1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/drivers/char/mem.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Added devfs support.
8 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10 */
11
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 #include <linux/uaccess.h>
33 #include <linux/security.h>
34
35 #ifdef CONFIG_IA64
36 # include <linux/efi.h>
37 #endif
38
39 #define DEVPORT_MINOR 4
40
size_inside_page(unsigned long start,unsigned long size)41 static inline unsigned long size_inside_page(unsigned long start,
42 unsigned long size)
43 {
44 unsigned long sz;
45
46 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
47
48 return min(sz, size);
49 }
50
51 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
valid_phys_addr_range(phys_addr_t addr,size_t count)52 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
53 {
54 return addr + count <= __pa(high_memory);
55 }
56
valid_mmap_phys_addr_range(unsigned long pfn,size_t size)57 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
58 {
59 return 1;
60 }
61 #endif
62
63 #ifdef CONFIG_STRICT_DEVMEM
page_is_allowed(unsigned long pfn)64 static inline int page_is_allowed(unsigned long pfn)
65 {
66 return devmem_is_allowed(pfn);
67 }
range_is_allowed(unsigned long pfn,unsigned long size)68 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
69 {
70 u64 from = ((u64)pfn) << PAGE_SHIFT;
71 u64 to = from + size;
72 u64 cursor = from;
73
74 while (cursor < to) {
75 if (!devmem_is_allowed(pfn))
76 return 0;
77 cursor += PAGE_SIZE;
78 pfn++;
79 }
80 return 1;
81 }
82 #else
page_is_allowed(unsigned long pfn)83 static inline int page_is_allowed(unsigned long pfn)
84 {
85 return 1;
86 }
range_is_allowed(unsigned long pfn,unsigned long size)87 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
88 {
89 return 1;
90 }
91 #endif
92
93 #ifndef unxlate_dev_mem_ptr
94 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)95 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
96 {
97 }
98 #endif
99
should_stop_iteration(void)100 static inline bool should_stop_iteration(void)
101 {
102 if (need_resched())
103 cond_resched();
104 return fatal_signal_pending(current);
105 }
106
107 /*
108 * This funcion reads the *physical* memory. The f_pos points directly to the
109 * memory location.
110 */
read_mem(struct file * file,char __user * buf,size_t count,loff_t * ppos)111 static ssize_t read_mem(struct file *file, char __user *buf,
112 size_t count, loff_t *ppos)
113 {
114 phys_addr_t p = *ppos;
115 ssize_t read, sz;
116 void *ptr;
117 char *bounce;
118 int err;
119
120 if (p != *ppos)
121 return 0;
122
123 if (!valid_phys_addr_range(p, count))
124 return -EFAULT;
125 read = 0;
126 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
127 /* we don't have page 0 mapped on sparc and m68k.. */
128 if (p < PAGE_SIZE) {
129 sz = size_inside_page(p, count);
130 if (sz > 0) {
131 if (clear_user(buf, sz))
132 return -EFAULT;
133 buf += sz;
134 p += sz;
135 count -= sz;
136 read += sz;
137 }
138 }
139 #endif
140
141 bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
142 if (!bounce)
143 return -ENOMEM;
144
145 while (count > 0) {
146 unsigned long remaining;
147 int allowed, probe;
148
149 sz = size_inside_page(p, count);
150
151 err = -EPERM;
152 allowed = page_is_allowed(p >> PAGE_SHIFT);
153 if (!allowed)
154 goto failed;
155
156 err = -EFAULT;
157 if (allowed == 2) {
158 /* Show zeros for restricted memory. */
159 remaining = clear_user(buf, sz);
160 } else {
161 /*
162 * On ia64 if a page has been mapped somewhere as
163 * uncached, then it must also be accessed uncached
164 * by the kernel or data corruption may occur.
