1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpufreq_times.h>
20 #include <linux/cpu_cooling.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_qos.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46 #define for_each_policy(__policy) \
47 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
48
49 /* Iterate over governors */
50 static LIST_HEAD(cpufreq_governor_list);
51 #define for_each_governor(__governor) \
52 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
53
54 /**
55 * The "cpufreq driver" - the arch- or hardware-dependent low
56 * level driver of CPUFreq support, and its spinlock. This lock
57 * also protects the cpufreq_cpu_data array.
58 */
59 static struct cpufreq_driver *cpufreq_driver;
60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61 static DEFINE_RWLOCK(cpufreq_driver_lock);
62
63 /* Flag to suspend/resume CPUFreq governors */
64 static bool cpufreq_suspended;
65
has_target(void)66 static inline bool has_target(void)
67 {
68 return cpufreq_driver->target_index || cpufreq_driver->target;
69 }
70
71 /* internal prototypes */
72 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
73 static int cpufreq_init_governor(struct cpufreq_policy *policy);
74 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
75 static int cpufreq_start_governor(struct cpufreq_policy *policy);
76 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
77 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
78
79 /**
80 * Two notifier lists: the "policy" list is involved in the
81 * validation process for a new CPU frequency policy; the
82 * "transition" list for kernel code that needs to handle
83 * changes to devices when the CPU clock speed changes.
84 * The mutex locks both lists.
85 */
86 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
87 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
88
89 static int off __read_mostly;
cpufreq_disabled(void)90 static int cpufreq_disabled(void)
91 {
92 return off;
93 }
disable_cpufreq(void)94 void disable_cpufreq(void)
95 {
96 off = 1;
97 }
98 static DEFINE_MUTEX(cpufreq_governor_mutex);
99
have_governor_per_policy(void)100 bool have_governor_per_policy(void)
101 {
102 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
103 }
104 EXPORT_SYMBOL_GPL(have_governor_per_policy);
105
get_governor_parent_kobj(struct cpufreq_policy * policy)106 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
107 {
108 if (have_governor_per_policy())
109 return &policy->kobj;
110 else
111 return cpufreq_global_kobject;
112 }
113 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
114
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)115 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
116 {
117 u64 idle_time;
118 u64 cur_wall_time;
119 u64 busy_time;
120
121 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
122
123 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
128 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
129
130 idle_time = cur_wall_time - busy_time;
131 if (wall)
132 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
133
134 return div_u64(idle_time, NSEC_PER_USEC);
135 }
136
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)137 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
138 {
139 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
140
141 if (idle_time == -1ULL)
142 return get_cpu_idle_time_jiffy(cpu, wall);
143 else if (!io_busy)
144 idle_time += get_cpu_iowait_time_us(cpu, wall);
145
146 return idle_time;
147 }
148 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
149
arch_set_freq_scale(struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)150 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
151 unsigned long max_freq)
152 {
153 }
154 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
155
arch_set_max_freq_scale(struct cpumask * cpus,unsigned long policy_max_freq)156 __weak void arch_set_max_freq_scale(struct cpumask *cpus,
157 unsigned long policy_max_freq)
158 {
159 }
160 EXPORT_SYMBOL_GPL(arch_set_max_freq_scale);
161
162 /*
163 * This is a generic cpufreq init() routine which can be used by cpufreq
164 * drivers of SMP systems. It will do following:
165 * - validate & show freq table passed
166 * - set policies transition latency
167 * - policy->cpus with all possible CPUs
168 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)169 void cpufreq_generic_init(struct cpufreq_policy *policy,
170 struct cpufreq_frequency_table *table,
171 unsigned int transition_latency)
172 {
173 policy->freq_table = table;
174 policy->cpuinfo.transition_latency = transition_latency;
175
176 /*
177 * The driver only supports the SMP configuration where all processors
178 * share the clock and voltage and clock.
179 */
180 cpumask_setall(policy->cpus);
181 }
182 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
183
cpufreq_cpu_get_raw(unsigned int cpu)184 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
185 {
186 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
187
188 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
189 }
190 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
191
cpufreq_generic_get(unsigned int cpu)192 unsigned int cpufreq_generic_get(unsigned int cpu)
193 {
194 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
195
196 if (!policy || IS_ERR(policy->clk)) {
197 pr_err("%s: No %s associated to cpu: %d\n",
198 __func__, policy ? "clk" : "policy", cpu);
199 return 0;
200 }
201
202 return clk_get_rate(policy->clk) / 1000;
203 }
204 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
205
206 /**
207 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
208 * @cpu: CPU to find the policy for.
209 *
210 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
211 * the kobject reference counter of that policy. Return a valid policy on
212 * success or NULL on failure.
213 *
214 * The policy returned by this function has to be released with the help of
215 * cpufreq_cpu_put() to balance its kobject reference counter properly.
216 */
cpufreq_cpu_get(unsigned int cpu)217 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
218 {
219 struct cpufreq_policy *policy = NULL;
220 unsigned long flags;
221
222 if (WARN_ON(cpu >= nr_cpu_ids))
223 return NULL;
224
225 /* get the cpufreq driver */
226 read_lock_irqsave(&cpufreq_driver_lock, flags);
227
228 if (cpufreq_driver) {
229 /* get the CPU */
230 policy = cpufreq_cpu_get_raw(cpu);
231 if (policy)
232 kobject_get(&policy->kobj);
233 }
234
235 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
236
237 return policy;
238 }
239 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
240
241 /**
242 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
243 * @policy: cpufreq policy returned by cpufreq_cpu_get().
244 */
cpufreq_cpu_put(struct cpufreq_policy * policy)245 void cpufreq_cpu_put(struct cpufreq_policy *policy)
246 {
247 kobject_put(&policy->kobj);
248 }
249 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
250
251 /**
252 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
253 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
254 */
cpufreq_cpu_release(struct cpufreq_policy * policy)255 void cpufreq_cpu_release(struct cpufreq_policy *policy)
256 {
257 if (WARN_ON(!policy))
258 return;
259
260 lockdep_assert_held(&policy->rwsem);
261
262 up_write(&policy->rwsem);
263
264 cpufreq_cpu_put(policy);
265 }
266
267 /**
268 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
269 * @cpu: CPU to find the policy for.
270 *
271 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
272 * if the policy returned by it is not NULL, acquire its rwsem for writing.
273 * Return the policy if it is active or release it and return NULL otherwise.
274 *
275 * The policy returned by this function has to be released with the help of
276 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
277 * counter properly.
278 */
cpufreq_cpu_acquire(unsigned int cpu)279 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
280 {
281 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
282
283 if (!policy)
284 return NULL;
285
286 down_write(&policy->rwsem);
287
288 if (policy_is_inactive(policy)) {
289 cpufreq_cpu_release(policy);
290 return NULL;
291 }
292
293 return policy;
294 }
295
296 /*********************************************************************
297 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
298 *********************************************************************/
299
300 /**
301 * adjust_jiffies - adjust the system "loops_per_jiffy"
302 *
303 * This function alters the system "loops_per_jiffy" for the clock
304 * speed change. Note that loops_per_jiffy cannot be updated on SMP
305 * systems as each CPU might be scaled differently. So, use the arch
306 * per-CPU loops_per_jiffy value wherever possible.
307 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 static unsigned long l_p_j_ref;
312 static unsigned int l_p_j_ref_freq;
313
314 if (ci->flags & CPUFREQ_CONST_LOOPS)
315 return;
316
317 if (!l_p_j_ref_freq) {
318 l_p_j_ref = loops_per_jiffy;
319 l_p_j_ref_freq = ci->old;
320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 l_p_j_ref, l_p_j_ref_freq);
322 }
323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 ci->new);
326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 loops_per_jiffy, ci->new);
328 }
329 #endif
330 }
331
332 /**
333 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
334 * @policy: cpufreq policy to enable fast frequency switching for.
335 * @freqs: contain details of the frequency update.
336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337 *
338 * This function calls the transition notifiers and the "adjust_jiffies"
339 * function. It is called twice on all CPU frequency changes that have
340 * external effects.
341 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs,
344 unsigned int state)
345 {
346 int cpu;
347
348 BUG_ON(irqs_disabled());
349
350 if (cpufreq_disabled())
351 return;
352
353 freqs->policy = policy;
354 freqs->flags = cpufreq_driver->flags;
355 pr_debug("notification %u of frequency transition to %u kHz\n",
356 state, freqs->new);
357
358 switch (state) {
359 case CPUFREQ_PRECHANGE:
360 /*
361 * Detect if the driver reported a value as "old frequency"
362 * which is not equal to what the cpufreq core thinks is
363 * "old frequency".
364 */
365 if (policy->cur && policy->cur != freqs->old) {
366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 freqs->old, policy->cur);
368 freqs->old = policy->cur;
369 }
370
371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 CPUFREQ_PRECHANGE, freqs);
373
374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 break;
376
377 case CPUFREQ_POSTCHANGE:
378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 cpumask_pr_args(policy->cpus));
381
382 for_each_cpu(cpu, policy->cpus)
383 trace_cpu_frequency(freqs->new, cpu);
384
385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 CPUFREQ_POSTCHANGE, freqs);
387
388 cpufreq_stats_record_transition(policy, freqs->new);
389 cpufreq_times_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409 {
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422 wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 policy->transition_ongoing = false;
450 policy->transition_task = NULL;
451
452 wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456 /*
457 * Fast frequency switching status count. Positive means "enabled", negative
458 * means "disabled" and 0 means "not decided yet".
