• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains driver for the Cadence Triple Timer Counter Rev 06
4  *
5  *  Copyright (C) 2011-2013 Xilinx
6  *
7  * based on arch/mips/kernel/time.c timer driver
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/interrupt.h>
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/slab.h>
17 #include <linux/sched_clock.h>
18 
19 /*
20  * This driver configures the 2 16/32-bit count-up timers as follows:
21  *
22  * T1: Timer 1, clocksource for generic timekeeping
23  * T2: Timer 2, clockevent source for hrtimers
24  * T3: Timer 3, <unused>
25  *
26  * The input frequency to the timer module for emulation is 2.5MHz which is
27  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
28  * the timers are clocked at 78.125KHz (12.8 us resolution).
29 
30  * The input frequency to the timer module in silicon is configurable and
31  * obtained from device tree. The pre-scaler of 32 is used.
32  */
33 
34 /*
35  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
36  * and use same offsets for Timer 2
37  */
38 #define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
39 #define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
40 #define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
41 #define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
42 #define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
43 #define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
44 
45 #define TTC_CNT_CNTRL_DISABLE_MASK	0x1
46 
47 #define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
48 #define TTC_CLK_CNTRL_PSV_MASK		0x1e
49 #define TTC_CLK_CNTRL_PSV_SHIFT		1
50 
51 /*
52  * Setup the timers to use pre-scaling, using a fixed value for now that will
53  * work across most input frequency, but it may need to be more dynamic
54  */
55 #define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
56 #define PRESCALE		2048	/* The exponent must match this */
57 #define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
58 #define CLK_CNTRL_PRESCALE_EN	1
59 #define CNT_CNTRL_RESET		(1 << 4)
60 
61 #define MAX_F_ERR 50
62 
63 /**
64  * struct ttc_timer - This definition defines local timer structure
65  *
66  * @base_addr:	Base address of timer
67  * @freq:	Timer input clock frequency
68  * @clk:	Associated clock source
69  * @clk_rate_change_nb	Notifier block for clock rate changes
70  */
71 struct ttc_timer {
72 	void __iomem *base_addr;
73 	unsigned long freq;
74 	struct clk *clk;
75 	struct notifier_block clk_rate_change_nb;
76 };
77 
78 #define to_ttc_timer(x) \
79 		container_of(x, struct ttc_timer, clk_rate_change_nb)
80 
81 struct ttc_timer_clocksource {
82 	u32			scale_clk_ctrl_reg_old;
83 	u32			scale_clk_ctrl_reg_new;
84 	struct ttc_timer	ttc;
85 	struct clocksource	cs;
86 };
87 
88 #define to_ttc_timer_clksrc(x) \
89 		container_of(x, struct ttc_timer_clocksource, cs)
90 
91 struct ttc_timer_clockevent {
92 	struct ttc_timer		ttc;
93 	struct clock_event_device	ce;
94 };
95 
96 #define to_ttc_timer_clkevent(x) \
97 		container_of(x, struct ttc_timer_clockevent, ce)
98 
99 static void __iomem *ttc_sched_clock_val_reg;
100 
101 /**
102  * ttc_set_interval - Set the timer interval value
103  *
104  * @timer:	Pointer to the timer instance
105  * @cycles:	Timer interval ticks
106  **/
ttc_set_interval(struct ttc_timer * timer,unsigned long cycles)107 static void ttc_set_interval(struct ttc_timer *timer,
108 					unsigned long cycles)
109 {
110 	u32 ctrl_reg;
111 
112 	/* Disable the counter, set the counter value  and re-enable counter */
113 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
114 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
115 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
116 
117 	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
118 
119 	/*
120 	 * Reset the counter (0x10) so that it starts from 0, one-shot
121 	 * mode makes this needed for timing to be right.