165 */
166 ptr = xlate_dev_mem_ptr(p);
167 if (!ptr)
168 goto failed;
169
170 probe = probe_kernel_read(bounce, ptr, sz);
171 unxlate_dev_mem_ptr(p, ptr);
172 if (probe)
173 goto failed;
174
175 remaining = copy_to_user(buf, bounce, sz);
176 }
177
178 if (remaining)
179 goto failed;
180
181 buf += sz;
182 p += sz;
183 count -= sz;
184 read += sz;
185 if (should_stop_iteration())
186 break;
187 }
188 kfree(bounce);
189
190 *ppos += read;
191 return read;
192
193 failed:
194 kfree(bounce);
195 return err;
196 }
197
write_mem(struct file * file,const char __user * buf,size_t count,loff_t * ppos)198 static ssize_t write_mem(struct file *file, const char __user *buf,
199 size_t count, loff_t *ppos)
200 {
201 phys_addr_t p = *ppos;
202 ssize_t written, sz;
203 unsigned long copied;
204 void *ptr;
205
206 if (p != *ppos)
207 return -EFBIG;
208
209 if (!valid_phys_addr_range(p, count))
210 return -EFAULT;
211
212 written = 0;
213
214 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
215 /* we don't have page 0 mapped on sparc and m68k.. */
216 if (p < PAGE_SIZE) {
217 sz = size_inside_page(p, count);
218 /* Hmm. Do something? */
219 buf += sz;
220 p += sz;
221 count -= sz;
222 written += sz;
223 }
224 #endif
225
226 while (count > 0) {
227 int allowed;
228
229 sz = size_inside_page(p, count);
230
231 allowed = page_is_allowed(p >> PAGE_SHIFT);
232 if (!allowed)
233 return -EPERM;
234
235 /* Skip actual writing when a page is marked as restricted. */
236 if (allowed == 1) {
237 /*
238 * On ia64 if a page has been mapped somewhere as
239 * uncached, then it must also be accessed uncached
240 * by the kernel or data corruption may occur.
241 */
242 ptr = xlate_dev_mem_ptr(p);
243 if (!ptr) {
244 if (written)
245 break;
246 return -EFAULT;
247 }
248
249 copied = copy_from_user(ptr, buf, sz);
250 unxlate_dev_mem_ptr(p, ptr);
251 if (copied) {
252 written += sz - copied;
253 if (written)
254 break;
255 return -EFAULT;
256 }
257 }
258
259 buf += sz;
260 p += sz;
261 count -= sz;
262 written += sz;
263 if (should_stop_iteration())
264 break;
265 }
266
267 *ppos += written;
268 return written;
269 }
270
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)271 int __weak phys_mem_access_prot_allowed(struct file *file,
272 unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
273 {
274 return 1;
275 }
276
277 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
278
279 /*
280 * Architectures vary in how they handle caching for addresses
281 * outside of main memory.
282 *
283 */
284 #ifdef pgprot_noncached
uncached_access(struct file * file,phys_addr_t addr)285 static int uncached_access(struct file *file, phys_addr_t addr)
286 {
287 #if defined(CONFIG_IA64)
288 /*
289 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
290 * attribute aliases.
291 */
292 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
293 #elif defined(CONFIG_MIPS)
294 {
295 extern int __uncached_access(struct file *file,
296 unsigned long addr);
297
298 return __uncached_access(file, addr);
299 }
300 #else
301 /*
302 * Accessing memory above the top the kernel knows about or through a
303 * file pointer
304 * that was marked O_DSYNC will be done non-cached.
