• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Faraday Technology FTTMR010 timer driver
4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5  *
6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7  * Copyright (C) 2001-2006 Storlink, Corp.
8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9  */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22 
23 /*
24  * Register definitions common for all the timer variants.
25  */
26 #define TIMER1_COUNT		(0x00)
27 #define TIMER1_LOAD		(0x04)
28 #define TIMER1_MATCH1		(0x08)
29 #define TIMER1_MATCH2		(0x0c)
30 #define TIMER2_COUNT		(0x10)
31 #define TIMER2_LOAD		(0x14)
32 #define TIMER2_MATCH1		(0x18)
33 #define TIMER2_MATCH2		(0x1c)
34 #define TIMER3_COUNT		(0x20)
35 #define TIMER3_LOAD		(0x24)
36 #define TIMER3_MATCH1		(0x28)
37 #define TIMER3_MATCH2		(0x2c)
38 #define TIMER_CR		(0x30)
39 
40 /*
41  * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
42  */
43 #define TIMER_1_CR_ENABLE	BIT(0)
44 #define TIMER_1_CR_CLOCK	BIT(1)
45 #define TIMER_1_CR_INT		BIT(2)
46 #define TIMER_2_CR_ENABLE	BIT(3)
47 #define TIMER_2_CR_CLOCK	BIT(4)
48 #define TIMER_2_CR_INT		BIT(5)
49 #define TIMER_3_CR_ENABLE	BIT(6)
50 #define TIMER_3_CR_CLOCK	BIT(7)
51 #define TIMER_3_CR_INT		BIT(8)
52 #define TIMER_1_CR_UPDOWN	BIT(9)
53 #define TIMER_2_CR_UPDOWN	BIT(10)
54 #define TIMER_3_CR_UPDOWN	BIT(11)
55 
56 /*
57  * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
58  * The aspeed timers move bits around in the control register and lacks
59  * bits for setting the timer to count upwards.
60  */
61 #define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
62 #define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
63 #define TIMER_1_CR_ASPEED_INT		BIT(2)
64 #define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
65 #define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
66 #define TIMER_2_CR_ASPEED_INT		BIT(6)
67 #define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
68 #define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
69 #define TIMER_3_CR_ASPEED_INT		BIT(10)
70 
71 /*
72  * Interrupt status/mask register definitions for fttmr010/gemini/moxart
73  * timers.
74  * The registers don't exist and they are not needed on aspeed timers
75  * because:
76  *   - aspeed timer overflow interrupt is controlled by bits in Control
77  *     Register (TMC30).
78  *   - aspeed timers always generate interrupt when either one of the
79  *     Match registers equals to Status register.
80  */
81 #define TIMER_INTR_STATE	(0x34)
82 #define TIMER_INTR_MASK		(0x38)
83 #define TIMER_1_INT_MATCH1	BIT(0)
84 #define TIMER_1_INT_MATCH2	BIT(1)
85 #define TIMER_1_INT_OVERFLOW	BIT(2)
86 #define TIMER_2_INT_MATCH1	BIT(3)
87 #define TIMER_2_INT_MATCH2	BIT(4)
88 #define TIMER_2_INT_OVERFLOW	BIT(5)
89 #define TIMER_3_INT_MATCH1	BIT(6)
90 #define TIMER_3_INT_MATCH2	BIT(7)
91 #define TIMER_3_INT_OVERFLOW	BIT(8)
92 #define TIMER_INT_ALL_MASK	0x1ff
93 
94 struct fttmr010 {
95 	void __iomem *base;
96 	unsigned int tick_rate;
97 	bool is_aspeed;
98 	u32 t1_enable_val;
99 	struct clock_event_device clkevt;
100 #ifdef CONFIG_ARM
101 	struct delay_timer delay_timer;
102 #endif
103 };
104 
105 /*
106  * A local singleton used by sched_clock and delay timer reads, which are
107  * fast and stateless
108  */
109 static struct fttmr010 *local_fttmr;
110 
to_fttmr010(struct clock_event_device * evt)111 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
112 {
113 	return container_of(evt, struct fttmr010, clkevt);
114 }
115 
fttmr010_read_current_timer_up(void)116 static unsigned long fttmr010_read_current_timer_up(void)
117 {
118 	return readl(local_fttmr->base + TIMER2_COUNT);
119 }
120 
fttmr010_read_current_timer_down(void)121 static unsigned long fttmr010_read_current_timer_down(void)
122 {
123 	return ~readl(local_fttmr->base + TIMER2_COUNT);
124 }
125 
fttmr010_read_sched_clock_up(void)126 static u64 notrace fttmr010_read_sched_clock_up(void)
127 {
128 	return fttmr010_read_current_timer_up();
129 }
130 
fttmr010_read_sched_clock_down(void)131 static u64 notrace fttmr010_read_sched_clock_down(void)
132 {
133 	return fttmr010_read_current_timer_down();
134 }
135 
fttmr010_timer_set_next_event(unsigned long cycles,struct clock_event_device * evt)136 static int fttmr010_timer_set_next_event(unsigned long cycles,
137 				       struct clock_event_device *evt)
138 {
139 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
140 	u32 cr;
141 
142 	/* Stop */
143 	cr = readl(fttmr010->base + TIMER_CR);
144 	cr &= ~fttmr010->t1_enable_val;
145 	writel(cr, fttmr010->base + TIMER_CR);
146 
147 	if (fttmr010->is_aspeed) {
148 		/*
149 		 * ASPEED Timer Controller will load TIMER1_LOAD register
150 		 * into TIMER1_COUNT register when the timer is re-enabled.