459 */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
cpufreq_list_transition_notifiers(void)463 static void cpufreq_list_transition_notifiers(void)
464 {
465 struct notifier_block *nb;
466
467 pr_info("Registered transition notifiers:\n");
468
469 mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 pr_info("%pS\n", nb->notifier_call);
473
474 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476
477 /**
478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479 * @policy: cpufreq policy to enable fast frequency switching for.
480 *
481 * Try to enable fast frequency switching for @policy.
482 *
483 * The attempt will fail if there is at least one transition notifier registered
484 * at this point, as fast frequency switching is quite fundamentally at odds
485 * with transition notifiers. Thus if successful, it will make registration of
486 * transition notifiers fail going forward.
487 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490 lockdep_assert_held(&policy->rwsem);
491
492 if (!policy->fast_switch_possible)
493 return;
494
495 mutex_lock(&cpufreq_fast_switch_lock);
496 if (cpufreq_fast_switch_count >= 0) {
497 cpufreq_fast_switch_count++;
498 policy->fast_switch_enabled = true;
499 } else {
500 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 policy->cpu);
502 cpufreq_list_transition_notifiers();
503 }
504 mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508 /**
509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510 * @policy: cpufreq policy to disable fast frequency switching for.
511 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514 mutex_lock(&cpufreq_fast_switch_lock);
515 if (policy->fast_switch_enabled) {
516 policy->fast_switch_enabled = false;
517 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 cpufreq_fast_switch_count--;
519 }
520 mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524 /**
525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526 * one.
527 * @target_freq: target frequency to resolve.
528 *
529 * The target to driver frequency mapping is cached in the policy.
530 *
531 * Return: Lowest driver-supported frequency greater than or equal to the
532 * given target_freq, subject to policy (min/max) and driver limitations.
533 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
535 unsigned int target_freq)
536 {
537 target_freq = clamp_val(target_freq, policy->min, policy->max);
538 policy->cached_target_freq = target_freq;
539
540 if (cpufreq_driver->target_index) {
541 int idx;
542
543 idx = cpufreq_frequency_table_target(policy, target_freq,
544 CPUFREQ_RELATION_L);
545 policy->cached_resolved_idx = idx;
546 return policy->freq_table[idx].frequency;
547 }
548
549 if (cpufreq_driver->resolve_freq)
550 return cpufreq_driver->resolve_freq(policy, target_freq);
551
552 return target_freq;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
555
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
557 {
558 unsigned int latency;
559
560 if (policy->transition_delay_us)
561 return policy->transition_delay_us;
562
563 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
564 if (latency) {
565 /*
566 * For platforms that can change the frequency very fast (< 10
567 * us), the above formula gives a decent transition delay. But
568 * for platforms where transition_latency is in milliseconds, it
569 * ends up giving unrealistic values.
570 *
571 * Cap the default transition delay to 10 ms, which seems to be
572 * a reasonable amount of time after which we should reevaluate
573 * the frequency.
574 */
575 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
576 }
577
578 return LATENCY_MULTIPLIER;
579 }
580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
581
582 /*********************************************************************
583 * SYSFS INTERFACE *
584 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)585 static ssize_t show_boost(struct kobject *kobj,
586 struct kobj_attribute *attr, char *buf)
587 {
588 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
589 }
590
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
592 const char *buf, size_t count)
593 {
594 int ret, enable;
595
596 ret = sscanf(buf, "%d", &enable);
597 if (ret != 1 || enable < 0 || enable > 1)
598 return -EINVAL;
599
600 if (cpufreq_boost_trigger_state(enable)) {
601 pr_err("%s: Cannot %s BOOST!\n",
602 __func__, enable ? "enable" : "disable");
603 return -EINVAL;
604 }
605
606 pr_debug("%s: cpufreq BOOST %s\n",
607 __func__, enable ? "enabled" : "disabled");
608
609 return count;
610 }
611 define_one_global_rw(boost);
612
find_governor(const char * str_governor)613 static struct cpufreq_governor *find_governor(const char *str_governor)
614 {
615 struct cpufreq_governor *t;
616
617 for_each_governor(t)
618 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
619 return t;
620
621 return NULL;
622 }
623
cpufreq_parse_policy(char * str_governor,struct cpufreq_policy * policy)624 static int cpufreq_parse_policy(char *str_governor,
625 struct cpufreq_policy *policy)
626 {
627 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
628 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
629 return 0;
630 }
631 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
632 policy->policy = CPUFREQ_POLICY_POWERSAVE;
633 return 0;
634 }
635 return -EINVAL;
636 }
637
638 /**
639 * cpufreq_parse_governor - parse a governor string only for has_target()
640 */
cpufreq_parse_governor(char * str_governor,struct cpufreq_policy * policy)641 static int cpufreq_parse_governor(char *str_governor,
642 struct cpufreq_policy *policy)
643 {
644 struct cpufreq_governor *t;
645
646 mutex_lock(&cpufreq_governor_mutex);
647
648 t = find_governor(str_governor);
649 if (!t) {
650 int ret;
651
652 mutex_unlock(&cpufreq_governor_mutex);
653
654 ret = request_module("cpufreq_%s", str_governor);
655 if (ret)
656 return -EINVAL;
657
658 mutex_lock(&cpufreq_governor_mutex);
659
660 t = find_governor(str_governor);
661 }
662 if (t && !try_module_get(t->owner))
663 t = NULL;
664
665 mutex_unlock(&cpufreq_governor_mutex);
666
667 if (t) {
668 policy->governor = t;
669 return 0;
670 }
671
672 return -EINVAL;
673 }
674
675 /**
676 * cpufreq_per_cpu_attr_read() / show_##file_name() -
677 * print out cpufreq information
678 *
679 * Write out information from cpufreq_driver->policy[cpu]; object must be
680 * "unsigned int".
681 */
682
683 #define show_one(file_name, object) \
684 static ssize_t show_##file_name \
685 (struct cpufreq_policy *policy, char *buf) \
686 { \
687 return sprintf(buf, "%u\n", policy->object); \
688 }
689
690 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
691 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
692 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
693 show_one(scaling_min_freq, min);
694 show_one(scaling_max_freq, max);
695
arch_freq_get_on_cpu(int cpu)696 __weak unsigned int arch_freq_get_on_cpu(int cpu)
697 {
698 return 0;
699 }
700
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)701 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
702 {
703 ssize_t ret;
704 unsigned int freq;
705
706 freq = arch_freq_get_on_cpu(policy->cpu);
707 if (freq)
708 ret = sprintf(buf, "%u\n", freq);
709 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
710 cpufreq_driver->get)
711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 else
713 ret = sprintf(buf, "%u\n", policy->cur);
714 return ret;
715 }
716
717 /**
718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719 */
720 #define store_one(file_name, object) \
721 static ssize_t store_##file_name \
722 (struct cpufreq_policy *policy, const char *buf, size_t count) \
723 { \
724 unsigned long val; \
725 int ret; \
726 \
727 ret = sscanf(buf, "%lu", &val); \
728 if (ret != 1) \
729 return -EINVAL; \
730 \
731 ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 return ret >= 0 ? count : ret; \
733 }
734
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737
738 /**
739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 char *buf)
743 {
744 unsigned int cur_freq = __cpufreq_get(policy);
745
746 if (cur_freq)
747 return sprintf(buf, "%u\n", cur_freq);
748
749 return sprintf(buf, "<unknown>\n");
750 }
751
752 /**
753 * show_scaling_governor - show the current policy for the specified CPU
754 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 return sprintf(buf, "powersave\n");
759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 return sprintf(buf, "performance\n");
761 else if (policy->governor)
762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 policy->governor->name);
764 return -EINVAL;
765 }
766
767 /**
768 * store_scaling_governor - store policy for the specified CPU
769 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 const char *buf, size_t count)
772 {
773 int ret;
774 char str_governor[16];
775 struct cpufreq_policy new_policy;
776
777 memcpy(&new_policy, policy, sizeof(*policy));
778
779 ret = sscanf(buf, "%15s", str_governor);
780 if (ret != 1)
781 return -EINVAL;
782
783 if (cpufreq_driver->setpolicy) {
784 if (cpufreq_parse_policy(str_governor, &new_policy))
785 return -EINVAL;
786 } else {
787 if (cpufreq_parse_governor(str_governor, &new_policy))
788 return -EINVAL;
789 }
790
791 ret = cpufreq_set_policy(policy, &new_policy);
792
793 if (new_policy.governor)
794 module_put(new_policy.governor->owner);
795
796 return ret ? ret : count;
797 }
798
799 /**
800 * show_scaling_driver - show the cpufreq driver currently loaded
801 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)802 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
803 {
804 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
805 }
806
807 /**
808 * show_scaling_available_governors - show the available CPUfreq governors
809 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)810 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
811 char *buf)
812 {
813 ssize_t i = 0;
814 struct cpufreq_governor *t;
815
816 if (!has_target()) {
817 i += sprintf(buf, "performance powersave");
818 goto out;
819 }
820
821 for_each_governor(t) {
822 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
823 - (CPUFREQ_NAME_LEN + 2)))
824 goto out;
825 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
826 }
827 out:
828 i += sprintf(&buf[i], "\n");
