• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Real Time Clock interface for Linux
4  *
5  *	Copyright (C) 1996 Paul Gortmaker
6  *
7  *	This driver allows use of the real time clock (built into
8  *	nearly all computers) from user space. It exports the /dev/rtc
9  *	interface supporting various ioctl() and also the
10  *	/proc/driver/rtc pseudo-file for status information.
11  *
12  *	The ioctls can be used to set the interrupt behaviour and
13  *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
14  *	interface can be used to make use of these timer interrupts,
15  *	be they interval or alarm based.
16  *
17  *	The /dev/rtc interface will block on reads until an interrupt
18  *	has been received. If a RTC interrupt has already happened,
19  *	it will output an unsigned long and then block. The output value
20  *	contains the interrupt status in the low byte and the number of
21  *	interrupts since the last read in the remaining high bytes. The
22  *	/dev/rtc interface can also be used with the select(2) call.
23  *
24  *	Based on other minimal char device drivers, like Alan's
25  *	watchdog, Ted's random, etc. etc.
26  *
27  *	1.07	Paul Gortmaker.
28  *	1.08	Miquel van Smoorenburg: disallow certain things on the
29  *		DEC Alpha as the CMOS clock is also used for other things.
30  *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
31  *	1.09a	Pete Zaitcev: Sun SPARC
32  *	1.09b	Jeff Garzik: Modularize, init cleanup
33  *	1.09c	Jeff Garzik: SMP cleanup
34  *	1.10	Paul Barton-Davis: add support for async I/O
35  *	1.10a	Andrea Arcangeli: Alpha updates
36  *	1.10b	Andrew Morton: SMP lock fix
37  *	1.10c	Cesar Barros: SMP locking fixes and cleanup
38  *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
39  *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
40  *	1.11	Takashi Iwai: Kernel access functions
41  *			      rtc_register/rtc_unregister/rtc_control
42  *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
43  *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
44  *		CONFIG_HPET_EMULATE_RTC
45  *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
46  *	1.12ac	Alan Cox: Allow read access to the day of week register
47  *	1.12b	David John: Remove calls to the BKL.
48  */
49 
50 #define RTC_VERSION		"1.12b"
51 
52 /*
53  *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
54  *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
55  *	design of the RTC, we don't want two different things trying to
56  *	get to it at once. (e.g. the periodic 11 min sync from
57  *      kernel/time/ntp.c vs. this driver.)
58  */
59 
60 #include <linux/interrupt.h>
61 #include <linux/module.h>
62 #include <linux/kernel.h>
63 #include <linux/types.h>
64 #include <linux/miscdevice.h>
65 #include <linux/ioport.h>
66 #include <linux/fcntl.h>
67 #include <linux/mc146818rtc.h>
68 #include <linux/init.h>
69 #include <linux/poll.h>
70 #include <linux/proc_fs.h>
71 #include <linux/seq_file.h>
72 #include <linux/spinlock.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sysctl.h>
75 #include <linux/wait.h>
76 #include <linux/bcd.h>
77 #include <linux/delay.h>
78 #include <linux/uaccess.h>
79 #include <linux/ratelimit.h>
80 
81 #include <asm/current.h>
82 
83 #ifdef CONFIG_X86
84 #include <asm/hpet.h>
85 #endif
86 
87 #ifdef CONFIG_SPARC32
88 #include <linux/of.h>
89 #include <linux/of_device.h>
90 #include <asm/io.h>
91 
92 static unsigned long rtc_port;
93 static int rtc_irq;
94 #endif
95 
96 #ifdef	CONFIG_HPET_EMULATE_RTC
97 #undef	RTC_IRQ
98 #endif
99 
100 #ifdef RTC_IRQ
101 static int rtc_has_irq = 1;
102 #endif
103 
104 #ifndef CONFIG_HPET_EMULATE_RTC
105 #define is_hpet_enabled()			0
106 #define hpet_set_alarm_time(hrs, min, sec)	0
107 #define hpet_set_periodic_freq(arg)		0
108 #define hpet_mask_rtc_irq_bit(arg)		0
109 #define hpet_set_rtc_irq_bit(arg)		0
110 #define hpet_rtc_timer_init()			do { } while (0)
111 #define hpet_rtc_dropped_irq()			0
112 #define hpet_register_irq_handler(h)		({ 0; })
113 #define hpet_unregister_irq_handler(h)		({ 0; })
114 #ifdef RTC_IRQ
hpet_rtc_interrupt(int irq,void * dev_id)115 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
116 {
117 	return 0;
118 }
119 #endif
120 #endif
121 
122 /*
123  *	We sponge a minor off of the misc major. No need slurping
124  *	up another valuable major dev number for this. If you add
125  *	an ioctl, make sure you don't conflict with SPARC's RTC
126  *	ioctls.
