• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10 
11 #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21 
22 #include <asm/unaligned.h>
23 
24 #include <acpi/cppc_acpi.h>
25 
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
28 
29 /* Offest in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED  0x14
31 
32 /*
33  * These structs contain information parsed from per CPU
34  * ACPI _CPC structures.
35  * e.g. For each CPU the highest, lowest supported
36  * performance capabilities, desired performance level
37  * requested etc.
38  */
39 static struct cppc_cpudata **all_cpu_data;
40 
41 struct cppc_workaround_oem_info {
42 	char oem_id[ACPI_OEM_ID_SIZE +1];
43 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
44 	u32 oem_revision;
45 };
46 
47 static bool apply_hisi_workaround;
48 
49 static struct cppc_workaround_oem_info wa_info[] = {
50 	{
51 		.oem_id		= "HISI  ",
52 		.oem_table_id	= "HIP07   ",
53 		.oem_revision	= 0,
54 	}, {
55 		.oem_id		= "HISI  ",
56 		.oem_table_id	= "HIP08   ",
57 		.oem_revision	= 0,
58 	}
59 };
60 
61 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
62 					unsigned int perf);
63 
64 /*
65  * HISI platform does not support delivered performance counter and
66  * reference performance counter. It can calculate the performance using the
67  * platform specific mechanism. We reuse the desired performance register to
68  * store the real performance calculated by the platform.
69  */
hisi_cppc_cpufreq_get_rate(unsigned int cpunum)70 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
71 {
72 	struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
73 	u64 desired_perf;
74 	int ret;
75 
76 	ret = cppc_get_desired_perf(cpunum, &desired_perf);
77 	if (ret < 0)
78 		return -EIO;
79 
80 	return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
81 }
82 
cppc_check_hisi_workaround(void)83 static void cppc_check_hisi_workaround(void)
84 {
85 	struct acpi_table_header *tbl;
86 	acpi_status status = AE_OK;
87 	int i;
88 
89 	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
90 	if (ACPI_FAILURE(status) || !tbl)
91 		return;
92 
93 	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
94 		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
95 		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
96 		    wa_info[i].oem_revision == tbl->oem_revision)
97 			apply_hisi_workaround = true;
98 	}
99 }
100 
101 /* Callback function used to retrieve the max frequency from DMI */
cppc_find_dmi_mhz(const struct dmi_header * dm,void * private)102 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
103 {
104 	const u8 *dmi_data = (const u8 *)dm;
105 	u16 *mhz = (u16 *)private;
106 
107 	if (dm->type == DMI_ENTRY_PROCESSOR &&
108 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
109 		u16 val = (u16)get_unaligned((const u16 *)
110 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
111 		*mhz = val > *mhz ? val : *mhz;
112 	}
113 }
114 
115 /* Look up the max frequency in DMI */
cppc_get_dmi_max_khz(void)116 static u64 cppc_get_dmi_max_khz(void)
117 {
118 	u16 mhz = 0;
119 
120 	dmi_walk(cppc_find_dmi_mhz, &mhz);
121 
122 	/*
123 	 * Real stupid fallback value, just in case there is no
124 	 * actual value set.
125 	 */
126 	mhz = mhz ? mhz : 1;
127 
128 	return (1000 * mhz);
129 }
130 
131 /*
132  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
133  * use them to convert perf to freq and vice versa
134  *
135  * If the perf/freq point lies between Nominal and Lowest, we can treat
136  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
137  * and extrapolate the rest
138  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
139  */
cppc_cpufreq_perf_to_khz(struct cppc_cpudata * cpu,unsigned int perf)140 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
141 					unsigned int perf)
142 {
143 	static u64 max_khz;
144 	struct cppc_perf_caps *caps = &cpu->perf_caps;
145 	u64 mul, div;
146 
147 	if (caps->lowest_freq && caps->nominal_freq) {
148 		if (perf >= caps->nominal_perf) {
149 			mul = caps->nominal_freq;
150 			div = caps->nominal_perf;
151 		} else {
152 			mul = caps->nominal_freq - caps->lowest_freq;
153 			div = caps->nominal_perf - caps->lowest_perf;
154 		}
155 	} else {
156 		if (!max_khz)
157 			max_khz = cppc_get_dmi_max_khz();
158 		mul = max_khz;
159 		div = cpu->perf_caps.highest_perf;
160 	}
161 	return (u64)perf * mul / div;
162 }
163 
cppc_cpufreq_khz_to_perf(struct cppc_cpudata * cpu,unsigned int freq)164 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
165 					unsigned int freq)
166 {
167 	static u64 max_khz;
168 	struct cppc_perf_caps *caps = &cpu->perf_caps;
169 	u64  mul, div;
170 
171 	if (caps->lowest_freq && caps->nominal_freq) {
172 		if (freq >= caps->nominal_freq) {