829 return i;
830 }
831
cpufreq_show_cpus(const struct cpumask * mask,char * buf)832 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
833 {
834 ssize_t i = 0;
835 unsigned int cpu;
836
837 for_each_cpu(cpu, mask) {
838 if (i)
839 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
840 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
841 if (i >= (PAGE_SIZE - 5))
842 break;
843 }
844 i += sprintf(&buf[i], "\n");
845 return i;
846 }
847 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
848
849 /**
850 * show_related_cpus - show the CPUs affected by each transition even if
851 * hw coordination is in use
852 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)853 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855 return cpufreq_show_cpus(policy->related_cpus, buf);
856 }
857
858 /**
859 * show_affected_cpus - show the CPUs affected by each transition
860 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)861 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
862 {
863 return cpufreq_show_cpus(policy->cpus, buf);
864 }
865
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)866 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
867 const char *buf, size_t count)
868 {
869 unsigned int freq = 0;
870 unsigned int ret;
871
872 if (!policy->governor || !policy->governor->store_setspeed)
873 return -EINVAL;
874
875 ret = sscanf(buf, "%u", &freq);
876 if (ret != 1)
877 return -EINVAL;
878
879 policy->governor->store_setspeed(policy, freq);
880
881 return count;
882 }
883
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)884 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
885 {
886 if (!policy->governor || !policy->governor->show_setspeed)
887 return sprintf(buf, "<unsupported>\n");
888
889 return policy->governor->show_setspeed(policy, buf);
890 }
891
892 /**
893 * show_bios_limit - show the current cpufreq HW/BIOS limitation
894 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)895 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
896 {
897 unsigned int limit;
898 int ret;
899 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
900 if (!ret)
901 return sprintf(buf, "%u\n", limit);
902 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
903 }
904
905 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
906 cpufreq_freq_attr_ro(cpuinfo_min_freq);
907 cpufreq_freq_attr_ro(cpuinfo_max_freq);
908 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
909 cpufreq_freq_attr_ro(scaling_available_governors);
910 cpufreq_freq_attr_ro(scaling_driver);
911 cpufreq_freq_attr_ro(scaling_cur_freq);
912 cpufreq_freq_attr_ro(bios_limit);
913 cpufreq_freq_attr_ro(related_cpus);
914 cpufreq_freq_attr_ro(affected_cpus);
915 cpufreq_freq_attr_rw(scaling_min_freq);
916 cpufreq_freq_attr_rw(scaling_max_freq);
917 cpufreq_freq_attr_rw(scaling_governor);
918 cpufreq_freq_attr_rw(scaling_setspeed);
919
920 static struct attribute *default_attrs[] = {
921 &cpuinfo_min_freq.attr,
922 &cpuinfo_max_freq.attr,
923 &cpuinfo_transition_latency.attr,
924 &scaling_min_freq.attr,
925 &scaling_max_freq.attr,
926 &affected_cpus.attr,
927 &related_cpus.attr,
928 &scaling_governor.attr,
929 &scaling_driver.attr,
930 &scaling_available_governors.attr,
931 &scaling_setspeed.attr,
932 NULL
933 };
934
935 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
936 #define to_attr(a) container_of(a, struct freq_attr, attr)
937
show(struct kobject * kobj,struct attribute * attr,char * buf)938 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
939 {
940 struct cpufreq_policy *policy = to_policy(kobj);
941 struct freq_attr *fattr = to_attr(attr);
942 ssize_t ret;
943
944 if (!fattr->show)
945 return -EIO;
946
947 down_read(&policy->rwsem);
948 ret = fattr->show(policy, buf);
949 up_read(&policy->rwsem);
950
951 return ret;
952 }
953
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)954 static ssize_t store(struct kobject *kobj, struct attribute *attr,
955 const char *buf, size_t count)
956 {
957 struct cpufreq_policy *policy = to_policy(kobj);
958 struct freq_attr *fattr = to_attr(attr);
959 ssize_t ret = -EINVAL;
960
961 if (!fattr->store)
962 return -EIO;
963
964 /*
965 * cpus_read_trylock() is used here to work around a circular lock
966 * dependency problem with respect to the cpufreq_register_driver().
967 */
968 if (!cpus_read_trylock())
969 return -EBUSY;
970
971 if (cpu_online(policy->cpu)) {
972 down_write(&policy->rwsem);
973 ret = fattr->store(policy, buf, count);
974 up_write(&policy->rwsem);
975 }
976
977 cpus_read_unlock();
978
979 return ret;
980 }
981
cpufreq_sysfs_release(struct kobject * kobj)982 static void cpufreq_sysfs_release(struct kobject *kobj)
983 {
984 struct cpufreq_policy *policy = to_policy(kobj);
985 pr_debug("last reference is dropped\n");
986 complete(&policy->kobj_unregister);
987 }
988
989 static const struct sysfs_ops sysfs_ops = {
990 .show = show,
991 .store = store,
992 };
993
994 static struct kobj_type ktype_cpufreq = {
995 .sysfs_ops = &sysfs_ops,
996 .default_attrs = default_attrs,
997 .release = cpufreq_sysfs_release,
998 };
999
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu)1000 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1001 {
1002 struct device *dev = get_cpu_device(cpu);
1003
1004 if (unlikely(!dev))
1005 return;
1006
1007 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1008 return;
1009
1010 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1011 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1012 dev_err(dev, "cpufreq symlink creation failed\n");
1013 }
1014
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)1015 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1016 struct device *dev)
1017 {
1018 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1019 sysfs_remove_link(&dev->kobj, "cpufreq");
1020 }
1021
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1022 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1023 {
1024 struct freq_attr **drv_attr;
1025 int ret = 0;
1026
1027 /* set up files for this cpu device */
1028 drv_attr = cpufreq_driver->attr;
1029 while (drv_attr && *drv_attr) {
1030 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1031 if (ret)
1032 return ret;
1033 drv_attr++;
1034 }
1035 if (cpufreq_driver->get) {
1036 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1037 if (ret)
1038 return ret;
1039 }
1040
1041 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1042 if (ret)
1043 return ret;
1044
1045 if (cpufreq_driver->bios_limit) {
1046 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1047 if (ret)
1048 return ret;
1049 }
1050
1051 return 0;
1052 }
1053
cpufreq_default_governor(void)1054 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1055 {
1056 return NULL;
1057 }
1058
cpufreq_init_policy(struct cpufreq_policy * policy)1059 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1060 {
1061 struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1062 struct cpufreq_policy new_policy;
1063
1064 memcpy(&new_policy, policy, sizeof(*policy));
1065
1066 def_gov = cpufreq_default_governor();
1067
1068 if (has_target()) {
1069 /*
1070 * Update governor of new_policy to the governor used before
1071 * hotplug
1072 */
1073 gov = find_governor(policy->last_governor);
1074 if (gov) {
1075 pr_debug("Restoring governor %s for cpu %d\n",
1076 policy->governor->name, policy->cpu);
1077 } else {
1078 if (!def_gov)
1079 return -ENODATA;
1080 gov = def_gov;
1081 }
1082 new_policy.governor = gov;
1083 } else {
1084 /* Use the default policy if there is no last_policy. */
1085 if (policy->last_policy) {
1086 new_policy.policy = policy->last_policy;
1087 } else {
1088 if (!def_gov)
1089 return -ENODATA;
1090 cpufreq_parse_policy(def_gov->name, &new_policy);
1091 }
1092 }
1093
1094 return cpufreq_set_policy(policy, &new_policy);
1095 }
1096
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1097 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1098 {
1099 int ret = 0;
1100
1101 /* Has this CPU been taken care of already? */
1102 if (cpumask_test_cpu(cpu, policy->cpus))
1103 return 0;
1104
1105 down_write(&policy->rwsem);
1106 if (has_target())
1107 cpufreq_stop_governor(policy);
1108
1109 cpumask_set_cpu(cpu, policy->cpus);
1110
1111 if (has_target()) {
1112 ret = cpufreq_start_governor(policy);
1113 if (ret)
1114 pr_err("%s: Failed to start governor\n", __func__);
1115 }
1116 up_write(&policy->rwsem);
1117 return ret;
1118 }
1119
refresh_frequency_limits(struct cpufreq_policy * policy)1120 void refresh_frequency_limits(struct cpufreq_policy *policy)
1121 {
1122 struct cpufreq_policy new_policy;
1123
1124 if (!policy_is_inactive(policy)) {
1125 new_policy = *policy;
1126 pr_debug("updating policy for CPU %u\n", policy->cpu);
1127
1128 cpufreq_set_policy(policy, &new_policy);
1129 }
1130 }
1131 EXPORT_SYMBOL(refresh_frequency_limits);
1132
handle_update(struct work_struct * work)1133 static void handle_update(struct work_struct *work)
1134 {
1135 struct cpufreq_policy *policy =
1136 container_of(work, struct cpufreq_policy, update);
1137
1138 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1139 down_write(&policy->rwsem);
1140 refresh_frequency_limits(policy);
1141 up_write(&policy->rwsem);
1142 }
1143
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1144 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1145 void *data)
1146 {
1147 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1148
1149 schedule_work(&policy->update);
1150 return 0;
1151 }
1152
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1153 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1154 void *data)
1155 {
1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1157
1158 schedule_work(&policy->update);
1159 return 0;
1160 }
1161
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1162 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1163 {
1164 struct kobject *kobj;
1165 struct completion *cmp;
1166
1167 down_write(&policy->rwsem);
1168 cpufreq_stats_free_table(policy);
1169 kobj = &policy->kobj;
1170 cmp = &policy->kobj_unregister;
1171 up_write(&policy->rwsem);
1172 kobject_put(kobj);
1173
1174 /*
1175 * We need to make sure that the underlying kobj is
1176 * actually not referenced anymore by anybody before we
1177 * proceed with unloading.