127  */
128 
129 static struct fasync_struct *rtc_async_queue;
130 
131 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
132 
133 #ifdef RTC_IRQ
134 static void rtc_dropped_irq(struct timer_list *unused);
135 
136 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
137 #endif
138 
139 static ssize_t rtc_read(struct file *file, char __user *buf,
140 			size_t count, loff_t *ppos);
141 
142 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
143 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
144 
145 #ifdef RTC_IRQ
146 static __poll_t rtc_poll(struct file *file, poll_table *wait);
147 #endif
148 
149 static void get_rtc_alm_time(struct rtc_time *alm_tm);
150 #ifdef RTC_IRQ
151 static void set_rtc_irq_bit_locked(unsigned char bit);
152 static void mask_rtc_irq_bit_locked(unsigned char bit);
153 
set_rtc_irq_bit(unsigned char bit)154 static inline void set_rtc_irq_bit(unsigned char bit)
155 {
156 	spin_lock_irq(&rtc_lock);
157 	set_rtc_irq_bit_locked(bit);
158 	spin_unlock_irq(&rtc_lock);
159 }
160 
mask_rtc_irq_bit(unsigned char bit)161 static void mask_rtc_irq_bit(unsigned char bit)
162 {
163 	spin_lock_irq(&rtc_lock);
164 	mask_rtc_irq_bit_locked(bit);
165 	spin_unlock_irq(&rtc_lock);
166 }
167 #endif
168 
169 #ifdef CONFIG_PROC_FS
170 static int rtc_proc_show(struct seq_file *seq, void *v);
171 #endif
172 
173 /*
174  *	Bits in rtc_status. (6 bits of room for future expansion)
175  */
176 
177 #define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
178 #define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
179 
180 /*
181  * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
182  * protected by the spin lock rtc_lock. However, ioctl can still disable the
183  * timer in rtc_status and then with del_timer after the interrupt has read
184  * rtc_status but before mod_timer is called, which would then reenable the
185  * timer (but you would need to have an awful timing before you'd trip on it)
186  */
187 static unsigned long rtc_status;	/* bitmapped status byte.	*/
188 static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
189 static unsigned long rtc_irq_data;	/* our output to the world	*/
190 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
191 
192 /*
193  *	If this driver ever becomes modularised, it will be really nice
194  *	to make the epoch retain its value across module reload...
195  */
196 
197 static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
198 
199 static const unsigned char days_in_mo[] =
200 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
201 
202 /*
203  * Returns true if a clock update is in progress
204  */
rtc_is_updating(void)205 static inline unsigned char rtc_is_updating(void)
206 {
207 	unsigned long flags;
208 	unsigned char uip;
209 
210 	spin_lock_irqsave(&rtc_lock, flags);
211 	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
212 	spin_unlock_irqrestore(&rtc_lock, flags);
213 	return uip;
214 }
215 
216 #ifdef RTC_IRQ
217 /*
218  *	A very tiny interrupt handler. It runs with interrupts disabled,
219  *	but there is possibility of conflicting with the set_rtc_mmss()
220  *	call (the rtc irq and the timer irq can easily run at the same
221  *	time in two different CPUs). So we need to serialize
222  *	accesses to the chip with the rtc_lock spinlock that each
223  *	architecture should implement in the timer code.
224  *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
225  */
226 
rtc_interrupt(int irq,void * dev_id)227 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
228 {
229 	/*
230 	 *	Can be an alarm interrupt, update complete interrupt,
231 	 *	or a periodic interrupt. We store the status in the
232 	 *	low byte and the number of interrupts received since
233 	 *	the last read in the remainder of rtc_irq_data.
234 	 */
235 
236 	spin_lock(&rtc_lock);
237 	rtc_irq_data += 0x100;
238 	rtc_irq_data &= ~0xff;
239 	if (is_hpet_enabled()) {
240 		/*
241 		 * In this case it is HPET RTC interrupt handler
242 		 * calling us, with the interrupt information
243 		 * passed as arg1, instead of irq.
244 		 */
245 		rtc_irq_data |= (unsigned long)irq & 0xF0;
246 	} else {
247 		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
248 	}
249 
250 	if (rtc_status & RTC_TIMER_ON)
251 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
252 
253 	spin_unlock(&rtc_lock);
254 
255 	wake_up_interruptible(&rtc_wait);
256 
257 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
258 
259 	return IRQ_HANDLED;
260 }
261 #endif
262 
263 /*
264  * sysctl-tuning infrastructure.
265  */
266 static struct ctl_table rtc_table[] = {
267 	{
268 		.procname	= "max-user-freq",
269 		.data		= &rtc_max_user_freq,
270 		.maxlen		= sizeof(int),
271 		.mode		= 0644,
272 		.proc_handler	= proc_dointvec,
273 	},
274 	{ }
275 };
276 
277 static struct ctl_table rtc_root[] = {
278 	{
279 		.procname	= "rtc",
280 		.mode		= 0555,
281 		.child		= rtc_table,
282 	},
283 	{ }
284 };
285 
286 static struct ctl_table dev_root[] = {
287 	{
288 		.procname	= "dev",
289 		.mode		= 0555,
290 		.child		= rtc_root,
291 	},
292 	{ }
293 };
294 
295 static struct ctl_table_header *sysctl_header;
296 
init_sysctl(void)297 static int __init init_sysctl(void)
298 {
299     sysctl_header = register_sysctl_table(dev_root);
300     return 0;
301 }
302 
cleanup_sysctl(void)303 static void __exit cleanup_sysctl(void)
304 {
305     unregister_sysctl_table(sysctl_header);
306 }
307 
308 /*
309  *	Now all the various file operations that we export.