305 */
306 if (file->f_flags & O_DSYNC)
307 return 1;
308 return addr >= __pa(high_memory);
309 #endif
310 }
311 #endif
312
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)313 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
314 unsigned long size, pgprot_t vma_prot)
315 {
316 #ifdef pgprot_noncached
317 phys_addr_t offset = pfn << PAGE_SHIFT;
318
319 if (uncached_access(file, offset))
320 return pgprot_noncached(vma_prot);
321 #endif
322 return vma_prot;
323 }
324 #endif
325
326 #ifndef CONFIG_MMU
get_unmapped_area_mem(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)327 static unsigned long get_unmapped_area_mem(struct file *file,
328 unsigned long addr,
329 unsigned long len,
330 unsigned long pgoff,
331 unsigned long flags)
332 {
333 if (!valid_mmap_phys_addr_range(pgoff, len))
334 return (unsigned long) -EINVAL;
335 return pgoff << PAGE_SHIFT;
336 }
337
338 /* permit direct mmap, for read, write or exec */
memory_mmap_capabilities(struct file * file)339 static unsigned memory_mmap_capabilities(struct file *file)
340 {
341 return NOMMU_MAP_DIRECT |
342 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
343 }
344
zero_mmap_capabilities(struct file * file)345 static unsigned zero_mmap_capabilities(struct file *file)
346 {
347 return NOMMU_MAP_COPY;
348 }
349
350 /* can't do an in-place private mapping if there's no MMU */
private_mapping_ok(struct vm_area_struct * vma)351 static inline int private_mapping_ok(struct vm_area_struct *vma)
352 {
353 return vma->vm_flags & VM_MAYSHARE;
354 }
355 #else
356
private_mapping_ok(struct vm_area_struct * vma)357 static inline int private_mapping_ok(struct vm_area_struct *vma)
358 {
359 return 1;
360 }
361 #endif
362
363 static const struct vm_operations_struct mmap_mem_ops = {
364 #ifdef CONFIG_HAVE_IOREMAP_PROT
365 .access = generic_access_phys
366 #endif
367 };
368
mmap_mem(struct file * file,struct vm_area_struct * vma)369 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
370 {
371 size_t size = vma->vm_end - vma->vm_start;
372 phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
373
374 /* Does it even fit in phys_addr_t? */
375 if (offset >> PAGE_SHIFT != vma->vm_pgoff)
376 return -EINVAL;
377
378 /* It's illegal to wrap around the end of the physical address space. */
379 if (offset + (phys_addr_t)size - 1 < offset)
380 return -EINVAL;
381
382 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
383 return -EINVAL;
384
385 if (!private_mapping_ok(vma))
386 return -ENOSYS;
387
388 if (!range_is_allowed(vma->vm_pgoff, size))
389 return -EPERM;
390
391 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
392 &vma->vm_page_prot))
393 return -EINVAL;
394
395 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
396 size,
397 vma->vm_page_prot);
398
399 vma->vm_ops = &mmap_mem_ops;
400
401 /* Remap-pfn-range will mark the range VM_IO */
402 if (remap_pfn_range(vma,
403 vma->vm_start,
404 vma->vm_pgoff,
405 size,
406 vma->vm_page_prot)) {
407 return -EAGAIN;
408 }
409 return 0;
410 }
411
mmap_kmem(struct file * file,struct vm_area_struct * vma)412 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
413 {
414 unsigned long pfn;
415
416 /* Turn a kernel-virtual address into a physical page frame */
417 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
418
419 /*
420 * RED-PEN: on some architectures there is more mapped memory than
421 * available in mem_map which pfn_valid checks for. Perhaps should add a
422 * new macro here.
423 *
424 * RED-PEN: vmalloc is not supported right now.
425 */
426 if (!pfn_valid(pfn))
427 return -EIO;
428
429 vma->vm_pgoff = pfn;
430 return mmap_mem(file, vma);
431 }
432
433 /*
434 * This function reads the *virtual* memory as seen by the kernel.
