1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29
30 #include <asm/msr.h>
31 #include <asm/processor.h>
32 #include <asm/cpufeature.h>
33
34 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
35 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
36 MODULE_LICENSE("GPL");
37
38 enum {
39 UNDEFINED_CAPABLE = 0,
40 SYSTEM_INTEL_MSR_CAPABLE,
41 SYSTEM_AMD_MSR_CAPABLE,
42 SYSTEM_IO_CAPABLE,
43 };
44
45 #define INTEL_MSR_RANGE (0xffff)
46 #define AMD_MSR_RANGE (0x7)
47 #define HYGON_MSR_RANGE (0x7)
48
49 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
50
51 struct acpi_cpufreq_data {
52 unsigned int resume;
53 unsigned int cpu_feature;
54 unsigned int acpi_perf_cpu;
55 cpumask_var_t freqdomain_cpus;
56 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
57 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
58 };
59
60 /* acpi_perf_data is a pointer to percpu data. */
61 static struct acpi_processor_performance __percpu *acpi_perf_data;
62
to_perf_data(struct acpi_cpufreq_data * data)63 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
64 {
65 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
66 }
67
68 static struct cpufreq_driver acpi_cpufreq_driver;
69
70 static unsigned int acpi_pstate_strict;
71
boost_state(unsigned int cpu)72 static bool boost_state(unsigned int cpu)
73 {
74 u32 lo, hi;
75 u64 msr;
76
77 switch (boot_cpu_data.x86_vendor) {
78 case X86_VENDOR_INTEL:
79 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
80 msr = lo | ((u64)hi << 32);
81 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
82 case X86_VENDOR_HYGON:
83 case X86_VENDOR_AMD:
84 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
85 msr = lo | ((u64)hi << 32);
86 return !(msr & MSR_K7_HWCR_CPB_DIS);
87 }
88 return false;
89 }
90
boost_set_msr(bool enable)91 static int boost_set_msr(bool enable)
92 {
93 u32 msr_addr;
94 u64 msr_mask, val;
95
96 switch (boot_cpu_data.x86_vendor) {
97 case X86_VENDOR_INTEL:
98 msr_addr = MSR_IA32_MISC_ENABLE;
99 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
100 break;
101 case X86_VENDOR_HYGON:
102 case X86_VENDOR_AMD:
103 msr_addr = MSR_K7_HWCR;
104 msr_mask = MSR_K7_HWCR_CPB_DIS;
105 break;
106 default:
107 return -EINVAL;
108 }
109
110 rdmsrl(msr_addr, val);
111
112 if (enable)
113 val &= ~msr_mask;
114 else
115 val |= msr_mask;
116
117 wrmsrl(msr_addr, val);
118 return 0;
119 }
120
boost_set_msr_each(void * p_en)121 static void boost_set_msr_each(void *p_en)
122 {
123 bool enable = (bool) p_en;
124
125 boost_set_msr(enable);
126 }
127
set_boost(int val)128 static int set_boost(int val)
129 {
130 get_online_cpus();
131 on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
132 put_online_cpus();
133 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
134
135 return 0;
136 }
137
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)138 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
139 {
140 struct acpi_cpufreq_data *data = policy->driver_data;
141
142 if (unlikely(!data))
143 return -ENODEV;
144
145 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
146 }
147
148 cpufreq_freq_attr_ro(freqdomain_cpus);
149
150 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
store_cpb(struct cpufreq_policy * policy,const char * buf,size_t count)151 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
152 size_t count)
153 {
154 int ret;
155 unsigned int val = 0;
156
157 if (!acpi_cpufreq_driver.set_boost)
158 return -EINVAL;
159
160 ret = kstrtouint(buf, 10, &val);
161 if (ret || val > 1)
162 return -EINVAL;
163
164 set_boost(val);
165
166 return count;
167 }
168
show_cpb(struct cpufreq_policy * policy,char * buf)169 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
170 {
171 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
172 }
173
174 cpufreq_freq_attr_rw(cpb);
175 #endif
176
check_est_cpu(unsigned int cpuid)177 static int check_est_cpu(unsigned int cpuid)
178 {
179 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
180
181 return cpu_has(cpu, X86_FEATURE_EST);
182 }
183
check_amd_hwpstate_cpu(unsigned int cpuid)184 static int check_amd_hwpstate_cpu(unsigned int cpuid)
185 {