310  */
311 
rtc_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)312 static ssize_t rtc_read(struct file *file, char __user *buf,
313 			size_t count, loff_t *ppos)
314 {
315 #ifndef RTC_IRQ
316 	return -EIO;
317 #else
318 	DECLARE_WAITQUEUE(wait, current);
319 	unsigned long data;
320 	ssize_t retval;
321 
322 	if (rtc_has_irq == 0)
323 		return -EIO;
324 
325 	/*
326 	 * Historically this function used to assume that sizeof(unsigned long)
327 	 * is the same in userspace and kernelspace.  This lead to problems
328 	 * for configurations with multiple ABIs such a the MIPS o32 and 64
329 	 * ABIs supported on the same kernel.  So now we support read of both
330 	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
331 	 * userspace ABI.
332 	 */
333 	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
334 		return -EINVAL;
335 
336 	add_wait_queue(&rtc_wait, &wait);
337 
338 	do {
339 		/* First make it right. Then make it fast. Putting this whole
340 		 * block within the parentheses of a while would be too
341 		 * confusing. And no, xchg() is not the answer. */
342 
343 		__set_current_state(TASK_INTERRUPTIBLE);
344 
345 		spin_lock_irq(&rtc_lock);
346 		data = rtc_irq_data;
347 		rtc_irq_data = 0;
348 		spin_unlock_irq(&rtc_lock);
349 
350 		if (data != 0)
351 			break;
352 
353 		if (file->f_flags & O_NONBLOCK) {
354 			retval = -EAGAIN;
355 			goto out;
356 		}
357 		if (signal_pending(current)) {
358 			retval = -ERESTARTSYS;
359 			goto out;
360 		}
361 		schedule();
362 	} while (1);
363 
364 	if (count == sizeof(unsigned int)) {
365 		retval = put_user(data,
366 				  (unsigned int __user *)buf) ?: sizeof(int);
367 	} else {
368 		retval = put_user(data,
369 				  (unsigned long __user *)buf) ?: sizeof(long);
370 	}
371 	if (!retval)
372 		retval = count;
373  out:
374 	__set_current_state(TASK_RUNNING);
375 	remove_wait_queue(&rtc_wait, &wait);
376 
377 	return retval;
378 #endif
379 }
380 
rtc_do_ioctl(unsigned int cmd,unsigned long arg,int kernel)381 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
382 {
383 	struct rtc_time wtime;
384 
385 #ifdef RTC_IRQ
386 	if (rtc_has_irq == 0) {
387 		switch (cmd) {
388 		case RTC_AIE_OFF:
389 		case RTC_AIE_ON:
390 		case RTC_PIE_OFF:
391 		case RTC_PIE_ON:
392 		case RTC_UIE_OFF:
393 		case RTC_UIE_ON:
394 		case RTC_IRQP_READ:
395 		case RTC_IRQP_SET:
396 			return -EINVAL;
397 		}
398 	}
399 #endif
400 
401 	switch (cmd) {
402 #ifdef RTC_IRQ
403 	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
404 	{
405 		mask_rtc_irq_bit(RTC_AIE);
406 		return 0;
407 	}
408 	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
409 	{
410 		set_rtc_irq_bit(RTC_AIE);
411 		return 0;
412 	}
413 	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
414 	{
415 		/* can be called from isr via rtc_control() */
416 		unsigned long flags;
417 
418 		spin_lock_irqsave(&rtc_lock, flags);
419 		mask_rtc_irq_bit_locked(RTC_PIE);
420 		if (rtc_status & RTC_TIMER_ON) {
421 			rtc_status &= ~RTC_TIMER_ON;
422 			del_timer(&rtc_irq_timer);
423 		}
424 		spin_unlock_irqrestore(&rtc_lock, flags);
425 
426 		return 0;
427 	}
428 	case RTC_PIE_ON:	/* Allow periodic ints		*/
429 	{
430 		/* can be called from isr via rtc_control() */
431 		unsigned long flags;
432 
433 		/*
434 		 * We don't really want Joe User enabling more
435 		 * than 64Hz of interrupts on a multi-user machine.
436 		 */
437 		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
438 						(!capable(CAP_SYS_RESOURCE)))
439 			return -EACCES;
440 
441 		spin_lock_irqsave(&rtc_lock, flags);
442 		if (!(rtc_status & RTC_TIMER_ON)) {
443 			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
444 					2*HZ/100);
445 			rtc_status |= RTC_TIMER_ON;
446 		}
447 		set_rtc_irq_bit_locked(RTC_PIE);
448 		spin_unlock_irqrestore(&rtc_lock, flags);
449 
450 		return 0;
451 	}
452 	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
453 	{
454 		mask_rtc_irq_bit(RTC_UIE);
455 		return 0;
456 	}
457 	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
458 	{
459 		set_rtc_irq_bit(RTC_UIE);
460 		return 0;
461 	}
462 #endif
463 	case RTC_ALM_READ:	/* Read the present alarm time */
464 	{
465 		/*
466 		 * This returns a struct rtc_time. Reading >= 0xc0
467 		 * means "don't care" or "match all". Only the tm_hour,
468 		 * tm_min, and tm_sec values are filled in.
469 		 */
470 		memset(&wtime, 0, sizeof(struct rtc_time));
471 		get_rtc_alm_time(&wtime);
472 		break;
473 	}
474 	case RTC_ALM_SET:	/* Store a time into the alarm */
475 	{
476 		/*
477 		 * This expects a struct rtc_time. Writing 0xff means
478 		 * "don't care" or "match all". Only the tm_hour,
479 		 * tm_min and tm_sec are used.
