi_user_hndl *handler;
210 	void             *handler_data;
211 
212 	/* The interface this user is bound to. */
213 	struct ipmi_smi *intf;
214 
215 	/* Does this interface receive IPMI events? */
216 	bool gets_events;
217 
218 	/* Free must run in process context for RCU cleanup. */
219 	struct work_struct remove_work;
220 };
221 
acquire_ipmi_user(struct ipmi_user * user,int * index)222 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
223 	__acquires(user->release_barrier)
224 {
225 	struct ipmi_user *ruser;
226 
227 	*index = srcu_read_lock(&user->release_barrier);
228 	ruser = srcu_dereference(user->self, &user->release_barrier);
229 	if (!ruser)
230 		srcu_read_unlock(&user->release_barrier, *index);
231 	return ruser;
232 }
233 
release_ipmi_user(struct ipmi_user * user,int index)234 static void release_ipmi_user(struct ipmi_user *user, int index)
235 {
236 	srcu_read_unlock(&user->release_barrier, index);
237 }
238 
239 struct cmd_rcvr {
240 	struct list_head link;
241 
242 	struct ipmi_user *user;
243 	unsigned char netfn;
244 	unsigned char cmd;
245 	unsigned int  chans;
246 
247 	/*
248 	 * This is used to form a linked lised during mass deletion.
249 	 * Since this is in an RCU list, we cannot use the link above
250 	 * or change any data until the RCU period completes.  So we
251 	 * use this next variable during mass deletion so we can have
252 	 * a list and don't have to wait and restart the search on
253 	 * every individual deletion of a command.
254 	 */
255 	struct cmd_rcvr *next;
256 };
257 
258 struct seq_table {
259 	unsigned int         inuse : 1;
260 	unsigned int         broadcast : 1;
261 
262 	unsigned long        timeout;
263 	unsigned long        orig_timeout;
264 	unsigned int         retries_left;
265 
266 	/*
267 	 * To verify on an incoming send message response that this is
268 	 * the message that the response is for, we keep a sequence id
269 	 * and increment it every time we send a message.
270 	 */
271 	long                 seqid;
272 
273 	/*
274 	 * This is held so we can properly respond to the message on a
275 	 * timeout, and it is used to hold the temporary data for
276 	 * retransmission, too.
277 	 */
278 	struct ipmi_recv_msg *recv_msg;
279 };
280 
281 /*
282  * Store the information in a msgid (long) to allow us to find a
283  * sequence table entry from the msgid.
284  */
285 #define STORE_SEQ_IN_MSGID(seq, seqid) \
286 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
287 
288 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
289 	do {								\
290 		seq = (((msgid) >> 26) & 0x3f);				\
291 		seqid = ((msgid) & 0x3ffffff);				\
292 	} while (0)
293 
294 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
295 
296 #define IPMI_MAX_CHANNELS       16
297 struct ipmi_channel {
298 	unsigned char medium;
299 	unsigned char protocol;
300 };
301 
302 struct ipmi_channel_set {
303 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
304 };
305 
306 struct ipmi_my_addrinfo {
307 	/*
308 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
309 	 * but may be changed by the user.
310 	 */
311 	unsigned char address;
312 
313 	/*
314 	 * My LUN.  This should generally stay the SMS LUN, but just in
315 	 * case...
316 	 */
317 	unsigned char lun;
318 };
319 
320 /*
321  * Note that the product id, manufacturer id, guid, and device id are
322  * immutable in this structure, so dyn_mutex is not required for
323  * accessing those.  If those change on a BMC, a new BMC is allocated.
324  */
325 struct bmc_device {
326 	struct platform_device pdev;
327 	struct list_head       intfs; /* Interfaces on this BMC. */
328 	struct ipmi_device_id  id;
329 	struct ipmi_device_id  fetch_id;
330 	int                    dyn_id_set;
331 	unsigned long          dyn_id_expiry;
332 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
333 	guid_t                 guid;
334 	guid_t                 fetch_guid;
335 	int                    dyn_guid_set;
336 	struct kref	       usecount;
337 	struct work_struct     remove_work;
338 };
339 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
340 
341 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
342 			     struct ipmi_device_id *id,
343 			     bool *guid_set, guid_t *guid);
344 
345 /*
346  * Various statistics for IPMI, these index stats[] in the ipmi_smi
347  * structure.
348  */
349 enum ipmi_stat_indexes {
350 	/* Commands we got from the user that were invalid. */
351 	IPMI_STAT_sent_invalid_commands = 0,
352 
353 	/* Commands we sent to the MC. */
354 	IPMI_STAT_sent_local_commands,
355 
356 	/* Responses from the MC that were delivered to a user. */
357 	IPMI_STAT_handled_local_responses,
358 
359 	/* Responses from the MC that were not delivered to a user. */
360 	IPMI_STAT_unhandled_local_responses,
361 
362 	/* Commands we sent out to the IPMB bus. */
363 	IPMI_STAT_sent_ipmb_commands,
364 
365 	/* Commands sent on the IPMB that had errors on the SEND CMD */
366 	IPMI_STAT_sent_ipmb_command_errs,
367 
368 	/* Each retransmit increments this count. */
369 	IPMI_STAT_retransmitted_ipmb_commands,
370 
371 	/*
372 	 * When a message times out (runs out of retransmits) this is
373 	 * incremented.
374 	 */
375 	IPMI_STAT_timed_out_ipmb_commands,
376 
377 	/*
378 	 * This is like above, but for broadcasts.  Broadcasts are
379 	 * *not* included in the above count (they are expected to
380 	 * time out).
381 	 */
382 	IPMI_STAT_timed_out_ipmb_broadcasts,
383 
384 	/* Responses I have sent to the IPMB bus. */
385 	IPMI_STAT_sent_ipmb_responses,
386 
387 	/* The response was delivered to the user. */
388 	IPMI_STAT_handled_ipmb_responses,
389 
390 	/* The response had invalid data in it. */
391 	IPMI_STAT_invalid_ipmb_responses,
392 
393 	/* The response didn't have anyone waiting for it. */
394 	IPMI_STAT_unhandled_ipmb_responses,
395 
396 	/* Commands we sent out to the IPMB bus. */
397 	IPMI_STAT_sent_lan_commands,
398 
399 	/* Commands sent on the IPMB that had errors on the SEND CMD */
400 	IPMI_STAT_sent_lan_command_errs,
401 
402 	/* Each retransmit increments this count. */
403 	IPMI_STAT_retransmitted_lan_commands,
404 
405 	/*
406 	 * When a message times out (runs out of retransmits) this is
407 	 * incremented.
408 	 */
409 	IPMI_STAT_timed_out_lan_commands,
410 
411 	/* Responses I have sent to the IPMB bus. */
412 	IPMI_STAT_sent_lan_responses,
413 
414 	/* The response was delivered to the user. */
415 	IPMI_STAT_handled_lan_responses,
416 
417 	/* The response had invalid data in it. */
418 	IPMI_STAT_invalid_lan_responses,
419 
420 	/* The response didn't have anyone waiting for it. */
421 	IPMI_STAT_unhandled_lan_responses,
422 
423 	/* The command was delivered to the user. */
424 	IPMI_STAT_handled_commands,
425 
426 	/* The command had invalid data in it. */
427 	IPMI_STAT_invalid_commands,
428 
429 	/* The command didn't have anyone waiting for it. */
430 	IPMI_STAT_unhandled_commands,
431 
432 	/* Invalid data in an event. */
433 	IPMI_STAT_invalid_events,
434 
435 	/* Events that were received with the proper format. */
436 	IPMI_STAT_events,
437 
438 	/* Retransmissions on IPMB that failed. */
439 	IPMI_STAT_dropped_rexmit_ipmb_commands,
440 
441 	/* Retransmissions on LAN that failed. */
442 	IPMI_STAT_dropped_rexmit_lan_commands,
443 
444 	/* This *must* remain last, add new values above this. */
445 	IPMI_NUM_STATS
446 };
447 
448 
449 #define IPMI_IPMB_NUM_SEQ	64
450 struct ipmi_smi {
451 	struct module *owner;
452 
453 	/* What interface number are we? */
454 	int intf_num;
455 
456 	struct kref refcount;
457 
458 	/* Set when the interface is being unregistered. */
459 	bool in_shutdown;
460 
461 	/* Used for a list of interfaces. */
462 	struct list_head link;
463 
464 	/*
465 	 * The list of upper layers that are using me.  seq_lock write
466 	 * protects this.  Read protection is with srcu.
467 	 */
468 	struct list_head users;
469 	struct srcu_struct users_srcu;
470 
471 	/* Used for wake ups at startup. */
472 	wait_queue_head_t waitq;
473 
474 	/*
475 	 * Prevents the interface from being unregistered when the
476 	 * interface is used by being looked up through the BMC
477 	 * structure.
478 	 */
479 	struct mutex bmc_reg_mutex;
480 
481 	struct bmc_device tmp_bmc;
482 	struct bmc_device *bmc;
483 	bool bmc_registered;
484 	struct list_head bmc_link;
485 	char *my_dev_name;
486 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
487 	struct work_struct bmc_reg_work;
488 
489 	const struct ipmi_smi_handlers *handlers;
490 	void                     *send_info;
491 
492 	/* Driver-model device for the system interface. */
493 	struct device          *si_dev;
494 
495 	/*
496 	 * A table of sequence numbers for this interface.  We use the
497 	 * sequence numbers for IPMB messages that go out of the
498 	 * interface to match them up with their responses.  A routine
499 	 * is called periodically to time the items in this list.
500 	 */
501 	spinlock_t       seq_lock;
502 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
503 	int curr_seq;
504 
505 	/*
506 	 * Messages queued for delivery.  If delivery fails (out of memory
507 	 * for instance), They will stay in here to be processed later in a
508 	 * periodic timer interrupt.  The tasklet is for handling received
509 	 * messages directly from the handler.
510 	 */
511 	spinlock_t       waiting_rcv_msgs_lock;
512 	struct list_head waiting_rcv_msgs;
513 	atomic_t	 watchdog_pretimeouts_to_deliver;
514 	struct tasklet_struct recv_tasklet;
515 
516 	spinlock_t             xmit_msgs_lock;
517 	struct list_head       xmit_msgs;
518 	struct ipmi_smi_msg    *curr_msg;
519 	struct list_head       hp_xmit_msgs;
520 
521 	/*
522 	 * The list of command receivers that are registered for commands
523 	 * on this interface.
524 	 */
525 	struct mutex     cmd_rcvrs_mutex;
526 	struct list_head cmd_rcvrs;
527 
528 	/*
529 	 * Events that were queues because no one was there to receive
530 	 * them.
531 	 */
532 	spinlock_t       events_lock; /* For dealing with event stuff. */
533 	struct list_head waiting_events;
534 	unsigned int     waiting_events_count; /* How many events in queue? */
535 	char             delivering_events;
536 	char             event_msg_printed;
537 
538 	/* How many users are waiting for events? */
539 	atomic_t         event_waiters;
540 	unsigned int     ticks_to_req_ev;
541 
542 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
543 
544 	/* How many users are waiting for commands? */
545 	unsigned int     command_waiters;
546 
547 	/* How many users are waiting for watchdogs? */
548 	unsigned int     watchdog_waiters;
549 
550 	/* How many users are waiting for message responses? */
551 	unsigned int     response_waiters;
552 
553 	/*
554 	 * Tells what the lower layer has last been asked to watch for,
555 	 * messages and/or watchdogs.  Protected by watch_lock.
556 	 */
557 	unsigned int     last_watch_mask;
558 
559 	/*
560 	 * The event receiver for my BMC, only really used at panic
561 	 * shutdown as a place to store this.
562 	 */
563 	unsigned char event_receiver;
564 	unsigned char event_receiver_lun;
565 	unsigned char local_sel_device;
566 	unsigned char local_event_generator;
567 
568 	/* For handling of maintenance mode. */
569 	int maintenance_mode;
570 	bool maintenance_mode_enable;
571 	int auto_maintenance_timeout;
572 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
573 
574 	/*
575 	 * If we are doing maintenance on something on IPMB, extend
576 	 * the timeout time to avoid timeouts writing firmware and
577 	 * such.
578 	 */
579 	int ipmb_maintenance_mode_timeout;
580 
581 	/*
582 	 * A cheap hack, if this is non-null and a message to an
583 	 * interface comes in with a NULL user, call this routine with
584 	 * it.  Note that the message will still be freed by the
585 	 * caller.  This only works on the system interface.
586 	 *
587 	 * Protected by bmc_reg_mutex.
588 	 */
589 	void (*null_user_handler)(struct ipmi_smi *intf,
590 				  struct ipmi_recv_msg *msg);
591 
592 	/*
593 	 * When we are scanning the channels for an SMI, this will
594 	 * tell which channel we are scanning.
595 	 */
596 	int curr_channel;
597 
598 	/* Channel information */
599 	struct ipmi_channel_set *channel_list;
600 	unsigned int curr_working_cset; /* First index into the following. */
601 	struct ipmi_channel_set wchannels[2];
602 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
603 	bool channels_ready;
604 
605 	atomic_t stats[IPMI_NUM_STATS];
606 
607 	/*
608 	 * run_to_completion duplicate of smb_info, smi_info
609 	 * and ipmi_serial_info structures. Used to decrease numbers of
610 	 * parameters passed by "low" level IPMI code.
611 	 */
612 	int run_to_completion;
613 };
614 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
615 
616 static void __get_guid(struct ipmi_smi *intf);
617 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
618 static int __ipmi_bmc_register(struct ipmi_smi *intf,
619 			       struct ipmi_device_id *id,
620 			       bool guid_set, guid_t *guid, int intf_num);
621 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
622 
623 
624 /**
625  * The driver model view of the IPMI messaging driver.
626  */
627 static struct platform_driver ipmidriver = {
628 	.driver = {
629 		.name = "ipmi",
630 		.bus = &platform_bus_type
631 	}
632 };
633 /*
634  * This mutex keeps us from adding the same BMC twice.
635  */
636 static DEFINE_MUTEX(ipmidriver_mutex);
637 
638 static LIST_HEAD(ipmi_interfaces);
639 static DEFINE_MUTEX(ipmi_interfaces_mutex);
640 static struct srcu_struct ipmi_interfaces_srcu;
641 
642 /*
643  * List of watchers that want to know when smi's are added and deleted.
644  */
645 static LIST_HEAD(smi_watchers);
646 static DEFINE_MUTEX(smi_watchers_mutex);
647 
648 #define ipmi_inc_stat(intf, stat) \
649 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
650 #define ipmi_get_stat(intf, stat) \
651 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
652 
653 static const char * const addr_src_to_str[] = {
654 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
655 	"device-tree", "platform"
656 };
657 
ipmi_addr_src_to_str(enum ipmi_addr_src src)658 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
659 {
660 	if (src >= SI_LAST)
661 		src = 0; /* Invalid */
662 	return addr_src_to_str[src];
663 }
664 EXPORT_SYMBOL(ipmi_addr_src_to_str);
665 
is_lan_addr(struct ipmi_addr * addr)666 static int is_lan_addr(struct ipmi_addr *addr)
667 {
668 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
669 }
670 
is_ipmb_addr(struct ipmi_addr * addr)671 static int is_ipmb_addr(struct ipmi_addr *addr)
672 {
673 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
674 }
675 
is_ipmb_bcast_addr(struct ipmi_addr * addr)676 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
677 {
678 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
679 }
680 
free_recv_msg_list(struct list_head * q)681 static void free_recv_msg_list(struct list_head *q)
682 {
683 	struct ipmi_recv_msg *msg, *msg2;
684 
685 	list_for_each_entry_safe(msg, msg2, q, link) {
686 		list_del(&msg->link);
687 		ipmi_free_recv_msg(msg);
688 	}
689 }
690 
free_smi_msg_list(struct list_head * q)691 static void free_smi_msg_list(struct list_head *q)
692 {
693 	struct ipmi_smi_msg *msg, *msg2;
694 
695 	list_for_each_entry_safe(msg, msg2, q, link) {
696 		list_del(&msg->link);
697 		ipmi_free_smi_msg(msg);
698 	}
699 }
700 
clean_up_interface_data(struct ipmi_smi * intf)701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703 	int              i;
704 	struct cmd_rcvr  *rcvr, *rcvr2;
705 	struct list_head list;
706 
707 	tasklet_kill(&intf->recv_tasklet);
708 
709 	free_smi_msg_list(&intf->waiting_rcv_msgs);
710 	free_recv_msg_list(&intf->waiting_events);
711 
712 	/*
713 	 * Wholesale remove all the entries from the list in the
714 	 * interface and wait for RCU to know that none are in use.
715 	 */
716 	mutex_lock(&intf->cmd_rcvrs_mutex);
717 	INIT_LIST_HEAD(&list);
718 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719 	mutex_unlock(&intf->cmd_rcvrs_mutex);
720 
721 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722 		kfree(rcvr);
723 
724 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 		if ((intf->seq_table[i].inuse)
726 					&& (intf->seq_table[i].recv_msg))
727 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 	}
729 }
730 
intf_free(struct kref * ref)731 static void intf_free(struct kref *ref)
732 {
733 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734 
735 	clean_up_interface_data(intf);
736 	kfree(intf);
737 }
738 
739 struct watcher_entry {
740 	int              intf_num;
741 	struct ipmi_smi  *intf;
742 	struct list_head link;
743 };
744 
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)745 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
746 {
747 	struct ipmi_smi *intf;
748 	int index, rv;
749 
750 	/*
751 	 * Make sure the driver is actually initialized, this handles
752 	 * problems with initialization order.
753 	 */
754 	rv = ipmi_init_msghandler();
755 	if (rv)
756 		return rv;
757 
758 	mutex_lock(&smi_watchers_mutex);
759 
760 	list_add(&watcher->link, &smi_watchers);
761 
762 	index = srcu_read_lock(&ipmi_interfaces_srcu);
763 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
764 		int intf_num = READ_ONCE(intf->intf_num);
765 
766 		if (intf_num == -1)
767 			continue;
768 		watcher->new_smi(intf_num, intf->si_dev);
769 	}
770 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
771 
772 	mutex_unlock(&smi_watchers_mutex);
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL(ipmi_smi_watcher_register);
777 
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)778 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
779 {
780 	mutex_lock(&smi_watchers_mutex);
781 	list_del(&watcher->link);
782 	mutex_unlock(&smi_watchers_mutex);
783 	return 0;
784 }
785 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
786 
787 /*
788  * Must be called with smi_watchers_mutex held.