435 */
read_kmem(struct file * file,char __user * buf,size_t count,loff_t * ppos)436 static ssize_t read_kmem(struct file *file, char __user *buf,
437 size_t count, loff_t *ppos)
438 {
439 unsigned long p = *ppos;
440 ssize_t low_count, read, sz;
441 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
442 int err = 0;
443
444 read = 0;
445 if (p < (unsigned long) high_memory) {
446 low_count = count;
447 if (count > (unsigned long)high_memory - p)
448 low_count = (unsigned long)high_memory - p;
449
450 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
451 /* we don't have page 0 mapped on sparc and m68k.. */
452 if (p < PAGE_SIZE && low_count > 0) {
453 sz = size_inside_page(p, low_count);
454 if (clear_user(buf, sz))
455 return -EFAULT;
456 buf += sz;
457 p += sz;
458 read += sz;
459 low_count -= sz;
460 count -= sz;
461 }
462 #endif
463 while (low_count > 0) {
464 sz = size_inside_page(p, low_count);
465
466 /*
467 * On ia64 if a page has been mapped somewhere as
468 * uncached, then it must also be accessed uncached
469 * by the kernel or data corruption may occur
470 */
471 kbuf = xlate_dev_kmem_ptr((void *)p);
472 if (!virt_addr_valid(kbuf))
473 return -ENXIO;
474
475 if (copy_to_user(buf, kbuf, sz))
476 return -EFAULT;
477 buf += sz;
478 p += sz;
479 read += sz;
480 low_count -= sz;
481 count -= sz;
482 if (should_stop_iteration()) {
483 count = 0;
484 break;
485 }
486 }
487 }
488
489 if (count > 0) {
490 kbuf = (char *)__get_free_page(GFP_KERNEL);
491 if (!kbuf)
492 return -ENOMEM;
493 while (count > 0) {
494 sz = size_inside_page(p, count);
495 if (!is_vmalloc_or_module_addr((void *)p)) {
496 err = -ENXIO;
497 break;
498 }
499 sz = vread(kbuf, (char *)p, sz);
500 if (!sz)
501 break;
502 if (copy_to_user(buf, kbuf, sz)) {
503 err = -EFAULT;
504 break;
505 }
506 count -= sz;
507 buf += sz;
508 read += sz;
509 p += sz;
510 if (should_stop_iteration())
511 break;
512 }
513 free_page((unsigned long)kbuf);
514 }
515 *ppos = p;
516 return read ? read : err;
517 }
518
519
do_write_kmem(unsigned long p,const char __user * buf,size_t count,loff_t * ppos)520 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
521 size_t count, loff_t *ppos)
522 {
523 ssize_t written, sz;
524 unsigned long copied;
525
526 written = 0;
527 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
528 /* we don't have page 0 mapped on sparc and m68k.. */
529 if (p < PAGE_SIZE) {
530 sz = size_inside_page(p, count);
531 /* Hmm. Do something? */
532 buf += sz;
533 p += sz;
534 count -= sz;
535 written += sz;
536 }
537 #endif
538
539 while (count > 0) {
540 void *ptr;
541
542 sz = size_inside_page(p, count);
543
544 /*
545 * On ia64 if a page has been mapped somewhere as uncached, then
546 * it must also be accessed uncached by the kernel or data
547 * corruption may occur.
548 */
549 ptr = xlate_dev_kmem_ptr((void *)p);
550 if (!virt_addr_valid(ptr))
551 return -ENXIO;
552
553 copied = copy_from_user(ptr, buf, sz);
554 if (copied) {
555 written += sz - copied;
556 if (written)
557 break;
558 return -EFAULT;
559 }
560 buf += sz;
561 p += sz;
562 count -= sz;
563 written += sz;
564 if (should_stop_iteration())
565 break;
566 }
567
568 *ppos += written;
569 return written;
570 }
571
572 /*
573 * This function writes to the *virtual* memory as seen by the kernel.