186 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
187
188 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
189 }
190
extract_io(struct cpufreq_policy * policy,u32 value)191 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
192 {
193 struct acpi_cpufreq_data *data = policy->driver_data;
194 struct acpi_processor_performance *perf;
195 int i;
196
197 perf = to_perf_data(data);
198
199 for (i = 0; i < perf->state_count; i++) {
200 if (value == perf->states[i].status)
201 return policy->freq_table[i].frequency;
202 }
203 return 0;
204 }
205
extract_msr(struct cpufreq_policy * policy,u32 msr)206 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
207 {
208 struct acpi_cpufreq_data *data = policy->driver_data;
209 struct cpufreq_frequency_table *pos;
210 struct acpi_processor_performance *perf;
211
212 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
213 msr &= AMD_MSR_RANGE;
214 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
215 msr &= HYGON_MSR_RANGE;
216 else
217 msr &= INTEL_MSR_RANGE;
218
219 perf = to_perf_data(data);
220
221 cpufreq_for_each_entry(pos, policy->freq_table)
222 if (msr == perf->states[pos->driver_data].status)
223 return pos->frequency;
224 return policy->freq_table[0].frequency;
225 }
226
extract_freq(struct cpufreq_policy * policy,u32 val)227 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
228 {
229 struct acpi_cpufreq_data *data = policy->driver_data;
230
231 switch (data->cpu_feature) {
232 case SYSTEM_INTEL_MSR_CAPABLE:
233 case SYSTEM_AMD_MSR_CAPABLE:
234 return extract_msr(policy, val);
235 case SYSTEM_IO_CAPABLE:
236 return extract_io(policy, val);
237 default:
238 return 0;
239 }
240 }
241
cpu_freq_read_intel(struct acpi_pct_register * not_used)242 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
243 {
244 u32 val, dummy;
245
246 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
247 return val;
248 }
249
cpu_freq_write_intel(struct acpi_pct_register * not_used,u32 val)250 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
251 {
252 u32 lo, hi;
253
254 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
255 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
256 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
257 }
258
cpu_freq_read_amd(struct acpi_pct_register * not_used)259 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
260 {
261 u32 val, dummy;
262
263 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
264 return val;
265 }
266
cpu_freq_write_amd(struct acpi_pct_register * not_used,u32 val)267 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
268 {
269 wrmsr(MSR_AMD_PERF_CTL, val, 0);
270 }
271
cpu_freq_read_io(struct acpi_pct_register * reg)272 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
273 {
274 u32 val;
275
276 acpi_os_read_port(reg->address, &val, reg->bit_width);
277 return val;
278 }
279
cpu_freq_write_io(struct acpi_pct_register * reg,u32 val)280 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
281 {
282 acpi_os_write_port(reg->address, val, reg->bit_width);
283 }
284
285 struct drv_cmd {
286 struct acpi_pct_register *reg;
287 u32 val;
288 union {
289 void (*write)(struct acpi_pct_register *reg, u32 val);
290 u32 (*read)(struct acpi_pct_register *reg);
291 } func;
292 };
293
294 /* Called via smp_call_function_single(), on the target CPU */
do_drv_read(void * _cmd)295 static void do_drv_read(void *_cmd)
296 {
297 struct drv_cmd *cmd = _cmd;
298
299 cmd->val = cmd->func.read(cmd->reg);
300 }
301
drv_read(struct acpi_cpufreq_data * data,const struct cpumask * mask)302 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
303 {
304 struct acpi_processor_performance *perf = to_perf_data(data);
305 struct drv_cmd cmd = {
306 .reg = &perf->control_register,
307 .func.read = data->cpu_freq_read,
308 };
309 int err;
310
311 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
312 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
313 return cmd.val;
314 }
315
316 /* Called via smp_call_function_many(), on the target CPUs */
do_drv_write(void * _cmd)317 static void do_drv_write(void *_cmd)
318 {
319 struct drv_cmd *cmd = _cmd;