789  */
790 static void
call_smi_watchers(int i,struct device * dev)791 call_smi_watchers(int i, struct device *dev)
792 {
793 	struct ipmi_smi_watcher *w;
794 
795 	mutex_lock(&smi_watchers_mutex);
796 	list_for_each_entry(w, &smi_watchers, link) {
797 		if (try_module_get(w->owner)) {
798 			w->new_smi(i, dev);
799 			module_put(w->owner);
800 		}
801 	}
802 	mutex_unlock(&smi_watchers_mutex);
803 }
804 
805 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)806 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
807 {
808 	if (addr1->addr_type != addr2->addr_type)
809 		return 0;
810 
811 	if (addr1->channel != addr2->channel)
812 		return 0;
813 
814 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
815 		struct ipmi_system_interface_addr *smi_addr1
816 		    = (struct ipmi_system_interface_addr *) addr1;
817 		struct ipmi_system_interface_addr *smi_addr2
818 		    = (struct ipmi_system_interface_addr *) addr2;
819 		return (smi_addr1->lun == smi_addr2->lun);
820 	}
821 
822 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
823 		struct ipmi_ipmb_addr *ipmb_addr1
824 		    = (struct ipmi_ipmb_addr *) addr1;
825 		struct ipmi_ipmb_addr *ipmb_addr2
826 		    = (struct ipmi_ipmb_addr *) addr2;
827 
828 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
829 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
830 	}
831 
832 	if (is_lan_addr(addr1)) {
833 		struct ipmi_lan_addr *lan_addr1
834 			= (struct ipmi_lan_addr *) addr1;
835 		struct ipmi_lan_addr *lan_addr2
836 		    = (struct ipmi_lan_addr *) addr2;
837 
838 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
839 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
840 			&& (lan_addr1->session_handle
841 			    == lan_addr2->session_handle)
842 			&& (lan_addr1->lun == lan_addr2->lun));
843 	}
844 
845 	return 1;
846 }
847 
ipmi_validate_addr(struct ipmi_addr * addr,int len)848 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
849 {
850 	if (len < sizeof(struct ipmi_system_interface_addr))
851 		return -EINVAL;
852 
853 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
854 		if (addr->channel != IPMI_BMC_CHANNEL)
855 			return -EINVAL;
856 		return 0;
857 	}
858 
859 	if ((addr->channel == IPMI_BMC_CHANNEL)
860 	    || (addr->channel >= IPMI_MAX_CHANNELS)
861 	    || (addr->channel < 0))
862 		return -EINVAL;
863 
864 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
865 		if (len < sizeof(struct ipmi_ipmb_addr))
866 			return -EINVAL;
867 		return 0;
868 	}
869 
870 	if (is_lan_addr(addr)) {
871 		if (len < sizeof(struct ipmi_lan_addr))
872 			return -EINVAL;
873 		return 0;
874 	}
875 
876 	return -EINVAL;
877 }
878 EXPORT_SYMBOL(ipmi_validate_addr);
879 
ipmi_addr_length(int addr_type)880 unsigned int ipmi_addr_length(int addr_type)
881 {
882 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
883 		return sizeof(struct ipmi_system_interface_addr);
884 
885 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
886 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
887 		return sizeof(struct ipmi_ipmb_addr);
888 
889 	if (addr_type == IPMI_LAN_ADDR_TYPE)
890 		return sizeof(struct ipmi_lan_addr);
891 
892 	return 0;
893 }
894 EXPORT_SYMBOL(ipmi_addr_length);
895 
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)896 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
897 {
898 	int rv = 0;
899 
900 	if (!msg->user) {
901 		/* Special handling for NULL users. */
902 		if (intf->null_user_handler) {
903 			intf->null_user_handler(intf, msg);
904 		} else {
905 			/* No handler, so give up. */
906 			rv = -EINVAL;
907 		}
908 		ipmi_free_recv_msg(msg);
909 	} else if (oops_in_progress) {
910 		/*
911 		 * If we are running in the panic context, calling the
912 		 * receive handler doesn't much meaning and has a deadlock
913 		 * risk.  At this moment, simply skip it in that case.
914 		 */
915 		ipmi_free_recv_msg(msg);
916 	} else {
917 		int index;
918 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
919 
920 		if (user) {
921 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
922 			release_ipmi_user(user, index);
923 		} else {
924 			/* User went away, give up. */
925 			ipmi_free_recv_msg(msg);
926 			rv = -EINVAL;
927 		}
928 	}
929 
930 	return rv;
931 }
932 
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)933 static void deliver_local_response(struct ipmi_smi *intf,
934 				   struct ipmi_recv_msg *msg)
935 {
936 	if (deliver_response(intf, msg))
937 		ipmi_inc_stat(intf, unhandled_local_responses);
938 	else
939 		ipmi_inc_stat(intf, handled_local_responses);
940 }
941 
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)942 static void deliver_err_response(struct ipmi_smi *intf,
943 				 struct ipmi_recv_msg *msg, int err)
944 {
945 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
946 	msg->msg_data[0] = err;
947 	msg->msg.netfn |= 1; /* Convert to a response. */
948 	msg->msg.data_len = 1;
949 	msg->msg.data = msg->msg_data;
950 	deliver_local_response(intf, msg);
951 }
952 
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)953 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
954 {
955 	unsigned long iflags;
956 
957 	if (!intf->handlers->set_need_watch)
958 		return;
959 
960 	spin_lock_irqsave(&intf->watch_lock, iflags);
961 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
962 		intf->response_waiters++;
963 
964 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
965 		intf->watchdog_waiters++;
966 
967 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
968 		intf->command_waiters++;
969 
970 	if ((intf->last_watch_mask & flags) != flags) {
971 		intf->last_watch_mask |= flags;
972 		intf->handlers->set_need_watch(intf->send_info,
973 					       intf->last_watch_mask);
974 	}
975 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
976 }
977 
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)978 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
979 {
980 	unsigned long iflags;
981 
982 	if (!intf->handlers->set_need_watch)
983 		return;
984 
985 	spin_lock_irqsave(&intf->watch_lock, iflags);
986 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
987 		intf->response_waiters--;
988 
989 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
990 		intf->watchdog_waiters--;
991 
992 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
993 		intf->command_waiters--;
994 
995 	flags = 0;
996 	if (intf->response_waiters)
997 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
998 	if (intf->watchdog_waiters)
999 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1000 	if (intf->command_waiters)
1001 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1002 
1003 	if (intf->last_watch_mask != flags) {
1004 		intf->last_watch_mask = flags;
1005 		intf->handlers->set_need_watch(intf->send_info,
1006 					       intf->last_watch_mask);
1007 	}
1008 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1009 }
1010 
1011 /*
1012  * Find the next sequence number not being used and add the given
1013  * message with the given timeout to the sequence table.  This must be
1014  * called with the interface's seq_lock held.
1015  */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1016 static int intf_next_seq(struct ipmi_smi      *intf,
1017 			 struct ipmi_recv_msg *recv_msg,
1018 			 unsigned long        timeout,
1019 			 int                  retries,
1020 			 int                  broadcast,
1021 			 unsigned char        *seq,
1022 			 long                 *seqid)
1023 {
1024 	int          rv = 0;
1025 	unsigned int i;
1026 
1027 	if (timeout == 0)
1028 		timeout = default_retry_ms;
1029 	if (retries < 0)
1030 		retries = default_max_retries;
1031 
1032 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1033 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1034 		if (!intf->seq_table[i].inuse)
1035 			break;
1036 	}
1037 
1038 	if (!intf->seq_table[i].inuse) {
1039 		intf->seq_table[i].recv_msg = recv_msg;
1040 
1041 		/*
1042 		 * Start with the maximum timeout, when the send response
1043 		 * comes in we will start the real timer.
1044 		 */
1045 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1046 		intf->seq_table[i].orig_timeout = timeout;
1047 		intf->seq_table[i].retries_left = retries;
1048 		intf->seq_table[i].broadcast = broadcast;
1049 		intf->seq_table[i].inuse = 1;
1050 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1051 		*seq = i;
1052 		*seqid = intf->seq_table[i].seqid;
1053 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1054 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1055 		need_waiter(intf);
1056 	} else {
1057 		rv = -EAGAIN;
1058 	}
1059 
1060 	return rv;
1061 }
1062 
1063 /*
1064  * Return the receive message for the given sequence number and
1065  * release the sequence number so it can be reused.  Some other data
1066  * is passed in to be sure the message matches up correctly (to help
1067  * guard against message coming in after their timeout and the
1068  * sequence number being reused).
1069  */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1070 static int intf_find_seq(struct ipmi_smi      *intf,
1071 			 unsigned char        seq,
1072 			 short                channel,
1073 			 unsigned char        cmd,
1074 			 unsigned char        netfn,
1075 			 struct ipmi_addr     *addr,
1076 			 struct ipmi_recv_msg **recv_msg)
1077 {
1078 	int           rv = -ENODEV;
1079 	unsigned long flags;
1080 
1081 	if (seq >= IPMI_IPMB_NUM_SEQ)
1082 		return -EINVAL;
1083 
1084 	spin_lock_irqsave(&intf->seq_lock, flags);
1085 	if (intf->seq_table[seq].inuse) {
1086 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1087 
1088 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1089 				&& (msg->msg.netfn == netfn)
1090 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1091 			*recv_msg = msg;
1092 			intf->seq_table[seq].inuse = 0;
1093 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1094 			rv = 0;
1095 		}
1096 	}
1097 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1098 
1099 	return rv;
1100 }
1101 
1102 
1103 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1104 static int intf_start_seq_timer(struct ipmi_smi *intf,
1105 				long       msgid)
1106 {
1107 	int           rv = -ENODEV;
1108 	unsigned long flags;
1109 	unsigned char seq;
1110 	unsigned long seqid;
1111 
1112 
1113 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1114 
1115 	spin_lock_irqsave(&intf->seq_lock, flags);
1116 	/*
1117 	 * We do this verification because the user can be deleted
1118 	 * while a message is outstanding.
1119 	 */
1120 	if ((intf->seq_table[seq].inuse)
1121 				&& (intf->seq_table[seq].seqid == seqid)) {
1122 		struct seq_table *ent = &intf->seq_table[seq];
1123 		ent->timeout = ent->orig_timeout;
1124 		rv = 0;
1125 	}
1126 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1127 
1128 	return rv;
1129 }
1130 
1131 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1132 static int intf_err_seq(struct ipmi_smi *intf,
1133 			long         msgid,
1134 			unsigned int err)
1135 {
1136 	int                  rv = -ENODEV;
1137 	unsigned long        flags;
1138 	unsigned char        seq;
1139 	unsigned long        seqid;
1140 	struct ipmi_recv_msg *msg = NULL;
1141 
1142 
1143 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1144 
1145 	spin_lock_irqsave(&intf->seq_lock, flags);
1146 	/*
1147 	 * We do this verification because the user can be deleted
1148 	 * while a message is outstanding.
1149 	 */
1150 	if ((intf->seq_table[seq].inuse)
1151 				&& (intf->seq_table[seq].seqid == seqid)) {
1152 		struct seq_table *ent = &intf->seq_table[seq];
1153 
1154 		ent->inuse = 0;
1155 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1156 		msg = ent->recv_msg;
1157 		rv = 0;
1158 	}
1159 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1160 
1161 	if (msg)
1162 		deliver_err_response(intf, msg, err);
1163 
1164 	return rv;
1165 }
1166 
free_user_work(struct work_struct * work)1167 static void free_user_work(struct work_struct *work)
1168 {
1169 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1170 					      remove_work);
1171 
1172 	cleanup_srcu_struct(&user->release_barrier);
1173 	kfree(user);
1174 }
1175 
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1176 int ipmi_create_user(unsigned int          if_num,
1177 		     const struct ipmi_user_hndl *handler,
1178 		     void                  *handler_data,
1179 		     struct ipmi_user      **user)
1180 {
1181 	unsigned long flags;
1182 	struct ipmi_user *new_user;
1183 	int           rv, index;
1184 	struct ipmi_smi *intf;
1185 
1186 	/*
1187 	 * There is no module usecount here, because it's not
1188 	 * required.  Since this can only be used by and called from
1189 	 * other modules, they will implicitly use this module, and
1190 	 * thus this can't be removed unless the other modules are
1191 	 * removed.
1192 	 */
1193 
1194 	if (handler == NULL)
1195 		return -EINVAL;
1196 
1197 	/*
1198 	 * Make sure the driver is actually initialized, this handles
1199 	 * problems with initialization order.
1200 	 */
1201 	rv = ipmi_init_msghandler();
1202 	if (rv)
1203 		return rv;
1204 
1205 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1206 	if (!new_user)
1207 		return -ENOMEM;
1208 
1209 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1210 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1211 		if (intf->intf_num == if_num)
1212 			goto found;
1213 	}
1214 	/* Not found, return an error */
1215 	rv = -EINVAL;
1216 	goto out_kfree;
1217 
1218  found:
1219 	INIT_WORK(&new_user->remove_work, free_user_work);
1220 
1221 	rv = init_srcu_struct(&new_user->release_barrier);
1222 	if (rv)
1223 		goto out_kfree;
1224 
1225 	if (!try_module_get(intf->owner)) {
1226 		rv = -ENODEV;
1227 		goto out_kfree;
1228 	}
1229 
1230 	/* Note that each existing user holds a refcount to the interface. */
1231 	kref_get(&intf->refcount);
1232 
1233 	kref_init(&new_user->refcount);
1234 	new_user->handler = handler;
1235 	new_user->handler_data = handler_data;
1236 	new_user->intf = intf;
1237 	new_user->gets_events = false;
1238 
1239 	rcu_assign_pointer(new_user->self, new_user);
1240 	spin_lock_irqsave(&intf->seq_lock, flags);
1241 	list_add_rcu(&new_user->link, &intf->users);
1242 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1243 	if (handler->ipmi_watchdog_pretimeout)
1244 		/* User wants pretimeouts, so make sure to watch for them. */
1245 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1246 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1247 	*user = new_user;
1248 	return 0;
1249 
1250 out_kfree:
1251 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1252 	kfree(new_user);
1253 	return rv;
1254 }
1255 EXPORT_SYMBOL(ipmi_create_user);
1256 
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1257 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1258 {
1259 	int rv, index;
1260 	struct ipmi_smi *intf;
1261 
1262 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1263 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1264 		if (intf->intf_num == if_num)
1265 			goto found;
1266 	}
1267 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1268 
1269 	/* Not found, return an error */
1270 	return -EINVAL;
1271 
1272 found:
1273 	if (!intf->handlers->get_smi_info)
1274 		rv = -ENOTTY;
1275 	else
1276 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1277 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1278 
1279 	return rv;
1280 }
1281 EXPORT_SYMBOL(ipmi_get_smi_info);
1282 
free_user(struct kref * ref)1283 static void free_user(struct kref *ref)
1284 {
1285 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1286 
1287 	/* SRCU cleanup must happen in task context. */
1288 	schedule_work(&user->remove_work);
1289 }
1290 
_ipmi_destroy_user(struct ipmi_user * user)1291 static void _ipmi_destroy_user(struct ipmi_user *user)
1292 {
1293 	struct ipmi_smi  *intf = user->intf;
1294 	int              i;
1295 	unsigned long    flags;
1296 	struct cmd_rcvr  *rcvr;
1297 	struct cmd_rcvr  *rcvrs = NULL;
1298 
1299 	if (!acquire_ipmi_user(user, &i)) {
1300 		/*
1301 		 * The user has already been cleaned up, just make sure
1302 		 * nothing is using it and return.
1303 		 */
1304 		synchronize_srcu(&user->release_barrier);
1305 		return;
1306 	}
1307 
1308 	rcu_assign_pointer(user->self, NULL);
1309 	release_ipmi_user(user, i);
1310 
1311 	synchronize_srcu(&user->release_barrier);
1312 
1313 	if (user->handler->shutdown)
1314 		user->handler->shutdown(user->handler_data);
1315 
1316 	if (user->handler->ipmi_watchdog_pretimeout)
1317 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1318 
1319 	if (user->gets_events)
1320 		atomic_dec(&intf->event_waiters);
1321 
1322 	/* Remove the user from the interface's sequence table. */
1323 	spin_lock_irqsave(&intf->seq_lock, flags);
1324 	list_del_rcu(&user->link);
1325 
1326 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1327 		if (intf->seq_table[i].inuse
1328 		    && (intf->seq_table[i].recv_msg->user == user)) {
1329 			intf->seq_table[i].inuse = 0;
1330 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1331 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1332 		}
1333 	}
1334 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1335 
1336 	/*
1337 	 * Remove the user from the command receiver's table.  First
1338 	 * we build a list of everything (not using the standard link,
1339 	 * since other things may be using it till we do
1340 	 * synchronize_srcu()) then free everything in that list.
1341 	 */
1342 	mutex_lock(&intf->cmd_rcvrs_mutex);
1343 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1344 		if (rcvr->user == user) {
1345 			list_del_rcu(&rcvr->link);
1346 			rcvr->next = rcvrs;
1347 			rcvrs = rcvr;
1348 		}
1349 	}
1350 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1351 	synchronize_rcu();
1352 	while (rcvrs) {
1353 		rcvr = rcvrs;
1354 		rcvrs = rcvr->next;
1355 		kfree(rcvr);
1356 	}
1357 
1358 	kref_put(&intf->refcount, intf_free);
1359 	module_put(intf->owner);
1360 }
1361 
ipmi_destroy_user(struct ipmi_user * user)1362 int ipmi_destroy_user(struct ipmi_user *user)
1363 {
1364 	_ipmi_destroy_user(user);
1365 
1366 	kref_put(&user->refcount, free_user);
1367 
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL(ipmi_destroy_user);
1371 
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1372 int ipmi_get_version(struct ipmi_user *user,
1373 		     unsigned char *major,
1374 		     unsigned char *minor)
1375 {
1376 	struct ipmi_device_id id;
1377 	int rv, index;
1378 
1379 	user = acquire_ipmi_user(user, &index);
1380 	if (!user)
1381 		return -ENODEV;
1382 
1383 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1384 	if (!rv) {
1385 		*major = ipmi_version_major(&id);
1386 		*minor = ipmi_version_minor(&id);
1387 	}
1388 	release_ipmi_user(user, index);
1389 
1390 	return rv;
1391 }
1392 EXPORT_SYMBOL(ipmi_get_version);
1393 
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1394 int ipmi_set_my_address(struct ipmi_user *user,
1395 			unsigned int  channel,
1396 			unsigned char address)
1397 {
1398 	int index, rv = 0;
1399 
1400 	user = acquire_ipmi_user(user, &index);
1401 	if (!user)
1402 		return -ENODEV;
1403 
1404 	if (channel >= IPMI_MAX_CHANNELS) {
1405 		rv = -EINVAL;
1406 	} else {
1407 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1408 		user->intf->addrinfo[channel].address = address;
1409 	}
1410 	release_ipmi_user(user, index);
1411 
1412 	return rv;
1413 }
1414 EXPORT_SYMBOL(ipmi_set_my_address);
1415 
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1416 int ipmi_get_my_address(struct ipmi_user *user,
1417 			unsigned int  channel,
1418 			unsigned char *address)
1419 {
1420 	int index, rv = 0;
1421 
1422 	user = acquire_ipmi_user(user, &index);
1423 	if (!user)
1424 		return -ENODEV;
1425 
1426 	if (channel >= IPMI_MAX_CHANNELS) {
1427 		rv = -EINVAL;
1428 	} else {
1429 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1430 		*address = user->intf->addrinfo[channel].address;
1431 	}
1432 	release_ipmi_user(user, index);
1433 
1434 	return rv;
1435 }
1436 EXPORT_SYMBOL(ipmi_get_my_address);
1437 
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1438 int ipmi_set_my_LUN(struct ipmi_user *user,
1439 		    unsigned int  channel,
1440 		    unsigned char LUN)
1441 {
1442 	int index, rv = 0;
1443 
1444 	user = acquire_ipmi_user(user, &index);
1445 	if (!user)
1446 		return -ENODEV;
1447 
1448 	if (channel >= IPMI_MAX_CHANNELS) {
1449 		rv = -EINVAL;
1450 	} else {
1451 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1452 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1453 	}
1454 	release_ipmi_user(user, index);
1455 
1456 	return rv;
1457 }
1458 EXPORT_SYMBOL(ipmi_set_my_LUN);
1459 
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1460 int ipmi_get_my_LUN(struct ipmi_user *user,
1461 		    unsigned int  channel,
1462 		    unsigned char *address)
1463 {
1464 	int index, rv = 0;
1465 
1466 	user = acquire_ipmi_user(user, &index);
1467 	if (!user)
1468 		return -ENODEV;
1469 
1470 	if (channel >= IPMI_MAX_CHANNELS) {
1471 		rv = -EINVAL;
1472 	} else {
1473 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1474 		*address = user->intf->addrinfo[channel].lun;
1475 	}
1476 	release_ipmi_user(user, index);
1477 
1478 	return rv;
1479 }
1480 EXPORT_SYMBOL(ipmi_get_my_LUN);
1481 
ipmi_get_maintenance_mode(struct ipmi_user * user)1482 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1483 {
1484 	int mode, index;
1485 	unsigned long flags;
1486 
1487 	user = acquire_ipmi_user(user, &index);
1488 	if (!user)
1489 		return -ENODEV;
1490 
1491 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1492 	mode = user->intf->maintenance_mode;
1493 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1494 	release_ipmi_user(user, index);
1495 
1496 	return mode;
1497 }
1498 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1499 
maintenance_mode_update(struct ipmi_smi * intf)1500 static void maintenance_mode_update(struct ipmi_smi *intf)
1501 {
1502 	if (intf->handlers->set_maintenance_mode)
1503 		intf->handlers->set_maintenance_mode(
1504 			intf->send_info, intf->maintenance_mode_enable);
1505 }
1506 
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1507 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1508 {
1509 	int rv = 0, index;
1510 	unsigned long flags;
1511 	struct ipmi_smi *intf = user->intf;
1512 
1513 	user = acquire_ipmi_user(user, &index);
1514 	if (!user)
1515 		return -ENODEV;
1516 
1517 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1518 	if (intf->maintenance_mode != mode) {
1519 		switch (mode) {
1520 		case IPMI_MAINTENANCE_MODE_AUTO:
1521 			intf->maintenance_mode_enable
1522 				= (intf->auto_maintenance_timeout > 0);
1523 			break;
1524 
1525 		case IPMI_MAINTENANCE_MODE_OFF:
1526 			intf->maintenance_mode_enable = false;
1527 			break;
1528 
1529 		case IPMI_MAINTENANCE_MODE_ON:
1530 			intf->maintenance_mode_enable = true;
1531 			break;
1532 
1533 		default:
1534 			rv = -EINVAL;
1535 			goto out_unlock;
1536 		}
1537 		intf->maintenance_mode = mode;
1538 
1539 		maintenance_mode_update(intf);
1540 	}
1541  out_unlock:
1542 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1543 	release_ipmi_user(user, index);
1544 
1545 	return rv;
1546 }
1547 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1548 
ipmi_set_gets_events(struct ipmi_user * user,bool val)1549 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1550 {
1551 	unsigned long        flags;
1552 	struct ipmi_smi      *intf = user->intf;
1553 	struct ipmi_recv_msg *msg, *msg2;
1554 	struct list_head     msgs;
1555 	int index;
1556 
1557 	user = acquire_ipmi_user(user, &index);
1558 	if (!user)
1559 		return -ENODEV;
1560 
1561 	INIT_LIST_HEAD(&msgs);
1562 
1563 	spin_lock_irqsave(&intf->events_lock, flags);
1564 	if (user->gets_events == val)
1565 		goto out;
1566 
1567 	user->gets_events = val;
1568 
1569 	if (val) {
1570 		if (atomic_inc_return(&intf->event_waiters) == 1)
1571 			need_waiter(intf);
1572 	} else {
1573 		atomic_dec(&intf->event_waiters);
1574 	}
1575 
1576 	if (intf->delivering_events)
1577 		/*
1578 		 * Another thread is delivering events for this, so
1579 		 * let it handle any new events.