480 		 */
481 		unsigned char hrs, min, sec;
482 		struct rtc_time alm_tm;
483 
484 		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
485 				   sizeof(struct rtc_time)))
486 			return -EFAULT;
487 
488 		hrs = alm_tm.tm_hour;
489 		min = alm_tm.tm_min;
490 		sec = alm_tm.tm_sec;
491 
492 		spin_lock_irq(&rtc_lock);
493 		if (hpet_set_alarm_time(hrs, min, sec)) {
494 			/*
495 			 * Fallthru and set alarm time in CMOS too,
496 			 * so that we will get proper value in RTC_ALM_READ
497 			 */
498 		}
499 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
500 							RTC_ALWAYS_BCD) {
501 			if (sec < 60)
502 				sec = bin2bcd(sec);
503 			else
504 				sec = 0xff;
505 
506 			if (min < 60)
507 				min = bin2bcd(min);
508 			else
509 				min = 0xff;
510 
511 			if (hrs < 24)
512 				hrs = bin2bcd(hrs);
513 			else
514 				hrs = 0xff;
515 		}
516 		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
517 		CMOS_WRITE(min, RTC_MINUTES_ALARM);
518 		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
519 		spin_unlock_irq(&rtc_lock);
520 
521 		return 0;
522 	}
523 	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
524 	{
525 		memset(&wtime, 0, sizeof(struct rtc_time));
526 		rtc_get_rtc_time(&wtime);
527 		break;
528 	}
529 	case RTC_SET_TIME:	/* Set the RTC */
530 	{
531 		struct rtc_time rtc_tm;
532 		unsigned char mon, day, hrs, min, sec, leap_yr;
533 		unsigned char save_control, save_freq_select;
534 		unsigned int yrs;
535 #ifdef CONFIG_MACH_DECSTATION
536 		unsigned int real_yrs;
537 #endif
538 
539 		if (!capable(CAP_SYS_TIME))
540 			return -EACCES;
541 
542 		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
543 				   sizeof(struct rtc_time)))
544 			return -EFAULT;
545 
546 		yrs = rtc_tm.tm_year + 1900;
547 		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
548 		day = rtc_tm.tm_mday;
549 		hrs = rtc_tm.tm_hour;
550 		min = rtc_tm.tm_min;
551 		sec = rtc_tm.tm_sec;
552 
553 		if (yrs < 1970)
554 			return -EINVAL;
555 
556 		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
557 
558 		if ((mon > 12) || (day == 0))
559 			return -EINVAL;
560 
561 		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
562 			return -EINVAL;
563 
564 		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
565 			return -EINVAL;
566 
567 		yrs -= epoch;
568 		if (yrs > 255)		/* They are unsigned */
569 			return -EINVAL;
570 
571 		spin_lock_irq(&rtc_lock);
572 #ifdef CONFIG_MACH_DECSTATION
573 		real_yrs = yrs;
574 		yrs = 72;
575 
576 		/*
577 		 * We want to keep the year set to 73 until March
578 		 * for non-leap years, so that Feb, 29th is handled
579 		 * correctly.
580 		 */
581 		if (!leap_yr && mon < 3) {
582 			real_yrs--;
583 			yrs = 73;
584 		}
585 #endif
586 		/* These limits and adjustments are independent of
587 		 * whether the chip is in binary mode or not.
588 		 */
589 		if (yrs > 169) {
590 			spin_unlock_irq(&rtc_lock);
591 			return -EINVAL;
592 		}
593 		if (yrs >= 100)
594 			yrs -= 100;
595 
596 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
597 		    || RTC_ALWAYS_BCD) {
598 			sec = bin2bcd(sec);
599 			min = bin2bcd(min);
600 			hrs = bin2bcd(hrs);
601 			day = bin2bcd(day);
602 			mon = bin2bcd(mon);
603 			yrs = bin2bcd(yrs);
604 		}
605 
606 		save_control = CMOS_READ(RTC_CONTROL);
607 		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
608 		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
609 		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
610 
611 #ifdef CONFIG_MACH_DECSTATION
612 		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
613 #endif
614 		CMOS_WRITE(yrs, RTC_YEAR);
615 		CMOS_WRITE(mon, RTC_MONTH);
616 		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
617 		CMOS_WRITE(hrs, RTC_HOURS);
618 		CMOS_WRITE(min, RTC_MINUTES);
619 		CMOS_WRITE(sec, RTC_SECONDS);
620 
621 		CMOS_WRITE(save_control, RTC_CONTROL);
622 		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
623 
624 		spin_unlock_irq(&rtc_lock);
625 		return 0;
626 	}
627 #ifdef RTC_IRQ
628 	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
629 	{
630 		return put_user(rtc_freq, (unsigned long __user *)arg);
631 	}
632 	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
633 	{
634 		int tmp = 0;
635 		unsigned char val;
636 		/* can be called from isr via rtc_control() */
637 		unsigned long flags;
638 
639 		/*
640 		 * The max we can do is 8192Hz.
641 		 */
642 		if ((arg < 2) || (arg > 8192))
643 			return -EINVAL;
644 		/*
645 		 * We don't really want Joe User generating more
646 		 * than 64Hz of interrupts on a multi-user machine.
647 		 */
648 		if (!kernel && (arg > rtc_max_user_freq) &&
649 					!capable(CAP_SYS_RESOURCE))
650 			return -EACCES;
651 
652 		while (arg > (1<<tmp))
653 			tmp++;
654 
655 		/*
656 		 * Check that the input was really a power of 2.