1178 */
1179 pr_debug("waiting for dropping of refcount\n");
1180 wait_for_completion(cmp);
1181 pr_debug("wait complete\n");
1182 }
1183
cpufreq_policy_alloc(unsigned int cpu)1184 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1185 {
1186 struct cpufreq_policy *policy;
1187 struct device *dev = get_cpu_device(cpu);
1188 int ret;
1189
1190 if (!dev)
1191 return NULL;
1192
1193 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1194 if (!policy)
1195 return NULL;
1196
1197 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1198 goto err_free_policy;
1199
1200 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1201 goto err_free_cpumask;
1202
1203 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1204 goto err_free_rcpumask;
1205
1206 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1207 cpufreq_global_kobject, "policy%u", cpu);
1208 if (ret) {
1209 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1210 /*
1211 * The entire policy object will be freed below, but the extra
1212 * memory allocated for the kobject name needs to be freed by
1213 * releasing the kobject.
1214 */
1215 kobject_put(&policy->kobj);
1216 goto err_free_real_cpus;
1217 }
1218
1219 freq_constraints_init(&policy->constraints);
1220
1221 policy->nb_min.notifier_call = cpufreq_notifier_min;
1222 policy->nb_max.notifier_call = cpufreq_notifier_max;
1223
1224 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1225 &policy->nb_min);
1226 if (ret) {
1227 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1228 ret, cpumask_pr_args(policy->cpus));
1229 goto err_kobj_remove;
1230 }
1231
1232 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1233 &policy->nb_max);
1234 if (ret) {
1235 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1236 ret, cpumask_pr_args(policy->cpus));
1237 goto err_min_qos_notifier;
1238 }
1239
1240 INIT_LIST_HEAD(&policy->policy_list);
1241 init_rwsem(&policy->rwsem);
1242 spin_lock_init(&policy->transition_lock);
1243 init_waitqueue_head(&policy->transition_wait);
1244 init_completion(&policy->kobj_unregister);
1245 INIT_WORK(&policy->update, handle_update);
1246
1247 policy->cpu = cpu;
1248 return policy;
1249
1250 err_min_qos_notifier:
1251 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1252 &policy->nb_min);
1253 err_kobj_remove:
1254 cpufreq_policy_put_kobj(policy);
1255 err_free_real_cpus:
1256 free_cpumask_var(policy->real_cpus);
1257 err_free_rcpumask:
1258 free_cpumask_var(policy->related_cpus);
1259 err_free_cpumask:
1260 free_cpumask_var(policy->cpus);
1261 err_free_policy:
1262 kfree(policy);
1263
1264 return NULL;
1265 }
1266
cpufreq_policy_free(struct cpufreq_policy * policy)1267 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1268 {
1269 unsigned long flags;
1270 int cpu;
1271
1272 /* Remove policy from list */
1273 write_lock_irqsave(&cpufreq_driver_lock, flags);
1274 list_del(&policy->policy_list);
1275
1276 for_each_cpu(cpu, policy->related_cpus)
1277 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1278 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1279
1280 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1281 &policy->nb_max);
1282 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1283 &policy->nb_min);
1284
1285 /* Cancel any pending policy->update work before freeing the policy. */
1286 cancel_work_sync(&policy->update);
1287
1288 if (policy->max_freq_req) {
1289 /*
1290 * CPUFREQ_CREATE_POLICY notification is sent only after
1291 * successfully adding max_freq_req request.
1292 */
1293 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1294 CPUFREQ_REMOVE_POLICY, policy);
1295 freq_qos_remove_request(policy->max_freq_req);
1296 }
1297
1298 freq_qos_remove_request(policy->min_freq_req);
1299 kfree(policy->min_freq_req);
1300
1301 cpufreq_policy_put_kobj(policy);
1302 free_cpumask_var(policy->real_cpus);
1303 free_cpumask_var(policy->related_cpus);
1304 free_cpumask_var(policy->cpus);
1305 kfree(policy);
1306 }
1307
cpufreq_online(unsigned int cpu)1308 static int cpufreq_online(unsigned int cpu)
1309 {
1310 struct cpufreq_policy *policy;
1311 bool new_policy;
1312 unsigned long flags;
1313 unsigned int j;
1314 int ret;
1315
1316 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1317
1318 /* Check if this CPU already has a policy to manage it */
1319 policy = per_cpu(cpufreq_cpu_data, cpu);
1320 if (policy) {
1321 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1322 if (!policy_is_inactive(policy))
1323 return cpufreq_add_policy_cpu(policy, cpu);
1324
1325 /* This is the only online CPU for the policy. Start over. */
1326 new_policy = false;
1327 down_write(&policy->rwsem);
1328 policy->cpu = cpu;
1329 policy->governor = NULL;
1330 up_write(&policy->rwsem);
1331 } else {
1332 new_policy = true;
1333 policy = cpufreq_policy_alloc(cpu);
1334 if (!policy)
1335 return -ENOMEM;
1336 }
1337
1338 if (!new_policy && cpufreq_driver->online) {
1339 ret = cpufreq_driver->online(policy);
1340 if (ret) {
1341 pr_debug("%s: %d: initialization failed\n", __func__,
1342 __LINE__);
1343 goto out_exit_policy;
1344 }
1345
1346 /* Recover policy->cpus using related_cpus */
1347 cpumask_copy(policy->cpus, policy->related_cpus);
1348 } else {
1349 cpumask_copy(policy->cpus, cpumask_of(cpu));
1350
1351 /*
1352 * Call driver. From then on the cpufreq must be able
1353 * to accept all calls to ->verify and ->setpolicy for this CPU.
1354 */
1355 ret = cpufreq_driver->init(policy);
1356 if (ret) {
1357 pr_debug("%s: %d: initialization failed\n", __func__,
1358 __LINE__);
1359 goto out_free_policy;
1360 }
1361
1362 ret = cpufreq_table_validate_and_sort(policy);
1363 if (ret)
1364 goto out_exit_policy;
1365
1366 /* related_cpus should at least include policy->cpus. */
1367 cpumask_copy(policy->related_cpus, policy->cpus);
1368 }
1369
1370 down_write(&policy->rwsem);
1371 /*
1372 * affected cpus must always be the one, which are online. We aren't
1373 * managing offline cpus here.
1374 */
1375 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1376
1377 if (new_policy) {
1378 for_each_cpu(j, policy->related_cpus) {
1379 per_cpu(cpufreq_cpu_data, j) = policy;
1380 add_cpu_dev_symlink(policy, j);
1381 }
1382
1383 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1384 GFP_KERNEL);
1385 if (!policy->min_freq_req)
1386 goto out_destroy_policy;
1387
1388 ret = freq_qos_add_request(&policy->constraints,
1389 policy->min_freq_req, FREQ_QOS_MIN,
1390 policy->min);
1391 if (ret < 0) {
1392 /*
1393 * So we don't call freq_qos_remove_request() for an
1394 * uninitialized request.
1395 */
1396 kfree(policy->min_freq_req);
1397 policy->min_freq_req = NULL;
1398 goto out_destroy_policy;
1399 }
1400
1401 /*
1402 * This must be initialized right here to avoid calling
1403 * freq_qos_remove_request() on uninitialized request in case
1404 * of errors.
1405 */
1406 policy->max_freq_req = policy->min_freq_req + 1;
1407
1408 ret = freq_qos_add_request(&policy->constraints,
1409 policy->max_freq_req, FREQ_QOS_MAX,
1410 policy->max);
1411 if (ret < 0) {
1412 policy->max_freq_req = NULL;
1413 goto out_destroy_policy;
1414 }
1415
1416 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1417 CPUFREQ_CREATE_POLICY, policy);
1418 }
1419
1420 if (cpufreq_driver->get && has_target()) {
1421 policy->cur = cpufreq_driver->get(policy->cpu);
1422 if (!policy->cur) {
1423 pr_err("%s: ->get() failed\n", __func__);
1424 goto out_destroy_policy;
1425 }
1426 }
1427
1428 /*
1429 * Sometimes boot loaders set CPU frequency to a value outside of
1430 * frequency table present with cpufreq core. In such cases CPU might be
1431 * unstable if it has to run on that frequency for long duration of time
1432 * and so its better to set it to a frequency which is specified in
1433 * freq-table. This also makes cpufreq stats inconsistent as
1434 * cpufreq-stats would fail to register because current frequency of CPU
1435 * isn't found in freq-table.
1436 *
1437 * Because we don't want this change to effect boot process badly, we go
1438 * for the next freq which is >= policy->cur ('cur' must be set by now,
1439 * otherwise we will end up setting freq to lowest of the table as 'cur'
1440 * is initialized to zero).
1441 *
1442 * We are passing target-freq as "policy->cur - 1" otherwise
1443 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1444 * equal to target-freq.
1445 */
1446 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1447 && has_target()) {
1448 /* Are we running at unknown frequency ? */
1449 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1450 if (ret == -EINVAL) {
1451 /* Warn user and fix it */
1452 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1453 __func__, policy->cpu, policy->cur);
1454 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1455 CPUFREQ_RELATION_L);
1456
1457 /*
1458 * Reaching here after boot in a few seconds may not
1459 * mean that system will remain stable at "unknown"
1460 * frequency for longer duration. Hence, a BUG_ON().