173 			mul = caps->nominal_perf;
174 			div = caps->nominal_freq;
175 		} else {
176 			mul = caps->lowest_perf;
177 			div = caps->lowest_freq;
178 		}
179 	} else {
180 		if (!max_khz)
181 			max_khz = cppc_get_dmi_max_khz();
182 		mul = cpu->perf_caps.highest_perf;
183 		div = max_khz;
184 	}
185 
186 	return (u64)freq * mul / div;
187 }
188 
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)189 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
190 		unsigned int target_freq,
191 		unsigned int relation)
192 {
193 	struct cppc_cpudata *cpu;
194 	struct cpufreq_freqs freqs;
195 	u32 desired_perf;
196 	int ret = 0;
197 
198 	cpu = all_cpu_data[policy->cpu];
199 
200 	desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
201 	/* Return if it is exactly the same perf */
202 	if (desired_perf == cpu->perf_ctrls.desired_perf)
203 		return ret;
204 
205 	cpu->perf_ctrls.desired_perf = desired_perf;
206 	freqs.old = policy->cur;
207 	freqs.new = target_freq;
208 
209 	cpufreq_freq_transition_begin(policy, &freqs);
210 	ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
211 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
212 
213 	if (ret)
214 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
215 				cpu->cpu, ret);
216 
217 	return ret;
218 }
219 
cppc_verify_policy(struct cpufreq_policy * policy)220 static int cppc_verify_policy(struct cpufreq_policy *policy)
221 {
222 	cpufreq_verify_within_cpu_limits(policy);
223 	return 0;
224 }
225 
cppc_cpufreq_stop_cpu(struct cpufreq_policy * policy)226 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
227 {
228 	int cpu_num = policy->cpu;
229 	struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
230 	int ret;
231 
232 	cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
233 
234 	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
235 	if (ret)
236 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
237 				cpu->perf_caps.lowest_perf, cpu_num, ret);
238 }
239 
240 /*
241  * The PCC subspace describes the rate at which platform can accept commands
242  * on the shared PCC channel (including READs which do not count towards freq
243  * trasition requests), so ideally we need to use the PCC values as a fallback
244  * if we don't have a platform specific transition_delay_us
245  */
246 #ifdef CONFIG_ARM64
247 #include <asm/cputype.h>
248 
cppc_cpufreq_get_transition_delay_us(int cpu)249 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
250 {
251 	unsigned long implementor = read_cpuid_implementor();
252 	unsigned long part_num = read_cpuid_part_number();
253 	unsigned int delay_us = 0;
254 
255 	switch (implementor) {
256 	case ARM_CPU_IMP_QCOM:
257 		switch (part_num) {
258 		case QCOM_CPU_PART_FALKOR_V1:
259 		case QCOM_CPU_PART_FALKOR:
260 			delay_us = 10000;
261 			break;
262 		default:
263 			delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
264 			break;
265 		}
266 		break;
267 	default:
268 		delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
269 		break;
270 	}
271 
272 	return delay_us;
273 }
274 
275 #else
276 
cppc_cpufreq_get_transition_delay_us(int cpu)277 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
278 {
279 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
280 }
281 #endif
282 
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)283 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
284 {
285 	struct cppc_cpudata *cpu;
286 	unsigned int cpu_num = policy->cpu;
287 	int ret = 0;
288 
289 	cpu = all_cpu_data[policy->cpu];
290 
291 	cpu->cpu = cpu_num;
292 	ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
293 
294 	if (ret) {
295 		pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
296 				cpu_num, ret);
297 		return ret;
298 	}
299 
300 	/* Convert the lowest and nominal freq from MHz to KHz */
301 	cpu->perf_caps.lowest_freq *= 1000;
302 	cpu->perf_caps.nominal_freq *= 1000;
303 
304 	/*
305 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
306 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
307 	 */
308 	policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
309 	policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
310 
311 	/*
312 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
313 	 * available if userspace wants to use any perf between lowest & lowest
314 	 * nonlinear perf
315 	 */
316 	policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
317 	policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
318 
319 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
320 	policy->shared_type = cpu->shared_type;
321 
322 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
323 		int i;
324 
325 		cpumask_copy(policy->cpus, cpu->shared_cpu_map);
326 
327 		for_each_cpu(i, policy->cpus) {
328 			if (unlikely(i == policy->cpu))