1580 		 */
1581 		goto out;
1582 
1583 	/* Deliver any queued events. */
1584 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1585 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1586 			list_move_tail(&msg->link, &msgs);
1587 		intf->waiting_events_count = 0;
1588 		if (intf->event_msg_printed) {
1589 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1590 			intf->event_msg_printed = 0;
1591 		}
1592 
1593 		intf->delivering_events = 1;
1594 		spin_unlock_irqrestore(&intf->events_lock, flags);
1595 
1596 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1597 			msg->user = user;
1598 			kref_get(&user->refcount);
1599 			deliver_local_response(intf, msg);
1600 		}
1601 
1602 		spin_lock_irqsave(&intf->events_lock, flags);
1603 		intf->delivering_events = 0;
1604 	}
1605 
1606  out:
1607 	spin_unlock_irqrestore(&intf->events_lock, flags);
1608 	release_ipmi_user(user, index);
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(ipmi_set_gets_events);
1613 
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1614 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1615 				      unsigned char netfn,
1616 				      unsigned char cmd,
1617 				      unsigned char chan)
1618 {
1619 	struct cmd_rcvr *rcvr;
1620 
1621 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1622 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1623 					&& (rcvr->chans & (1 << chan)))
1624 			return rcvr;
1625 	}
1626 	return NULL;
1627 }
1628 
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1629 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1630 				 unsigned char netfn,
1631 				 unsigned char cmd,
1632 				 unsigned int  chans)
1633 {
1634 	struct cmd_rcvr *rcvr;
1635 
1636 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1637 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1638 					&& (rcvr->chans & chans))
1639 			return 0;
1640 	}
1641 	return 1;
1642 }
1643 
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1644 int ipmi_register_for_cmd(struct ipmi_user *user,
1645 			  unsigned char netfn,
1646 			  unsigned char cmd,
1647 			  unsigned int  chans)
1648 {
1649 	struct ipmi_smi *intf = user->intf;
1650 	struct cmd_rcvr *rcvr;
1651 	int rv = 0, index;
1652 
1653 	user = acquire_ipmi_user(user, &index);
1654 	if (!user)
1655 		return -ENODEV;
1656 
1657 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1658 	if (!rcvr) {
1659 		rv = -ENOMEM;
1660 		goto out_release;
1661 	}
1662 	rcvr->cmd = cmd;
1663 	rcvr->netfn = netfn;
1664 	rcvr->chans = chans;
1665 	rcvr->user = user;
1666 
1667 	mutex_lock(&intf->cmd_rcvrs_mutex);
1668 	/* Make sure the command/netfn is not already registered. */
1669 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1670 		rv = -EBUSY;
1671 		goto out_unlock;
1672 	}
1673 
1674 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1675 
1676 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1677 
1678 out_unlock:
1679 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1680 	if (rv)
1681 		kfree(rcvr);
1682 out_release:
1683 	release_ipmi_user(user, index);
1684 
1685 	return rv;
1686 }
1687 EXPORT_SYMBOL(ipmi_register_for_cmd);
1688 
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1689 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1690 			    unsigned char netfn,
1691 			    unsigned char cmd,
1692 			    unsigned int  chans)
1693 {
1694 	struct ipmi_smi *intf = user->intf;
1695 	struct cmd_rcvr *rcvr;
1696 	struct cmd_rcvr *rcvrs = NULL;
1697 	int i, rv = -ENOENT, index;
1698 
1699 	user = acquire_ipmi_user(user, &index);
1700 	if (!user)
1701 		return -ENODEV;
1702 
1703 	mutex_lock(&intf->cmd_rcvrs_mutex);
1704 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1705 		if (((1 << i) & chans) == 0)
1706 			continue;
1707 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1708 		if (rcvr == NULL)
1709 			continue;
1710 		if (rcvr->user == user) {
1711 			rv = 0;
1712 			rcvr->chans &= ~chans;
1713 			if (rcvr->chans == 0) {
1714 				list_del_rcu(&rcvr->link);
1715 				rcvr->next = rcvrs;
1716 				rcvrs = rcvr;
1717 			}
1718 		}
1719 	}
1720 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1721 	synchronize_rcu();
1722 	release_ipmi_user(user, index);
1723 	while (rcvrs) {
1724 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1725 		rcvr = rcvrs;
1726 		rcvrs = rcvr->next;
1727 		kfree(rcvr);
1728 	}
1729 
1730 	return rv;
1731 }
1732 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1733 
1734 static unsigned char
ipmb_checksum(unsigned char * data,int size)1735 ipmb_checksum(unsigned char *data, int size)
1736 {
1737 	unsigned char csum = 0;
1738 
1739 	for (; size > 0; size--, data++)
1740 		csum += *data;
1741 
1742 	return -csum;
1743 }
1744 
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1745 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1746 				   struct kernel_ipmi_msg *msg,
1747 				   struct ipmi_ipmb_addr *ipmb_addr,
1748 				   long                  msgid,
1749 				   unsigned char         ipmb_seq,
1750 				   int                   broadcast,
1751 				   unsigned char         source_address,
1752 				   unsigned char         source_lun)
1753 {
1754 	int i = broadcast;
1755 
1756 	/* Format the IPMB header data. */
1757 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1758 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1759 	smi_msg->data[2] = ipmb_addr->channel;
1760 	if (broadcast)
1761 		smi_msg->data[3] = 0;
1762 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1763 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1764 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1765 	smi_msg->data[i+6] = source_address;
1766 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1767 	smi_msg->data[i+8] = msg->cmd;
1768 
1769 	/* Now tack on the data to the message. */
1770 	if (msg->data_len > 0)
1771 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1772 	smi_msg->data_size = msg->data_len + 9;
1773 
1774 	/* Now calculate the checksum and tack it on. */
1775 	smi_msg->data[i+smi_msg->data_size]
1776 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1777 
1778 	/*
1779 	 * Add on the checksum size and the offset from the
1780 	 * broadcast.
1781 	 */
1782 	smi_msg->data_size += 1 + i;
1783 
1784 	smi_msg->msgid = msgid;
1785 }
1786 
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1787 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1788 				  struct kernel_ipmi_msg *msg,
1789 				  struct ipmi_lan_addr  *lan_addr,
1790 				  long                  msgid,
1791 				  unsigned char         ipmb_seq,
1792 				  unsigned char         source_lun)
1793 {
1794 	/* Format the IPMB header data. */
1795 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1796 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1797 	smi_msg->data[2] = lan_addr->channel;
1798 	smi_msg->data[3] = lan_addr->session_handle;
1799 	smi_msg->data[4] = lan_addr->remote_SWID;
1800 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1801 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1802 	smi_msg->data[7] = lan_addr->local_SWID;
1803 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1804 	smi_msg->data[9] = msg->cmd;
1805 
1806 	/* Now tack on the data to the message. */
1807 	if (msg->data_len > 0)
1808 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1809 	smi_msg->data_size = msg->data_len + 10;
1810 
1811 	/* Now calculate the checksum and tack it on. */
1812 	smi_msg->data[smi_msg->data_size]
1813 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1814 
1815 	/*
1816 	 * Add on the checksum size and the offset from the
1817 	 * broadcast.
1818 	 */
1819 	smi_msg->data_size += 1;
1820 
1821 	smi_msg->msgid = msgid;
1822 }
1823 
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1824 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1825 					     struct ipmi_smi_msg *smi_msg,
1826 					     int priority)
1827 {
1828 	if (intf->curr_msg) {
1829 		if (priority > 0)
1830 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1831 		else
1832 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1833 		smi_msg = NULL;
1834 	} else {
1835 		intf->curr_msg = smi_msg;
1836 	}
1837 
1838 	return smi_msg;
1839 }
1840 
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1841 static void smi_send(struct ipmi_smi *intf,
1842 		     const struct ipmi_smi_handlers *handlers,
1843 		     struct ipmi_smi_msg *smi_msg, int priority)
1844 {
1845 	int run_to_completion = intf->run_to_completion;
1846 	unsigned long flags = 0;
1847 
1848 	if (!run_to_completion)
1849 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1850 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1851 
1852 	if (!run_to_completion)
1853 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1854 
1855 	if (smi_msg)
1856 		handlers->sender(intf->send_info, smi_msg);
1857 }
1858 
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1859 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1860 {
1861 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1862 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1863 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1864 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1865 }
1866 
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1867 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1868 			      struct ipmi_addr       *addr,
1869 			      long                   msgid,
1870 			      struct kernel_ipmi_msg *msg,
1871 			      struct ipmi_smi_msg    *smi_msg,
1872 			      struct ipmi_recv_msg   *recv_msg,
1873 			      int                    retries,
1874 			      unsigned int           retry_time_ms)
1875 {
1876 	struct ipmi_system_interface_addr *smi_addr;
1877 
1878 	if (msg->netfn & 1)
1879 		/* Responses are not allowed to the SMI. */
1880 		return -EINVAL;
1881 
1882 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1883 	if (smi_addr->lun > 3) {
1884 		ipmi_inc_stat(intf, sent_invalid_commands);
1885 		return -EINVAL;
1886 	}
1887 
1888 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1889 
1890 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1891 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1892 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1893 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1894 		/*
1895 		 * We don't let the user do these, since we manage
1896 		 * the sequence numbers.
1897 		 */
1898 		ipmi_inc_stat(intf, sent_invalid_commands);
1899 		return -EINVAL;
1900 	}
1901 
1902 	if (is_maintenance_mode_cmd(msg)) {
1903 		unsigned long flags;
1904 
1905 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1906 		intf->auto_maintenance_timeout
1907 			= maintenance_mode_timeout_ms;
1908 		if (!intf->maintenance_mode
1909 		    && !intf->maintenance_mode_enable) {
1910 			intf->maintenance_mode_enable = true;
1911 			maintenance_mode_update(intf);
1912 		}
1913 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1914 				       flags);
1915 	}
1916 
1917 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1918 		ipmi_inc_stat(intf, sent_invalid_commands);
1919 		return -EMSGSIZE;
1920 	}
1921 
1922 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1923 	smi_msg->data[1] = msg->cmd;
1924 	smi_msg->msgid = msgid;
1925 	smi_msg->user_data = recv_msg;
1926 	if (msg->data_len > 0)
1927 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1928 	smi_msg->data_size = msg->data_len + 2;
1929 	ipmi_inc_stat(intf, sent_local_commands);
1930 
1931 	return 0;
1932 }
1933 
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1934 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1935 			   struct ipmi_addr       *addr,
1936 			   long                   msgid,
1937 			   struct kernel_ipmi_msg *msg,
1938 			   struct ipmi_smi_msg    *smi_msg,
1939 			   struct ipmi_recv_msg   *recv_msg,
1940 			   unsigned char          source_address,
1941 			   unsigned char          source_lun,
1942 			   int                    retries,
1943 			   unsigned int           retry_time_ms)
1944 {
1945 	struct ipmi_ipmb_addr *ipmb_addr;
1946 	unsigned char ipmb_seq;
1947 	long seqid;
1948 	int broadcast = 0;
1949 	struct ipmi_channel *chans;
1950 	int rv = 0;
1951 
1952 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1953 		ipmi_inc_stat(intf, sent_invalid_commands);
1954 		return -EINVAL;
1955 	}
1956 
1957 	chans = READ_ONCE(intf->channel_list)->c;
1958 
1959 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1960 		ipmi_inc_stat(intf, sent_invalid_commands);
1961 		return -EINVAL;
1962 	}
1963 
1964 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1965 		/*
1966 		 * Broadcasts add a zero at the beginning of the
1967 		 * message, but otherwise is the same as an IPMB
1968 		 * address.
1969 		 */
1970 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1971 		broadcast = 1;
1972 		retries = 0; /* Don't retry broadcasts. */
1973 	}
1974 
1975 	/*
1976 	 * 9 for the header and 1 for the checksum, plus
1977 	 * possibly one for the broadcast.
1978 	 */
1979 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1980 		ipmi_inc_stat(intf, sent_invalid_commands);
1981 		return -EMSGSIZE;
1982 	}
1983 
1984 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1985 	if (ipmb_addr->lun > 3) {
1986 		ipmi_inc_stat(intf, sent_invalid_commands);
1987 		return -EINVAL;
1988 	}
1989 
1990 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1991 
1992 	if (recv_msg->msg.netfn & 0x1) {
1993 		/*
1994 		 * It's a response, so use the user's sequence
1995 		 * from msgid.
1996 		 */
1997 		ipmi_inc_stat(intf, sent_ipmb_responses);
1998 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1999 				msgid, broadcast,
2000 				source_address, source_lun);
2001 
2002 		/*
2003 		 * Save the receive message so we can use it
2004 		 * to deliver the response.
2005 		 */
2006 		smi_msg->user_data = recv_msg;
2007 	} else {
2008 		/* It's a command, so get a sequence for it. */
2009 		unsigned long flags;
2010 
2011 		spin_lock_irqsave(&intf->seq_lock, flags);
2012 
2013 		if (is_maintenance_mode_cmd(msg))
2014 			intf->ipmb_maintenance_mode_timeout =
2015 				maintenance_mode_timeout_ms;
2016 
2017 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2018 			/* Different default in maintenance mode */
2019 			retry_time_ms = default_maintenance_retry_ms;
2020 
2021 		/*
2022 		 * Create a sequence number with a 1 second
2023 		 * timeout and 4 retries.
2024 		 */
2025 		rv = intf_next_seq(intf,
2026 				   recv_msg,
2027 				   retry_time_ms,
2028 				   retries,
2029 				   broadcast,
2030 				   &ipmb_seq,
2031 				   &seqid);
2032 		if (rv)
2033 			/*
2034 			 * We have used up all the sequence numbers,
2035 			 * probably, so abort.
2036 			 */
2037 			goto out_err;
2038 
2039 		ipmi_inc_stat(intf, sent_ipmb_commands);
2040 
2041 		/*
2042 		 * Store the sequence number in the message,
2043 		 * so that when the send message response
2044 		 * comes back we can start the timer.
2045 		 */
2046 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2047 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2048 				ipmb_seq, broadcast,
2049 				source_address, source_lun);
2050 
2051 		/*
2052 		 * Copy the message into the recv message data, so we
2053 		 * can retransmit it later if necessary.
2054 		 */
2055 		memcpy(recv_msg->msg_data, smi_msg->data,
2056 		       smi_msg->data_size);
2057 		recv_msg->msg.data = recv_msg->msg_data;
2058 		recv_msg->msg.data_len = smi_msg->data_size;
2059 
2060 		/*
2061 		 * We don't unlock until here, because we need
2062 		 * to copy the completed message into the
2063 		 * recv_msg before we release the lock.
2064 		 * Otherwise, race conditions may bite us.  I
2065 		 * know that's pretty paranoid, but I prefer
2066 		 * to be correct.
2067 		 */
2068 out_err:
2069 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2070 	}
2071 
2072 	return rv;
2073 }
2074 
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2075 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2076 			  struct ipmi_addr       *addr,
2077 			  long                   msgid,
2078 			  struct kernel_ipmi_msg *msg,
2079 			  struct ipmi_smi_msg    *smi_msg,
2080 			  struct ipmi_recv_msg   *recv_msg,
2081 			  unsigned char          source_lun,
2082 			  int                    retries,
2083 			  unsigned int           retry_time_ms)
2084 {
2085 	struct ipmi_lan_addr  *lan_addr;
2086 	unsigned char ipmb_seq;
2087 	long seqid;
2088 	struct ipmi_channel *chans;
2089 	int rv = 0;
2090 
2091 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2092 		ipmi_inc_stat(intf, sent_invalid_commands);
2093 		return -EINVAL;
2094 	}
2095 
2096 	chans = READ_ONCE(intf->channel_list)->c;
2097 
2098 	if ((chans[addr->channel].medium
2099 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2100 			&& (chans[addr->channel].medium
2101 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2102 		ipmi_inc_stat(intf, sent_invalid_commands);
2103 		return -EINVAL;
2104 	}
2105 
2106 	/* 11 for the header and 1 for the checksum. */
2107 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2108 		ipmi_inc_stat(intf, sent_invalid_commands);
2109 		return -EMSGSIZE;
2110 	}
2111 
2112 	lan_addr = (struct ipmi_lan_addr *) addr;
2113 	if (lan_addr->lun > 3) {
2114 		ipmi_inc_stat(intf, sent_invalid_commands);
2115 		return -EINVAL;
2116 	}
2117 
2118 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2119 
2120 	if (recv_msg->msg.netfn & 0x1) {
2121 		/*
2122 		 * It's a response, so use the user's sequence
2123 		 * from msgid.
2124 		 */
2125 		ipmi_inc_stat(intf, sent_lan_responses);
2126 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2127 			       msgid, source_lun);
2128 
2129 		/*
2130 		 * Save the receive message so we can use it
2131 		 * to deliver the response.
2132 		 */
2133 		smi_msg->user_data = recv_msg;
2134 	} else {
2135 		/* It's a command, so get a sequence for it. */
2136 		unsigned long flags;
2137 
2138 		spin_lock_irqsave(&intf->seq_lock, flags);
2139 
2140 		/*
2141 		 * Create a sequence number with a 1 second
2142 		 * timeout and 4 retries.