1461 */
1462 BUG_ON(ret);
1463 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1464 __func__, policy->cpu, policy->cur);
1465 }
1466 }
1467
1468 if (new_policy) {
1469 ret = cpufreq_add_dev_interface(policy);
1470 if (ret)
1471 goto out_destroy_policy;
1472
1473 cpufreq_stats_create_table(policy);
1474 cpufreq_times_create_policy(policy);
1475
1476 write_lock_irqsave(&cpufreq_driver_lock, flags);
1477 list_add(&policy->policy_list, &cpufreq_policy_list);
1478 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1479 }
1480
1481 ret = cpufreq_init_policy(policy);
1482 if (ret) {
1483 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1484 __func__, cpu, ret);
1485 goto out_destroy_policy;
1486 }
1487
1488 up_write(&policy->rwsem);
1489
1490 kobject_uevent(&policy->kobj, KOBJ_ADD);
1491
1492 /* Callback for handling stuff after policy is ready */
1493 if (cpufreq_driver->ready)
1494 cpufreq_driver->ready(policy);
1495
1496 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1497 policy->cdev = of_cpufreq_cooling_register(policy);
1498
1499 pr_debug("initialization complete\n");
1500
1501 return 0;
1502
1503 out_destroy_policy:
1504 for_each_cpu(j, policy->real_cpus)
1505 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1506
1507 up_write(&policy->rwsem);
1508
1509 out_exit_policy:
1510 if (cpufreq_driver->exit)
1511 cpufreq_driver->exit(policy);
1512
1513 out_free_policy:
1514 cpufreq_policy_free(policy);
1515 return ret;
1516 }
1517
1518 /**
1519 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1520 * @dev: CPU device.
1521 * @sif: Subsystem interface structure pointer (not used)
1522 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1523 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1524 {
1525 struct cpufreq_policy *policy;
1526 unsigned cpu = dev->id;
1527 int ret;
1528
1529 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1530
1531 if (cpu_online(cpu)) {
1532 ret = cpufreq_online(cpu);
1533 if (ret)
1534 return ret;
1535 }
1536
1537 /* Create sysfs link on CPU registration */
1538 policy = per_cpu(cpufreq_cpu_data, cpu);
1539 if (policy)
1540 add_cpu_dev_symlink(policy, cpu);
1541
1542 return 0;
1543 }
1544
cpufreq_offline(unsigned int cpu)1545 static int cpufreq_offline(unsigned int cpu)
1546 {
1547 struct cpufreq_policy *policy;
1548 int ret;
1549
1550 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1551
1552 policy = cpufreq_cpu_get_raw(cpu);
1553 if (!policy) {
1554 pr_debug("%s: No cpu_data found\n", __func__);
1555 return 0;
1556 }
1557
1558 down_write(&policy->rwsem);
1559 if (has_target())
1560 cpufreq_stop_governor(policy);
1561
1562 cpumask_clear_cpu(cpu, policy->cpus);
1563
1564 if (policy_is_inactive(policy)) {
1565 if (has_target())
1566 strncpy(policy->last_governor, policy->governor->name,
1567 CPUFREQ_NAME_LEN);
1568 else
1569 policy->last_policy = policy->policy;
1570 } else if (cpu == policy->cpu) {
1571 /* Nominate new CPU */
1572 policy->cpu = cpumask_any(policy->cpus);
1573 }
1574
1575 /* Start governor again for active policy */
1576 if (!policy_is_inactive(policy)) {
1577 if (has_target()) {
1578 ret = cpufreq_start_governor(policy);
1579 if (ret)
1580 pr_err("%s: Failed to start governor\n", __func__);
1581 }
1582
1583 goto unlock;
1584 }
1585
1586 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1587 cpufreq_cooling_unregister(policy->cdev);
1588 policy->cdev = NULL;
1589 }
1590
1591 if (cpufreq_driver->stop_cpu)
1592 cpufreq_driver->stop_cpu(policy);
1593
1594 if (has_target())
1595 cpufreq_exit_governor(policy);
1596
1597 /*
1598 * Perform the ->offline() during light-weight tear-down, as
1599 * that allows fast recovery when the CPU comes back.
1600 */
1601 if (cpufreq_driver->offline) {
1602 cpufreq_driver->offline(policy);
1603 } else if (cpufreq_driver->exit) {
1604 cpufreq_driver->exit(policy);
1605 policy->freq_table = NULL;
1606 }
1607
1608 unlock:
1609 up_write(&policy->rwsem);
1610 return 0;
1611 }
1612
1613 /**
1614 * cpufreq_remove_dev - remove a CPU device
1615 *
1616 * Removes the cpufreq interface for a CPU device.
1617 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1618 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1619 {
1620 unsigned int cpu = dev->id;
1621 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1622
1623 if (!policy)
1624 return;
1625
1626 if (cpu_online(cpu))
1627 cpufreq_offline(cpu);
1628
1629 cpumask_clear_cpu(cpu, policy->real_cpus);
1630 remove_cpu_dev_symlink(policy, dev);
1631
1632 if (cpumask_empty(policy->real_cpus)) {
1633 /* We did light-weight exit earlier, do full tear down now */
1634 if (cpufreq_driver->offline)
1635 cpufreq_driver->exit(policy);
1636
1637 cpufreq_policy_free(policy);
1638 }
1639 }
1640
1641 /**
1642 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1643 * in deep trouble.
1644 * @policy: policy managing CPUs
1645 * @new_freq: CPU frequency the CPU actually runs at
1646 *
1647 * We adjust to current frequency first, and need to clean up later.
1648 * So either call to cpufreq_update_policy() or schedule handle_update()).
1649 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1650 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1651 unsigned int new_freq)
1652 {
1653 struct cpufreq_freqs freqs;
1654
1655 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1656 policy->cur, new_freq);
1657
1658 freqs.old = policy->cur;
1659 freqs.new = new_freq;
1660
1661 cpufreq_freq_transition_begin(policy, &freqs);
1662 cpufreq_freq_transition_end(policy, &freqs, 0);
1663 }
1664
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1665 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1666 {
1667 unsigned int new_freq;
1668
1669 new_freq = cpufreq_driver->get(policy->cpu);
1670 if (!new_freq)
1671 return 0;
1672
1673 /*
1674 * If fast frequency switching is used with the given policy, the check
1675 * against policy->cur is pointless, so skip it in that case.
1676 */
1677 if (policy->fast_switch_enabled || !has_target())
1678 return new_freq;
1679
1680 if (policy->cur != new_freq) {
1681 cpufreq_out_of_sync(policy, new_freq);
1682 if (update)
1683 schedule_work(&policy->update);
1684 }
1685
1686 return new_freq;
1687 }
1688
1689 /**
1690 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1691 * @cpu: CPU number
1692 *
1693 * This is the last known freq, without actually getting it from the driver.
1694 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1695 */
cpufreq_quick_get(unsigned int cpu)1696 unsigned int cpufreq_quick_get(unsigned int cpu)
1697 {
1698 struct cpufreq_policy *policy;
1699 unsigned int ret_freq = 0;
1700 unsigned long flags;
1701
1702 read_lock_irqsave(&cpufreq_driver_lock, flags);
1703
1704 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1705 ret_freq = cpufreq_driver->get(cpu);
1706 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1707 return ret_freq;
1708 }
1709
1710 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711
1712 policy = cpufreq_cpu_get(cpu);
1713 if (policy) {
1714 ret_freq = policy->cur;
1715 cpufreq_cpu_put(policy);
1716 }
1717
1718 return ret_freq;
1719 }
1720 EXPORT_SYMBOL(cpufreq_quick_get);
1721
1722 /**
1723 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1724 * @cpu: CPU number
1725 *
1726 * Just return the max possible frequency for a given CPU.
1727 */
cpufreq_quick_get_max(unsigned int cpu)1728 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1729 {
1730 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1731 unsigned int ret_freq = 0;
1732
1733 if (policy) {
1734 ret_freq = policy->max;
1735 cpufreq_cpu_put(policy);
1736 }
1737
1738 return ret_freq;
1739 }
1740 EXPORT_SYMBOL(cpufreq_quick_get_max);
1741
__cpufreq_get(struct cpufreq_policy * policy)1742 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1743 {
1744 if (unlikely(policy_is_inactive(policy)))
1745 return 0;
1746
1747 return cpufreq_verify_current_freq(policy, true);
1748 }
1749
1750 /**
1751 * cpufreq_get - get the current CPU frequency (in kHz)
1752 * @cpu: CPU number
1753 *
1754 * Get the CPU current (static) CPU frequency
1755 */
cpufreq_get(unsigned int cpu)1756 unsigned int cpufreq_get(unsigned int cpu)
1757 {
1758 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1759 unsigned int ret_freq = 0;
1760
1761 if (policy) {
1762 down_read(&policy->rwsem);
1763 if (cpufreq_driver->get)
1764 ret_freq = __cpufreq_get(policy);
1765 up_read(&policy->rwsem);
1766
1767 cpufreq_cpu_put(policy);
1768 }
1769
1770 return ret_freq;
1771 }
1772 EXPORT_SYMBOL(cpufreq_get);
1773
1774 static struct subsys_interface cpufreq_interface = {
1775 .name = "cpufreq",
1776 .subsys = &cpu_subsys,
1777 .add_dev = cpufreq_add_dev,
1778 .remove_dev = cpufreq_remove_dev,
1779 };
1780
1781 /*
1782 * In case platform wants some specific frequency to be configured
1783 * during suspend..
1784 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1785 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1786 {
1787 int ret;
1788
1789 if (!policy->suspend_freq) {
1790 pr_debug("%s: suspend_freq not defined\n", __func__);
1791 return 0;
1792 }
1793
1794 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1795 policy->suspend_freq);
1796
1797 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1798 CPUFREQ_RELATION_H);
1799 if (ret)
1800 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1801 __func__, policy->suspend_freq, ret);
1802
1803 return ret;
1804 }
1805 EXPORT_SYMBOL(cpufreq_generic_suspend);
1806
1807 /**
1808 * cpufreq_suspend() - Suspend CPUFreq governors
1809 *
1810 * Called during system wide Suspend/Hibernate cycles for suspending governors
1811 * as some platforms can't change frequency after this point in suspend cycle.