122 	 */
123 	ctrl_reg |= CNT_CNTRL_RESET;
124 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
125 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
126 }
127 
128 /**
129  * ttc_clock_event_interrupt - Clock event timer interrupt handler
130  *
131  * @irq:	IRQ number of the Timer
132  * @dev_id:	void pointer to the ttc_timer instance
133  *
134  * returns: Always IRQ_HANDLED - success
135  **/
ttc_clock_event_interrupt(int irq,void * dev_id)136 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
137 {
138 	struct ttc_timer_clockevent *ttce = dev_id;
139 	struct ttc_timer *timer = &ttce->ttc;
140 
141 	/* Acknowledge the interrupt and call event handler */
142 	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
143 
144 	ttce->ce.event_handler(&ttce->ce);
145 
146 	return IRQ_HANDLED;
147 }
148 
149 /**
150  * __ttc_clocksource_read - Reads the timer counter register
151  *
152  * returns: Current timer counter register value
153  **/
__ttc_clocksource_read(struct clocksource * cs)154 static u64 __ttc_clocksource_read(struct clocksource *cs)
155 {
156 	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
157 
158 	return (u64)readl_relaxed(timer->base_addr +
159 				TTC_COUNT_VAL_OFFSET);
160 }
161 
ttc_sched_clock_read(void)162 static u64 notrace ttc_sched_clock_read(void)
163 {
164 	return readl_relaxed(ttc_sched_clock_val_reg);
165 }
166 
167 /**
168  * ttc_set_next_event - Sets the time interval for next event
169  *
170  * @cycles:	Timer interval ticks
171  * @evt:	Address of clock event instance
172  *
173  * returns: Always 0 - success
174  **/
ttc_set_next_event(unsigned long cycles,struct clock_event_device * evt)175 static int ttc_set_next_event(unsigned long cycles,
176 					struct clock_event_device *evt)
177 {
178 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
179 	struct ttc_timer *timer = &ttce->ttc;
180 
181 	ttc_set_interval(timer, cycles);
182 	return 0;
183 }
184 
185 /**
186  * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
187  *
188  * @evt:	Address of clock event instance
189  **/
ttc_shutdown(struct clock_event_device * evt)190 static int ttc_shutdown(struct clock_event_device *evt)
191 {
192 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
193 	struct ttc_timer *timer = &ttce->ttc;
194 	u32 ctrl_reg;
195 
196 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
197 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
198 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
199 	return 0;
200 }
201 
ttc_set_periodic(struct clock_event_device * evt)202 static int ttc_set_periodic(struct clock_event_device *evt)
203 {
204 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
205 	struct ttc_timer *timer = &ttce->ttc;
206 
207 	ttc_set_interval(timer,
208 			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
209 	return 0;
210 }
211 
ttc_resume(struct clock_event_device * evt)212 static int ttc_resume(struct clock_event_device *evt)
213 {
214 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
215 	struct ttc_timer *timer = &ttce->ttc;
216 	u32 ctrl_reg;
217 
218 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
220 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
221 	return 0;
222 }
223 
ttc_rate_change_clocksource_cb(struct notifier_block * nb,unsigned long event,void * data)224 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
225 		unsigned long event, void *data)
226 {
227 	struct clk_notifier_data *ndata = data;
228 	struct ttc_timer *ttc = to_ttc_timer(nb);
229 	struct ttc_timer_clocksource *ttccs = container_of(ttc,
230 			struct ttc_timer_clocksource, ttc);
231 
232 	switch (event) {
233 	case PRE_RATE_CHANGE:
234 	{
235 		u32 psv;
236 		unsigned long factor, rate_low, rate_high;
237 
238 		if (ndata->new_rate > ndata->old_rate) {
239 			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
240 					ndata->old_rate);
241 			rate_low = ndata->old_rate;
242 			rate_high = ndata->new_rate;
243 		} else {
244 			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
245 					ndata->new_rate);
246 			rate_low = ndata->new_rate;
247 			rate_high = ndata->old_rate;
248 		}
249 
250 		if (!is_power_of_2(factor))
251 				return NOTIFY_BAD;
252 
253 		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
254 			return NOTIFY_BAD;
255 
256 		factor = __ilog2_u32(factor);
257 
258 		/*
259 		 * store timer clock ctrl register so we can restore it in case
260 		 * of an abort.
