1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Timer events oriented CPU idle governor
4 *
5 * Copyright (C) 2018 Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * The idea of this governor is based on the observation that on many systems
9 * timer events are two or more orders of magnitude more frequent than any
10 * other interrupts, so they are likely to be the most significant source of CPU
11 * wakeups from idle states. Moreover, information about what happened in the
12 * (relatively recent) past can be used to estimate whether or not the deepest
13 * idle state with target residency within the time to the closest timer is
14 * likely to be suitable for the upcoming idle time of the CPU and, if not, then
15 * which of the shallower idle states to choose.
16 *
17 * Of course, non-timer wakeup sources are more important in some use cases and
18 * they can be covered by taking a few most recent idle time intervals of the
19 * CPU into account. However, even in that case it is not necessary to consider
20 * idle duration values greater than the time till the closest timer, as the
21 * patterns that they may belong to produce average values close enough to
22 * the time till the closest timer (sleep length) anyway.
23 *
24 * Thus this governor estimates whether or not the upcoming idle time of the CPU
25 * is likely to be significantly shorter than the sleep length and selects an
26 * idle state for it in accordance with that, as follows:
27 *
28 * - Find an idle state on the basis of the sleep length and state statistics
29 * collected over time:
30 *
31 * o Find the deepest idle state whose target residency is less than or equal
32 * to the sleep length.
33 *
34 * o Select it if it matched both the sleep length and the observed idle
35 * duration in the past more often than it matched the sleep length alone
36 * (i.e. the observed idle duration was significantly shorter than the sleep
37 * length matched by it).
38 *
39 * o Otherwise, select the shallower state with the greatest matched "early"
40 * wakeups metric.
41 *
42 * - If the majority of the most recent idle duration values are below the
43 * target residency of the idle state selected so far, use those values to
44 * compute the new expected idle duration and find an idle state matching it
45 * (which has to be shallower than the one selected so far).
46 */
47
48 #include <linux/cpuidle.h>
49 #include <linux/jiffies.h>
50 #include <linux/kernel.h>
51 #include <linux/sched/clock.h>
52 #include <linux/tick.h>
53
54 /*
55 * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value
56 * is used for decreasing metrics on a regular basis.
57 */
58 #define PULSE 1024
59 #define DECAY_SHIFT 3
60
61 /*
62 * Number of the most recent idle duration values to take into consideration for
63 * the detection of wakeup patterns.
64 */
65 #define INTERVALS 8
66
67 /**
68 * struct teo_idle_state - Idle state data used by the TEO cpuidle governor.
69 * @early_hits: "Early" CPU wakeups "matching" this state.
70 * @hits: "On time" CPU wakeups "matching" this state.
71 * @misses: CPU wakeups "missing" this state.
72 *
73 * A CPU wakeup is "matched" by a given idle state if the idle duration measured
74 * after the wakeup is between the target residency of that state and the target
75 * residency of the next one (or if this is the deepest available idle state, it
76 * "matches" a CPU wakeup when the measured idle duration is at least equal to
77 * its target residency).
78 *
79 * Also, from the TEO governor perspective, a CPU wakeup from idle is "early" if
80 * it occurs significantly earlier than the closest expected timer event (that
81 * is, early enough to match an idle state shallower than the one matching the
82 * time till the closest timer event). Otherwise, the wakeup is "on time", or
83 * it is a "hit".
84 *
85 * A "miss" occurs when the given state doesn't match the wakeup, but it matches
86 * the time till the closest timer event used for idle state selection.
87 */
88 struct teo_idle_state {
89 unsigned int early_hits;
90 unsigned int hits;
91 unsigned int misses;
92 };
93
94 /**
95 * struct teo_cpu - CPU data used by the TEO cpuidle governor.
96 * @time_span_ns: Time between idle state selection and post-wakeup update.
97 * @sleep_length_ns: Time till the closest timer event (at the selection time).
98 * @states: Idle states data corresponding to this CPU.
99 * @interval_idx: Index of the most recent saved idle interval.
100 * @intervals: Saved idle duration values.