320
321 cmd->func.write(cmd->reg, cmd->val);
322 }
323
drv_write(struct acpi_cpufreq_data * data,const struct cpumask * mask,u32 val)324 static void drv_write(struct acpi_cpufreq_data *data,
325 const struct cpumask *mask, u32 val)
326 {
327 struct acpi_processor_performance *perf = to_perf_data(data);
328 struct drv_cmd cmd = {
329 .reg = &perf->control_register,
330 .val = val,
331 .func.write = data->cpu_freq_write,
332 };
333 int this_cpu;
334
335 this_cpu = get_cpu();
336 if (cpumask_test_cpu(this_cpu, mask))
337 do_drv_write(&cmd);
338
339 smp_call_function_many(mask, do_drv_write, &cmd, 1);
340 put_cpu();
341 }
342
get_cur_val(const struct cpumask * mask,struct acpi_cpufreq_data * data)343 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
344 {
345 u32 val;
346
347 if (unlikely(cpumask_empty(mask)))
348 return 0;
349
350 val = drv_read(data, mask);
351
352 pr_debug("%s = %u\n", __func__, val);
353
354 return val;
355 }
356
get_cur_freq_on_cpu(unsigned int cpu)357 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
358 {
359 struct acpi_cpufreq_data *data;
360 struct cpufreq_policy *policy;
361 unsigned int freq;
362 unsigned int cached_freq;
363
364 pr_debug("%s (%d)\n", __func__, cpu);
365
366 policy = cpufreq_cpu_get_raw(cpu);
367 if (unlikely(!policy))
368 return 0;
369
370 data = policy->driver_data;
371 if (unlikely(!data || !policy->freq_table))
372 return 0;
373
374 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
375 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
376 if (freq != cached_freq) {
377 /*
378 * The dreaded BIOS frequency change behind our back.
379 * Force set the frequency on next target call.
380 */
381 data->resume = 1;
382 }
383
384 pr_debug("cur freq = %u\n", freq);
385
386 return freq;
387 }
388
check_freqs(struct cpufreq_policy * policy,const struct cpumask * mask,unsigned int freq)389 static unsigned int check_freqs(struct cpufreq_policy *policy,
390 const struct cpumask *mask, unsigned int freq)
391 {
392 struct acpi_cpufreq_data *data = policy->driver_data;
393 unsigned int cur_freq;
394 unsigned int i;
395
396 for (i = 0; i < 100; i++) {
397 cur_freq = extract_freq(policy, get_cur_val(mask, data));
398 if (cur_freq == freq)
399 return 1;
400 udelay(10);
401 }
402 return 0;
403 }
404
acpi_cpufreq_target(struct cpufreq_policy * policy,unsigned int index)405 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
406 unsigned int index)
407 {
408 struct acpi_cpufreq_data *data = policy->driver_data;
409 struct acpi_processor_performance *perf;
410 const struct cpumask *mask;
411 unsigned int next_perf_state = 0; /* Index into perf table */
412 int result = 0;
413
414 if (unlikely(!data)) {
415 return -ENODEV;
416 }
417
418 perf = to_perf_data(data);
419 next_perf_state = policy->freq_table[index].driver_data;
420 if (perf->state == next_perf_state) {
421 if (unlikely(data->resume)) {
422 pr_debug("Called after resume, resetting to P%d\n",
423 next_perf_state);
424 data->resume = 0;
425 } else {
426 pr_debug("Already at target state (P%d)\n",
427 next_perf_state);
428 return 0;
429 }
430 }
431
432 /*
433 * The core won't allow CPUs to go away until the governor has been
434 * stopped, so we can rely on the stability of policy->cpus.
435 */
436 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
437 cpumask_of(policy->cpu) : policy->cpus;
438
439 drv_write(data, mask, perf->states[next_perf_state].control);
440
441 if (acpi_pstate_strict) {
442 if (!check_freqs(policy, mask,
443 policy->freq_table[index].frequency)) {
444 pr_debug("%s (%d)\n", __func__, policy->cpu);
445 result = -EAGAIN;
446 }
447 }
448
449 if (!result)
450 perf->state = next_perf_state;
451
452 return result;
453 }
454
acpi_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)455 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
456 unsigned int target_freq)
457 {
458 struct acpi_cpufreq_data *data = policy->driver_data;
459 struct acpi_processor_performance *perf;
460 struct cpufreq_frequency_table *entry;
461 unsigned int next_perf_state, next_freq, index;
462
463 /*
464 * Find the closest frequency above target_freq.