1812 * Because some of the devices (like: i2c, regulators, etc) they use for
1813 * changing frequency are suspended quickly after this point.
1814 */
cpufreq_suspend(void)1815 void cpufreq_suspend(void)
1816 {
1817 struct cpufreq_policy *policy;
1818
1819 if (!cpufreq_driver)
1820 return;
1821
1822 if (!has_target() && !cpufreq_driver->suspend)
1823 goto suspend;
1824
1825 pr_debug("%s: Suspending Governors\n", __func__);
1826
1827 for_each_active_policy(policy) {
1828 if (has_target()) {
1829 down_write(&policy->rwsem);
1830 cpufreq_stop_governor(policy);
1831 up_write(&policy->rwsem);
1832 }
1833
1834 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1835 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1836 cpufreq_driver->name);
1837 }
1838
1839 suspend:
1840 cpufreq_suspended = true;
1841 }
1842
1843 /**
1844 * cpufreq_resume() - Resume CPUFreq governors
1845 *
1846 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1847 * are suspended with cpufreq_suspend().
1848 */
cpufreq_resume(void)1849 void cpufreq_resume(void)
1850 {
1851 struct cpufreq_policy *policy;
1852 int ret;
1853
1854 if (!cpufreq_driver)
1855 return;
1856
1857 if (unlikely(!cpufreq_suspended))
1858 return;
1859
1860 cpufreq_suspended = false;
1861
1862 if (!has_target() && !cpufreq_driver->resume)
1863 return;
1864
1865 pr_debug("%s: Resuming Governors\n", __func__);
1866
1867 for_each_active_policy(policy) {
1868 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1869 pr_err("%s: Failed to resume driver: %p\n", __func__,
1870 policy);
1871 } else if (has_target()) {
1872 down_write(&policy->rwsem);
1873 ret = cpufreq_start_governor(policy);
1874 up_write(&policy->rwsem);
1875
1876 if (ret)
1877 pr_err("%s: Failed to start governor for policy: %p\n",
1878 __func__, policy);
1879 }
1880 }
1881 }
1882
1883 /**
1884 * cpufreq_get_current_driver - return current driver's name
1885 *
1886 * Return the name string of the currently loaded cpufreq driver
1887 * or NULL, if none.
1888 */
cpufreq_get_current_driver(void)1889 const char *cpufreq_get_current_driver(void)
1890 {
1891 if (cpufreq_driver)
1892 return cpufreq_driver->name;
1893
1894 return NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1897
1898 /**
1899 * cpufreq_get_driver_data - return current driver data
1900 *
1901 * Return the private data of the currently loaded cpufreq
1902 * driver, or NULL if no cpufreq driver is loaded.
1903 */
cpufreq_get_driver_data(void)1904 void *cpufreq_get_driver_data(void)
1905 {
1906 if (cpufreq_driver)
1907 return cpufreq_driver->driver_data;
1908
1909 return NULL;
1910 }
1911 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1912
1913 /*********************************************************************
1914 * NOTIFIER LISTS INTERFACE *
1915 *********************************************************************/
1916
1917 /**
1918 * cpufreq_register_notifier - register a driver with cpufreq
1919 * @nb: notifier function to register
1920 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1921 *
1922 * Add a driver to one of two lists: either a list of drivers that
1923 * are notified about clock rate changes (once before and once after
1924 * the transition), or a list of drivers that are notified about
1925 * changes in cpufreq policy.
1926 *
1927 * This function may sleep, and has the same return conditions as
1928 * blocking_notifier_chain_register.
1929 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1930 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1931 {
1932 int ret;
1933
1934 if (cpufreq_disabled())
1935 return -EINVAL;
1936
1937 switch (list) {
1938 case CPUFREQ_TRANSITION_NOTIFIER:
1939 mutex_lock(&cpufreq_fast_switch_lock);
1940
1941 if (cpufreq_fast_switch_count > 0) {
1942 mutex_unlock(&cpufreq_fast_switch_lock);
1943 return -EBUSY;
1944 }
1945 ret = srcu_notifier_chain_register(
1946 &cpufreq_transition_notifier_list, nb);
1947 if (!ret)
1948 cpufreq_fast_switch_count--;
1949
1950 mutex_unlock(&cpufreq_fast_switch_lock);
1951 break;
1952 case CPUFREQ_POLICY_NOTIFIER:
1953 ret = blocking_notifier_chain_register(
1954 &cpufreq_policy_notifier_list, nb);
1955 break;
1956 default:
1957 ret = -EINVAL;
1958 }
1959
1960 return ret;
1961 }
1962 EXPORT_SYMBOL(cpufreq_register_notifier);
1963
1964 /**
1965 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1966 * @nb: notifier block to be unregistered
1967 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1968 *
1969 * Remove a driver from the CPU frequency notifier list.
1970 *
1971 * This function may sleep, and has the same return conditions as
1972 * blocking_notifier_chain_unregister.
1973 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)1974 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1975 {
1976 int ret;
1977
1978 if (cpufreq_disabled())
1979 return -EINVAL;
1980
1981 switch (list) {
1982 case CPUFREQ_TRANSITION_NOTIFIER:
1983 mutex_lock(&cpufreq_fast_switch_lock);
1984
1985 ret = srcu_notifier_chain_unregister(
1986 &cpufreq_transition_notifier_list, nb);
1987 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1988 cpufreq_fast_switch_count++;
1989
1990 mutex_unlock(&cpufreq_fast_switch_lock);
1991 break;
1992 case CPUFREQ_POLICY_NOTIFIER:
1993 ret = blocking_notifier_chain_unregister(
1994 &cpufreq_policy_notifier_list, nb);
1995 break;
1996 default:
1997 ret = -EINVAL;
1998 }
1999
2000 return ret;
2001 }
2002 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2003
2004
2005 /*********************************************************************
2006 * GOVERNORS *
2007 *********************************************************************/
2008
2009 /**
2010 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2011 * @policy: cpufreq policy to switch the frequency for.
2012 * @target_freq: New frequency to set (may be approximate).
2013 *
2014 * Carry out a fast frequency switch without sleeping.
2015 *
2016 * The driver's ->fast_switch() callback invoked by this function must be
2017 * suitable for being called from within RCU-sched read-side critical sections
2018 * and it is expected to select the minimum available frequency greater than or
2019 * equal to @target_freq (CPUFREQ_RELATION_L).
2020 *
2021 * This function must not be called if policy->fast_switch_enabled is unset.
2022 *
2023 * Governors calling this function must guarantee that it will never be invoked
2024 * twice in parallel for the same policy and that it will never be called in
2025 * parallel with either ->target() or ->target_index() for the same policy.
2026 *
2027 * Returns the actual frequency set for the CPU.
2028 *
2029 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2030 * error condition, the hardware configuration must be preserved.
2031 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2032 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2033 unsigned int target_freq)
2034 {
2035 int ret;
2036
2037 target_freq = clamp_val(target_freq, policy->min, policy->max);
2038
2039 ret = cpufreq_driver->fast_switch(policy, target_freq);
2040 if (ret)
2041 cpufreq_times_record_transition(policy, ret);
2042
2043 return ret;
2044 }
2045 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2046
2047 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2048 static int __target_intermediate(struct cpufreq_policy *policy,
2049 struct cpufreq_freqs *freqs, int index)
2050 {
2051 int ret;
2052
2053 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2054
2055 /* We don't need to switch to intermediate freq */
2056 if (!freqs->new)
2057 return 0;
2058
2059 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2060 __func__, policy->cpu, freqs->old, freqs->new);
2061
2062 cpufreq_freq_transition_begin(policy, freqs);
2063 ret = cpufreq_driver->target_intermediate(policy, index);
2064 cpufreq_freq_transition_end(policy, freqs, ret);
2065
2066 if (ret)
2067 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2068 __func__, ret);
2069
2070 return ret;
2071 }
2072
__target_index(struct cpufreq_policy * policy,int index)2073 static int __target_index(struct cpufreq_policy *policy, int index)
2074 {
2075 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2076 unsigned int intermediate_freq = 0;
2077 unsigned int newfreq = policy->freq_table[index].frequency;
2078 int retval = -EINVAL;
2079 bool notify;
2080
2081 if (newfreq == policy->cur)
2082 return 0;
2083
2084 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2085 if (notify) {
2086 /* Handle switching to intermediate frequency */
2087 if (cpufreq_driver->get_intermediate) {
2088 retval = __target_intermediate(policy, &freqs, index);
2089 if (retval)
2090 return retval;
2091
2092 intermediate_freq = freqs.new;
2093 /* Set old freq to intermediate */
2094 if (intermediate_freq)
2095 freqs.old = freqs.new;
2096 }
2097
2098 freqs.new = newfreq;
2099 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2100 __func__, policy->cpu, freqs.old, freqs.new);
2101
2102 cpufreq_freq_transition_begin(policy, &freqs);
2103 }
2104
2105 retval = cpufreq_driver->target_index(policy, index);
2106 if (retval)
2107 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2108 retval);
2109
2110 if (notify) {
2111 cpufreq_freq_transition_end(policy, &freqs, retval);
2112
2113 /*
2114 * Failed after setting to intermediate freq? Driver should have
2115 * reverted back to initial frequency and so should we. Check
2116 * here for intermediate_freq instead of get_intermediate, in
2117 * case we haven't switched to intermediate freq at all.