574 */
write_kmem(struct file * file,const char __user * buf,size_t count,loff_t * ppos)575 static ssize_t write_kmem(struct file *file, const char __user *buf,
576 size_t count, loff_t *ppos)
577 {
578 unsigned long p = *ppos;
579 ssize_t wrote = 0;
580 ssize_t virtr = 0;
581 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
582 int err = 0;
583
584 if (p < (unsigned long) high_memory) {
585 unsigned long to_write = min_t(unsigned long, count,
586 (unsigned long)high_memory - p);
587 wrote = do_write_kmem(p, buf, to_write, ppos);
588 if (wrote != to_write)
589 return wrote;
590 p += wrote;
591 buf += wrote;
592 count -= wrote;
593 }
594
595 if (count > 0) {
596 kbuf = (char *)__get_free_page(GFP_KERNEL);
597 if (!kbuf)
598 return wrote ? wrote : -ENOMEM;
599 while (count > 0) {
600 unsigned long sz = size_inside_page(p, count);
601 unsigned long n;
602
603 if (!is_vmalloc_or_module_addr((void *)p)) {
604 err = -ENXIO;
605 break;
606 }
607 n = copy_from_user(kbuf, buf, sz);
608 if (n) {
609 err = -EFAULT;
610 break;
611 }
612 vwrite(kbuf, (char *)p, sz);
613 count -= sz;
614 buf += sz;
615 virtr += sz;
616 p += sz;
617 if (should_stop_iteration())
618 break;
619 }
620 free_page((unsigned long)kbuf);
621 }
622
623 *ppos = p;
624 return virtr + wrote ? : err;
625 }
626
read_port(struct file * file,char __user * buf,size_t count,loff_t * ppos)627 static ssize_t read_port(struct file *file, char __user *buf,
628 size_t count, loff_t *ppos)
629 {
630 unsigned long i = *ppos;
631 char __user *tmp = buf;
632
633 if (!access_ok(buf, count))
634 return -EFAULT;
635 while (count-- > 0 && i < 65536) {
636 if (__put_user(inb(i), tmp) < 0)
637 return -EFAULT;
638 i++;
639 tmp++;
640 }
641 *ppos = i;
642 return tmp-buf;
643 }
644
write_port(struct file * file,const char __user * buf,size_t count,loff_t * ppos)645 static ssize_t write_port(struct file *file, const char __user *buf,
646 size_t count, loff_t *ppos)
647 {
648 unsigned long i = *ppos;
649 const char __user *tmp = buf;
650
651 if (!access_ok(buf, count))
652 return -EFAULT;
653 while (count-- > 0 && i < 65536) {
654 char c;
655
656 if (__get_user(c, tmp)) {
657 if (tmp > buf)
658 break;
659 return -EFAULT;
660 }
661 outb(c, i);
662 i++;
663 tmp++;
664 }
665 *ppos = i;
666 return tmp-buf;
667 }
668
read_null(struct file * file,char __user * buf,size_t count,loff_t * ppos)669 static ssize_t read_null(struct file *file, char __user *buf,
670 size_t count, loff_t *ppos)
671 {
672 return 0;
673 }
674
write_null(struct file * file,const char __user * buf,size_t count,loff_t * ppos)675 static ssize_t write_null(struct file *file, const char __user *buf,
676 size_t count, loff_t *ppos)
677 {
678 return count;
679 }
680
read_iter_null(struct kiocb * iocb,struct iov_iter * to)681 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
682 {
683 return 0;
684 }
685
write_iter_null(struct kiocb * iocb,struct iov_iter * from)686 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
687 {
688 size_t count = iov_iter_count(from);
689 iov_iter_advance(from, count);
690 return count;
691 }
692
pipe_to_null(struct pipe_inode_info * info,struct pipe_buffer * buf,struct splice_desc * sd)693 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
694 struct splice_desc *sd)
695 {
696 return sd->len;
697 }
698
splice_write_null(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)699 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
700 loff_t *ppos, size_t len, unsigned int flags)
701 {
702 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
703 }
704
read_iter_zero(struct kiocb * iocb,struct iov_iter * iter)705 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
706 {
707 size_t written = 0;
708
