1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2012-2013 Freescale Semiconductor, Inc.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/clockchips.h>
8 #include <linux/clk.h>
9 #include <linux/of_address.h>
10 #include <linux/of_irq.h>
11 #include <linux/sched_clock.h>
12
13 /*
14 * Each pit takes 0x10 Bytes register space
15 */
16 #define PITMCR 0x00
17 #define PIT0_OFFSET 0x100
18 #define PITn_OFFSET(n) (PIT0_OFFSET + 0x10 * (n))
19 #define PITLDVAL 0x00
20 #define PITCVAL 0x04
21 #define PITTCTRL 0x08
22 #define PITTFLG 0x0c
23
24 #define PITMCR_MDIS (0x1 << 1)
25
26 #define PITTCTRL_TEN (0x1 << 0)
27 #define PITTCTRL_TIE (0x1 << 1)
28 #define PITCTRL_CHN (0x1 << 2)
29
30 #define PITTFLG_TIF 0x1
31
32 static void __iomem *clksrc_base;
33 static void __iomem *clkevt_base;
34 static unsigned long cycle_per_jiffy;
35
pit_timer_enable(void)36 static inline void pit_timer_enable(void)
37 {
38 __raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL);
39 }
40
pit_timer_disable(void)41 static inline void pit_timer_disable(void)
42 {
43 __raw_writel(0, clkevt_base + PITTCTRL);
44 }
45
pit_irq_acknowledge(void)46 static inline void pit_irq_acknowledge(void)
47 {
48 __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
49 }
50
pit_read_sched_clock(void)51 static u64 notrace pit_read_sched_clock(void)
52 {
53 return ~__raw_readl(clksrc_base + PITCVAL);
54 }
55
pit_clocksource_init(unsigned long rate)56 static int __init pit_clocksource_init(unsigned long rate)
57 {
58 /* set the max load value and start the clock source counter */
59 __raw_writel(0, clksrc_base + PITTCTRL);
60 __raw_writel(~0UL, clksrc_base + PITLDVAL);
61 __raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL);
62
63 sched_clock_register(pit_read_sched_clock, 32, rate);
64 return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate,
65 300, 32, clocksource_mmio_readl_down);
66 }
67
pit_set_next_event(unsigned long delta,struct clock_event_device * unused)68 static int pit_set_next_event(unsigned long delta,
69 struct clock_event_device *unused)
70 {
71 /*
72 * set a new value to PITLDVAL register will not restart the timer,
73 * to abort the current cycle and start a timer period with the new
74 * value, the timer must be disabled and enabled again.
75 * and the PITLAVAL should be set to delta minus one according to pit
76 * hardware requirement.
77 */
78 pit_timer_disable();
79 __raw_writel(delta - 1, clkevt_base + PITLDVAL);
80 pit_timer_enable();
81
82 return 0;
83 }
84
pit_shutdown(struct clock_event_device * evt)85 static int pit_shutdown(struct clock_event_device *evt)
86 {
87 pit_timer_disable();
88 return 0;
89 }
90
pit_set_periodic(struct clock_event_device * evt)91 static int pit_set_periodic(struct clock_event_device *evt)
92 {
93 pit_set_next_event(cycle_per_jiffy, evt);
94 return 0;
95 }
96
pit_timer_interrupt(int irq,void * dev_id)97 static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
98 {
99 struct clock_event_device *evt = dev_id;
100
101 pit_irq_acknowledge();
102
103 /*
104 * pit hardware doesn't support oneshot, it will generate an interrupt
105 * and reload the counter value from PITLDVAL when PITCVAL reach zero,
106 * and start the counter again. So software need to disable the timer
107 * to stop the counter loop in ONESHOT mode.
108 */
109 if (likely(clockevent_state_oneshot(evt)))
110 pit_timer_disable();
111
112 evt->event_handler(evt);
113
114 return IRQ_HANDLED;
115 }
116
117 static struct clock_event_device clockevent_pit = {
118 .name = "VF pit timer",
119 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
120 .set_state_shutdown = pit_shutdown,
121 .set_state_periodic = pit_set_periodic,
122 .set_next_event = pit_set_next_event,
123 .rating = 300,
124 };
125
126 static struct irqaction pit_timer_irq = {
127 .name = "VF pit timer",
128 .flags = IRQF_TIMER | IRQF_IRQPOLL,
129 .handler = pit_timer_interrupt,
130 .dev_id = &clockevent_pit,
131 };
132
pit_clockevent_init(unsigned long rate,int irq)133 static int __init pit_clockevent_init(unsigned long rate, int irq)
134 {
135 __raw_writel(0, clkevt_base + PITTCTRL);
136 __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
137
138 BUG_ON(setup_irq(irq, &pit_timer_irq));
139
140 clockevent_pit.cpumask = cpumask_of(0);
141 clockevent_pit.irq = irq;
142 /*
143 * The value for the LDVAL register trigger is calculated as:
144 * LDVAL trigger = (period / clock period) - 1
145 * The pit is a 32-bit down count timer, when the conter value
146 * reaches 0, it will generate an interrupt, thus the minimal
147 * LDVAL trigger value is 1. And then the min_delta is
148 * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
149 */
150 clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff);
151
152 return 0;
153 }
154
pit_timer_init(struct device_node * np)155 static int __init pit_timer_init(struct device_node *np)
156 {
157 struct clk *pit_clk;
158 void __iomem *timer_base;
159 unsigned long clk_rate;
160 int irq, ret;
161
162 timer_base = of_iomap(np, 0);
163 if (!timer_base) {
164 pr_err("Failed to iomap\n");
165 return -ENXIO;
166 }
167
168 /*
169 * PIT0 and PIT1 can be chained to build a 64-bit timer,
170 * so choose PIT2 as clocksource, PIT3 as clockevent device,
171 * and leave PIT0 and PIT1 unused for anyone else who needs them.
172 */
173 clksrc_base = timer_base + PITn_OFFSET(2);
174 clkevt_base = timer_base + PITn_OFFSET(3);
175
176 irq = irq_of_parse_and_map(np, 0);
177 if (irq <= 0)
178 return -EINVAL;
179
180 pit_clk = of_clk_get(np, 0);
181 if (IS_ERR(pit_clk))
182 return PTR_ERR(pit_clk);
183
184 ret = clk_prepare_enable(pit_clk);
185 if (ret)
186 return ret;
187
188 clk_rate = clk_get_rate(pit_clk);
189 cycle_per_jiffy = clk_rate / (HZ);
190
191 /* enable the pit module */
192 __raw_writel(~PITMCR_MDIS, timer_base + PITMCR);
193
194 ret = pit_clocksource_init(clk_rate);
195 if (ret)
196 return ret;
197
198 return pit_clockevent_init(clk_rate, irq);
199 }
200 TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
201