2118 */
2119 if (unlikely(retval && intermediate_freq)) {
2120 freqs.old = intermediate_freq;
2121 freqs.new = policy->restore_freq;
2122 cpufreq_freq_transition_begin(policy, &freqs);
2123 cpufreq_freq_transition_end(policy, &freqs, 0);
2124 }
2125 }
2126
2127 return retval;
2128 }
2129
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2130 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2131 unsigned int target_freq,
2132 unsigned int relation)
2133 {
2134 unsigned int old_target_freq = target_freq;
2135 int index;
2136
2137 if (cpufreq_disabled())
2138 return -ENODEV;
2139
2140 /* Make sure that target_freq is within supported range */
2141 target_freq = clamp_val(target_freq, policy->min, policy->max);
2142
2143 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2144 policy->cpu, target_freq, relation, old_target_freq);
2145
2146 /*
2147 * This might look like a redundant call as we are checking it again
2148 * after finding index. But it is left intentionally for cases where
2149 * exactly same freq is called again and so we can save on few function
2150 * calls.
2151 */
2152 if (target_freq == policy->cur)
2153 return 0;
2154
2155 /* Save last value to restore later on errors */
2156 policy->restore_freq = policy->cur;
2157
2158 if (cpufreq_driver->target)
2159 return cpufreq_driver->target(policy, target_freq, relation);
2160
2161 if (!cpufreq_driver->target_index)
2162 return -EINVAL;
2163
2164 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2165
2166 return __target_index(policy, index);
2167 }
2168 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2169
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2170 int cpufreq_driver_target(struct cpufreq_policy *policy,
2171 unsigned int target_freq,
2172 unsigned int relation)
2173 {
2174 int ret;
2175
2176 down_write(&policy->rwsem);
2177
2178 ret = __cpufreq_driver_target(policy, target_freq, relation);
2179
2180 up_write(&policy->rwsem);
2181
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2185
cpufreq_fallback_governor(void)2186 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2187 {
2188 return NULL;
2189 }
2190
cpufreq_init_governor(struct cpufreq_policy * policy)2191 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2192 {
2193 int ret;
2194
2195 /* Don't start any governor operations if we are entering suspend */
2196 if (cpufreq_suspended)
2197 return 0;
2198 /*
2199 * Governor might not be initiated here if ACPI _PPC changed
2200 * notification happened, so check it.
2201 */
2202 if (!policy->governor)
2203 return -EINVAL;
2204
2205 /* Platform doesn't want dynamic frequency switching ? */
2206 if (policy->governor->dynamic_switching &&
2207 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2208 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2209
2210 if (gov) {
2211 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2212 policy->governor->name, gov->name);
2213 policy->governor = gov;
2214 } else {
2215 return -EINVAL;
2216 }
2217 }
2218
2219 if (!try_module_get(policy->governor->owner))
2220 return -EINVAL;
2221
2222 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2223
2224 if (policy->governor->init) {
2225 ret = policy->governor->init(policy);
2226 if (ret) {
2227 module_put(policy->governor->owner);
2228 return ret;
2229 }
2230 }
2231
2232 return 0;
2233 }
2234
cpufreq_exit_governor(struct cpufreq_policy * policy)2235 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2236 {
2237 if (cpufreq_suspended || !policy->governor)
2238 return;
2239
2240 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242 if (policy->governor->exit)
2243 policy->governor->exit(policy);
2244
2245 module_put(policy->governor->owner);
2246 }
2247
cpufreq_start_governor(struct cpufreq_policy * policy)2248 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2249 {
2250 int ret;
2251
2252 if (cpufreq_suspended)
2253 return 0;
2254
2255 if (!policy->governor)
2256 return -EINVAL;
2257
2258 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260 if (cpufreq_driver->get)
2261 cpufreq_verify_current_freq(policy, false);
2262
2263 if (policy->governor->start) {
2264 ret = policy->governor->start(policy);
2265 if (ret)
2266 return ret;
2267 }
2268
2269 if (policy->governor->limits)
2270 policy->governor->limits(policy);
2271
2272 return 0;
2273 }
2274
cpufreq_stop_governor(struct cpufreq_policy * policy)2275 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2276 {
2277 if (cpufreq_suspended || !policy->governor)
2278 return;
2279
2280 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2281
2282 if (policy->governor->stop)
2283 policy->governor->stop(policy);
2284 }
2285
cpufreq_governor_limits(struct cpufreq_policy * policy)2286 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2287 {
2288 if (cpufreq_suspended || !policy->governor)
2289 return;
2290
2291 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2292
2293 if (policy->governor->limits)
2294 policy->governor->limits(policy);
2295 }
2296
cpufreq_register_governor(struct cpufreq_governor * governor)2297 int cpufreq_register_governor(struct cpufreq_governor *governor)
2298 {
2299 int err;
2300
2301 if (!governor)
2302 return -EINVAL;
2303
2304 if (cpufreq_disabled())
2305 return -ENODEV;
2306
2307 mutex_lock(&cpufreq_governor_mutex);
2308
2309 err = -EBUSY;
2310 if (!find_governor(governor->name)) {
2311 err = 0;
2312 list_add(&governor->governor_list, &cpufreq_governor_list);
2313 }
2314
2315 mutex_unlock(&cpufreq_governor_mutex);
2316 return err;
2317 }
2318 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2319
cpufreq_unregister_governor(struct cpufreq_governor * governor)2320 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2321 {
2322 struct cpufreq_policy *policy;
2323 unsigned long flags;
2324
2325 if (!governor)
2326 return;
2327
2328 if (cpufreq_disabled())
2329 return;
2330
2331 /* clear last_governor for all inactive policies */
2332 read_lock_irqsave(&cpufreq_driver_lock, flags);
2333 for_each_inactive_policy(policy) {
2334 if (!strcmp(policy->last_governor, governor->name)) {
2335 policy->governor = NULL;
2336 strcpy(policy->last_governor, "\0");
2337 }
2338 }
2339 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2340
2341 mutex_lock(&cpufreq_governor_mutex);
2342 list_del(&governor->governor_list);
2343 mutex_unlock(&cpufreq_governor_mutex);
2344 }
2345 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2346
2347
2348 /*********************************************************************
2349 * POLICY INTERFACE *
2350 *********************************************************************/
2351
2352 /**
2353 * cpufreq_get_policy - get the current cpufreq_policy
2354 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2355 * is written
2356 *
2357 * Reads the current cpufreq policy.
2358 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2359 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2360 {
2361 struct cpufreq_policy *cpu_policy;
2362 if (!policy)
2363 return -EINVAL;
2364
2365 cpu_policy = cpufreq_cpu_get(cpu);
2366 if (!cpu_policy)
2367 return -EINVAL;
2368
2369 memcpy(policy, cpu_policy, sizeof(*policy));
2370
2371 cpufreq_cpu_put(cpu_policy);
2372 return 0;
2373 }
2374 EXPORT_SYMBOL(cpufreq_get_policy);
2375
2376 /**
2377 * cpufreq_set_policy - Modify cpufreq policy parameters.
2378 * @policy: Policy object to modify.
2379 * @new_policy: New policy data.
2380 *
2381 * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2382 * min and max parameters of @new_policy to @policy and either invoke the
2383 * driver's ->setpolicy() callback (if present) or carry out a governor update
2384 * for @policy. That is, run the current governor's ->limits() callback (if the
2385 * governor field in @new_policy points to the same object as the one in
2386 * @policy) or replace the governor for @policy with the new one stored in
2387 * @new_policy.
2388 *
2389 * The cpuinfo part of @policy is not updated by this function.
2390 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_policy * new_policy)2391 int cpufreq_set_policy(struct cpufreq_policy *policy,
2392 struct cpufreq_policy *new_policy)
2393 {
2394 struct cpufreq_governor *old_gov;
2395 int ret;
2396
2397 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2398 new_policy->cpu, new_policy->min, new_policy->max);
2399
2400 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2401
2402 /*
2403 * PM QoS framework collects all the requests from users and provide us
2404 * the final aggregated value here.
2405 */
2406 new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2407 new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2408
2409 /* verify the cpu speed can be set within this limit */
2410 ret = cpufreq_driver->verify(new_policy);
2411 if (ret)
2412 return ret;
2413
2414 policy->min = new_policy->min;
2415 policy->max = new_policy->max;
2416 trace_cpu_frequency_limits(policy);
2417
2418 arch_set_max_freq_scale(policy->cpus, policy->max);
2419
2420 policy->cached_target_freq = UINT_MAX;
2421
2422 pr_debug("new min and max freqs are %u - %u kHz\n",
2423 policy->min, policy->max);
2424
2425 if (cpufreq_driver->setpolicy) {
2426 policy->policy = new_policy->policy;
2427 pr_debug("setting range\n");
2428 return cpufreq_driver->setpolicy(policy);
2429 }
2430
2431 if (new_policy->governor == policy->governor) {
2432 pr_debug("governor limits update\n");
2433 cpufreq_governor_limits(policy);
2434 return 0;
2435 }
2436
2437 pr_debug("governor switch\n");
2438
2439 /* save old, working values */
2440 old_gov = policy->governor;
2441 /* end old governor */
2442 if (old_gov) {
2443 cpufreq_stop_governor(policy);
2444 cpufreq_exit_governor(policy);
2445 }
2446
2447 /* start new governor */
2448 policy->governor = new_policy->governor;
2449 ret = cpufreq_init_governor(policy);
2450 if (!ret) {
2451 ret = cpufreq_start_governor(policy);
2452 if (!ret) {
2453 pr_debug("governor change\n");
2454 sched_cpufreq_governor_change(policy, old_gov);
2455 return 0;
2456 }
2457 cpufreq_exit_governor(policy);
2458 }
2459
2460 /* new governor failed, so re-start old one */
2461 pr_debug("starting governor %s failed\n", policy->governor->name);
2462 if (old_gov) {
2463 policy->governor = old_gov;
2464 if (cpufreq_init_governor(policy))
2465 policy->governor = NULL;
2466 else
2467 cpufreq_start_governor(policy);
2468 }
2469
2470 return ret;
2471 }
2472
2473 /**
2474 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2475 * @cpu: CPU to re-evaluate the policy for.