465 */
466 if (policy->cached_target_freq == target_freq)
467 index = policy->cached_resolved_idx;
468 else
469 index = cpufreq_table_find_index_dl(policy, target_freq);
470
471 entry = &policy->freq_table[index];
472 next_freq = entry->frequency;
473 next_perf_state = entry->driver_data;
474
475 perf = to_perf_data(data);
476 if (perf->state == next_perf_state) {
477 if (unlikely(data->resume))
478 data->resume = 0;
479 else
480 return next_freq;
481 }
482
483 data->cpu_freq_write(&perf->control_register,
484 perf->states[next_perf_state].control);
485 perf->state = next_perf_state;
486 return next_freq;
487 }
488
489 static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data * data,unsigned int cpu)490 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
491 {
492 struct acpi_processor_performance *perf;
493
494 perf = to_perf_data(data);
495 if (cpu_khz) {
496 /* search the closest match to cpu_khz */
497 unsigned int i;
498 unsigned long freq;
499 unsigned long freqn = perf->states[0].core_frequency * 1000;
500
501 for (i = 0; i < (perf->state_count-1); i++) {
502 freq = freqn;
503 freqn = perf->states[i+1].core_frequency * 1000;
504 if ((2 * cpu_khz) > (freqn + freq)) {
505 perf->state = i;
506 return freq;
507 }
508 }
509 perf->state = perf->state_count-1;
510 return freqn;
511 } else {
512 /* assume CPU is at P0... */
513 perf->state = 0;
514 return perf->states[0].core_frequency * 1000;
515 }
516 }
517
free_acpi_perf_data(void)518 static void free_acpi_perf_data(void)
519 {
520 unsigned int i;
521
522 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
523 for_each_possible_cpu(i)
524 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
525 ->shared_cpu_map);
526 free_percpu(acpi_perf_data);
527 }
528
cpufreq_boost_online(unsigned int cpu)529 static int cpufreq_boost_online(unsigned int cpu)
530 {
531 /*
532 * On the CPU_UP path we simply keep the boost-disable flag
533 * in sync with the current global state.
534 */
535 return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
536 }
537
cpufreq_boost_down_prep(unsigned int cpu)538 static int cpufreq_boost_down_prep(unsigned int cpu)
539 {
540 /*
541 * Clear the boost-disable bit on the CPU_DOWN path so that
542 * this cpu cannot block the remaining ones from boosting.
543 */
544 return boost_set_msr(1);
545 }
546
547 /*
548 * acpi_cpufreq_early_init - initialize ACPI P-States library
549 *
550 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
551 * in order to determine correct frequency and voltage pairings. We can
552 * do _PDC and _PSD and find out the processor dependency for the
553 * actual init that will happen later...
554 */
acpi_cpufreq_early_init(void)555 static int __init acpi_cpufreq_early_init(void)
556 {
557 unsigned int i;
558 pr_debug("%s\n", __func__);
559
560 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
561 if (!acpi_perf_data) {
562 pr_debug("Memory allocation error for acpi_perf_data.\n");
563 return -ENOMEM;
564 }
565 for_each_possible_cpu(i) {
566 if (!zalloc_cpumask_var_node(
567 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
568 GFP_KERNEL, cpu_to_node(i))) {
569
570 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
571 free_acpi_perf_data();
572 return -ENOMEM;
573 }
574 }
575
576 /* Do initialization in ACPI core */
577 acpi_processor_preregister_performance(acpi_perf_data);
578 return 0;
579 }
580
581 #ifdef CONFIG_SMP
582 /*
583 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
584 * or do it in BIOS firmware and won't inform about it to OS. If not
585 * detected, this has a side effect of making CPU run at a different speed
586 * than OS intended it to run at. Detect it and handle it cleanly.