709 while (iov_iter_count(iter)) {
710 size_t chunk = iov_iter_count(iter), n;
711
712 if (chunk > PAGE_SIZE)
713 chunk = PAGE_SIZE; /* Just for latency reasons */
714 n = iov_iter_zero(chunk, iter);
715 if (!n && iov_iter_count(iter))
716 return written ? written : -EFAULT;
717 written += n;
718 if (signal_pending(current))
719 return written ? written : -ERESTARTSYS;
720 cond_resched();
721 }
722 return written;
723 }
724
mmap_zero(struct file * file,struct vm_area_struct * vma)725 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
726 {
727 #ifndef CONFIG_MMU
728 return -ENOSYS;
729 #endif
730 if (vma->vm_flags & VM_SHARED)
731 return shmem_zero_setup(vma);
732 vma_set_anonymous(vma);
733 return 0;
734 }
735
get_unmapped_area_zero(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)736 static unsigned long get_unmapped_area_zero(struct file *file,
737 unsigned long addr, unsigned long len,
738 unsigned long pgoff, unsigned long flags)
739 {
740 #ifdef CONFIG_MMU
741 if (flags & MAP_SHARED) {
742 /*
743 * mmap_zero() will call shmem_zero_setup() to create a file,
744 * so use shmem's get_unmapped_area in case it can be huge;
745 * and pass NULL for file as in mmap.c's get_unmapped_area(),
746 * so as not to confuse shmem with our handle on "/dev/zero".
747 */
748 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
749 }
750
751 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
752 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
753 #else
754 return -ENOSYS;
755 #endif
756 }
757
write_full(struct file * file,const char __user * buf,size_t count,loff_t * ppos)758 static ssize_t write_full(struct file *file, const char __user *buf,
759 size_t count, loff_t *ppos)
760 {
761 return -ENOSPC;
762 }
763
764 /*
765 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
766 * can fopen() both devices with "a" now. This was previously impossible.
767 * -- SRB.
768 */
null_lseek(struct file * file,loff_t offset,int orig)769 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
770 {
771 return file->f_pos = 0;
772 }
773
774 /*
775 * The memory devices use the full 32/64 bits of the offset, and so we cannot
776 * check against negative addresses: they are ok. The return value is weird,
777 * though, in that case (0).
778 *
779 * also note that seeking relative to the "end of file" isn't supported:
780 * it has no meaning, so it returns -EINVAL.
781 */
memory_lseek(struct file * file,loff_t offset,int orig)782 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
783 {
784 loff_t ret;
785
786 inode_lock(file_inode(file));
787 switch (orig) {
788 case SEEK_CUR:
789 offset += file->f_pos;
790 /* fall through */
791 case SEEK_SET:
792 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
793 if ((unsigned long long)offset >= -MAX_ERRNO) {
794 ret = -EOVERFLOW;
795 break;
796 }
797 file->f_pos = offset;
798 ret = file->f_pos;
799 force_successful_syscall_return();
800 break;
801 default:
802 ret = -EINVAL;
803 }
804 inode_unlock(file_inode(file));
805 return ret;
806 }
807
open_port(struct inode * inode,struct file * filp)808 static int open_port(struct inode *inode, struct file *filp)
809 {
810 if (!capable(CAP_SYS_RAWIO))
811 return -EPERM;
812
813 return security_locked_down(LOCKDOWN_DEV_MEM);
814 }
815
816 #define zero_lseek null_lseek
817 #define full_lseek null_lseek
818 #define write_zero write_null
819 #define write_iter_zero write_iter_null
820 #define open_mem open_port
821 #define open_kmem open_mem
822
823 static const struct file_operations __maybe_unused mem_fops = {
824 .llseek = memory_lseek,
825 .read = read_mem,
826 .write = write_mem,
827 .mmap = mmap_mem,
828 .open = open_mem,
829 #ifndef CONFIG_MMU