261 		 */
262 		ttccs->scale_clk_ctrl_reg_old =
263 			readl_relaxed(ttccs->ttc.base_addr +
264 			TTC_CLK_CNTRL_OFFSET);
265 
266 		psv = (ttccs->scale_clk_ctrl_reg_old &
267 				TTC_CLK_CNTRL_PSV_MASK) >>
268 				TTC_CLK_CNTRL_PSV_SHIFT;
269 		if (ndata->new_rate < ndata->old_rate)
270 			psv -= factor;
271 		else
272 			psv += factor;
273 
274 		/* prescaler within legal range? */
275 		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
276 			return NOTIFY_BAD;
277 
278 		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
279 			~TTC_CLK_CNTRL_PSV_MASK;
280 		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
281 
282 
283 		/* scale down: adjust divider in post-change notification */
284 		if (ndata->new_rate < ndata->old_rate)
285 			return NOTIFY_DONE;
286 
287 		/* scale up: adjust divider now - before frequency change */
288 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
289 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
290 		break;
291 	}
292 	case POST_RATE_CHANGE:
293 		/* scale up: pre-change notification did the adjustment */
294 		if (ndata->new_rate > ndata->old_rate)
295 			return NOTIFY_OK;
296 
297 		/* scale down: adjust divider now - after frequency change */
298 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
299 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
300 		break;
301 
302 	case ABORT_RATE_CHANGE:
303 		/* we have to undo the adjustment in case we scale up */
304 		if (ndata->new_rate < ndata->old_rate)
305 			return NOTIFY_OK;
306 
307 		/* restore original register value */
308 		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
309 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
310 		/* fall through */
311 	default:
312 		return NOTIFY_DONE;
313 	}
314 
315 	return NOTIFY_DONE;
316 }
317 
ttc_setup_clocksource(struct clk * clk,void __iomem * base,u32 timer_width)318 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
319 					 u32 timer_width)
320 {
321 	struct ttc_timer_clocksource *ttccs;
322 	int err;
323 
324 	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
325 	if (!ttccs)
326 		return -ENOMEM;
327 
328 	ttccs->ttc.clk = clk;
329 
330 	err = clk_prepare_enable(ttccs->ttc.clk);
331 	if (err) {
332 		kfree(ttccs);
333 		return err;
334 	}
335 
336 	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
337 
338 	ttccs->ttc.clk_rate_change_nb.notifier_call =
339 		ttc_rate_change_clocksource_cb;
340 	ttccs->ttc.clk_rate_change_nb.next = NULL;
341 
342 	err = clk_notifier_register(ttccs->ttc.clk,
343 				    &ttccs->ttc.clk_rate_change_nb);
344 	if (err)
345 		pr_warn("Unable to register clock notifier.\n");
346 
347 	ttccs->ttc.base_addr = base;
348 	ttccs->cs.name = "ttc_clocksource";
349 	ttccs->cs.rating = 200;
350 	ttccs->cs.read = __ttc_clocksource_read;
351 	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
352 	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
353 
354 	/*
355 	 * Setup the clock source counter to be an incrementing counter
356 	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
357 	 * it by 32 also. Let it start running now.
358 	 */
359 	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
360 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
361 		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
362 	writel_relaxed(CNT_CNTRL_RESET,
363 		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
364 
365 	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
366 	if (err) {
367 		kfree(ttccs);
368 		return err;
369 	}
370 
371 	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
372 	sched_clock_register(ttc_sched_clock_read, timer_width,
373 			     ttccs->ttc.freq / PRESCALE);
374 
375 	return 0;
376 }
377 
ttc_rate_change_clockevent_cb(struct notifier_block * nb,unsigned long event,void * data)378 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
379 		unsigned long event, void *data)
380 {
381 	struct clk_notifier_data *ndata = data;
382 	struct ttc_timer *ttc = to_ttc_timer(nb);
383 	struct ttc_timer_clockevent *ttcce = container_of(ttc,
384 			struct ttc_timer_clockevent, ttc);
385 
386 	switch (event) {
387 	case POST_RATE_CHANGE:
388 		/* update cached frequency */
389 		ttc->freq = ndata->new_rate;
390 
391 		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