587 */
588 static int bios_with_sw_any_bug;
589
sw_any_bug_found(const struct dmi_system_id * d)590 static int sw_any_bug_found(const struct dmi_system_id *d)
591 {
592 bios_with_sw_any_bug = 1;
593 return 0;
594 }
595
596 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
597 {
598 .callback = sw_any_bug_found,
599 .ident = "Supermicro Server X6DLP",
600 .matches = {
601 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
602 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
603 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
604 },
605 },
606 { }
607 };
608
acpi_cpufreq_blacklist(struct cpuinfo_x86 * c)609 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
610 {
611 /* Intel Xeon Processor 7100 Series Specification Update
612 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
613 * AL30: A Machine Check Exception (MCE) Occurring during an
614 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
615 * Both Processor Cores to Lock Up. */
616 if (c->x86_vendor == X86_VENDOR_INTEL) {
617 if ((c->x86 == 15) &&
618 (c->x86_model == 6) &&
619 (c->x86_stepping == 8)) {
620 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
621 return -ENODEV;
622 }
623 }
624 return 0;
625 }
626 #endif
627
acpi_cpufreq_cpu_init(struct cpufreq_policy * policy)628 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
629 {
630 unsigned int i;
631 unsigned int valid_states = 0;
632 unsigned int cpu = policy->cpu;
633 struct acpi_cpufreq_data *data;
634 unsigned int result = 0;
635 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
636 struct acpi_processor_performance *perf;
637 struct cpufreq_frequency_table *freq_table;
638 #ifdef CONFIG_SMP
639 static int blacklisted;
640 #endif
641
642 pr_debug("%s\n", __func__);
643
644 #ifdef CONFIG_SMP
645 if (blacklisted)
646 return blacklisted;
647 blacklisted = acpi_cpufreq_blacklist(c);
648 if (blacklisted)
649 return blacklisted;
650 #endif
651
652 data = kzalloc(sizeof(*data), GFP_KERNEL);
653 if (!data)
654 return -ENOMEM;
655
656 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
657 result = -ENOMEM;
658 goto err_free;
659 }
660
661 perf = per_cpu_ptr(acpi_perf_data, cpu);
662 data->acpi_perf_cpu = cpu;
663 policy->driver_data = data;
664
665 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
666 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
667
668 result = acpi_processor_register_performance(perf, cpu);
669 if (result)
670 goto err_free_mask;
671
672 policy->shared_type = perf->shared_type;
673
674 /*
675 * Will let policy->cpus know about dependency only when software
676 * coordination is required.
677 */
678 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
679 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
680 cpumask_copy(policy->cpus, perf->shared_cpu_map);
681 }
682 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
683
684 #ifdef CONFIG_SMP
685 dmi_check_system(sw_any_bug_dmi_table);
686 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
687 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
688 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
689 }
690
691 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
692 cpumask_clear(policy->cpus);
693 cpumask_set_cpu(cpu, policy->cpus);
694 cpumask_copy(data->freqdomain_cpus,
695 topology_sibling_cpumask(cpu));
696 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
697 pr_info_once("overriding BIOS provided _PSD data\n");
698 }
699 #endif
700
701 /* capability check */
702 if (perf->state_count <= 1) {
703 pr_debug("No P-States\n");
704 result = -ENODEV;
705 goto err_unreg;
706 }
707
708 if (perf->control_register.space_id != perf->status_register.space_id) {
709 result = -ENODEV;
710 goto err_unreg;
711 }
712
713 switch (perf->control_register.space_id) {
714 case ACPI_ADR_SPACE_SYSTEM_IO:
715 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
716 boot_cpu_data.x86 == 0xf) {
717 pr_debug("AMD K8 systems must use native drivers.\n");
718 result = -ENODEV;
719 goto err_unreg;
720 }
721 pr_debug("SYSTEM IO addr space\n");
722 data->cpu_feature = SYSTEM_IO_CAPABLE;
723 data->cpu_freq_read = cpu_freq_read_io;
724 data->cpu_freq_write = cpu_freq_write_io;