657 		 */
658 		if (arg != (1<<tmp))
659 			return -EINVAL;
660 
661 		rtc_freq = arg;
662 
663 		spin_lock_irqsave(&rtc_lock, flags);
664 		if (hpet_set_periodic_freq(arg)) {
665 			spin_unlock_irqrestore(&rtc_lock, flags);
666 			return 0;
667 		}
668 
669 		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
670 		val |= (16 - tmp);
671 		CMOS_WRITE(val, RTC_FREQ_SELECT);
672 		spin_unlock_irqrestore(&rtc_lock, flags);
673 		return 0;
674 	}
675 #endif
676 	case RTC_EPOCH_READ:	/* Read the epoch.	*/
677 	{
678 		return put_user(epoch, (unsigned long __user *)arg);
679 	}
680 	case RTC_EPOCH_SET:	/* Set the epoch.	*/
681 	{
682 		/*
683 		 * There were no RTC clocks before 1900.
684 		 */
685 		if (arg < 1900)
686 			return -EINVAL;
687 
688 		if (!capable(CAP_SYS_TIME))
689 			return -EACCES;
690 
691 		epoch = arg;
692 		return 0;
693 	}
694 	default:
695 		return -ENOTTY;
696 	}
697 	return copy_to_user((void __user *)arg,
698 			    &wtime, sizeof wtime) ? -EFAULT : 0;
699 }
700 
rtc_ioctl(struct file * file,unsigned int cmd,unsigned long arg)701 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
702 {
703 	long ret;
704 	ret = rtc_do_ioctl(cmd, arg, 0);
705 	return ret;
706 }
707 
708 /*
709  *	We enforce only one user at a time here with the open/close.
710  *	Also clear the previous interrupt data on an open, and clean
711  *	up things on a close.
712  */
rtc_open(struct inode * inode,struct file * file)713 static int rtc_open(struct inode *inode, struct file *file)
714 {
715 	spin_lock_irq(&rtc_lock);
716 
717 	if (rtc_status & RTC_IS_OPEN)
718 		goto out_busy;
719 
720 	rtc_status |= RTC_IS_OPEN;
721 
722 	rtc_irq_data = 0;
723 	spin_unlock_irq(&rtc_lock);
724 	return 0;
725 
726 out_busy:
727 	spin_unlock_irq(&rtc_lock);
728 	return -EBUSY;
729 }
730 
rtc_fasync(int fd,struct file * filp,int on)731 static int rtc_fasync(int fd, struct file *filp, int on)
732 {
733 	return fasync_helper(fd, filp, on, &rtc_async_queue);
734 }
735 
rtc_release(struct inode * inode,struct file * file)736 static int rtc_release(struct inode *inode, struct file *file)
737 {
738 #ifdef RTC_IRQ
739 	unsigned char tmp;
740 
741 	if (rtc_has_irq == 0)
742 		goto no_irq;
743 
744 	/*
745 	 * Turn off all interrupts once the device is no longer
746 	 * in use, and clear the data.
747 	 */
748 
749 	spin_lock_irq(&rtc_lock);
750 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
751 		tmp = CMOS_READ(RTC_CONTROL);
752 		tmp &=  ~RTC_PIE;
753 		tmp &=  ~RTC_AIE;
754 		tmp &=  ~RTC_UIE;
755 		CMOS_WRITE(tmp, RTC_CONTROL);
756 		CMOS_READ(RTC_INTR_FLAGS);
757 	}
758 	if (rtc_status & RTC_TIMER_ON) {
759 		rtc_status &= ~RTC_TIMER_ON;
760 		del_timer(&rtc_irq_timer);
761 	}
762 	spin_unlock_irq(&rtc_lock);
763 
764 no_irq:
765 #endif
766 
767 	spin_lock_irq(&rtc_lock);
768 	rtc_irq_data = 0;
769 	rtc_status &= ~RTC_IS_OPEN;
770 	spin_unlock_irq(&rtc_lock);
771 
772 	return 0;
773 }
774 
775 #ifdef RTC_IRQ
rtc_poll(struct file * file,poll_table * wait)776 static __poll_t rtc_poll(struct file *file, poll_table *wait)
777 {
778 	unsigned long l;
779 
780 	if (rtc_has_irq == 0)
781 		return 0;
782 
783 	poll_wait(file, &rtc_wait, wait);
784 
785 	spin_lock_irq(&rtc_lock);
786 	l = rtc_irq_data;
787 	spin_unlock_irq(&rtc_lock);
788 
789 	if (l != 0)
790 		return EPOLLIN | EPOLLRDNORM;
791 	return 0;
792 }
793 #endif
794 
795 /*
796  *	The various file operations we support.