329 				continue;
330 
331 			memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
332 			       sizeof(cpu->perf_caps));
333 		}
334 	} else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
335 		/* Support only SW_ANY for now. */
336 		pr_debug("Unsupported CPU co-ord type\n");
337 		return -EFAULT;
338 	}
339 
340 	cpu->cur_policy = policy;
341 
342 	/* Set policy->cur to max now. The governors will adjust later. */
343 	policy->cur = cppc_cpufreq_perf_to_khz(cpu,
344 					cpu->perf_caps.highest_perf);
345 	cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
346 
347 	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
348 	if (ret)
349 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
350 				cpu->perf_caps.highest_perf, cpu_num, ret);
351 
352 	return ret;
353 }
354 
get_delta(u64 t1,u64 t0)355 static inline u64 get_delta(u64 t1, u64 t0)
356 {
357 	if (t1 > t0 || t0 > ~(u32)0)
358 		return t1 - t0;
359 
360 	return (u32)t1 - (u32)t0;
361 }
362 
cppc_get_rate_from_fbctrs(struct cppc_cpudata * cpu,struct cppc_perf_fb_ctrs fb_ctrs_t0,struct cppc_perf_fb_ctrs fb_ctrs_t1)363 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
364 				     struct cppc_perf_fb_ctrs fb_ctrs_t0,
365 				     struct cppc_perf_fb_ctrs fb_ctrs_t1)
366 {
367 	u64 delta_reference, delta_delivered;
368 	u64 reference_perf, delivered_perf;
369 
370 	reference_perf = fb_ctrs_t0.reference_perf;
371 
372 	delta_reference = get_delta(fb_ctrs_t1.reference,
373 				    fb_ctrs_t0.reference);
374 	delta_delivered = get_delta(fb_ctrs_t1.delivered,
375 				    fb_ctrs_t0.delivered);
376 
377 	/* Check to avoid divide-by zero */
378 	if (delta_reference || delta_delivered)
379 		delivered_perf = (reference_perf * delta_delivered) /
380 					delta_reference;
381 	else
382 		delivered_perf = cpu->perf_ctrls.desired_perf;
383 
384 	return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
385 }
386 
cppc_cpufreq_get_rate(unsigned int cpunum)387 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
388 {
389 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
390 	struct cppc_cpudata *cpu = all_cpu_data[cpunum];
391 	int ret;
392 
393 	if (apply_hisi_workaround)
394 		return hisi_cppc_cpufreq_get_rate(cpunum);
395 
396 	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
397 	if (ret)
398 		return ret;
399 
400 	udelay(2); /* 2usec delay between sampling */
401 
402 	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
403 	if (ret)
404 		return ret;
405 
406 	return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
407 }
408 
409 static struct cpufreq_driver cppc_cpufreq_driver = {
410 	.flags = CPUFREQ_CONST_LOOPS,
411 	.verify = cppc_verify_policy,
412 	.target = cppc_cpufreq_set_target,
413 	.get = cppc_cpufreq_get_rate,
414 	.init = cppc_cpufreq_cpu_init,
415 	.stop_cpu = cppc_cpufreq_stop_cpu,
416 	.name = "cppc_cpufreq",
417 };
418 
cppc_cpufreq_init(void)419 static int __init cppc_cpufreq_init(void)
420 {
421 	int i, ret = 0;
422 	struct cppc_cpudata *cpu;
423 
424 	if (acpi_disabled)
425 		return -ENODEV;
426 
427 	all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
428 			       GFP_KERNEL);
429 	if (!all_cpu_data)
430 		return -ENOMEM;
431 
432 	for_each_possible_cpu(i) {
433 		all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
434 		if (!all_cpu_data[i])
435 			goto out;
436 
437 		cpu = all_cpu_data[i];
438 		if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
439 			goto out;
440 	}
441 
442 	ret = acpi_get_psd_map(all_cpu_data);
443 	if (ret) {
444 		pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
445 		goto out;
446 	}
447 
448 	cppc_check_hisi_workaround();
449 
450 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
451 	if (ret)
452 		goto out;
453 
454 	return ret;
455 
456 out:
457 	for_each_possible_cpu(i) {
458 		cpu = all_cpu_data[i];
459 		if (!cpu)
460 			break;
461 		free_cpumask_var(cpu->shared_cpu_map);
462 		kfree(cpu);
463 	}
464 
465 	kfree(all_cpu_data);
466 	return -ENODEV;
467 }
468 
cppc_cpufreq_exit(void)469 static void __exit cppc_cpufreq_exit(void)
470 {
471 	struct cppc_cpudata *cpu;
472 	int i;
473 
474 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
475 
476 	for_each_possible_cpu(i) {
477 		cpu = all_cpu_data[i];
478 		free_cpumask_var(cpu->shared_cpu_map);
479 		kfree(cpu);
480 	}
481 
482 	kfree(all_cpu_data);
483 }
484 
485 module_exit(cppc_cpufreq_exit);
486 MODULE_AUTHOR("Ashwin Chaugule");
487 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
488 MODULE_LICENSE("GPL");
489 
490 late_initcall(cppc_cpufreq_init);
491 
492 static const struct acpi_device_id cppc_acpi_ids[] __used = {
493 	{ACPI_PROCESSOR_DEVICE_HID, },
494 	{}
495 };
496 
497 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
498