2143 		 */
2144 		rv = intf_next_seq(intf,
2145 				   recv_msg,
2146 				   retry_time_ms,
2147 				   retries,
2148 				   0,
2149 				   &ipmb_seq,
2150 				   &seqid);
2151 		if (rv)
2152 			/*
2153 			 * We have used up all the sequence numbers,
2154 			 * probably, so abort.
2155 			 */
2156 			goto out_err;
2157 
2158 		ipmi_inc_stat(intf, sent_lan_commands);
2159 
2160 		/*
2161 		 * Store the sequence number in the message,
2162 		 * so that when the send message response
2163 		 * comes back we can start the timer.
2164 		 */
2165 		format_lan_msg(smi_msg, msg, lan_addr,
2166 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2167 			       ipmb_seq, source_lun);
2168 
2169 		/*
2170 		 * Copy the message into the recv message data, so we
2171 		 * can retransmit it later if necessary.
2172 		 */
2173 		memcpy(recv_msg->msg_data, smi_msg->data,
2174 		       smi_msg->data_size);
2175 		recv_msg->msg.data = recv_msg->msg_data;
2176 		recv_msg->msg.data_len = smi_msg->data_size;
2177 
2178 		/*
2179 		 * We don't unlock until here, because we need
2180 		 * to copy the completed message into the
2181 		 * recv_msg before we release the lock.
2182 		 * Otherwise, race conditions may bite us.  I
2183 		 * know that's pretty paranoid, but I prefer
2184 		 * to be correct.
2185 		 */
2186 out_err:
2187 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2188 	}
2189 
2190 	return rv;
2191 }
2192 
2193 /*
2194  * Separate from ipmi_request so that the user does not have to be
2195  * supplied in certain circumstances (mainly at panic time).  If
2196  * messages are supplied, they will be freed, even if an error
2197  * occurs.
2198  */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2199 static int i_ipmi_request(struct ipmi_user     *user,
2200 			  struct ipmi_smi      *intf,
2201 			  struct ipmi_addr     *addr,
2202 			  long                 msgid,
2203 			  struct kernel_ipmi_msg *msg,
2204 			  void                 *user_msg_data,
2205 			  void                 *supplied_smi,
2206 			  struct ipmi_recv_msg *supplied_recv,
2207 			  int                  priority,
2208 			  unsigned char        source_address,
2209 			  unsigned char        source_lun,
2210 			  int                  retries,
2211 			  unsigned int         retry_time_ms)
2212 {
2213 	struct ipmi_smi_msg *smi_msg;
2214 	struct ipmi_recv_msg *recv_msg;
2215 	int rv = 0;
2216 
2217 	if (supplied_recv)
2218 		recv_msg = supplied_recv;
2219 	else {
2220 		recv_msg = ipmi_alloc_recv_msg();
2221 		if (recv_msg == NULL) {
2222 			rv = -ENOMEM;
2223 			goto out;
2224 		}
2225 	}
2226 	recv_msg->user_msg_data = user_msg_data;
2227 
2228 	if (supplied_smi)
2229 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2230 	else {
2231 		smi_msg = ipmi_alloc_smi_msg();
2232 		if (smi_msg == NULL) {
2233 			if (!supplied_recv)
2234 				ipmi_free_recv_msg(recv_msg);
2235 			rv = -ENOMEM;
2236 			goto out;
2237 		}
2238 	}
2239 
2240 	rcu_read_lock();
2241 	if (intf->in_shutdown) {
2242 		rv = -ENODEV;
2243 		goto out_err;
2244 	}
2245 
2246 	recv_msg->user = user;
2247 	if (user)
2248 		/* The put happens when the message is freed. */
2249 		kref_get(&user->refcount);
2250 	recv_msg->msgid = msgid;
2251 	/*
2252 	 * Store the message to send in the receive message so timeout
2253 	 * responses can get the proper response data.
2254 	 */
2255 	recv_msg->msg = *msg;
2256 
2257 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2258 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2259 					recv_msg, retries, retry_time_ms);
2260 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2261 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2262 				     source_address, source_lun,
2263 				     retries, retry_time_ms);
2264 	} else if (is_lan_addr(addr)) {
2265 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2266 				    source_lun, retries, retry_time_ms);
2267 	} else {
2268 	    /* Unknown address type. */
2269 		ipmi_inc_stat(intf, sent_invalid_commands);
2270 		rv = -EINVAL;
2271 	}
2272 
2273 	if (rv) {
2274 out_err:
2275 		ipmi_free_smi_msg(smi_msg);
2276 		ipmi_free_recv_msg(recv_msg);
2277 	} else {
2278 		ipmi_debug_msg("Send", smi_msg->data, smi_msg->data_size);
2279 
2280 		smi_send(intf, intf->handlers, smi_msg, priority);
2281 	}
2282 	rcu_read_unlock();
2283 
2284 out:
2285 	return rv;
2286 }
2287 
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2288 static int check_addr(struct ipmi_smi  *intf,
2289 		      struct ipmi_addr *addr,
2290 		      unsigned char    *saddr,
2291 		      unsigned char    *lun)
2292 {
2293 	if (addr->channel >= IPMI_MAX_CHANNELS)
2294 		return -EINVAL;
2295 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2296 	*lun = intf->addrinfo[addr->channel].lun;
2297 	*saddr = intf->addrinfo[addr->channel].address;
2298 	return 0;
2299 }
2300 
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2301 int ipmi_request_settime(struct ipmi_user *user,
2302 			 struct ipmi_addr *addr,
2303 			 long             msgid,
2304 			 struct kernel_ipmi_msg  *msg,
2305 			 void             *user_msg_data,
2306 			 int              priority,
2307 			 int              retries,
2308 			 unsigned int     retry_time_ms)
2309 {
2310 	unsigned char saddr = 0, lun = 0;
2311 	int rv, index;
2312 
2313 	if (!user)
2314 		return -EINVAL;
2315 
2316 	user = acquire_ipmi_user(user, &index);
2317 	if (!user)
2318 		return -ENODEV;
2319 
2320 	rv = check_addr(user->intf, addr, &saddr, &lun);
2321 	if (!rv)
2322 		rv = i_ipmi_request(user,
2323 				    user->intf,
2324 				    addr,
2325 				    msgid,
2326 				    msg,
2327 				    user_msg_data,
2328 				    NULL, NULL,
2329 				    priority,
2330 				    saddr,
2331 				    lun,
2332 				    retries,
2333 				    retry_time_ms);
2334 
2335 	release_ipmi_user(user, index);
2336 	return rv;
2337 }
2338 EXPORT_SYMBOL(ipmi_request_settime);
2339 
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2340 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2341 			     struct ipmi_addr     *addr,
2342 			     long                 msgid,
2343 			     struct kernel_ipmi_msg *msg,
2344 			     void                 *user_msg_data,
2345 			     void                 *supplied_smi,
2346 			     struct ipmi_recv_msg *supplied_recv,
2347 			     int                  priority)
2348 {
2349 	unsigned char saddr = 0, lun = 0;
2350 	int rv, index;
2351 
2352 	if (!user)
2353 		return -EINVAL;
2354 
2355 	user = acquire_ipmi_user(user, &index);
2356 	if (!user)
2357 		return -ENODEV;
2358 
2359 	rv = check_addr(user->intf, addr, &saddr, &lun);
2360 	if (!rv)
2361 		rv = i_ipmi_request(user,
2362 				    user->intf,
2363 				    addr,
2364 				    msgid,
2365 				    msg,
2366 				    user_msg_data,
2367 				    supplied_smi,
2368 				    supplied_recv,
2369 				    priority,
2370 				    saddr,
2371 				    lun,
2372 				    -1, 0);
2373 
2374 	release_ipmi_user(user, index);
2375 	return rv;
2376 }
2377 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2378 
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2379 static void bmc_device_id_handler(struct ipmi_smi *intf,
2380 				  struct ipmi_recv_msg *msg)
2381 {
2382 	int rv;
2383 
2384 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2385 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2386 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2387 		dev_warn(intf->si_dev,
2388 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2389 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2390 		return;
2391 	}
2392 
2393 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2394 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2395 	if (rv) {
2396 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2397 		intf->bmc->dyn_id_set = 0;
2398 	} else {
2399 		/*
2400 		 * Make sure the id data is available before setting
2401 		 * dyn_id_set.
2402 		 */
2403 		smp_wmb();
2404 		intf->bmc->dyn_id_set = 1;
2405 	}
2406 
2407 	wake_up(&intf->waitq);
2408 }
2409 
2410 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2411 send_get_device_id_cmd(struct ipmi_smi *intf)
2412 {
2413 	struct ipmi_system_interface_addr si;
2414 	struct kernel_ipmi_msg msg;
2415 
2416 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2417 	si.channel = IPMI_BMC_CHANNEL;
2418 	si.lun = 0;
2419 
2420 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2421 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2422 	msg.data = NULL;
2423 	msg.data_len = 0;
2424 
2425 	return i_ipmi_request(NULL,
2426 			      intf,
2427 			      (struct ipmi_addr *) &si,
2428 			      0,
2429 			      &msg,
2430 			      intf,
2431 			      NULL,
2432 			      NULL,
2433 			      0,
2434 			      intf->addrinfo[0].address,
2435 			      intf->addrinfo[0].lun,
2436 			      -1, 0);
2437 }
2438 
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2439 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2440 {
2441 	int rv;
2442 
2443 	bmc->dyn_id_set = 2;
2444 
2445 	intf->null_user_handler = bmc_device_id_handler;
2446 
2447 	rv = send_get_device_id_cmd(intf);
2448 	if (rv)
2449 		return rv;
2450 
2451 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2452 
2453 	if (!bmc->dyn_id_set)
2454 		rv = -EIO; /* Something went wrong in the fetch. */
2455 
2456 	/* dyn_id_set makes the id data available. */
2457 	smp_rmb();
2458 
2459 	intf->null_user_handler = NULL;
2460 
2461 	return rv;
2462 }
2463 
2464 /*
2465  * Fetch the device id for the bmc/interface.  You must pass in either
2466  * bmc or intf, this code will get the other one.  If the data has
2467  * been recently fetched, this will just use the cached data.  Otherwise
2468  * it will run a new fetch.
2469  *
2470  * Except for the first time this is called (in ipmi_add_smi()),
2471  * this will always return good data;
2472  */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2473 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2474 			       struct ipmi_device_id *id,
2475 			       bool *guid_set, guid_t *guid, int intf_num)
2476 {
2477 	int rv = 0;
2478 	int prev_dyn_id_set, prev_guid_set;
2479 	bool intf_set = intf != NULL;
2480 
2481 	if (!intf) {
2482 		mutex_lock(&bmc->dyn_mutex);
2483 retry_bmc_lock:
2484 		if (list_empty(&bmc->intfs)) {
2485 			mutex_unlock(&bmc->dyn_mutex);
2486 			return -ENOENT;
2487 		}
2488 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2489 					bmc_link);
2490 		kref_get(&intf->refcount);
2491 		mutex_unlock(&bmc->dyn_mutex);
2492 		mutex_lock(&intf->bmc_reg_mutex);
2493 		mutex_lock(&bmc->dyn_mutex);
2494 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2495 					     bmc_link)) {
2496 			mutex_unlock(&intf->bmc_reg_mutex);
2497 			kref_put(&intf->refcount, intf_free);
2498 			goto retry_bmc_lock;
2499 		}
2500 	} else {
2501 		mutex_lock(&intf->bmc_reg_mutex);
2502 		bmc = intf->bmc;
2503 		mutex_lock(&bmc->dyn_mutex);
2504 		kref_get(&intf->refcount);
2505 	}
2506 
2507 	/* If we have a valid and current ID, just return that. */
2508 	if (intf->in_bmc_register ||
2509 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2510 		goto out_noprocessing;
2511 
2512 	prev_guid_set = bmc->dyn_guid_set;
2513 	__get_guid(intf);
2514 
2515 	prev_dyn_id_set = bmc->dyn_id_set;
2516 	rv = __get_device_id(intf, bmc);
2517 	if (rv)
2518 		goto out;
2519 
2520 	/*
2521 	 * The guid, device id, manufacturer id, and product id should
2522 	 * not change on a BMC.  If it does we have to do some dancing.
2523 	 */
2524 	if (!intf->bmc_registered
2525 	    || (!prev_guid_set && bmc->dyn_guid_set)
2526 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2527 	    || (prev_guid_set && bmc->dyn_guid_set
2528 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2529 	    || bmc->id.device_id != bmc->fetch_id.device_id
2530 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2531 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2532 		struct ipmi_device_id id = bmc->fetch_id;
2533 		int guid_set = bmc->dyn_guid_set;
2534 		guid_t guid;
2535 
2536 		guid = bmc->fetch_guid;
2537 		mutex_unlock(&bmc->dyn_mutex);
2538 
2539 		__ipmi_bmc_unregister(intf);
2540 		/* Fill in the temporary BMC for good measure. */
2541 		intf->bmc->id = id;
2542 		intf->bmc->dyn_guid_set = guid_set;
2543 		intf->bmc->guid = guid;
2544 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2545 			need_waiter(intf); /* Retry later on an error. */
2546 		else
2547 			__scan_channels(intf, &id);
2548 
2549 
2550 		if (!intf_set) {
2551 			/*
2552 			 * We weren't given the interface on the
2553 			 * command line, so restart the operation on
2554 			 * the next interface for the BMC.
2555 			 */
2556 			mutex_unlock(&intf->bmc_reg_mutex);
2557 			mutex_lock(&bmc->dyn_mutex);
2558 			goto retry_bmc_lock;
2559 		}
2560 
2561 		/* We have a new BMC, set it up. */
2562 		bmc = intf->bmc;
2563 		mutex_lock(&bmc->dyn_mutex);
2564 		goto out_noprocessing;
2565 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2566 		/* Version info changes, scan the channels again. */
2567 		__scan_channels(intf, &bmc->fetch_id);
2568 
2569 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2570 
2571 out:
2572 	if (rv && prev_dyn_id_set) {
2573 		rv = 0; /* Ignore failures if we have previous data. */
2574 		bmc->dyn_id_set = prev_dyn_id_set;
2575 	}
2576 	if (!rv) {
2577 		bmc->id = bmc->fetch_id;
2578 		if (bmc->dyn_guid_set)
2579 			bmc->guid = bmc->fetch_guid;
2580 		else if (prev_guid_set)
2581 			/*
2582 			 * The guid used to be valid and it failed to fetch,
2583 			 * just use the cached value.
2584 			 */
2585 			bmc->dyn_guid_set = prev_guid_set;
2586 	}
2587 out_noprocessing:
2588 	if (!rv) {
2589 		if (id)
2590 			*id = bmc->id;
2591 
2592 		if (guid_set)
2593 			*guid_set = bmc->dyn_guid_set;
2594 
2595 		if (guid && bmc->dyn_guid_set)
2596 			*guid =  bmc->guid;
2597 	}
2598 
2599 	mutex_unlock(&bmc->dyn_mutex);
2600 	mutex_unlock(&intf->bmc_reg_mutex);
2601 
2602 	kref_put(&intf->refcount, intf_free);
2603 	return rv;
2604 }
2605 
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2606 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2607 			     struct ipmi_device_id *id,
2608 			     bool *guid_set, guid_t *guid)
2609 {
2610 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2611 }
2612 
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2613 static ssize_t device_id_show(struct device *dev,
2614 			      struct device_attribute *attr,
2615 			      char *buf)
2616 {
2617 	struct bmc_device *bmc = to_bmc_device(dev);
2618 	struct ipmi_device_id id;
2619 	int rv;
2620 
2621 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2622 	if (rv)
2623 		return rv;
2624 
2625 	return snprintf(buf, 10, "%u\n", id.device_id);
2626 }
2627 static DEVICE_ATTR_RO(device_id);
2628 
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2629 static ssize_t provides_device_sdrs_show(struct device *dev,
2630 					 struct device_attribute *attr,
2631 					 char *buf)
2632 {
2633 	struct bmc_device *bmc = to_bmc_device(dev);
2634 	struct ipmi_device_id id;
2635 	int rv;
2636 
2637 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2638 	if (rv)
2639 		return rv;
2640 
2641 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2642 }
2643 static DEVICE_ATTR_RO(provides_device_sdrs);
2644 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2645 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2646 			     char *buf)
2647 {
2648 	struct bmc_device *bmc = to_bmc_device(dev);
2649 	struct ipmi_device_id id;
2650 	int rv;
2651 
2652 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2653 	if (rv)
2654 		return rv;
2655 
2656 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2657 }
2658 static DEVICE_ATTR_RO(revision);
2659 
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2660 static ssize_t firmware_revision_show(struct device *dev,
2661 				      struct device_attribute *attr,
2662 				      char *buf)
2663 {
2664 	struct bmc_device *bmc = to_bmc_device(dev);
2665 	struct ipmi_device_id id;
2666 	int rv;
2667 
2668 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2669 	if (rv)
2670 		return rv;
2671 
2672 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2673 			id.firmware_revision_2);
2674 }
2675 static DEVICE_ATTR_RO(firmware_revision);
2676 
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2677 static ssize_t ipmi_version_show(struct device *dev,
2678 				 struct device_attribute *attr,
2679 				 char *buf)
2680 {
2681 	struct bmc_device *bmc = to_bmc_device(dev);
2682 	struct ipmi_device_id id;
2683 	int rv;
2684 
2685 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2686 	if (rv)
2687 		return rv;
2688 
2689 	return snprintf(buf, 20, "%u.%u\n",
2690 			ipmi_version_major(&id),
2691 			ipmi_version_minor(&id));
2692 }
2693 static DEVICE_ATTR_RO(ipmi_version);
2694 
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2695 static ssize_t add_dev_support_show(struct device *dev,
2696 				    struct device_attribute *attr,
2697 				    char *buf)
2698 {
2699 	struct bmc_device *bmc = to_bmc_device(dev);
2700 	struct ipmi_device_id id;
2701 	int rv;
2702 
2703 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2704 	if (rv)
2705 		return rv;
2706 
2707 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2708 }
2709 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2710 		   NULL);
2711 
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2712 static ssize_t manufacturer_id_show(struct device *dev,
2713 				    struct device_attribute *attr,
2714 				    char *buf)
2715 {
2716 	struct bmc_device *bmc = to_bmc_device(dev);
2717 	struct ipmi_device_id id;
2718 	int rv;
2719 
2720 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2721 	if (rv)
2722 		return rv;
2723 
2724 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2725 }
2726 static DEVICE_ATTR_RO(manufacturer_id);
2727 
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2728 static ssize_t product_id_show(struct device *dev,
2729 			       struct device_attribute *attr,
2730 			       char *buf)
2731 {
2732 	struct bmc_device *bmc = to_bmc_device(dev);
2733 	struct ipmi_device_id id;
2734 	int rv;
2735 
2736 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2737 	if (rv)
2738 		return rv;
2739 
2740 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2741 }
2742 static DEVICE_ATTR_RO(product_id);
2743 
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2744 static ssize_t aux_firmware_rev_show(struct device *dev,
2745 				     struct device_attribute *attr,
2746 				     char *buf)
2747 {
2748 	struct bmc_device *bmc = to_bmc_device(dev);
2749 	struct ipmi_device_id id;
2750 	int rv;
2751 
2752 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2753 	if (rv)
2754 		return rv;
2755 
2756 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2757 			id.aux_firmware_revision[3],
2758 			id.aux_firmware_revision[2],
2759 			id.aux_firmware_revision[1],
2760 			id.aux_firmware_revision[0]);
2761 }
2762 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2763 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2764 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2765 			 char *buf)
2766 {
2767 	struct bmc_device *bmc = to_bmc_device(dev);
2768 	bool guid_set;
2769 	guid_t guid;
2770 	int rv;
2771 
2772 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2773 	if (rv)
2774 		return rv;
2775 	if (!guid_set)
2776 		return -ENOENT;
2777 
2778 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2779 }
2780 static DEVICE_ATTR_RO(guid);
2781 
2782 static struct attribute *bmc_dev_attrs[] = {
2783 	&dev_attr_device_id.attr,
2784 	&dev_attr_provides_device_sdrs.attr,
2785 	&dev_attr_revision.attr,
2786 	&dev_attr_firmware_revision.attr,
2787 	&dev_attr_ipmi_version.attr,
2788 	&dev_attr_additional_device_support.attr,
2789 	&dev_attr_manufacturer_id.attr,
2790 	&dev_attr_product_id.attr,
2791 	&dev_attr_aux_firmware_revision.attr,
2792 	&dev_attr_guid.attr,
2793 	NULL
2794 };
2795 
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2796 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2797 				       struct attribute *attr, int idx)
2798 {
2799 	struct device *dev = kobj_to_dev(kobj);
2800 	struct bmc_device *bmc = to_bmc_device(dev);
2801 	umode_t mode = attr->mode;
2802 	int rv;
2803 
2804 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2805 		struct ipmi_device_id id;
2806 
2807 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2808 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2809 	}
2810 	if (attr == &dev_attr_guid.attr) {
2811 		bool guid_set;
2812 
2813 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2814 		return (!rv && guid_set) ? mode : 0;
2815 	}
2816 	return mode;
2817 }
2818 
2819 static const struct attribute_group bmc_dev_attr_group = {
2820 	.attrs		= bmc_dev_attrs,
2821 	.is_visible	= bmc_dev_attr_is_visible,
2822 };
2823 
2824 static const struct attribute_group *bmc_dev_attr_groups[] = {
2825 	&bmc_dev_attr_group,
2826 	NULL
2827 };
2828 
2829 static const struct device_type bmc_device_type = {
2830 	.groups		= bmc_dev_attr_groups,
2831 };
2832 
__find_bmc_guid(struct device * dev,const void * data)2833 static int __find_bmc_guid(struct device *dev, const void *data)
2834 {
2835 	const guid_t *guid = data;
2836 	struct bmc_device *bmc;
2837 	int rv;
2838 
2839 	if (dev->type != &bmc_device_type)
2840 		return 0;
2841 
2842 	bmc = to_bmc_device(dev);
2843 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2844 	if (rv)
2845 		rv = kref_get_unless_zero(&bmc->usecount);
2846 	return rv;
2847 }
2848 
2849 /*
2850  * Returns with the bmc's usecount incremented, if it is non-NULL.