797  */
798 
799 static const struct file_operations rtc_fops = {
800 	.owner		= THIS_MODULE,
801 	.llseek		= no_llseek,
802 	.read		= rtc_read,
803 #ifdef RTC_IRQ
804 	.poll		= rtc_poll,
805 #endif
806 	.unlocked_ioctl	= rtc_ioctl,
807 	.open		= rtc_open,
808 	.release	= rtc_release,
809 	.fasync		= rtc_fasync,
810 };
811 
812 static struct miscdevice rtc_dev = {
813 	.minor		= RTC_MINOR,
814 	.name		= "rtc",
815 	.fops		= &rtc_fops,
816 };
817 
818 static resource_size_t rtc_size;
819 
rtc_request_region(resource_size_t size)820 static struct resource * __init rtc_request_region(resource_size_t size)
821 {
822 	struct resource *r;
823 
824 	if (RTC_IOMAPPED)
825 		r = request_region(RTC_PORT(0), size, "rtc");
826 	else
827 		r = request_mem_region(RTC_PORT(0), size, "rtc");
828 
829 	if (r)
830 		rtc_size = size;
831 
832 	return r;
833 }
834 
rtc_release_region(void)835 static void rtc_release_region(void)
836 {
837 	if (RTC_IOMAPPED)
838 		release_region(RTC_PORT(0), rtc_size);
839 	else
840 		release_mem_region(RTC_PORT(0), rtc_size);
841 }
842 
rtc_init(void)843 static int __init rtc_init(void)
844 {
845 #ifdef CONFIG_PROC_FS
846 	struct proc_dir_entry *ent;
847 #endif
848 #if defined(__alpha__) || defined(__mips__)
849 	unsigned int year, ctrl;
850 	char *guess = NULL;
851 #endif
852 #ifdef CONFIG_SPARC32
853 	struct device_node *ebus_dp;
854 	struct platform_device *op;
855 #else
856 	void *r;
857 #ifdef RTC_IRQ
858 	irq_handler_t rtc_int_handler_ptr;
859 #endif
860 #endif
861 
862 #ifdef CONFIG_SPARC32
863 	for_each_node_by_name(ebus_dp, "ebus") {
864 		struct device_node *dp;
865 		for_each_child_of_node(ebus_dp, dp) {
866 			if (of_node_name_eq(dp, "rtc")) {
867 				op = of_find_device_by_node(dp);
868 				if (op) {
869 					rtc_port = op->resource[0].start;
870 					rtc_irq = op->irqs[0];
871 					goto found;
872 				}
873 			}
874 		}
875 	}
876 	rtc_has_irq = 0;
877 	printk(KERN_ERR "rtc_init: no PC rtc found\n");
878 	return -EIO;
879 
880 found:
881 	if (!rtc_irq) {
882 		rtc_has_irq = 0;
883 		goto no_irq;
884 	}
885 
886 	/*
887 	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
888 	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
889 	 */
890 	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
891 			(void *)&rtc_port)) {
892 		rtc_has_irq = 0;
893 		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
894 		return -EIO;
895 	}
896 no_irq:
897 #else
898 	r = rtc_request_region(RTC_IO_EXTENT);
899 
900 	/*
901 	 * If we've already requested a smaller range (for example, because
902 	 * PNPBIOS or ACPI told us how the device is configured), the request
903 	 * above might fail because it's too big.
904 	 *
905 	 * If so, request just the range we actually use.
906 	 */
907 	if (!r)
908 		r = rtc_request_region(RTC_IO_EXTENT_USED);
909 	if (!r) {
910 #ifdef RTC_IRQ
911 		rtc_has_irq = 0;
912 #endif
913 		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
914 		       (long)(RTC_PORT(0)));
915 		return -EIO;
916 	}
917 
918 #ifdef RTC_IRQ
919 	if (is_hpet_enabled()) {
920 		int err;
921 
922 		rtc_int_handler_ptr = hpet_rtc_interrupt;
923 		err = hpet_register_irq_handler(rtc_interrupt);
924 		if (err != 0) {
925 			printk(KERN_WARNING "hpet_register_irq_handler failed "
926 					"in rtc_init().");
927 			return err;
928 		}
929 	} else {
930 		rtc_int_handler_ptr = rtc_interrupt;
931 	}
932 
933 	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
934 		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
935 		rtc_has_irq = 0;
936 		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
937 		rtc_release_region();
938 
939 		return -EIO;
940 	}
941 	hpet_rtc_timer_init();
942 
943 #endif
944 
945 #endif /* CONFIG_SPARC32 vs. others */
946 
947 	if (misc_register(&rtc_dev)) {
948 #ifdef RTC_IRQ
949 		free_irq(RTC_IRQ, NULL);
950 		hpet_unregister_irq_handler(rtc_interrupt);
951 		rtc_has_irq = 0;
952 #endif
953 		rtc_release_region();
954 		return -ENODEV;
955 	}
956 
957 #ifdef CONFIG_PROC_FS
958 	ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
959 	if (!ent)
960 		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
961 #endif
962 
963 #if defined(__alpha__) || defined(__mips__)
964 	rtc_freq = HZ;
965 
966 	/* Each operating system on an Alpha uses its own epoch.