725 break;
726 case ACPI_ADR_SPACE_FIXED_HARDWARE:
727 pr_debug("HARDWARE addr space\n");
728 if (check_est_cpu(cpu)) {
729 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
730 data->cpu_freq_read = cpu_freq_read_intel;
731 data->cpu_freq_write = cpu_freq_write_intel;
732 break;
733 }
734 if (check_amd_hwpstate_cpu(cpu)) {
735 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
736 data->cpu_freq_read = cpu_freq_read_amd;
737 data->cpu_freq_write = cpu_freq_write_amd;
738 break;
739 }
740 result = -ENODEV;
741 goto err_unreg;
742 default:
743 pr_debug("Unknown addr space %d\n",
744 (u32) (perf->control_register.space_id));
745 result = -ENODEV;
746 goto err_unreg;
747 }
748
749 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
750 GFP_KERNEL);
751 if (!freq_table) {
752 result = -ENOMEM;
753 goto err_unreg;
754 }
755
756 /* detect transition latency */
757 policy->cpuinfo.transition_latency = 0;
758 for (i = 0; i < perf->state_count; i++) {
759 if ((perf->states[i].transition_latency * 1000) >
760 policy->cpuinfo.transition_latency)
761 policy->cpuinfo.transition_latency =
762 perf->states[i].transition_latency * 1000;
763 }
764
765 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
766 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
767 policy->cpuinfo.transition_latency > 20 * 1000) {
768 policy->cpuinfo.transition_latency = 20 * 1000;
769 pr_info_once("P-state transition latency capped at 20 uS\n");
770 }
771
772 /* table init */
773 for (i = 0; i < perf->state_count; i++) {
774 if (i > 0 && perf->states[i].core_frequency >=
775 freq_table[valid_states-1].frequency / 1000)
776 continue;
777
778 freq_table[valid_states].driver_data = i;
779 freq_table[valid_states].frequency =
780 perf->states[i].core_frequency * 1000;
781 valid_states++;
782 }
783 freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
784 policy->freq_table = freq_table;
785 perf->state = 0;
786
787 switch (perf->control_register.space_id) {
788 case ACPI_ADR_SPACE_SYSTEM_IO:
789 /*
790 * The core will not set policy->cur, because
791 * cpufreq_driver->get is NULL, so we need to set it here.
792 * However, we have to guess it, because the current speed is
793 * unknown and not detectable via IO ports.
794 */
795 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
796 break;
797 case ACPI_ADR_SPACE_FIXED_HARDWARE:
798 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
799 break;
800 default:
801 break;
802 }
803
804 /* notify BIOS that we exist */
805 acpi_processor_notify_smm(THIS_MODULE);
806
807 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
808 for (i = 0; i < perf->state_count; i++)
809 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
810 (i == perf->state ? '*' : ' '), i,
811 (u32) perf->states[i].core_frequency,
812 (u32) perf->states[i].power,
813 (u32) perf->states[i].transition_latency);
814
815 /*
816 * the first call to ->target() should result in us actually
817 * writing something to the appropriate registers.
818 */
819 data->resume = 1;
820
821 policy->fast_switch_possible = !acpi_pstate_strict &&
822 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
823
824 return result;
825
826 err_unreg:
827 acpi_processor_unregister_performance(cpu);
828 err_free_mask:
829 free_cpumask_var(data->freqdomain_cpus);
830 err_free:
831 kfree(data);
832 policy->driver_data = NULL;
833
834 return result;
835 }
836
acpi_cpufreq_cpu_exit(struct cpufreq_policy * policy)837 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
838 {
839 struct acpi_cpufreq_data *data = policy->driver_data;
840
841 pr_debug("%s\n", __func__);
842
843 policy->fast_switch_possible = false;
844 policy->driver_data = NULL;
845 acpi_processor_unregister_performance(data->acpi_perf_cpu);
846 free_cpumask_var(data->freqdomain_cpus);
847 kfree(policy->freq_table);
848 kfree(data);
849
850 return 0;
851 }
852
acpi_cpufreq_cpu_ready(struct cpufreq_policy * policy)853 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
854 {
855 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
856 policy->cpu);
857
858 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
859 pr_warn(FW_WARN "P-state 0 is not max freq\n");