2851  */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2852 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2853 					     guid_t *guid)
2854 {
2855 	struct device *dev;
2856 	struct bmc_device *bmc = NULL;
2857 
2858 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2859 	if (dev) {
2860 		bmc = to_bmc_device(dev);
2861 		put_device(dev);
2862 	}
2863 	return bmc;
2864 }
2865 
2866 struct prod_dev_id {
2867 	unsigned int  product_id;
2868 	unsigned char device_id;
2869 };
2870 
__find_bmc_prod_dev_id(struct device * dev,const void * data)2871 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2872 {
2873 	const struct prod_dev_id *cid = data;
2874 	struct bmc_device *bmc;
2875 	int rv;
2876 
2877 	if (dev->type != &bmc_device_type)
2878 		return 0;
2879 
2880 	bmc = to_bmc_device(dev);
2881 	rv = (bmc->id.product_id == cid->product_id
2882 	      && bmc->id.device_id == cid->device_id);
2883 	if (rv)
2884 		rv = kref_get_unless_zero(&bmc->usecount);
2885 	return rv;
2886 }
2887 
2888 /*
2889  * Returns with the bmc's usecount incremented, if it is non-NULL.
2890  */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)2891 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2892 	struct device_driver *drv,
2893 	unsigned int product_id, unsigned char device_id)
2894 {
2895 	struct prod_dev_id id = {
2896 		.product_id = product_id,
2897 		.device_id = device_id,
2898 	};
2899 	struct device *dev;
2900 	struct bmc_device *bmc = NULL;
2901 
2902 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2903 	if (dev) {
2904 		bmc = to_bmc_device(dev);
2905 		put_device(dev);
2906 	}
2907 	return bmc;
2908 }
2909 
2910 static DEFINE_IDA(ipmi_bmc_ida);
2911 
2912 static void
release_bmc_device(struct device * dev)2913 release_bmc_device(struct device *dev)
2914 {
2915 	kfree(to_bmc_device(dev));
2916 }
2917 
cleanup_bmc_work(struct work_struct * work)2918 static void cleanup_bmc_work(struct work_struct *work)
2919 {
2920 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2921 					      remove_work);
2922 	int id = bmc->pdev.id; /* Unregister overwrites id */
2923 
2924 	platform_device_unregister(&bmc->pdev);
2925 	ida_simple_remove(&ipmi_bmc_ida, id);
2926 }
2927 
2928 static void
cleanup_bmc_device(struct kref * ref)2929 cleanup_bmc_device(struct kref *ref)
2930 {
2931 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2932 
2933 	/*
2934 	 * Remove the platform device in a work queue to avoid issues
2935 	 * with removing the device attributes while reading a device
2936 	 * attribute.
2937 	 */
2938 	schedule_work(&bmc->remove_work);
2939 }
2940 
2941 /*
2942  * Must be called with intf->bmc_reg_mutex held.
2943  */
__ipmi_bmc_unregister(struct ipmi_smi * intf)2944 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2945 {
2946 	struct bmc_device *bmc = intf->bmc;
2947 
2948 	if (!intf->bmc_registered)
2949 		return;
2950 
2951 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2952 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2953 	kfree(intf->my_dev_name);
2954 	intf->my_dev_name = NULL;
2955 
2956 	mutex_lock(&bmc->dyn_mutex);
2957 	list_del(&intf->bmc_link);
2958 	mutex_unlock(&bmc->dyn_mutex);
2959 	intf->bmc = &intf->tmp_bmc;
2960 	kref_put(&bmc->usecount, cleanup_bmc_device);
2961 	intf->bmc_registered = false;
2962 }
2963 
ipmi_bmc_unregister(struct ipmi_smi * intf)2964 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2965 {
2966 	mutex_lock(&intf->bmc_reg_mutex);
2967 	__ipmi_bmc_unregister(intf);
2968 	mutex_unlock(&intf->bmc_reg_mutex);
2969 }
2970 
2971 /*
2972  * Must be called with intf->bmc_reg_mutex held.
2973  */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)2974 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2975 			       struct ipmi_device_id *id,
2976 			       bool guid_set, guid_t *guid, int intf_num)
2977 {
2978 	int               rv;
2979 	struct bmc_device *bmc;
2980 	struct bmc_device *old_bmc;
2981 
2982 	/*
2983 	 * platform_device_register() can cause bmc_reg_mutex to
2984 	 * be claimed because of the is_visible functions of
2985 	 * the attributes.  Eliminate possible recursion and
2986 	 * release the lock.
2987 	 */
2988 	intf->in_bmc_register = true;
2989 	mutex_unlock(&intf->bmc_reg_mutex);
2990 
2991 	/*
2992 	 * Try to find if there is an bmc_device struct
2993 	 * representing the interfaced BMC already
2994 	 */
2995 	mutex_lock(&ipmidriver_mutex);
2996 	if (guid_set)
2997 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2998 	else
2999 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3000 						    id->product_id,
3001 						    id->device_id);
3002 
3003 	/*
3004 	 * If there is already an bmc_device, free the new one,
3005 	 * otherwise register the new BMC device
3006 	 */
3007 	if (old_bmc) {
3008 		bmc = old_bmc;
3009 		/*
3010 		 * Note: old_bmc already has usecount incremented by
3011 		 * the BMC find functions.
3012 		 */
3013 		intf->bmc = old_bmc;
3014 		mutex_lock(&bmc->dyn_mutex);
3015 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3016 		mutex_unlock(&bmc->dyn_mutex);
3017 
3018 		dev_info(intf->si_dev,
3019 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3020 			 bmc->id.manufacturer_id,
3021 			 bmc->id.product_id,
3022 			 bmc->id.device_id);
3023 	} else {
3024 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3025 		if (!bmc) {
3026 			rv = -ENOMEM;
3027 			goto out;
3028 		}
3029 		INIT_LIST_HEAD(&bmc->intfs);
3030 		mutex_init(&bmc->dyn_mutex);
3031 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3032 
3033 		bmc->id = *id;
3034 		bmc->dyn_id_set = 1;
3035 		bmc->dyn_guid_set = guid_set;
3036 		bmc->guid = *guid;
3037 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3038 
3039 		bmc->pdev.name = "ipmi_bmc";
3040 
3041 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3042 		if (rv < 0) {
3043 			kfree(bmc);
3044 			goto out;
3045 		}
3046 
3047 		bmc->pdev.dev.driver = &ipmidriver.driver;
3048 		bmc->pdev.id = rv;
3049 		bmc->pdev.dev.release = release_bmc_device;
3050 		bmc->pdev.dev.type = &bmc_device_type;
3051 		kref_init(&bmc->usecount);
3052 
3053 		intf->bmc = bmc;
3054 		mutex_lock(&bmc->dyn_mutex);
3055 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3056 		mutex_unlock(&bmc->dyn_mutex);
3057 
3058 		rv = platform_device_register(&bmc->pdev);
3059 		if (rv) {
3060 			dev_err(intf->si_dev,
3061 				"Unable to register bmc device: %d\n",
3062 				rv);
3063 			goto out_list_del;
3064 		}
3065 
3066 		dev_info(intf->si_dev,
3067 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3068 			 bmc->id.manufacturer_id,
3069 			 bmc->id.product_id,
3070 			 bmc->id.device_id);
3071 	}
3072 
3073 	/*
3074 	 * create symlink from system interface device to bmc device
3075 	 * and back.
3076 	 */
3077 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3078 	if (rv) {
3079 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3080 		goto out_put_bmc;
3081 	}
3082 
3083 	if (intf_num == -1)
3084 		intf_num = intf->intf_num;
3085 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3086 	if (!intf->my_dev_name) {
3087 		rv = -ENOMEM;
3088 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3089 			rv);
3090 		goto out_unlink1;
3091 	}
3092 
3093 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3094 			       intf->my_dev_name);
3095 	if (rv) {
3096 		kfree(intf->my_dev_name);
3097 		intf->my_dev_name = NULL;
3098 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3099 			rv);
3100 		goto out_free_my_dev_name;
3101 	}
3102 
3103 	intf->bmc_registered = true;
3104 
3105 out:
3106 	mutex_unlock(&ipmidriver_mutex);
3107 	mutex_lock(&intf->bmc_reg_mutex);
3108 	intf->in_bmc_register = false;
3109 	return rv;
3110 
3111 
3112 out_free_my_dev_name:
3113 	kfree(intf->my_dev_name);
3114 	intf->my_dev_name = NULL;
3115 
3116 out_unlink1:
3117 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3118 
3119 out_put_bmc:
3120 	mutex_lock(&bmc->dyn_mutex);
3121 	list_del(&intf->bmc_link);
3122 	mutex_unlock(&bmc->dyn_mutex);
3123 	intf->bmc = &intf->tmp_bmc;
3124 	kref_put(&bmc->usecount, cleanup_bmc_device);
3125 	goto out;
3126 
3127 out_list_del:
3128 	mutex_lock(&bmc->dyn_mutex);
3129 	list_del(&intf->bmc_link);
3130 	mutex_unlock(&bmc->dyn_mutex);
3131 	intf->bmc = &intf->tmp_bmc;
3132 	put_device(&bmc->pdev.dev);
3133 	goto out;
3134 }
3135 
3136 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3137 send_guid_cmd(struct ipmi_smi *intf, int chan)
3138 {
3139 	struct kernel_ipmi_msg            msg;
3140 	struct ipmi_system_interface_addr si;
3141 
3142 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3143 	si.channel = IPMI_BMC_CHANNEL;
3144 	si.lun = 0;
3145 
3146 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3147 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3148 	msg.data = NULL;
3149 	msg.data_len = 0;
3150 	return i_ipmi_request(NULL,
3151 			      intf,
3152 			      (struct ipmi_addr *) &si,
3153 			      0,
3154 			      &msg,
3155 			      intf,
3156 			      NULL,
3157 			      NULL,
3158 			      0,
3159 			      intf->addrinfo[0].address,
3160 			      intf->addrinfo[0].lun,
3161 			      -1, 0);
3162 }
3163 
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3164 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3165 {
3166 	struct bmc_device *bmc = intf->bmc;
3167 
3168 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3169 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3170 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3171 		/* Not for me */
3172 		return;
3173 
3174 	if (msg->msg.data[0] != 0) {
3175 		/* Error from getting the GUID, the BMC doesn't have one. */
3176 		bmc->dyn_guid_set = 0;
3177 		goto out;
3178 	}
3179 
3180 	if (msg->msg.data_len < UUID_SIZE + 1) {
3181 		bmc->dyn_guid_set = 0;
3182 		dev_warn(intf->si_dev,
3183 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3184 			 msg->msg.data_len, UUID_SIZE + 1);
3185 		goto out;
3186 	}
3187 
3188 	guid_copy(&bmc->fetch_guid, (guid_t *)(msg->msg.data + 1));
3189 	/*
3190 	 * Make sure the guid data is available before setting
3191 	 * dyn_guid_set.
3192 	 */
3193 	smp_wmb();
3194 	bmc->dyn_guid_set = 1;
3195  out:
3196 	wake_up(&intf->waitq);
3197 }
3198 
__get_guid(struct ipmi_smi * intf)3199 static void __get_guid(struct ipmi_smi *intf)
3200 {
3201 	int rv;
3202 	struct bmc_device *bmc = intf->bmc;
3203 
3204 	bmc->dyn_guid_set = 2;
3205 	intf->null_user_handler = guid_handler;
3206 	rv = send_guid_cmd(intf, 0);
3207 	if (rv)
3208 		/* Send failed, no GUID available. */
3209 		bmc->dyn_guid_set = 0;
3210 
3211 	wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3212 
3213 	/* dyn_guid_set makes the guid data available. */
3214 	smp_rmb();
3215 
3216 	intf->null_user_handler = NULL;
3217 }
3218 
3219 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3220 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3221 {
3222 	struct kernel_ipmi_msg            msg;
3223 	unsigned char                     data[1];
3224 	struct ipmi_system_interface_addr si;
3225 
3226 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3227 	si.channel = IPMI_BMC_CHANNEL;
3228 	si.lun = 0;
3229 
3230 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3231 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3232 	msg.data = data;
3233 	msg.data_len = 1;
3234 	data[0] = chan;
3235 	return i_ipmi_request(NULL,
3236 			      intf,
3237 			      (struct ipmi_addr *) &si,
3238 			      0,
3239 			      &msg,
3240 			      intf,
3241 			      NULL,
3242 			      NULL,
3243 			      0,
3244 			      intf->addrinfo[0].address,
3245 			      intf->addrinfo[0].lun,
3246 			      -1, 0);
3247 }
3248 
3249 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3250 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3251 {
3252 	int rv = 0;
3253 	int ch;
3254 	unsigned int set = intf->curr_working_cset;
3255 	struct ipmi_channel *chans;
3256 
3257 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3258 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3259 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3260 		/* It's the one we want */
3261 		if (msg->msg.data[0] != 0) {
3262 			/* Got an error from the channel, just go on. */
3263 
3264 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3265 				/*
3266 				 * If the MC does not support this
3267 				 * command, that is legal.  We just
3268 				 * assume it has one IPMB at channel
3269 				 * zero.
3270 				 */
3271 				intf->wchannels[set].c[0].medium
3272 					= IPMI_CHANNEL_MEDIUM_IPMB;
3273 				intf->wchannels[set].c[0].protocol
3274 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3275 
3276 				intf->channel_list = intf->wchannels + set;
3277 				intf->channels_ready = true;
3278 				wake_up(&intf->waitq);
3279 				goto out;
3280 			}
3281 			goto next_channel;
3282 		}
3283 		if (msg->msg.data_len < 4) {
3284 			/* Message not big enough, just go on. */
3285 			goto next_channel;
3286 		}
3287 		ch = intf->curr_channel;
3288 		chans = intf->wchannels[set].c;
3289 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3290 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3291 
3292  next_channel:
3293 		intf->curr_channel++;
3294 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3295 			intf->channel_list = intf->wchannels + set;
3296 			intf->channels_ready = true;
3297 			wake_up(&intf->waitq);
3298 		} else {
3299 			intf->channel_list = intf->wchannels + set;
3300 			intf->channels_ready = true;
3301 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3302 		}
3303 
3304 		if (rv) {
3305 			/* Got an error somehow, just give up. */
3306 			dev_warn(intf->si_dev,
3307 				 "Error sending channel information for channel %d: %d\n",
3308 				 intf->curr_channel, rv);
3309 
3310 			intf->channel_list = intf->wchannels + set;
3311 			intf->channels_ready = true;
3312 			wake_up(&intf->waitq);
3313 		}
3314 	}
3315  out:
3316 	return;
3317 }
3318 
3319 /*
3320  * Must be holding intf->bmc_reg_mutex to call this.
3321  */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3322 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3323 {
3324 	int rv;
3325 
3326 	if (ipmi_version_major(id) > 1
3327 			|| (ipmi_version_major(id) == 1
3328 			    && ipmi_version_minor(id) >= 5)) {
3329 		unsigned int set;
3330 
3331 		/*
3332 		 * Start scanning the channels to see what is
3333 		 * available.
3334 		 */
3335 		set = !intf->curr_working_cset;
3336 		intf->curr_working_cset = set;
3337 		memset(&intf->wchannels[set], 0,
3338 		       sizeof(struct ipmi_channel_set));
3339 
3340 		intf->null_user_handler = channel_handler;
3341 		intf->curr_channel = 0;
3342 		rv = send_channel_info_cmd(intf, 0);
3343 		if (rv) {
3344 			dev_warn(intf->si_dev,
3345 				 "Error sending channel information for channel 0, %d\n",
3346 				 rv);
3347 			return -EIO;
3348 		}
3349 
3350 		/* Wait for the channel info to be read. */
3351 		wait_event(intf->waitq, intf->channels_ready);
3352 		intf->null_user_handler = NULL;
3353 	} else {
3354 		unsigned int set = intf->curr_working_cset;
3355 
3356 		/* Assume a single IPMB channel at zero. */
3357 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3358 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3359 		intf->channel_list = intf->wchannels + set;
3360 		intf->channels_ready = true;
3361 	}
3362 
3363 	return 0;
3364 }
3365 
ipmi_poll(struct ipmi_smi * intf)3366 static void ipmi_poll(struct ipmi_smi *intf)
3367 {
3368 	if (intf->handlers->poll)
3369 		intf->handlers->poll(intf->send_info);
3370 	/* In case something came in */
3371 	handle_new_recv_msgs(intf);
3372 }
3373 
ipmi_poll_interface(struct ipmi_user * user)3374 void ipmi_poll_interface(struct ipmi_user *user)
3375 {
3376 	ipmi_poll(user->intf);
3377 }
3378 EXPORT_SYMBOL(ipmi_poll_interface);
3379 
redo_bmc_reg(struct work_struct * work)3380 static void redo_bmc_reg(struct work_struct *work)
3381 {
3382 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3383 					     bmc_reg_work);
3384 
3385 	if (!intf->in_shutdown)
3386 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3387 
3388 	kref_put(&intf->refcount, intf_free);
3389 }
3390 
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3391 int ipmi_add_smi(struct module         *owner,
3392 		 const struct ipmi_smi_handlers *handlers,
3393 		 void		       *send_info,
3394 		 struct device         *si_dev,
3395 		 unsigned char         slave_addr)
3396 {
3397 	int              i, j;
3398 	int              rv;
3399 	struct ipmi_smi *intf, *tintf;
3400 	struct list_head *link;
3401 	struct ipmi_device_id id;
3402 
3403 	/*
3404 	 * Make sure the driver is actually initialized, this handles
3405 	 * problems with initialization order.