967 	   Let's try to guess which one we are using now. */
968 
969 	if (rtc_is_updating() != 0)
970 		msleep(20);
971 
972 	spin_lock_irq(&rtc_lock);
973 	year = CMOS_READ(RTC_YEAR);
974 	ctrl = CMOS_READ(RTC_CONTROL);
975 	spin_unlock_irq(&rtc_lock);
976 
977 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
978 		year = bcd2bin(year);       /* This should never happen... */
979 
980 	if (year < 20) {
981 		epoch = 2000;
982 		guess = "SRM (post-2000)";
983 	} else if (year >= 20 && year < 48) {
984 		epoch = 1980;
985 		guess = "ARC console";
986 	} else if (year >= 48 && year < 72) {
987 		epoch = 1952;
988 		guess = "Digital UNIX";
989 #if defined(__mips__)
990 	} else if (year >= 72 && year < 74) {
991 		epoch = 2000;
992 		guess = "Digital DECstation";
993 #else
994 	} else if (year >= 70) {
995 		epoch = 1900;
996 		guess = "Standard PC (1900)";
997 #endif
998 	}
999 	if (guess)
1000 		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1001 			guess, epoch);
1002 #endif
1003 #ifdef RTC_IRQ
1004 	if (rtc_has_irq == 0)
1005 		goto no_irq2;
1006 
1007 	spin_lock_irq(&rtc_lock);
1008 	rtc_freq = 1024;
1009 	if (!hpet_set_periodic_freq(rtc_freq)) {
1010 		/*
1011 		 * Initialize periodic frequency to CMOS reset default,
1012 		 * which is 1024Hz
1013 		 */
1014 		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1015 			   RTC_FREQ_SELECT);
1016 	}
1017 	spin_unlock_irq(&rtc_lock);
1018 no_irq2:
1019 #endif
1020 
1021 	(void) init_sysctl();
1022 
1023 	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1024 
1025 	return 0;
1026 }
1027 
rtc_exit(void)1028 static void __exit rtc_exit(void)
1029 {
1030 	cleanup_sysctl();
1031 	remove_proc_entry("driver/rtc", NULL);
1032 	misc_deregister(&rtc_dev);
1033 
1034 #ifdef CONFIG_SPARC32
1035 	if (rtc_has_irq)
1036 		free_irq(rtc_irq, &rtc_port);
1037 #else
1038 	rtc_release_region();
1039 #ifdef RTC_IRQ
1040 	if (rtc_has_irq) {
1041 		free_irq(RTC_IRQ, NULL);
1042 		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1043 	}
1044 #endif
1045 #endif /* CONFIG_SPARC32 */
1046 }
1047 
1048 module_init(rtc_init);
1049 module_exit(rtc_exit);
1050 
1051 #ifdef RTC_IRQ
1052 /*
1053  *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1054  *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1055  *	Since the interrupt handler doesn't get called, the IRQ status
1056  *	byte doesn't get read, and the RTC stops generating interrupts.
1057  *	A timer is set, and will call this function if/when that happens.
1058  *	To get it out of this stalled state, we just read the status.
1059  *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1060  *	(You *really* shouldn't be trying to use a non-realtime system
1061  *	for something that requires a steady > 1KHz signal anyways.)
1062  */
1063 
rtc_dropped_irq(struct timer_list * unused)1064 static void rtc_dropped_irq(struct timer_list *unused)
1065 {
1066 	unsigned long freq;
1067 
1068 	spin_lock_irq(&rtc_lock);
1069 
1070 	if (hpet_rtc_dropped_irq()) {
1071 		spin_unlock_irq(&rtc_lock);
1072 		return;
1073 	}
1074 
1075 	/* Just in case someone disabled the timer from behind our back... */
1076 	if (rtc_status & RTC_TIMER_ON)
1077 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1078 
1079 	rtc_irq_data += ((rtc_freq/HZ)<<8);
1080 	rtc_irq_data &= ~0xff;
1081 	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1082 
1083 	freq = rtc_freq;
1084 
1085 	spin_unlock_irq(&rtc_lock);
1086 
1087 	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1088 			   freq);
1089 
1090 	/* Now we have new data */
1091 	wake_up_interruptible(&rtc_wait);
1092 
1093 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1094 }
1095 #endif
1096 
1097 #ifdef CONFIG_PROC_FS
1098 /*
1099  *	Info exported via "/proc/driver/rtc".
1100  */
1101 
rtc_proc_show(struct seq_file * seq,void * v)1102 static int rtc_proc_show(struct seq_file *seq, void *v)
1103 {
1104 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1105 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1106 	struct rtc_time tm;
1107 	unsigned char batt, ctrl;
1108 	unsigned long freq;
1109 
1110 	spin_lock_irq(&rtc_lock);
1111 	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1112 	ctrl = CMOS_READ(RTC_CONTROL);
1113 	freq = rtc_freq;
1114 	spin_unlock_irq(&rtc_lock);
1115 
1116 
1117 	rtc_get_rtc_time(&tm);
1118 
1119 	/*
1120 	 * There is no way to tell if the luser has the RTC set for local
1121 	 * time or for Universal Standard Time (GMT). Probably local though.