151 		 */
152 		writel(cycles, fttmr010->base + TIMER1_LOAD);
153 	} else {
154 		/* Setup the match register forward in time */
155 		cr = readl(fttmr010->base + TIMER1_COUNT);
156 		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
157 	}
158 
159 	/* Start */
160 	cr = readl(fttmr010->base + TIMER_CR);
161 	cr |= fttmr010->t1_enable_val;
162 	writel(cr, fttmr010->base + TIMER_CR);
163 
164 	return 0;
165 }
166 
fttmr010_timer_shutdown(struct clock_event_device * evt)167 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
168 {
169 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
170 	u32 cr;
171 
172 	/* Stop */
173 	cr = readl(fttmr010->base + TIMER_CR);
174 	cr &= ~fttmr010->t1_enable_val;
175 	writel(cr, fttmr010->base + TIMER_CR);
176 
177 	return 0;
178 }
179 
fttmr010_timer_set_oneshot(struct clock_event_device * evt)180 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
181 {
182 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
183 	u32 cr;
184 
185 	/* Stop */
186 	cr = readl(fttmr010->base + TIMER_CR);
187 	cr &= ~fttmr010->t1_enable_val;
188 	writel(cr, fttmr010->base + TIMER_CR);
189 
190 	/* Setup counter start from 0 or ~0 */
191 	writel(0, fttmr010->base + TIMER1_COUNT);
192 	if (fttmr010->is_aspeed) {
193 		writel(~0, fttmr010->base + TIMER1_LOAD);
194 	} else {
195 		writel(0, fttmr010->base + TIMER1_LOAD);
196 
197 		/* Enable interrupt */
198 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
199 		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
200 		cr |= TIMER_1_INT_MATCH1;
201 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
202 	}
203 
204 	return 0;
205 }
206 
fttmr010_timer_set_periodic(struct clock_event_device * evt)207 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
208 {
209 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
210 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
211 	u32 cr;
212 
213 	/* Stop */
214 	cr = readl(fttmr010->base + TIMER_CR);
215 	cr &= ~fttmr010->t1_enable_val;
216 	writel(cr, fttmr010->base + TIMER_CR);
217 
218 	/* Setup timer to fire at 1/HZ intervals. */
219 	if (fttmr010->is_aspeed) {
220 		writel(period, fttmr010->base + TIMER1_LOAD);
221 	} else {
222 		cr = 0xffffffff - (period - 1);
223 		writel(cr, fttmr010->base + TIMER1_COUNT);
224 		writel(cr, fttmr010->base + TIMER1_LOAD);
225 
226 		/* Enable interrupt on overflow */
227 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
228 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
229 		cr |= TIMER_1_INT_OVERFLOW;
230 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
231 	}
232 
233 	/* Start the timer */
234 	cr = readl(fttmr010->base + TIMER_CR);
235 	cr |= fttmr010->t1_enable_val;
236 	writel(cr, fttmr010->base + TIMER_CR);
237 
238 	return 0;
239 }
240 
241 /*
242  * IRQ handler for the timer
243  */
fttmr010_timer_interrupt(int irq,void * dev_id)244 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
245 {
246 	struct clock_event_device *evt = dev_id;
247 
248 	evt->event_handler(evt);
249 	return IRQ_HANDLED;
250 }
251 
fttmr010_common_init(struct device_node * np,bool is_aspeed)252 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
253 {
254 	struct fttmr010 *fttmr010;
255 	int irq;
256 	struct clk *clk;
257 	int ret;
258 	u32 val;
259 
260 	/*
261 	 * These implementations require a clock reference.
262 	 * FIXME: we currently only support clocking using PCLK
263 	 * and using EXTCLK is not supported in the driver.