3406 	 */
3407 	rv = ipmi_init_msghandler();
3408 	if (rv)
3409 		return rv;
3410 
3411 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3412 	if (!intf)
3413 		return -ENOMEM;
3414 
3415 	rv = init_srcu_struct(&intf->users_srcu);
3416 	if (rv) {
3417 		kfree(intf);
3418 		return rv;
3419 	}
3420 
3421 	intf->owner = owner;
3422 	intf->bmc = &intf->tmp_bmc;
3423 	INIT_LIST_HEAD(&intf->bmc->intfs);
3424 	mutex_init(&intf->bmc->dyn_mutex);
3425 	INIT_LIST_HEAD(&intf->bmc_link);
3426 	mutex_init(&intf->bmc_reg_mutex);
3427 	intf->intf_num = -1; /* Mark it invalid for now. */
3428 	kref_init(&intf->refcount);
3429 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3430 	intf->si_dev = si_dev;
3431 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3432 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3433 		intf->addrinfo[j].lun = 2;
3434 	}
3435 	if (slave_addr != 0)
3436 		intf->addrinfo[0].address = slave_addr;
3437 	INIT_LIST_HEAD(&intf->users);
3438 	intf->handlers = handlers;
3439 	intf->send_info = send_info;
3440 	spin_lock_init(&intf->seq_lock);
3441 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3442 		intf->seq_table[j].inuse = 0;
3443 		intf->seq_table[j].seqid = 0;
3444 	}
3445 	intf->curr_seq = 0;
3446 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3447 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3448 	tasklet_init(&intf->recv_tasklet,
3449 		     smi_recv_tasklet,
3450 		     (unsigned long) intf);
3451 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3452 	spin_lock_init(&intf->xmit_msgs_lock);
3453 	INIT_LIST_HEAD(&intf->xmit_msgs);
3454 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3455 	spin_lock_init(&intf->events_lock);
3456 	spin_lock_init(&intf->watch_lock);
3457 	atomic_set(&intf->event_waiters, 0);
3458 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3459 	INIT_LIST_HEAD(&intf->waiting_events);
3460 	intf->waiting_events_count = 0;
3461 	mutex_init(&intf->cmd_rcvrs_mutex);
3462 	spin_lock_init(&intf->maintenance_mode_lock);
3463 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3464 	init_waitqueue_head(&intf->waitq);
3465 	for (i = 0; i < IPMI_NUM_STATS; i++)
3466 		atomic_set(&intf->stats[i], 0);
3467 
3468 	mutex_lock(&ipmi_interfaces_mutex);
3469 	/* Look for a hole in the numbers. */
3470 	i = 0;
3471 	link = &ipmi_interfaces;
3472 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3473 		if (tintf->intf_num != i) {
3474 			link = &tintf->link;
3475 			break;
3476 		}
3477 		i++;
3478 	}
3479 	/* Add the new interface in numeric order. */
3480 	if (i == 0)
3481 		list_add_rcu(&intf->link, &ipmi_interfaces);
3482 	else
3483 		list_add_tail_rcu(&intf->link, link);
3484 
3485 	rv = handlers->start_processing(send_info, intf);
3486 	if (rv)
3487 		goto out_err;
3488 
3489 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3490 	if (rv) {
3491 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3492 		goto out_err_started;
3493 	}
3494 
3495 	mutex_lock(&intf->bmc_reg_mutex);
3496 	rv = __scan_channels(intf, &id);
3497 	mutex_unlock(&intf->bmc_reg_mutex);
3498 	if (rv)
3499 		goto out_err_bmc_reg;
3500 
3501 	/*
3502 	 * Keep memory order straight for RCU readers.  Make
3503 	 * sure everything else is committed to memory before
3504 	 * setting intf_num to mark the interface valid.
3505 	 */
3506 	smp_wmb();
3507 	intf->intf_num = i;
3508 	mutex_unlock(&ipmi_interfaces_mutex);
3509 
3510 	/* After this point the interface is legal to use. */
3511 	call_smi_watchers(i, intf->si_dev);
3512 
3513 	return 0;
3514 
3515  out_err_bmc_reg:
3516 	ipmi_bmc_unregister(intf);
3517  out_err_started:
3518 	if (intf->handlers->shutdown)
3519 		intf->handlers->shutdown(intf->send_info);
3520  out_err:
3521 	list_del_rcu(&intf->link);
3522 	mutex_unlock(&ipmi_interfaces_mutex);
3523 	synchronize_srcu(&ipmi_interfaces_srcu);
3524 	cleanup_srcu_struct(&intf->users_srcu);
3525 	kref_put(&intf->refcount, intf_free);
3526 
3527 	return rv;
3528 }
3529 EXPORT_SYMBOL(ipmi_add_smi);
3530 
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3531 static void deliver_smi_err_response(struct ipmi_smi *intf,
3532 				     struct ipmi_smi_msg *msg,
3533 				     unsigned char err)
3534 {
3535 	msg->rsp[0] = msg->data[0] | 4;
3536 	msg->rsp[1] = msg->data[1];
3537 	msg->rsp[2] = err;
3538 	msg->rsp_size = 3;
3539 	/* It's an error, so it will never requeue, no need to check return. */
3540 	handle_one_recv_msg(intf, msg);
3541 }
3542 
cleanup_smi_msgs(struct ipmi_smi * intf)3543 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3544 {
3545 	int              i;
3546 	struct seq_table *ent;
3547 	struct ipmi_smi_msg *msg;
3548 	struct list_head *entry;
3549 	struct list_head tmplist;
3550 
3551 	/* Clear out our transmit queues and hold the messages. */
3552 	INIT_LIST_HEAD(&tmplist);
3553 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3554 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3555 
3556 	/* Current message first, to preserve order */
3557 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3558 		/* Wait for the message to clear out. */
3559 		schedule_timeout(1);
3560 	}
3561 
3562 	/* No need for locks, the interface is down. */
3563 
3564 	/*
3565 	 * Return errors for all pending messages in queue and in the
3566 	 * tables waiting for remote responses.
3567 	 */
3568 	while (!list_empty(&tmplist)) {
3569 		entry = tmplist.next;
3570 		list_del(entry);
3571 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3572 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3573 	}
3574 
3575 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3576 		ent = &intf->seq_table[i];
3577 		if (!ent->inuse)
3578 			continue;
3579 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3580 	}
3581 }
3582 
ipmi_unregister_smi(struct ipmi_smi * intf)3583 void ipmi_unregister_smi(struct ipmi_smi *intf)
3584 {
3585 	struct ipmi_smi_watcher *w;
3586 	int intf_num = intf->intf_num, index;
3587 
3588 	mutex_lock(&ipmi_interfaces_mutex);
3589 	intf->intf_num = -1;
3590 	intf->in_shutdown = true;
3591 	list_del_rcu(&intf->link);
3592 	mutex_unlock(&ipmi_interfaces_mutex);
3593 	synchronize_srcu(&ipmi_interfaces_srcu);
3594 
3595 	/* At this point no users can be added to the interface. */
3596 
3597 	/*
3598 	 * Call all the watcher interfaces to tell them that
3599 	 * an interface is going away.
3600 	 */
3601 	mutex_lock(&smi_watchers_mutex);
3602 	list_for_each_entry(w, &smi_watchers, link)
3603 		w->smi_gone(intf_num);
3604 	mutex_unlock(&smi_watchers_mutex);
3605 
3606 	index = srcu_read_lock(&intf->users_srcu);
3607 	while (!list_empty(&intf->users)) {
3608 		struct ipmi_user *user =
3609 			container_of(list_next_rcu(&intf->users),
3610 				     struct ipmi_user, link);
3611 
3612 		_ipmi_destroy_user(user);
3613 	}
3614 	srcu_read_unlock(&intf->users_srcu, index);
3615 
3616 	if (intf->handlers->shutdown)
3617 		intf->handlers->shutdown(intf->send_info);
3618 
3619 	cleanup_smi_msgs(intf);
3620 
3621 	ipmi_bmc_unregister(intf);
3622 
3623 	cleanup_srcu_struct(&intf->users_srcu);
3624 	kref_put(&intf->refcount, intf_free);
3625 }
3626 EXPORT_SYMBOL(ipmi_unregister_smi);
3627 
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3628 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3629 				   struct ipmi_smi_msg *msg)
3630 {
3631 	struct ipmi_ipmb_addr ipmb_addr;
3632 	struct ipmi_recv_msg  *recv_msg;
3633 
3634 	/*
3635 	 * This is 11, not 10, because the response must contain a
3636 	 * completion code.
3637 	 */
3638 	if (msg->rsp_size < 11) {
3639 		/* Message not big enough, just ignore it. */
3640 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3641 		return 0;
3642 	}
3643 
3644 	if (msg->rsp[2] != 0) {
3645 		/* An error getting the response, just ignore it. */
3646 		return 0;
3647 	}
3648 
3649 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3650 	ipmb_addr.slave_addr = msg->rsp[6];
3651 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3652 	ipmb_addr.lun = msg->rsp[7] & 3;
3653 
3654 	/*
3655 	 * It's a response from a remote entity.  Look up the sequence
3656 	 * number and handle the response.
3657 	 */
3658 	if (intf_find_seq(intf,
3659 			  msg->rsp[7] >> 2,
3660 			  msg->rsp[3] & 0x0f,
3661 			  msg->rsp[8],
3662 			  (msg->rsp[4] >> 2) & (~1),
3663 			  (struct ipmi_addr *) &ipmb_addr,
3664 			  &recv_msg)) {
3665 		/*
3666 		 * We were unable to find the sequence number,
3667 		 * so just nuke the message.
3668 		 */
3669 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3670 		return 0;
3671 	}
3672 
3673 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3674 	/*
3675 	 * The other fields matched, so no need to set them, except
3676 	 * for netfn, which needs to be the response that was
3677 	 * returned, not the request value.
3678 	 */
3679 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3680 	recv_msg->msg.data = recv_msg->msg_data;
3681 	recv_msg->msg.data_len = msg->rsp_size - 10;
3682 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3683 	if (deliver_response(intf, recv_msg))
3684 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3685 	else
3686 		ipmi_inc_stat(intf, handled_ipmb_responses);
3687 
3688 	return 0;
3689 }
3690 
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3691 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3692 				   struct ipmi_smi_msg *msg)
3693 {
3694 	struct cmd_rcvr          *rcvr;
3695 	int                      rv = 0;
3696 	unsigned char            netfn;
3697 	unsigned char            cmd;
3698 	unsigned char            chan;
3699 	struct ipmi_user         *user = NULL;
3700 	struct ipmi_ipmb_addr    *ipmb_addr;
3701 	struct ipmi_recv_msg     *recv_msg;
3702 
3703 	if (msg->rsp_size < 10) {
3704 		/* Message not big enough, just ignore it. */
3705 		ipmi_inc_stat(intf, invalid_commands);
3706 		return 0;
3707 	}
3708 
3709 	if (msg->rsp[2] != 0) {
3710 		/* An error getting the response, just ignore it. */
3711 		return 0;
3712 	}
3713 
3714 	netfn = msg->rsp[4] >> 2;
3715 	cmd = msg->rsp[8];
3716 	chan = msg->rsp[3] & 0xf;
3717 
3718 	rcu_read_lock();
3719 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3720 	if (rcvr) {
3721 		user = rcvr->user;
3722 		kref_get(&user->refcount);
3723 	} else
3724 		user = NULL;
3725 	rcu_read_unlock();
3726 
3727 	if (user == NULL) {
3728 		/* We didn't find a user, deliver an error response. */
3729 		ipmi_inc_stat(intf, unhandled_commands);
3730 
3731 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3732 		msg->data[1] = IPMI_SEND_MSG_CMD;
3733 		msg->data[2] = msg->rsp[3];
3734 		msg->data[3] = msg->rsp[6];
3735 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3736 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3737 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3738 		/* rqseq/lun */
3739 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3740 		msg->data[8] = msg->rsp[8]; /* cmd */
3741 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3742 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3743 		msg->data_size = 11;
3744 
3745 		ipmi_debug_msg("Invalid command:", msg->data, msg->data_size);
3746 
3747 		rcu_read_lock();
3748 		if (!intf->in_shutdown) {
3749 			smi_send(intf, intf->handlers, msg, 0);
3750 			/*
3751 			 * We used the message, so return the value
3752 			 * that causes it to not be freed or
3753 			 * queued.
3754 			 */
3755 			rv = -1;
3756 		}
3757 		rcu_read_unlock();
3758 	} else {
3759 		recv_msg = ipmi_alloc_recv_msg();
3760 		if (!recv_msg) {
3761 			/*
3762 			 * We couldn't allocate memory for the
3763 			 * message, so requeue it for handling
3764 			 * later.
3765 			 */
3766 			rv = 1;
3767 			kref_put(&user->refcount, free_user);
3768 		} else {
3769 			/* Extract the source address from the data. */
3770 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3771 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3772 			ipmb_addr->slave_addr = msg->rsp[6];
3773 			ipmb_addr->lun = msg->rsp[7] & 3;
3774 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3775 
3776 			/*
3777 			 * Extract the rest of the message information
3778 			 * from the IPMB header.
3779 			 */
3780 			recv_msg->user = user;
3781 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3782 			recv_msg->msgid = msg->rsp[7] >> 2;
3783 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3784 			recv_msg->msg.cmd = msg->rsp[8];
3785 			recv_msg->msg.data = recv_msg->msg_data;
3786 
3787 			/*
3788 			 * We chop off 10, not 9 bytes because the checksum
3789 			 * at the end also needs to be removed.
3790 			 */
3791 			recv_msg->msg.data_len = msg->rsp_size - 10;
3792 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3793 			       msg->rsp_size - 10);
3794 			if (deliver_response(intf, recv_msg))
3795 				ipmi_inc_stat(intf, unhandled_commands);
3796 			else
3797 				ipmi_inc_stat(intf, handled_commands);
3798 		}
3799 	}
3800 
3801 	return rv;
3802 }
3803 
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3804 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3805 				  struct ipmi_smi_msg *msg)
3806 {
3807 	struct ipmi_lan_addr  lan_addr;
3808 	struct ipmi_recv_msg  *recv_msg;
3809 
3810 
3811 	/*
3812 	 * This is 13, not 12, because the response must contain a
3813 	 * completion code.
3814 	 */
3815 	if (msg->rsp_size < 13) {
3816 		/* Message not big enough, just ignore it. */
3817 		ipmi_inc_stat(intf, invalid_lan_responses);
3818 		return 0;
3819 	}
3820 
3821 	if (msg->rsp[2] != 0) {
3822 		/* An error getting the response, just ignore it. */
3823 		return 0;
3824 	}
3825 
3826 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3827 	lan_addr.session_handle = msg->rsp[4];
3828 	lan_addr.remote_SWID = msg->rsp[8];
3829 	lan_addr.local_SWID = msg->rsp[5];
3830 	lan_addr.channel = msg->rsp[3] & 0x0f;
3831 	lan_addr.privilege = msg->rsp[3] >> 4;
3832 	lan_addr.lun = msg->rsp[9] & 3;
3833 
3834 	/*
3835 	 * It's a response from a remote entity.  Look up the sequence
3836 	 * number and handle the response.
3837 	 */
3838 	if (intf_find_seq(intf,
3839 			  msg->rsp[9] >> 2,
3840 			  msg->rsp[3] & 0x0f,
3841 			  msg->rsp[10],
3842 			  (msg->rsp[6] >> 2) & (~1),
3843 			  (struct ipmi_addr *) &lan_addr,
3844 			  &recv_msg)) {
3845 		/*
3846 		 * We were unable to find the sequence number,
3847 		 * so just nuke the message.
3848 		 */
3849 		ipmi_inc_stat(intf, unhandled_lan_responses);
3850 		return 0;
3851 	}
3852 
3853 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3854 	/*
3855 	 * The other fields matched, so no need to set them, except
3856 	 * for netfn, which needs to be the response that was
3857 	 * returned, not the request value.
3858 	 */
3859 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3860 	recv_msg->msg.data = recv_msg->msg_data;
3861 	recv_msg->msg.data_len = msg->rsp_size - 12;
3862 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3863 	if (deliver_response(intf, recv_msg))
3864 		ipmi_inc_stat(intf, unhandled_lan_responses);
3865 	else
3866 		ipmi_inc_stat(intf, handled_lan_responses);
3867 
3868 	return 0;
3869 }
3870 
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3871 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3872 				  struct ipmi_smi_msg *msg)
3873 {
3874 	struct cmd_rcvr          *rcvr;
3875 	int                      rv = 0;
3876 	unsigned char            netfn;
3877 	unsigned char            cmd;
3878 	unsigned char            chan;
3879 	struct ipmi_user         *user = NULL;
3880 	struct ipmi_lan_addr     *lan_addr;
3881 	struct ipmi_recv_msg     *recv_msg;
3882 
3883 	if (msg->rsp_size < 12) {
3884 		/* Message not big enough, just ignore it. */
3885 		ipmi_inc_stat(intf, invalid_commands);
3886 		return 0;
3887 	}
3888 
3889 	if (msg->rsp[2] != 0) {
3890 		/* An error getting the response, just ignore it. */
3891 		return 0;
3892 	}
3893 
3894 	netfn = msg->rsp[6] >> 2;
3895 	cmd = msg->rsp[10];
3896 	chan = msg->rsp[3] & 0xf;
3897 
3898 	rcu_read_lock();
3899 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3900 	if (rcvr) {
3901 		user = rcvr->user;
3902 		kref_get(&user->refcount);
3903 	} else
3904 		user = NULL;
3905 	rcu_read_unlock();
3906 
3907 	if (user == NULL) {
3908 		/* We didn't find a user, just give up. */
3909 		ipmi_inc_stat(intf, unhandled_commands);
3910 
3911 		/*
3912 		 * Don't do anything with these messages, just allow
3913 		 * them to be freed.
3914 		 */
3915 		rv = 0;
3916 	} else {
3917 		recv_msg = ipmi_alloc_recv_msg();
3918 		if (!recv_msg) {
3919 			/*
3920 			 * We couldn't allocate memory for the
3921 			 * message, so requeue it for handling later.
3922 			 */
3923 			rv = 1;
3924 			kref_put(&user->refcount, free_user);
3925 		} else {
3926 			/* Extract the source address from the data. */
3927 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3928 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3929 			lan_addr->session_handle = msg->rsp[4];
3930 			lan_addr->remote_SWID = msg->rsp[8];
3931 			lan_addr->local_SWID = msg->rsp[5];
3932 			lan_addr->lun = msg->rsp[9] & 3;
3933 			lan_addr->channel = msg->rsp[3] & 0xf;
3934 			lan_addr->privilege = msg->rsp[3] >> 4;
3935 
3936 			/*
3937 			 * Extract the rest of the message information
3938 			 * from the IPMB header.
3939 			 */
3940 			recv_msg->user = user;
3941 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3942 			recv_msg->msgid = msg->rsp[9] >> 2;
3943 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3944 			recv_msg->msg.cmd = msg->rsp[10];
3945 			recv_msg->msg.data = recv_msg->msg_data;
3946 
3947 			/*
3948 			 * We chop off 12, not 11 bytes because the checksum
3949 			 * at the end also needs to be removed.
3950 			 */
3951 			recv_msg->msg.data_len = msg->rsp_size - 12;
3952 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3953 			       msg->rsp_size - 12);
3954 			if (deliver_response(intf, recv_msg))
3955 				ipmi_inc_stat(intf, unhandled_commands);
3956 			else
3957 				ipmi_inc_stat(intf, handled_commands);
3958 		}
3959 	}
3960 
3961 	return rv;
3962 }
3963 
3964 /*
3965  * This routine will handle "Get Message" command responses with
3966  * channels that use an OEM Medium. The message format belongs to
3967  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3968  * Chapter 22, sections 22.6 and 22.24 for more details.