860 }
861
acpi_cpufreq_resume(struct cpufreq_policy * policy)862 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
863 {
864 struct acpi_cpufreq_data *data = policy->driver_data;
865
866 pr_debug("%s\n", __func__);
867
868 data->resume = 1;
869
870 return 0;
871 }
872
873 static struct freq_attr *acpi_cpufreq_attr[] = {
874 &cpufreq_freq_attr_scaling_available_freqs,
875 &freqdomain_cpus,
876 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
877 &cpb,
878 #endif
879 NULL,
880 };
881
882 static struct cpufreq_driver acpi_cpufreq_driver = {
883 .verify = cpufreq_generic_frequency_table_verify,
884 .target_index = acpi_cpufreq_target,
885 .fast_switch = acpi_cpufreq_fast_switch,
886 .bios_limit = acpi_processor_get_bios_limit,
887 .init = acpi_cpufreq_cpu_init,
888 .exit = acpi_cpufreq_cpu_exit,
889 .ready = acpi_cpufreq_cpu_ready,
890 .resume = acpi_cpufreq_resume,
891 .name = "acpi-cpufreq",
892 .attr = acpi_cpufreq_attr,
893 };
894
895 static enum cpuhp_state acpi_cpufreq_online;
896
acpi_cpufreq_boost_init(void)897 static void __init acpi_cpufreq_boost_init(void)
898 {
899 int ret;
900
901 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
902 pr_debug("Boost capabilities not present in the processor\n");
903 return;
904 }
905
906 acpi_cpufreq_driver.set_boost = set_boost;
907 acpi_cpufreq_driver.boost_enabled = boost_state(0);
908
909 /*
910 * This calls the online callback on all online cpu and forces all
911 * MSRs to the same value.
912 */
913 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
914 cpufreq_boost_online, cpufreq_boost_down_prep);
915 if (ret < 0) {
916 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
917 return;
918 }
919 acpi_cpufreq_online = ret;
920 }
921
acpi_cpufreq_boost_exit(void)922 static void acpi_cpufreq_boost_exit(void)
923 {
924 if (acpi_cpufreq_online > 0)
925 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
926 }
927
acpi_cpufreq_init(void)928 static int __init acpi_cpufreq_init(void)
929 {
930 int ret;
931
932 if (acpi_disabled)
933 return -ENODEV;
934
935 /* don't keep reloading if cpufreq_driver exists */
936 if (cpufreq_get_current_driver())
937 return -EEXIST;
938
939 pr_debug("%s\n", __func__);
940
941 ret = acpi_cpufreq_early_init();
942 if (ret)
943 return ret;
944
945 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
946 /* this is a sysfs file with a strange name and an even stranger
947 * semantic - per CPU instantiation, but system global effect.
948 * Lets enable it only on AMD CPUs for compatibility reasons and
949 * only if configured. This is considered legacy code, which
950 * will probably be removed at some point in the future.
951 */
952 if (!check_amd_hwpstate_cpu(0)) {
953 struct freq_attr **attr;
954
955 pr_debug("CPB unsupported, do not expose it\n");
956
957 for (attr = acpi_cpufreq_attr; *attr; attr++)
958 if (*attr == &cpb) {
959 *attr = NULL;
960 break;
961 }
962 }
963 #endif
964 acpi_cpufreq_boost_init();
965
966 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
967 if (ret) {
968 free_acpi_perf_data();
969 acpi_cpufreq_boost_exit();
970 }
971 return ret;
972 }
973
acpi_cpufreq_exit(void)974 static void __exit acpi_cpufreq_exit(void)
975 {
976 pr_debug("%s\n", __func__);
977
978 acpi_cpufreq_boost_exit();
979
980 cpufreq_unregister_driver(&acpi_cpufreq_driver);
981
982 free_acpi_perf_data();
983 }
984
985 module_param(acpi_pstate_strict, uint, 0644);
986 MODULE_PARM_DESC(acpi_pstate_strict,
987 "value 0 or non-zero. non-zero -> strict ACPI checks are "
988 "performed during frequency changes.");
989
990 late_initcall(acpi_cpufreq_init);
991 module_exit(acpi_cpufreq_exit);
992
993 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
994 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
995 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
996 {}
997 };
998 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
999
1000 static const struct acpi_device_id processor_device_ids[] = {
1001 {ACPI_PROCESSOR_OBJECT_HID, },
1002 {ACPI_PROCESSOR_DEVICE_HID, },
1003 {},
1004 };
1005 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1006
1007 MODULE_ALIAS("acpi");
1008