264 	 */
265 	clk = of_clk_get_by_name(np, "PCLK");
266 	if (IS_ERR(clk)) {
267 		pr_err("could not get PCLK\n");
268 		return PTR_ERR(clk);
269 	}
270 	ret = clk_prepare_enable(clk);
271 	if (ret) {
272 		pr_err("failed to enable PCLK\n");
273 		return ret;
274 	}
275 
276 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
277 	if (!fttmr010) {
278 		ret = -ENOMEM;
279 		goto out_disable_clock;
280 	}
281 	fttmr010->tick_rate = clk_get_rate(clk);
282 
283 	fttmr010->base = of_iomap(np, 0);
284 	if (!fttmr010->base) {
285 		pr_err("Can't remap registers\n");
286 		ret = -ENXIO;
287 		goto out_free;
288 	}
289 	/* IRQ for timer 1 */
290 	irq = irq_of_parse_and_map(np, 0);
291 	if (irq <= 0) {
292 		pr_err("Can't parse IRQ\n");
293 		ret = -EINVAL;
294 		goto out_unmap;
295 	}
296 
297 	/*
298 	 * The Aspeed timers move bits around in the control register.
299 	 */
300 	if (is_aspeed) {
301 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
302 			TIMER_1_CR_ASPEED_INT;
303 		fttmr010->is_aspeed = true;
304 	} else {
305 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
306 
307 		/*
308 		 * Reset the interrupt mask and status
309 		 */
310 		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
311 		writel(0, fttmr010->base + TIMER_INTR_STATE);
312 	}
313 
314 	/*
315 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
316 	 * where everything just counts down.
317 	 */
318 	if (is_aspeed)
319 		val = TIMER_2_CR_ASPEED_ENABLE;
320 	else {
321 		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
322 			TIMER_2_CR_UPDOWN;
323 	}
324 	writel(val, fttmr010->base + TIMER_CR);
325 
326 	/*
327 	 * Setup free-running clocksource timer (interrupts
328 	 * disabled.)
329 	 */
330 	local_fttmr = fttmr010;
331 	writel(0, fttmr010->base + TIMER2_COUNT);
332 	writel(0, fttmr010->base + TIMER2_MATCH1);
333 	writel(0, fttmr010->base + TIMER2_MATCH2);
334 
335 	if (fttmr010->is_aspeed) {
336 		writel(~0, fttmr010->base + TIMER2_LOAD);
337 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
338 				      "FTTMR010-TIMER2",
339 				      fttmr010->tick_rate,
340 				      300, 32, clocksource_mmio_readl_down);
341 		sched_clock_register(fttmr010_read_sched_clock_down, 32,
342 				     fttmr010->tick_rate);
343 	} else {
344 		writel(0, fttmr010->base + TIMER2_LOAD);
345 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
346 				      "FTTMR010-TIMER2",
347 				      fttmr010->tick_rate,
348 				      300, 32, clocksource_mmio_readl_up);
349 		sched_clock_register(fttmr010_read_sched_clock_up, 32,
350 				     fttmr010->tick_rate);
351 	}
352 
353 	/*
354 	 * Setup clockevent timer (interrupt-driven) on timer 1.
355 	 */
356 	writel(0, fttmr010->base + TIMER1_COUNT);
357 	writel(0, fttmr010->base + TIMER1_LOAD);
358 	writel(0, fttmr010->base + TIMER1_MATCH1);
359 	writel(0, fttmr010->base + TIMER1_MATCH2);
360 	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
361 			  "FTTMR010-TIMER1", &fttmr010->clkevt);
362 	if (ret) {
363 		pr_err("FTTMR010-TIMER1 no IRQ\n");
364 		goto out_unmap;
365 	}
366 
367 	fttmr010->clkevt.name = "FTTMR010-TIMER1";
368 	/* Reasonably fast and accurate clock event */
369 	fttmr010->clkevt.rating = 300;
370 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
371 		CLOCK_EVT_FEAT_ONESHOT;
372 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
373 	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
374 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
375 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
376 	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
377 	fttmr010->clkevt.cpumask = cpumask_of(0);
378 	fttmr010->clkevt.irq = irq;
379 	clockevents_config_and_register(&fttmr010->clkevt,
380 					fttmr010->tick_rate,
381 					1, 0xffffffff);
382 
383 #ifdef CONFIG_ARM
384 	/* Also use this timer for delays */
385 	if (fttmr010->is_aspeed)
386 		fttmr010->delay_timer.read_current_timer =
387 			fttmr010_read_current_timer_down;
388 	else
389 		fttmr010->delay_timer.read_current_timer =
390 			fttmr010_read_current_timer_up;
391 	fttmr010->delay_timer.freq = fttmr010->tick_rate;
392 	register_current_timer_delay(&fttmr010->delay_timer);
393 #endif
394 
395 	return 0;
396 
397 out_unmap:
398 	iounmap(fttmr010->base);
399 out_free:
400 	kfree(fttmr010);
401 out_disable_clock:
402 	clk_disable_unprepare(clk);
403 
404 	return ret;
405 }
406 
aspeed_timer_init(struct device_node * np)407 static __init int aspeed_timer_init(struct device_node *np)
408 {
409 	return fttmr010_common_init(np, true);
410 }
411 
fttmr010_timer_init(struct device_node * np)412 static __init int fttmr010_timer_init(struct device_node *np)
413 {
414 	return fttmr010_common_init(np, false);
415 }
416 
417 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
418 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
419 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
420 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
421 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
422