2476 *
2477 * Update the current frequency for the cpufreq policy of @cpu and use
2478 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2479 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2480 * for the policy in question, among other things.
2481 */
cpufreq_update_policy(unsigned int cpu)2482 void cpufreq_update_policy(unsigned int cpu)
2483 {
2484 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2485
2486 if (!policy)
2487 return;
2488
2489 /*
2490 * BIOS might change freq behind our back
2491 * -> ask driver for current freq and notify governors about a change
2492 */
2493 if (cpufreq_driver->get && has_target() &&
2494 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2495 goto unlock;
2496
2497 refresh_frequency_limits(policy);
2498
2499 unlock:
2500 cpufreq_cpu_release(policy);
2501 }
2502 EXPORT_SYMBOL(cpufreq_update_policy);
2503
2504 /**
2505 * cpufreq_update_limits - Update policy limits for a given CPU.
2506 * @cpu: CPU to update the policy limits for.
2507 *
2508 * Invoke the driver's ->update_limits callback if present or call
2509 * cpufreq_update_policy() for @cpu.
2510 */
cpufreq_update_limits(unsigned int cpu)2511 void cpufreq_update_limits(unsigned int cpu)
2512 {
2513 if (cpufreq_driver->update_limits)
2514 cpufreq_driver->update_limits(cpu);
2515 else
2516 cpufreq_update_policy(cpu);
2517 }
2518 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2519
2520 /*********************************************************************
2521 * BOOST *
2522 *********************************************************************/
cpufreq_boost_set_sw(int state)2523 static int cpufreq_boost_set_sw(int state)
2524 {
2525 struct cpufreq_policy *policy;
2526 int ret = -EINVAL;
2527
2528 for_each_active_policy(policy) {
2529 if (!policy->freq_table)
2530 continue;
2531
2532 ret = cpufreq_frequency_table_cpuinfo(policy,
2533 policy->freq_table);
2534 if (ret) {
2535 pr_err("%s: Policy frequency update failed\n",
2536 __func__);
2537 break;
2538 }
2539
2540 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2541 if (ret < 0)
2542 break;
2543 }
2544
2545 return ret;
2546 }
2547
cpufreq_boost_trigger_state(int state)2548 int cpufreq_boost_trigger_state(int state)
2549 {
2550 unsigned long flags;
2551 int ret = 0;
2552
2553 if (cpufreq_driver->boost_enabled == state)
2554 return 0;
2555
2556 write_lock_irqsave(&cpufreq_driver_lock, flags);
2557 cpufreq_driver->boost_enabled = state;
2558 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2559
2560 ret = cpufreq_driver->set_boost(state);
2561 if (ret) {
2562 write_lock_irqsave(&cpufreq_driver_lock, flags);
2563 cpufreq_driver->boost_enabled = !state;
2564 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2565
2566 pr_err("%s: Cannot %s BOOST\n",
2567 __func__, state ? "enable" : "disable");
2568 }
2569
2570 return ret;
2571 }
2572
cpufreq_boost_supported(void)2573 static bool cpufreq_boost_supported(void)
2574 {
2575 return cpufreq_driver->set_boost;
2576 }
2577
create_boost_sysfs_file(void)2578 static int create_boost_sysfs_file(void)
2579 {
2580 int ret;
2581
2582 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2583 if (ret)
2584 pr_err("%s: cannot register global BOOST sysfs file\n",
2585 __func__);
2586
2587 return ret;
2588 }
2589
remove_boost_sysfs_file(void)2590 static void remove_boost_sysfs_file(void)
2591 {
2592 if (cpufreq_boost_supported())
2593 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2594 }
2595
cpufreq_enable_boost_support(void)2596 int cpufreq_enable_boost_support(void)
2597 {
2598 if (!cpufreq_driver)
2599 return -EINVAL;
2600
2601 if (cpufreq_boost_supported())
2602 return 0;
2603
2604 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2605
2606 /* This will get removed on driver unregister */
2607 return create_boost_sysfs_file();
2608 }
2609 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2610
cpufreq_boost_enabled(void)2611 int cpufreq_boost_enabled(void)
2612 {
2613 return cpufreq_driver->boost_enabled;
2614 }
2615 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2616
2617 /*********************************************************************
2618 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2619 *********************************************************************/
2620 static enum cpuhp_state hp_online;
2621
cpuhp_cpufreq_online(unsigned int cpu)2622 static int cpuhp_cpufreq_online(unsigned int cpu)
2623 {
2624 cpufreq_online(cpu);
2625
2626 return 0;
2627 }
2628
cpuhp_cpufreq_offline(unsigned int cpu)2629 static int cpuhp_cpufreq_offline(unsigned int cpu)
2630 {
2631 cpufreq_offline(cpu);
2632
2633 return 0;
2634 }
2635
2636 /**
2637 * cpufreq_register_driver - register a CPU Frequency driver
2638 * @driver_data: A struct cpufreq_driver containing the values#
2639 * submitted by the CPU Frequency driver.
2640 *
2641 * Registers a CPU Frequency driver to this core code. This code
2642 * returns zero on success, -EEXIST when another driver got here first
2643 * (and isn't unregistered in the meantime).
2644 *
2645 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2646 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2647 {
2648 unsigned long flags;
2649 int ret;
2650
2651 if (cpufreq_disabled())
2652 return -ENODEV;
2653
2654 /*
2655 * The cpufreq core depends heavily on the availability of device
2656 * structure, make sure they are available before proceeding further.
2657 */
2658 if (!get_cpu_device(0))
2659 return -EPROBE_DEFER;
2660
2661 if (!driver_data || !driver_data->verify || !driver_data->init ||
2662 !(driver_data->setpolicy || driver_data->target_index ||
2663 driver_data->target) ||
2664 (driver_data->setpolicy && (driver_data->target_index ||
2665 driver_data->target)) ||
2666 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2667 (!driver_data->online != !driver_data->offline))
2668 return -EINVAL;
2669
2670 pr_debug("trying to register driver %s\n", driver_data->name);
2671
2672 /* Protect against concurrent CPU online/offline. */
2673 cpus_read_lock();
2674
2675 write_lock_irqsave(&cpufreq_driver_lock, flags);
2676 if (cpufreq_driver) {
2677 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2678 ret = -EEXIST;
2679 goto out;
2680 }
2681 cpufreq_driver = driver_data;
2682 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2683
2684 if (driver_data->setpolicy)
2685 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2686
2687 if (cpufreq_boost_supported()) {
2688 ret = create_boost_sysfs_file();
2689 if (ret)
2690 goto err_null_driver;
2691 }
2692
2693 ret = subsys_interface_register(&cpufreq_interface);
2694 if (ret)
2695 goto err_boost_unreg;
2696
2697 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2698 list_empty(&cpufreq_policy_list)) {
2699 /* if all ->init() calls failed, unregister */
2700 ret = -ENODEV;
2701 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2702 driver_data->name);
2703 goto err_if_unreg;
2704 }
2705
2706 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2707 "cpufreq:online",
2708 cpuhp_cpufreq_online,
2709 cpuhp_cpufreq_offline);
2710 if (ret < 0)
2711 goto err_if_unreg;
2712 hp_online = ret;
2713 ret = 0;
2714
2715 pr_debug("driver %s up and running\n", driver_data->name);
2716 goto out;
2717
2718 err_if_unreg:
2719 subsys_interface_unregister(&cpufreq_interface);
2720 err_boost_unreg:
2721 remove_boost_sysfs_file();
2722 err_null_driver:
2723 write_lock_irqsave(&cpufreq_driver_lock, flags);
2724 cpufreq_driver = NULL;
2725 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2726 out:
2727 cpus_read_unlock();
2728 return ret;
2729 }
2730 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2731
2732 /**
2733 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2734 *
2735 * Unregister the current CPUFreq driver. Only call this if you have
2736 * the right to do so, i.e. if you have succeeded in initialising before!
2737 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2738 * currently not initialised.
2739 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2740 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2741 {
2742 unsigned long flags;
2743
2744 if (!cpufreq_driver || (driver != cpufreq_driver))
2745 return -EINVAL;
2746
2747 pr_debug("unregistering driver %s\n", driver->name);
2748
2749 /* Protect against concurrent cpu hotplug */
2750 cpus_read_lock();
2751 subsys_interface_unregister(&cpufreq_interface);
2752 remove_boost_sysfs_file();
2753 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2754
2755 write_lock_irqsave(&cpufreq_driver_lock, flags);
2756
2757 cpufreq_driver = NULL;
2758
2759 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2760 cpus_read_unlock();
2761
2762 return 0;
2763 }
2764 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2765
2766 struct kobject *cpufreq_global_kobject;
2767 EXPORT_SYMBOL(cpufreq_global_kobject);
2768
cpufreq_core_init(void)2769 static int __init cpufreq_core_init(void)
2770 {
2771 if (cpufreq_disabled())
2772 return -ENODEV;
2773
2774 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2775 BUG_ON(!cpufreq_global_kobject);
2776
2777 return 0;
2778 }
2779 module_param(off, int, 0444);
2780 core_initcall(cpufreq_core_init);
2781