3969  */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3970 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3971 				  struct ipmi_smi_msg *msg)
3972 {
3973 	struct cmd_rcvr       *rcvr;
3974 	int                   rv = 0;
3975 	unsigned char         netfn;
3976 	unsigned char         cmd;
3977 	unsigned char         chan;
3978 	struct ipmi_user *user = NULL;
3979 	struct ipmi_system_interface_addr *smi_addr;
3980 	struct ipmi_recv_msg  *recv_msg;
3981 
3982 	/*
3983 	 * We expect the OEM SW to perform error checking
3984 	 * so we just do some basic sanity checks
3985 	 */
3986 	if (msg->rsp_size < 4) {
3987 		/* Message not big enough, just ignore it. */
3988 		ipmi_inc_stat(intf, invalid_commands);
3989 		return 0;
3990 	}
3991 
3992 	if (msg->rsp[2] != 0) {
3993 		/* An error getting the response, just ignore it. */
3994 		return 0;
3995 	}
3996 
3997 	/*
3998 	 * This is an OEM Message so the OEM needs to know how
3999 	 * handle the message. We do no interpretation.
4000 	 */
4001 	netfn = msg->rsp[0] >> 2;
4002 	cmd = msg->rsp[1];
4003 	chan = msg->rsp[3] & 0xf;
4004 
4005 	rcu_read_lock();
4006 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4007 	if (rcvr) {
4008 		user = rcvr->user;
4009 		kref_get(&user->refcount);
4010 	} else
4011 		user = NULL;
4012 	rcu_read_unlock();
4013 
4014 	if (user == NULL) {
4015 		/* We didn't find a user, just give up. */
4016 		ipmi_inc_stat(intf, unhandled_commands);
4017 
4018 		/*
4019 		 * Don't do anything with these messages, just allow
4020 		 * them to be freed.
4021 		 */
4022 
4023 		rv = 0;
4024 	} else {
4025 		recv_msg = ipmi_alloc_recv_msg();
4026 		if (!recv_msg) {
4027 			/*
4028 			 * We couldn't allocate memory for the
4029 			 * message, so requeue it for handling
4030 			 * later.
4031 			 */
4032 			rv = 1;
4033 			kref_put(&user->refcount, free_user);
4034 		} else {
4035 			/*
4036 			 * OEM Messages are expected to be delivered via
4037 			 * the system interface to SMS software.  We might
4038 			 * need to visit this again depending on OEM
4039 			 * requirements
4040 			 */
4041 			smi_addr = ((struct ipmi_system_interface_addr *)
4042 				    &recv_msg->addr);
4043 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4044 			smi_addr->channel = IPMI_BMC_CHANNEL;
4045 			smi_addr->lun = msg->rsp[0] & 3;
4046 
4047 			recv_msg->user = user;
4048 			recv_msg->user_msg_data = NULL;
4049 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4050 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4051 			recv_msg->msg.cmd = msg->rsp[1];
4052 			recv_msg->msg.data = recv_msg->msg_data;
4053 
4054 			/*
4055 			 * The message starts at byte 4 which follows the
4056 			 * the Channel Byte in the "GET MESSAGE" command
4057 			 */
4058 			recv_msg->msg.data_len = msg->rsp_size - 4;
4059 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4060 			       msg->rsp_size - 4);
4061 			if (deliver_response(intf, recv_msg))
4062 				ipmi_inc_stat(intf, unhandled_commands);
4063 			else
4064 				ipmi_inc_stat(intf, handled_commands);
4065 		}
4066 	}
4067 
4068 	return rv;
4069 }
4070 
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4071 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4072 				     struct ipmi_smi_msg  *msg)
4073 {
4074 	struct ipmi_system_interface_addr *smi_addr;
4075 
4076 	recv_msg->msgid = 0;
4077 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4078 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4079 	smi_addr->channel = IPMI_BMC_CHANNEL;
4080 	smi_addr->lun = msg->rsp[0] & 3;
4081 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4082 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4083 	recv_msg->msg.cmd = msg->rsp[1];
4084 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4085 	recv_msg->msg.data = recv_msg->msg_data;
4086 	recv_msg->msg.data_len = msg->rsp_size - 3;
4087 }
4088 
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4089 static int handle_read_event_rsp(struct ipmi_smi *intf,
4090 				 struct ipmi_smi_msg *msg)
4091 {
4092 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4093 	struct list_head     msgs;
4094 	struct ipmi_user     *user;
4095 	int rv = 0, deliver_count = 0, index;
4096 	unsigned long        flags;
4097 
4098 	if (msg->rsp_size < 19) {
4099 		/* Message is too small to be an IPMB event. */
4100 		ipmi_inc_stat(intf, invalid_events);
4101 		return 0;
4102 	}
4103 
4104 	if (msg->rsp[2] != 0) {
4105 		/* An error getting the event, just ignore it. */
4106 		return 0;
4107 	}
4108 
4109 	INIT_LIST_HEAD(&msgs);
4110 
4111 	spin_lock_irqsave(&intf->events_lock, flags);
4112 
4113 	ipmi_inc_stat(intf, events);
4114 
4115 	/*
4116 	 * Allocate and fill in one message for every user that is
4117 	 * getting events.
4118 	 */
4119 	index = srcu_read_lock(&intf->users_srcu);
4120 	list_for_each_entry_rcu(user, &intf->users, link) {
4121 		if (!user->gets_events)
4122 			continue;
4123 
4124 		recv_msg = ipmi_alloc_recv_msg();
4125 		if (!recv_msg) {
4126 			rcu_read_unlock();
4127 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4128 						 link) {
4129 				list_del(&recv_msg->link);
4130 				ipmi_free_recv_msg(recv_msg);
4131 			}
4132 			/*
4133 			 * We couldn't allocate memory for the
4134 			 * message, so requeue it for handling
4135 			 * later.
4136 			 */
4137 			rv = 1;
4138 			goto out;
4139 		}
4140 
4141 		deliver_count++;
4142 
4143 		copy_event_into_recv_msg(recv_msg, msg);
4144 		recv_msg->user = user;
4145 		kref_get(&user->refcount);
4146 		list_add_tail(&recv_msg->link, &msgs);
4147 	}
4148 	srcu_read_unlock(&intf->users_srcu, index);
4149 
4150 	if (deliver_count) {
4151 		/* Now deliver all the messages. */
4152 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4153 			list_del(&recv_msg->link);
4154 			deliver_local_response(intf, recv_msg);
4155 		}
4156 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4157 		/*
4158 		 * No one to receive the message, put it in queue if there's
4159 		 * not already too many things in the queue.
4160 		 */
4161 		recv_msg = ipmi_alloc_recv_msg();
4162 		if (!recv_msg) {
4163 			/*
4164 			 * We couldn't allocate memory for the
4165 			 * message, so requeue it for handling
4166 			 * later.
4167 			 */
4168 			rv = 1;
4169 			goto out;
4170 		}
4171 
4172 		copy_event_into_recv_msg(recv_msg, msg);
4173 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4174 		intf->waiting_events_count++;
4175 	} else if (!intf->event_msg_printed) {
4176 		/*
4177 		 * There's too many things in the queue, discard this
4178 		 * message.
4179 		 */
4180 		dev_warn(intf->si_dev,
4181 			 "Event queue full, discarding incoming events\n");
4182 		intf->event_msg_printed = 1;
4183 	}
4184 
4185  out:
4186 	spin_unlock_irqrestore(&intf->events_lock, flags);
4187 
4188 	return rv;
4189 }
4190 
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4191 static int handle_bmc_rsp(struct ipmi_smi *intf,
4192 			  struct ipmi_smi_msg *msg)
4193 {
4194 	struct ipmi_recv_msg *recv_msg;
4195 	struct ipmi_system_interface_addr *smi_addr;
4196 
4197 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4198 	if (recv_msg == NULL) {
4199 		dev_warn(intf->si_dev,
4200 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4201 		return 0;
4202 	}
4203 
4204 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4205 	recv_msg->msgid = msg->msgid;
4206 	smi_addr = ((struct ipmi_system_interface_addr *)
4207 		    &recv_msg->addr);
4208 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4209 	smi_addr->channel = IPMI_BMC_CHANNEL;
4210 	smi_addr->lun = msg->rsp[0] & 3;
4211 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4212 	recv_msg->msg.cmd = msg->rsp[1];
4213 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4214 	recv_msg->msg.data = recv_msg->msg_data;
4215 	recv_msg->msg.data_len = msg->rsp_size - 2;
4216 	deliver_local_response(intf, recv_msg);
4217 
4218 	return 0;
4219 }
4220 
4221 /*
4222  * Handle a received message.  Return 1 if the message should be requeued,
4223  * 0 if the message should be freed, or -1 if the message should not
4224  * be freed or requeued.
4225  */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4226 static int handle_one_recv_msg(struct ipmi_smi *intf,
4227 			       struct ipmi_smi_msg *msg)
4228 {
4229 	int requeue;
4230 	int chan;
4231 
4232 	ipmi_debug_msg("Recv:", msg->rsp, msg->rsp_size);
4233 
4234 	if ((msg->data_size >= 2)
4235 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4236 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4237 	    && (msg->user_data == NULL)) {
4238 
4239 		if (intf->in_shutdown)
4240 			goto free_msg;
4241 
4242 		/*
4243 		 * This is the local response to a command send, start
4244 		 * the timer for these.  The user_data will not be
4245 		 * NULL if this is a response send, and we will let
4246 		 * response sends just go through.
4247 		 */
4248 
4249 		/*
4250 		 * Check for errors, if we get certain errors (ones
4251 		 * that mean basically we can try again later), we
4252 		 * ignore them and start the timer.  Otherwise we
4253 		 * report the error immediately.
4254 		 */
4255 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4256 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4257 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4258 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4259 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4260 			int ch = msg->rsp[3] & 0xf;
4261 			struct ipmi_channel *chans;
4262 
4263 			/* Got an error sending the message, handle it. */
4264 
4265 			chans = READ_ONCE(intf->channel_list)->c;
4266 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4267 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4268 				ipmi_inc_stat(intf, sent_lan_command_errs);
4269 			else
4270 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4271 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4272 		} else
4273 			/* The message was sent, start the timer. */
4274 			intf_start_seq_timer(intf, msg->msgid);
4275 free_msg:
4276 		requeue = 0;
4277 		goto out;
4278 
4279 	} else if (msg->rsp_size < 2) {
4280 		/* Message is too small to be correct. */
4281 		dev_warn(intf->si_dev,
4282 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4283 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4284 
4285 		/* Generate an error response for the message. */
4286 		msg->rsp[0] = msg->data[0] | (1 << 2);
4287 		msg->rsp[1] = msg->data[1];
4288 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4289 		msg->rsp_size = 3;
4290 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4291 		   || (msg->rsp[1] != msg->data[1])) {
4292 		/*
4293 		 * The NetFN and Command in the response is not even
4294 		 * marginally correct.
4295 		 */
4296 		dev_warn(intf->si_dev,
4297 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4298 			 (msg->data[0] >> 2) | 1, msg->data[1],
4299 			 msg->rsp[0] >> 2, msg->rsp[1]);
4300 
4301 		/* Generate an error response for the message. */
4302 		msg->rsp[0] = msg->data[0] | (1 << 2);
4303 		msg->rsp[1] = msg->data[1];
4304 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4305 		msg->rsp_size = 3;
4306 	}
4307 
4308 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4309 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4310 	    && (msg->user_data != NULL)) {
4311 		/*
4312 		 * It's a response to a response we sent.  For this we
4313 		 * deliver a send message response to the user.
4314 		 */
4315 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4316 
4317 		requeue = 0;
4318 		if (msg->rsp_size < 2)
4319 			/* Message is too small to be correct. */
4320 			goto out;
4321 
4322 		chan = msg->data[2] & 0x0f;
4323 		if (chan >= IPMI_MAX_CHANNELS)
4324 			/* Invalid channel number */
4325 			goto out;
4326 
4327 		if (!recv_msg)
4328 			goto out;
4329 
4330 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4331 		recv_msg->msg.data = recv_msg->msg_data;
4332 		recv_msg->msg.data_len = 1;
4333 		recv_msg->msg_data[0] = msg->rsp[2];
4334 		deliver_local_response(intf, recv_msg);
4335 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4336 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4337 		struct ipmi_channel   *chans;
4338 
4339 		/* It's from the receive queue. */
4340 		chan = msg->rsp[3] & 0xf;
4341 		if (chan >= IPMI_MAX_CHANNELS) {
4342 			/* Invalid channel number */
4343 			requeue = 0;
4344 			goto out;
4345 		}
4346 
4347 		/*
4348 		 * We need to make sure the channels have been initialized.
4349 		 * The channel_handler routine will set the "curr_channel"
4350 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4351 		 * channels for this interface have been initialized.
4352 		 */
4353 		if (!intf->channels_ready) {
4354 			requeue = 0; /* Throw the message away */
4355 			goto out;
4356 		}
4357 
4358 		chans = READ_ONCE(intf->channel_list)->c;
4359 
4360 		switch (chans[chan].medium) {
4361 		case IPMI_CHANNEL_MEDIUM_IPMB:
4362 			if (msg->rsp[4] & 0x04) {
4363 				/*
4364 				 * It's a response, so find the
4365 				 * requesting message and send it up.
4366 				 */
4367 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4368 			} else {
4369 				/*
4370 				 * It's a command to the SMS from some other
4371 				 * entity.  Handle that.
4372 				 */
4373 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4374 			}
4375 			break;
4376 
4377 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4378 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4379 			if (msg->rsp[6] & 0x04) {
4380 				/*
4381 				 * It's a response, so find the
4382 				 * requesting message and send it up.
4383 				 */
4384 				requeue = handle_lan_get_msg_rsp(intf, msg);
4385 			} else {
4386 				/*
4387 				 * It's a command to the SMS from some other
4388 				 * entity.  Handle that.
4389 				 */
4390 				requeue = handle_lan_get_msg_cmd(intf, msg);
4391 			}
4392 			break;
4393 
4394 		default:
4395 			/* Check for OEM Channels.  Clients had better
4396 			   register for these commands. */
4397 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4398 			    && (chans[chan].medium
4399 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4400 				requeue = handle_oem_get_msg_cmd(intf, msg);
4401 			} else {
4402 				/*
4403 				 * We don't handle the channel type, so just
4404 				 * free the message.
4405 				 */
4406 				requeue = 0;
4407 			}
4408 		}
4409 
4410 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4411 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4412 		/* It's an asynchronous event. */
4413 		requeue = handle_read_event_rsp(intf, msg);
4414 	} else {
4415 		/* It's a response from the local BMC. */
4416 		requeue = handle_bmc_rsp(intf, msg);
4417 	}
4418 
4419  out:
4420 	return requeue;
4421 }
4422 
4423 /*
4424  * If there are messages in the queue or pretimeouts, handle them.
4425  */
handle_new_recv_msgs(struct ipmi_smi * intf)4426 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4427 {
4428 	struct ipmi_smi_msg  *smi_msg;
4429 	unsigned long        flags = 0;
4430 	int                  rv;
4431 	int                  run_to_completion = intf->run_to_completion;
4432 
4433 	/* See if any waiting messages need to be processed. */
4434 	if (!run_to_completion)
4435 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4436 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4437 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4438 				     struct ipmi_smi_msg, link);
4439 		list_del(&smi_msg->link);
4440 		if (!run_to_completion)
4441 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4442 					       flags);
4443 		rv = handle_one_recv_msg(intf, smi_msg);
4444 		if (!run_to_completion)
4445 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4446 		if (rv > 0) {
4447 			/*
4448 			 * To preserve message order, quit if we
4449 			 * can't handle a message.  Add the message
4450 			 * back at the head, this is safe because this
4451 			 * tasklet is the only thing that pulls the
4452 			 * messages.
4453 			 */
4454 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4455 			break;
4456 		} else {
4457 			if (rv == 0)
4458 				/* Message handled */
4459 				ipmi_free_smi_msg(smi_msg);
4460 			/* If rv < 0, fatal error, del but don't free. */
4461 		}
4462 	}
4463 	if (!run_to_completion)
4464 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4465 
4466 	/*
4467 	 * If the pretimout count is non-zero, decrement one from it and
4468 	 * deliver pretimeouts to all the users.
4469 	 */
4470 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4471 		struct ipmi_user *user;
4472 		int index;
4473 
4474 		index = srcu_read_lock(&intf->users_srcu);
4475 		list_for_each_entry_rcu(user, &intf->users, link) {
4476 			if (user->handler->ipmi_watchdog_pretimeout)
4477 				user->handler->ipmi_watchdog_pretimeout(
4478 					user->handler_data);
4479 		}
4480 		srcu_read_unlock(&intf->users_srcu, index);
4481 	}
4482 }
4483 
smi_recv_tasklet(unsigned long val)4484 static void smi_recv_tasklet(unsigned long val)
4485 {
4486 	unsigned long flags = 0; /* keep us warning-free. */
4487 	struct ipmi_smi *intf = (struct ipmi_smi *) val;
4488 	int run_to_completion = intf->run_to_completion;
4489 	struct ipmi_smi_msg *newmsg = NULL;
4490 
4491 	/*
4492 	 * Start the next message if available.
4493 	 *
4494 	 * Do this here, not in the actual receiver, because we may deadlock
4495 	 * because the lower layer is allowed to hold locks while calling
4496 	 * message delivery.
4497 	 */
4498 
4499 	rcu_read_lock();
4500 
4501 	if (!run_to_completion)
4502 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4503 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4504 		struct list_head *entry = NULL;
4505 
4506 		/* Pick the high priority queue first. */
4507 		if (!list_empty(&intf->hp_xmit_msgs))
4508 			entry = intf->hp_xmit_msgs.next;
4509 		else if (!list_empty(&intf->xmit_msgs))
4510 			entry = intf->xmit_msgs.next;
4511 
4512 		if (entry) {
4513 			list_del(entry);
4514 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4515 			intf->curr_msg = newmsg;
4516 		}
4517 	}
4518 
4519 	if (!run_to_completion)
4520 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4521 	if (newmsg)
4522 		intf->handlers->sender(intf->send_info, newmsg);
4523 
4524 	rcu_read_unlock();
4525 
4526 	handle_new_recv_msgs(intf);
4527 }
4528 
4529 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4530 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4531 			   struct ipmi_smi_msg *msg)
4532 {
4533 	unsigned long flags = 0; /* keep us warning-free. */
4534 	int run_to_completion = intf->run_to_completion;
4535 
4536 	/*
4537 	 * To preserve message order, we keep a queue and deliver from
4538 	 * a tasklet.
4539 	 */
4540 	if (!run_to_completion)
4541 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4542 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4543 	if (!run_to_completion)
4544 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4545 				       flags);
4546 
4547 	if (!run_to_completion)
4548 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4549 	/*
4550 	 * We can get an asynchronous event or receive message in addition
4551 	 * to commands we send.
4552 	 */
4553 	if (msg == intf->curr_msg)
4554 		intf->curr_msg = NULL;
4555 	if (!run_to_completion)
4556 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4557 
4558 	if (run_to_completion)
4559 		smi_recv_tasklet((unsigned long) intf);
4560 	else
4561 		tasklet_schedule(&intf->recv_tasklet);
4562 }
4563 EXPORT_SYMBOL(ipmi_smi_msg_received);
4564 
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4565 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4566 {
4567 	if (intf->in_shutdown)
4568 		return;
4569 
4570 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4571 	tasklet_schedule(&intf->recv_tasklet);
4572 }
4573 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4574 
4575 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4576 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4577 		  unsigned char seq, long seqid)
4578 {
4579 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4580 	if (!smi_msg)
4581 		/*
4582 		 * If we can't allocate the message, then just return, we
4583 		 * get 4 retries, so this should be ok.