1122 	 */
1123 	seq_printf(seq,
1124 		   "rtc_time\t: %ptRt\n"
1125 		   "rtc_date\t: %ptRd\n"
1126 		   "rtc_epoch\t: %04lu\n",
1127 		   &tm, &tm, epoch);
1128 
1129 	get_rtc_alm_time(&tm);
1130 
1131 	/*
1132 	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1133 	 * match any value for that particular field. Values that are
1134 	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1135 	 */
1136 	seq_puts(seq, "alarm\t\t: ");
1137 	if (tm.tm_hour <= 24)
1138 		seq_printf(seq, "%02d:", tm.tm_hour);
1139 	else
1140 		seq_puts(seq, "**:");
1141 
1142 	if (tm.tm_min <= 59)
1143 		seq_printf(seq, "%02d:", tm.tm_min);
1144 	else
1145 		seq_puts(seq, "**:");
1146 
1147 	if (tm.tm_sec <= 59)
1148 		seq_printf(seq, "%02d\n", tm.tm_sec);
1149 	else
1150 		seq_puts(seq, "**\n");
1151 
1152 	seq_printf(seq,
1153 		   "DST_enable\t: %s\n"
1154 		   "BCD\t\t: %s\n"
1155 		   "24hr\t\t: %s\n"
1156 		   "square_wave\t: %s\n"
1157 		   "alarm_IRQ\t: %s\n"
1158 		   "update_IRQ\t: %s\n"
1159 		   "periodic_IRQ\t: %s\n"
1160 		   "periodic_freq\t: %ld\n"
1161 		   "batt_status\t: %s\n",
1162 		   YN(RTC_DST_EN),
1163 		   NY(RTC_DM_BINARY),
1164 		   YN(RTC_24H),
1165 		   YN(RTC_SQWE),
1166 		   YN(RTC_AIE),
1167 		   YN(RTC_UIE),
1168 		   YN(RTC_PIE),
1169 		   freq,
1170 		   batt ? "okay" : "dead");
1171 
1172 	return  0;
1173 #undef YN
1174 #undef NY
1175 }
1176 #endif
1177 
rtc_get_rtc_time(struct rtc_time * rtc_tm)1178 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1179 {
1180 	unsigned long uip_watchdog = jiffies, flags;
1181 	unsigned char ctrl;
1182 #ifdef CONFIG_MACH_DECSTATION
1183 	unsigned int real_year;
1184 #endif
1185 
1186 	/*
1187 	 * read RTC once any update in progress is done. The update
1188 	 * can take just over 2ms. We wait 20ms. There is no need to
1189 	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1190 	 * If you need to know *exactly* when a second has started, enable
1191 	 * periodic update complete interrupts, (via ioctl) and then
1192 	 * immediately read /dev/rtc which will block until you get the IRQ.
1193 	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1194 	 */
1195 
1196 	while (rtc_is_updating() != 0 &&
1197 	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1198 		cpu_relax();
1199 
1200 	/*
1201 	 * Only the values that we read from the RTC are set. We leave
1202 	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1203 	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1204 	 * only updated by the RTC when initially set to a non-zero value.
1205 	 */
1206 	spin_lock_irqsave(&rtc_lock, flags);
1207 	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1208 	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1209 	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1210 	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1211 	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1212 	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1213 	/* Only set from 2.6.16 onwards */
1214 	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1215 
1216 #ifdef CONFIG_MACH_DECSTATION
1217 	real_year = CMOS_READ(RTC_DEC_YEAR);
1218 #endif
1219 	ctrl = CMOS_READ(RTC_CONTROL);
1220 	spin_unlock_irqrestore(&rtc_lock, flags);
1221 
1222 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1223 		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1224 		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1225 		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1226 		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1227 		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1228 		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1229 		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1230 	}
1231 
1232 #ifdef CONFIG_MACH_DECSTATION
1233 	rtc_tm->tm_year += real_year - 72;
1234 #endif
1235 
1236 	/*
1237 	 * Account for differences between how the RTC uses the values
1238 	 * and how they are defined in a struct rtc_time;
1239 	 */
1240 	rtc_tm->tm_year += epoch - 1900;
1241 	if (rtc_tm->tm_year <= 69)
1242 		rtc_tm->tm_year += 100;
1243 
1244 	rtc_tm->tm_mon--;
1245 }
1246 
get_rtc_alm_time(struct rtc_time * alm_tm)1247 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1248 {
1249 	unsigned char ctrl;
1250 
1251 	/*
1252 	 * Only the values that we read from the RTC are set. That
1253 	 * means only tm_hour, tm_min, and tm_sec.
1254 	 */
1255 	spin_lock_irq(&rtc_lock);
1256 	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1257 	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1258 	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1259 	ctrl = CMOS_READ(RTC_CONTROL);
1260 	spin_unlock_irq(&rtc_lock);
1261 
1262 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1263 		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1264 		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1265 		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1266 	}
1267 }
1268 
1269 #ifdef RTC_IRQ
1270 /*
1271  * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1272  * Rumour has it that if you frob the interrupt enable/disable
1273  * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1274  * ensure you actually start getting interrupts. Probably for
1275  * compatibility with older/broken chipset RTC implementations.
1276  * We also clear out any old irq data after an ioctl() that
1277  * meddles with the interrupt enable/disable bits.
1278  */
1279 
mask_rtc_irq_bit_locked(unsigned char bit)1280 static void mask_rtc_irq_bit_locked(unsigned char bit)
1281 {
1282 	unsigned char val;
1283 
1284 	if (hpet_mask_rtc_irq_bit(bit))
1285 		return;
1286 	val = CMOS_READ(RTC_CONTROL);
1287 	val &=  ~bit;
1288 	CMOS_WRITE(val, RTC_CONTROL);
1289 	CMOS_READ(RTC_INTR_FLAGS);
1290 
1291 	rtc_irq_data = 0;
1292 }
1293 
set_rtc_irq_bit_locked(unsigned char bit)1294 static void set_rtc_irq_bit_locked(unsigned char bit)
1295 {
1296 	unsigned char val;
1297 
1298 	if (hpet_set_rtc_irq_bit(bit))
1299 		return;
1300 	val = CMOS_READ(RTC_CONTROL);
1301 	val |= bit;
1302 	CMOS_WRITE(val, RTC_CONTROL);
1303 	CMOS_READ(RTC_INTR_FLAGS);
1304 
1305 	rtc_irq_data = 0;
1306 }
1307 #endif
1308 
1309 MODULE_AUTHOR("Paul Gortmaker");
1310 MODULE_LICENSE("GPL");
1311 MODULE_ALIAS_MISCDEV(RTC_MINOR);
1312