392 
393 		/* fall through */
394 	case PRE_RATE_CHANGE:
395 	case ABORT_RATE_CHANGE:
396 	default:
397 		return NOTIFY_DONE;
398 	}
399 }
400 
ttc_setup_clockevent(struct clk * clk,void __iomem * base,u32 irq)401 static int __init ttc_setup_clockevent(struct clk *clk,
402 				       void __iomem *base, u32 irq)
403 {
404 	struct ttc_timer_clockevent *ttcce;
405 	int err;
406 
407 	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
408 	if (!ttcce)
409 		return -ENOMEM;
410 
411 	ttcce->ttc.clk = clk;
412 
413 	err = clk_prepare_enable(ttcce->ttc.clk);
414 	if (err) {
415 		kfree(ttcce);
416 		return err;
417 	}
418 
419 	ttcce->ttc.clk_rate_change_nb.notifier_call =
420 		ttc_rate_change_clockevent_cb;
421 	ttcce->ttc.clk_rate_change_nb.next = NULL;
422 
423 	err = clk_notifier_register(ttcce->ttc.clk,
424 				    &ttcce->ttc.clk_rate_change_nb);
425 	if (err) {
426 		pr_warn("Unable to register clock notifier.\n");
427 		return err;
428 	}
429 
430 	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
431 
432 	ttcce->ttc.base_addr = base;
433 	ttcce->ce.name = "ttc_clockevent";
434 	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
435 	ttcce->ce.set_next_event = ttc_set_next_event;
436 	ttcce->ce.set_state_shutdown = ttc_shutdown;
437 	ttcce->ce.set_state_periodic = ttc_set_periodic;
438 	ttcce->ce.set_state_oneshot = ttc_shutdown;
439 	ttcce->ce.tick_resume = ttc_resume;
440 	ttcce->ce.rating = 200;
441 	ttcce->ce.irq = irq;
442 	ttcce->ce.cpumask = cpu_possible_mask;
443 
444 	/*
445 	 * Setup the clock event timer to be an interval timer which
446 	 * is prescaled by 32 using the interval interrupt. Leave it
447 	 * disabled for now.
448 	 */
449 	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
450 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
451 		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
452 	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
453 
454 	err = request_irq(irq, ttc_clock_event_interrupt,
455 			  IRQF_TIMER, ttcce->ce.name, ttcce);
456 	if (err) {
457 		kfree(ttcce);
458 		return err;
459 	}
460 
461 	clockevents_config_and_register(&ttcce->ce,
462 			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
463 
464 	return 0;
465 }
466 
467 /**
468  * ttc_timer_init - Initialize the timer
469  *
470  * Initializes the timer hardware and register the clock source and clock event
471  * timers with Linux kernal timer framework
472  */
ttc_timer_init(struct device_node * timer)473 static int __init ttc_timer_init(struct device_node *timer)
474 {
475 	unsigned int irq;
476 	void __iomem *timer_baseaddr;
477 	struct clk *clk_cs, *clk_ce;
478 	static int initialized;
479 	int clksel, ret;
480 	u32 timer_width = 16;
481 
482 	if (initialized)
483 		return 0;
484 
485 	initialized = 1;
486 
487 	/*
488 	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
489 	 * and use it. Note that the event timer uses the interrupt and it's the
490 	 * 2nd TTC hence the irq_of_parse_and_map(,1)
491 	 */
492 	timer_baseaddr = of_iomap(timer, 0);
493 	if (!timer_baseaddr) {
494 		pr_err("ERROR: invalid timer base address\n");
495 		return -ENXIO;
496 	}
497 
498 	irq = irq_of_parse_and_map(timer, 1);
499 	if (irq <= 0) {
500 		pr_err("ERROR: invalid interrupt number\n");
501 		return -EINVAL;
502 	}
503 
504 	of_property_read_u32(timer, "timer-width", &timer_width);
505 
506 	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
507 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508 	clk_cs = of_clk_get(timer, clksel);
509 	if (IS_ERR(clk_cs)) {
510 		pr_err("ERROR: timer input clock not found\n");
511 		return PTR_ERR(clk_cs);
512 	}
513 
514 	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
515 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516 	clk_ce = of_clk_get(timer, clksel);
517 	if (IS_ERR(clk_ce)) {
518 		pr_err("ERROR: timer input clock not found\n");
519 		return PTR_ERR(clk_ce);
520 	}
521 
522 	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
523 	if (ret)
524 		return ret;
525 
526 	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
527 	if (ret)
528 		return ret;
529 
530 	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
531 
532 	return 0;
533 }
534 
535 TIMER_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
536