4584 		 */
4585 		return NULL;
4586 
4587 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4588 	smi_msg->data_size = recv_msg->msg.data_len;
4589 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4590 
4591 	ipmi_debug_msg("Resend: ", smi_msg->data, smi_msg->data_size);
4592 
4593 	return smi_msg;
4594 }
4595 
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4596 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4597 			      struct list_head *timeouts,
4598 			      unsigned long timeout_period,
4599 			      int slot, unsigned long *flags,
4600 			      bool *need_timer)
4601 {
4602 	struct ipmi_recv_msg *msg;
4603 
4604 	if (intf->in_shutdown)
4605 		return;
4606 
4607 	if (!ent->inuse)
4608 		return;
4609 
4610 	if (timeout_period < ent->timeout) {
4611 		ent->timeout -= timeout_period;
4612 		*need_timer = true;
4613 		return;
4614 	}
4615 
4616 	if (ent->retries_left == 0) {
4617 		/* The message has used all its retries. */
4618 		ent->inuse = 0;
4619 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4620 		msg = ent->recv_msg;
4621 		list_add_tail(&msg->link, timeouts);
4622 		if (ent->broadcast)
4623 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4624 		else if (is_lan_addr(&ent->recv_msg->addr))
4625 			ipmi_inc_stat(intf, timed_out_lan_commands);
4626 		else
4627 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4628 	} else {
4629 		struct ipmi_smi_msg *smi_msg;
4630 		/* More retries, send again. */
4631 
4632 		*need_timer = true;
4633 
4634 		/*
4635 		 * Start with the max timer, set to normal timer after
4636 		 * the message is sent.
4637 		 */
4638 		ent->timeout = MAX_MSG_TIMEOUT;
4639 		ent->retries_left--;
4640 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4641 					    ent->seqid);
4642 		if (!smi_msg) {
4643 			if (is_lan_addr(&ent->recv_msg->addr))
4644 				ipmi_inc_stat(intf,
4645 					      dropped_rexmit_lan_commands);
4646 			else
4647 				ipmi_inc_stat(intf,
4648 					      dropped_rexmit_ipmb_commands);
4649 			return;
4650 		}
4651 
4652 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4653 
4654 		/*
4655 		 * Send the new message.  We send with a zero
4656 		 * priority.  It timed out, I doubt time is that
4657 		 * critical now, and high priority messages are really
4658 		 * only for messages to the local MC, which don't get
4659 		 * resent.
4660 		 */
4661 		if (intf->handlers) {
4662 			if (is_lan_addr(&ent->recv_msg->addr))
4663 				ipmi_inc_stat(intf,
4664 					      retransmitted_lan_commands);
4665 			else
4666 				ipmi_inc_stat(intf,
4667 					      retransmitted_ipmb_commands);
4668 
4669 			smi_send(intf, intf->handlers, smi_msg, 0);
4670 		} else
4671 			ipmi_free_smi_msg(smi_msg);
4672 
4673 		spin_lock_irqsave(&intf->seq_lock, *flags);
4674 	}
4675 }
4676 
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)4677 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4678 				 unsigned long timeout_period)
4679 {
4680 	struct list_head     timeouts;
4681 	struct ipmi_recv_msg *msg, *msg2;
4682 	unsigned long        flags;
4683 	int                  i;
4684 	bool                 need_timer = false;
4685 
4686 	if (!intf->bmc_registered) {
4687 		kref_get(&intf->refcount);
4688 		if (!schedule_work(&intf->bmc_reg_work)) {
4689 			kref_put(&intf->refcount, intf_free);
4690 			need_timer = true;
4691 		}
4692 	}
4693 
4694 	/*
4695 	 * Go through the seq table and find any messages that
4696 	 * have timed out, putting them in the timeouts
4697 	 * list.
4698 	 */
4699 	INIT_LIST_HEAD(&timeouts);
4700 	spin_lock_irqsave(&intf->seq_lock, flags);
4701 	if (intf->ipmb_maintenance_mode_timeout) {
4702 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4703 			intf->ipmb_maintenance_mode_timeout = 0;
4704 		else
4705 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4706 	}
4707 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4708 		check_msg_timeout(intf, &intf->seq_table[i],
4709 				  &timeouts, timeout_period, i,
4710 				  &flags, &need_timer);
4711 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4712 
4713 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4714 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4715 
4716 	/*
4717 	 * Maintenance mode handling.  Check the timeout
4718 	 * optimistically before we claim the lock.  It may
4719 	 * mean a timeout gets missed occasionally, but that
4720 	 * only means the timeout gets extended by one period
4721 	 * in that case.  No big deal, and it avoids the lock
4722 	 * most of the time.
4723 	 */
4724 	if (intf->auto_maintenance_timeout > 0) {
4725 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4726 		if (intf->auto_maintenance_timeout > 0) {
4727 			intf->auto_maintenance_timeout
4728 				-= timeout_period;
4729 			if (!intf->maintenance_mode
4730 			    && (intf->auto_maintenance_timeout <= 0)) {
4731 				intf->maintenance_mode_enable = false;
4732 				maintenance_mode_update(intf);
4733 			}
4734 		}
4735 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4736 				       flags);
4737 	}
4738 
4739 	tasklet_schedule(&intf->recv_tasklet);
4740 
4741 	return need_timer;
4742 }
4743 
ipmi_request_event(struct ipmi_smi * intf)4744 static void ipmi_request_event(struct ipmi_smi *intf)
4745 {
4746 	/* No event requests when in maintenance mode. */
4747 	if (intf->maintenance_mode_enable)
4748 		return;
4749 
4750 	if (!intf->in_shutdown)
4751 		intf->handlers->request_events(intf->send_info);
4752 }
4753 
4754 static struct timer_list ipmi_timer;
4755 
4756 static atomic_t stop_operation;
4757 
ipmi_timeout(struct timer_list * unused)4758 static void ipmi_timeout(struct timer_list *unused)
4759 {
4760 	struct ipmi_smi *intf;
4761 	bool need_timer = false;
4762 	int index;
4763 
4764 	if (atomic_read(&stop_operation))
4765 		return;
4766 
4767 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4768 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4769 		if (atomic_read(&intf->event_waiters)) {
4770 			intf->ticks_to_req_ev--;
4771 			if (intf->ticks_to_req_ev == 0) {
4772 				ipmi_request_event(intf);
4773 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4774 			}
4775 			need_timer = true;
4776 		}
4777 
4778 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4779 	}
4780 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4781 
4782 	if (need_timer)
4783 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4784 }
4785 
need_waiter(struct ipmi_smi * intf)4786 static void need_waiter(struct ipmi_smi *intf)
4787 {
4788 	/* Racy, but worst case we start the timer twice. */
4789 	if (!timer_pending(&ipmi_timer))
4790 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4791 }
4792 
4793 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4794 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4795 
free_smi_msg(struct ipmi_smi_msg * msg)4796 static void free_smi_msg(struct ipmi_smi_msg *msg)
4797 {
4798 	atomic_dec(&smi_msg_inuse_count);
4799 	kfree(msg);
4800 }
4801 
ipmi_alloc_smi_msg(void)4802 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4803 {
4804 	struct ipmi_smi_msg *rv;
4805 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4806 	if (rv) {
4807 		rv->done = free_smi_msg;
4808 		rv->user_data = NULL;
4809 		atomic_inc(&smi_msg_inuse_count);
4810 	}
4811 	return rv;
4812 }
4813 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4814 
free_recv_msg(struct ipmi_recv_msg * msg)4815 static void free_recv_msg(struct ipmi_recv_msg *msg)
4816 {
4817 	atomic_dec(&recv_msg_inuse_count);
4818 	kfree(msg);
4819 }
4820 
ipmi_alloc_recv_msg(void)4821 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4822 {
4823 	struct ipmi_recv_msg *rv;
4824 
4825 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4826 	if (rv) {
4827 		rv->user = NULL;
4828 		rv->done = free_recv_msg;
4829 		atomic_inc(&recv_msg_inuse_count);
4830 	}
4831 	return rv;
4832 }
4833 
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)4834 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4835 {
4836 	if (msg->user)
4837 		kref_put(&msg->user->refcount, free_user);
4838 	msg->done(msg);
4839 }
4840 EXPORT_SYMBOL(ipmi_free_recv_msg);
4841 
4842 static atomic_t panic_done_count = ATOMIC_INIT(0);
4843 
dummy_smi_done_handler(struct ipmi_smi_msg * msg)4844 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4845 {
4846 	atomic_dec(&panic_done_count);
4847 }
4848 
dummy_recv_done_handler(struct ipmi_recv_msg * msg)4849 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4850 {
4851 	atomic_dec(&panic_done_count);
4852 }
4853 
4854 /*
4855  * Inside a panic, send a message and wait for a response.
4856  */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)4857 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4858 					struct ipmi_addr *addr,
4859 					struct kernel_ipmi_msg *msg)
4860 {
4861 	struct ipmi_smi_msg  smi_msg;
4862 	struct ipmi_recv_msg recv_msg;
4863 	int rv;
4864 
4865 	smi_msg.done = dummy_smi_done_handler;
4866 	recv_msg.done = dummy_recv_done_handler;
4867 	atomic_add(2, &panic_done_count);
4868 	rv = i_ipmi_request(NULL,
4869 			    intf,
4870 			    addr,
4871 			    0,
4872 			    msg,
4873 			    intf,
4874 			    &smi_msg,
4875 			    &recv_msg,
4876 			    0,
4877 			    intf->addrinfo[0].address,
4878 			    intf->addrinfo[0].lun,
4879 			    0, 1); /* Don't retry, and don't wait. */
4880 	if (rv)
4881 		atomic_sub(2, &panic_done_count);
4882 	else if (intf->handlers->flush_messages)
4883 		intf->handlers->flush_messages(intf->send_info);
4884 
4885 	while (atomic_read(&panic_done_count) != 0)
4886 		ipmi_poll(intf);
4887 }
4888 
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4889 static void event_receiver_fetcher(struct ipmi_smi *intf,
4890 				   struct ipmi_recv_msg *msg)
4891 {
4892 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4893 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4894 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4895 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4896 		/* A get event receiver command, save it. */
4897 		intf->event_receiver = msg->msg.data[1];
4898 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4899 	}
4900 }
4901 
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4902 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4903 {
4904 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4905 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4906 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4907 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4908 		/*
4909 		 * A get device id command, save if we are an event
4910 		 * receiver or generator.
4911 		 */
4912 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4913 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4914 	}
4915 }
4916 
send_panic_events(struct ipmi_smi * intf,char * str)4917 static void send_panic_events(struct ipmi_smi *intf, char *str)
4918 {
4919 	struct kernel_ipmi_msg msg;
4920 	unsigned char data[16];
4921 	struct ipmi_system_interface_addr *si;
4922 	struct ipmi_addr addr;
4923 	char *p = str;
4924 	struct ipmi_ipmb_addr *ipmb;
4925 	int j;
4926 
4927 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4928 		return;
4929 
4930 	si = (struct ipmi_system_interface_addr *) &addr;
4931 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4932 	si->channel = IPMI_BMC_CHANNEL;
4933 	si->lun = 0;
4934 
4935 	/* Fill in an event telling that we have failed. */
4936 	msg.netfn = 0x04; /* Sensor or Event. */
4937 	msg.cmd = 2; /* Platform event command. */
4938 	msg.data = data;
4939 	msg.data_len = 8;
4940 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4941 	data[1] = 0x03; /* This is for IPMI 1.0. */
4942 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4943 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4944 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4945 
4946 	/*
4947 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4948 	 * to make the panic events more useful.
4949 	 */
4950 	if (str) {
4951 		data[3] = str[0];
4952 		data[6] = str[1];
4953 		data[7] = str[2];
4954 	}
4955 
4956 	/* Send the event announcing the panic. */
4957 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4958 
4959 	/*
4960 	 * On every interface, dump a bunch of OEM event holding the
4961 	 * string.
4962 	 */
4963 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4964 		return;
4965 
4966 	/*
4967 	 * intf_num is used as an marker to tell if the
4968 	 * interface is valid.  Thus we need a read barrier to
4969 	 * make sure data fetched before checking intf_num
4970 	 * won't be used.
4971 	 */
4972 	smp_rmb();
4973 
4974 	/*
4975 	 * First job here is to figure out where to send the
4976 	 * OEM events.  There's no way in IPMI to send OEM
4977 	 * events using an event send command, so we have to
4978 	 * find the SEL to put them in and stick them in
4979 	 * there.
4980 	 */
4981 
4982 	/* Get capabilities from the get device id. */
4983 	intf->local_sel_device = 0;
4984 	intf->local_event_generator = 0;
4985 	intf->event_receiver = 0;
4986 
4987 	/* Request the device info from the local MC. */
4988 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4989 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4990 	msg.data = NULL;
4991 	msg.data_len = 0;
4992 	intf->null_user_handler = device_id_fetcher;
4993 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4994 
4995 	if (intf->local_event_generator) {
4996 		/* Request the event receiver from the local MC. */
4997 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4998 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4999 		msg.data = NULL;
5000 		msg.data_len = 0;
5001 		intf->null_user_handler = event_receiver_fetcher;
5002 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5003 	}
5004 	intf->null_user_handler = NULL;
5005 
5006 	/*
5007 	 * Validate the event receiver.  The low bit must not
5008 	 * be 1 (it must be a valid IPMB address), it cannot
5009 	 * be zero, and it must not be my address.
5010 	 */
5011 	if (((intf->event_receiver & 1) == 0)
5012 	    && (intf->event_receiver != 0)
5013 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5014 		/*
5015 		 * The event receiver is valid, send an IPMB
5016 		 * message.
5017 		 */
5018 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5019 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5020 		ipmb->channel = 0; /* FIXME - is this right? */
5021 		ipmb->lun = intf->event_receiver_lun;
5022 		ipmb->slave_addr = intf->event_receiver;
5023 	} else if (intf->local_sel_device) {
5024 		/*
5025 		 * The event receiver was not valid (or was
5026 		 * me), but I am an SEL device, just dump it
5027 		 * in my SEL.
5028 		 */
5029 		si = (struct ipmi_system_interface_addr *) &addr;
5030 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5031 		si->channel = IPMI_BMC_CHANNEL;
5032 		si->lun = 0;
5033 	} else
5034 		return; /* No where to send the event. */
5035 
5036 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5037 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5038 	msg.data = data;
5039 	msg.data_len = 16;
5040 
5041 	j = 0;
5042 	while (*p) {
5043 		int size = strlen(p);
5044 
5045 		if (size > 11)
5046 			size = 11;
5047 		data[0] = 0;
5048 		data[1] = 0;
5049 		data[2] = 0xf0; /* OEM event without timestamp. */
5050 		data[3] = intf->addrinfo[0].address;
5051 		data[4] = j++; /* sequence # */
5052 		/*
5053 		 * Always give 11 bytes, so strncpy will fill
5054 		 * it with zeroes for me.
5055 		 */
5056 		strncpy(data+5, p, 11);
5057 		p += size;
5058 
5059 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5060 	}
5061 }
5062 
5063 static int has_panicked;
5064 
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5065 static int panic_event(struct notifier_block *this,
5066 		       unsigned long         event,
5067 		       void                  *ptr)
5068 {
5069 	struct ipmi_smi *intf;
5070 	struct ipmi_user *user;
5071 
5072 	if (has_panicked)
5073 		return NOTIFY_DONE;
5074 	has_panicked = 1;
5075 
5076 	/* For every registered interface, set it to run to completion. */
5077 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5078 		if (!intf->handlers || intf->intf_num == -1)
5079 			/* Interface is not ready. */
5080 			continue;
5081 
5082 		if (!intf->handlers->poll)
5083 			continue;
5084 
5085 		/*
5086 		 * If we were interrupted while locking xmit_msgs_lock or
5087 		 * waiting_rcv_msgs_lock, the corresponding list may be
5088 		 * corrupted.  In this case, drop items on the list for
5089 		 * the safety.
5090 		 */
5091 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5092 			INIT_LIST_HEAD(&intf->xmit_msgs);
5093 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5094 		} else
5095 			spin_unlock(&intf->xmit_msgs_lock);
5096 
5097 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5098 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5099 		else
5100 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5101 
5102 		intf->run_to_completion = 1;
5103 		if (intf->handlers->set_run_to_completion)
5104 			intf->handlers->set_run_to_completion(intf->send_info,
5105 							      1);
5106 
5107 		list_for_each_entry_rcu(user, &intf->users, link) {
5108 			if (user->handler->ipmi_panic_handler)
5109 				user->handler->ipmi_panic_handler(
5110 					user->handler_data);
5111 		}
5112 
5113 		send_panic_events(intf, ptr);
5114 	}
5115 
5116 	return NOTIFY_DONE;
5117 }
5118 
5119 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5120 static int ipmi_register_driver(void)
5121 {
5122 	int rv;
5123 
5124 	if (drvregistered)
5125 		return 0;
5126 
5127 	rv = driver_register(&ipmidriver.driver);
5128 	if (rv)
5129 		pr_err("Could not register IPMI driver\n");
5130 	else
5131 		drvregistered = true;
5132 	return rv;
5133 }
5134 
5135 static struct notifier_block panic_block = {
5136 	.notifier_call	= panic_event,
5137 	.next		= NULL,
5138 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5139 };
5140 
ipmi_init_msghandler(void)5141 static int ipmi_init_msghandler(void)
5142 {
5143 	int rv;
5144 
5145 	mutex_lock(&ipmi_interfaces_mutex);
5146 	rv = ipmi_register_driver();
5147 	if (rv)
5148 		goto out;
5149 	if (initialized)
5150 		goto out;
5151 
5152 	init_srcu_struct(&ipmi_interfaces_srcu);
5153 
5154 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5155 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5156 
5157 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5158 
5159 	initialized = true;
5160 
5161 out:
5162 	mutex_unlock(&ipmi_interfaces_mutex);
5163 	return rv;
5164 }
5165 
ipmi_init_msghandler_mod(void)5166 static int __init ipmi_init_msghandler_mod(void)
5167 {
5168 	int rv;
5169 
5170 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5171 
5172 	mutex_lock(&ipmi_interfaces_mutex);
5173 	rv = ipmi_register_driver();
5174 	mutex_unlock(&ipmi_interfaces_mutex);
5175 
5176 	return rv;
5177 }
5178 
cleanup_ipmi(void)5179 static void __exit cleanup_ipmi(void)
5180 {
5181 	int count;
5182 
5183 	if (initialized) {
5184 		atomic_notifier_chain_unregister(&panic_notifier_list,
5185 						 &panic_block);
5186 
5187 		/*
5188 		 * This can't be called if any interfaces exist, so no worry
5189 		 * about shutting down the interfaces.
5190 		 */
5191 
5192 		/*
5193 		 * Tell the timer to stop, then wait for it to stop.  This
5194 		 * avoids problems with race conditions removing the timer
5195 		 * here.
5196 		 */
5197 		atomic_set(&stop_operation, 1);
5198 		del_timer_sync(&ipmi_timer);
5199 
5200 		initialized = false;
5201 
5202 		/* Check for buffer leaks. */
5203 		count = atomic_read(&smi_msg_inuse_count);
5204 		if (count != 0)
5205 			pr_warn("SMI message count %d at exit\n", count);
5206 		count = atomic_read(&recv_msg_inuse_count);
5207 		if (count != 0)
5208 			pr_warn("recv message count %d at exit\n", count);
5209 
5210 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5211 	}
5212 	if (drvregistered)
5213 		driver_unregister(&ipmidriver.driver);
5214 }
5215 module_exit(cleanup_ipmi);
5216 
5217 module_init(ipmi_init_msghandler_mod);
5218 MODULE_LICENSE("GPL");
5219 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5220 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5221 		   " interface.");
5222 MODULE_VERSION(IPMI_DRIVER_VERSION);
5223 MODULE_SOFTDEP("post: ipmi_devintf");
5224