830 .get_unmapped_area = get_unmapped_area_mem,
831 .mmap_capabilities = memory_mmap_capabilities,
832 #endif
833 };
834
835 static const struct file_operations __maybe_unused kmem_fops = {
836 .llseek = memory_lseek,
837 .read = read_kmem,
838 .write = write_kmem,
839 .mmap = mmap_kmem,
840 .open = open_kmem,
841 #ifndef CONFIG_MMU
842 .get_unmapped_area = get_unmapped_area_mem,
843 .mmap_capabilities = memory_mmap_capabilities,
844 #endif
845 };
846
847 static const struct file_operations null_fops = {
848 .llseek = null_lseek,
849 .read = read_null,
850 .write = write_null,
851 .read_iter = read_iter_null,
852 .write_iter = write_iter_null,
853 .splice_write = splice_write_null,
854 };
855
856 static const struct file_operations __maybe_unused port_fops = {
857 .llseek = memory_lseek,
858 .read = read_port,
859 .write = write_port,
860 .open = open_port,
861 };
862
863 static const struct file_operations zero_fops = {
864 .llseek = zero_lseek,
865 .write = write_zero,
866 .read_iter = read_iter_zero,
867 .write_iter = write_iter_zero,
868 .mmap = mmap_zero,
869 .get_unmapped_area = get_unmapped_area_zero,
870 #ifndef CONFIG_MMU
871 .mmap_capabilities = zero_mmap_capabilities,
872 #endif
873 };
874
875 static const struct file_operations full_fops = {
876 .llseek = full_lseek,
877 .read_iter = read_iter_zero,
878 .write = write_full,
879 };
880
881 static const struct memdev {
882 const char *name;
883 umode_t mode;
884 const struct file_operations *fops;
885 fmode_t fmode;
886 } devlist[] = {
887 #ifdef CONFIG_DEVMEM
888 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
889 #endif
890 #ifdef CONFIG_DEVKMEM
891 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
892 #endif
893 [3] = { "null", 0666, &null_fops, 0 },
894 #ifdef CONFIG_DEVPORT
895 [4] = { "port", 0, &port_fops, 0 },
896 #endif
897 [5] = { "zero", 0666, &zero_fops, 0 },
898 [7] = { "full", 0666, &full_fops, 0 },
899 [8] = { "random", 0666, &random_fops, 0 },
900 [9] = { "urandom", 0666, &urandom_fops, 0 },
901 #ifdef CONFIG_PRINTK
902 [11] = { "kmsg", 0644, &kmsg_fops, 0 },
903 #endif
904 };
905
memory_open(struct inode * inode,struct file * filp)906 static int memory_open(struct inode *inode, struct file *filp)
907 {
908 int minor;
909 const struct memdev *dev;
910
911 minor = iminor(inode);
912 if (minor >= ARRAY_SIZE(devlist))
913 return -ENXIO;
914
915 dev = &devlist[minor];
916 if (!dev->fops)
917 return -ENXIO;
918
919 filp->f_op = dev->fops;
920 filp->f_mode |= dev->fmode;
921
922 if (dev->fops->open)
923 return dev->fops->open(inode, filp);
924
925 return 0;
926 }
927
928 static const struct file_operations memory_fops = {
929 .open = memory_open,
930 .llseek = noop_llseek,
931 };
932
mem_devnode(struct device * dev,umode_t * mode)933 static char *mem_devnode(struct device *dev, umode_t *mode)
934 {
935 if (mode && devlist[MINOR(dev->devt)].mode)
936 *mode = devlist[MINOR(dev->devt)].mode;
937 return NULL;
938 }
939
940 static struct class *mem_class;
941
chr_dev_init(void)942 static int __init chr_dev_init(void)
943 {
944 int minor;
945
946 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
947 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
948
949 mem_class = class_create(THIS_MODULE, "mem");
950 if (IS_ERR(mem_class))
951 return PTR_ERR(mem_class);
952
953 mem_class->devnode = mem_devnode;
954 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
955 if (!devlist[minor].name)
956 continue;
957
958 /*
959 * Create /dev/port?
960 */
961 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
962 continue;
963
964 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
965 NULL, devlist[minor].name);
966 }
967
968 return tty_init();
969 }
970
971 fs_initcall(chr_dev_init);
972