101 */
102 struct teo_cpu {
103 u64 time_span_ns;
104 u64 sleep_length_ns;
105 struct teo_idle_state states[CPUIDLE_STATE_MAX];
106 int interval_idx;
107 unsigned int intervals[INTERVALS];
108 };
109
110 static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
111
112 /**
113 * teo_update - Update CPU data after wakeup.
114 * @drv: cpuidle driver containing state data.
115 * @dev: Target CPU.
116 */
teo_update(struct cpuidle_driver * drv,struct cpuidle_device * dev)117 static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
118 {
119 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
120 unsigned int sleep_length_us = ktime_to_us(cpu_data->sleep_length_ns);
121 int i, idx_hit = -1, idx_timer = -1;
122 unsigned int measured_us;
123
124 if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) {
125 /*
126 * One of the safety nets has triggered or the wakeup was close
127 * enough to the closest timer event expected at the idle state
128 * selection time to be discarded.
129 */
130 measured_us = UINT_MAX;
131 } else {
132 unsigned int lat;
133
134 lat = drv->states[dev->last_state_idx].exit_latency;
135
136 measured_us = ktime_to_us(cpu_data->time_span_ns);
137 /*
138 * The delay between the wakeup and the first instruction
139 * executed by the CPU is not likely to be worst-case every
140 * time, so take 1/2 of the exit latency as a very rough
141 * approximation of the average of it.
142 */
143 if (measured_us >= lat)
144 measured_us -= lat / 2;
145 else
146 measured_us /= 2;
147 }
148
149 /*
150 * Decay the "early hits" metric for all of the states and find the
151 * states matching the sleep length and the measured idle duration.
152 */
153 for (i = 0; i < drv->state_count; i++) {
154 unsigned int early_hits = cpu_data->states[i].early_hits;
155
156 cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT;
157
158 if (drv->states[i].target_residency <= sleep_length_us) {
159 idx_timer = i;
160 if (drv->states[i].target_residency <= measured_us)
161 idx_hit = i;
162 }
163 }
164
165 /*
166 * Update the "hits" and "misses" data for the state matching the sleep
167 * length. If it matches the measured idle duration too, this is a hit,
168 * so increase the "hits" metric for it then. Otherwise, this is a
169 * miss, so increase the "misses" metric for it. In the latter case
170 * also increase the "early hits" metric for the state that actually
171 * matches the measured idle duration.
172 */
173 if (idx_timer >= 0) {
174 unsigned int hits = cpu_data->states[idx_timer].hits;
175 unsigned int misses = cpu_data->states[idx_timer].misses;
176
177 hits -= hits >> DECAY_SHIFT;
178 misses -= misses >> DECAY_SHIFT;
179
180 if (idx_timer > idx_hit) {
181 misses += PULSE;
182 if (idx_hit >= 0)
183 cpu_data->states[idx_hit].early_hits += PULSE;
184 } else {
185 hits += PULSE;
186 }
187
188 cpu_data->states[idx_timer].misses = misses;
189 cpu_data->states[idx_timer].hits = hits;
190 }
191
192 /*
193 * Save idle duration values corresponding to non-timer wakeups for
194 * pattern detection.
195 */
196 cpu_data->intervals[cpu_data->interval_idx++] = measured_us;
197 if (cpu_data->interval_idx >= INTERVALS)
198 cpu_data->interval_idx = 0;
199 }
200
201 /**
202 * teo_find_shallower_state - Find shallower idle state matching given duration.
203 * @drv: cpuidle driver containing state data.
204 * @dev: Target CPU.
205 * @state_idx: Index of the capping idle state.
206 * @duration_us: Idle duration value to match.
207 */
teo_find_shallower_state(struct cpuidle_driver * drv,struct cpuidle_device * dev,int state_idx,unsigned int duration_us)208 static int teo_find_shallower_state(struct cpuidle_driver *drv,
209 struct cpuidle_device *dev, int state_idx,
210 unsigned int duration_us)
211 {
212 int i;
213
214 for (i = state_idx - 1; i >= 0; i--) {
215 if (drv->states[i].disabled || dev->states_usage[i].disable)
216 continue;
217
218 state_idx = i;
219 if (drv->states[i].target_residency <= duration_us)
220 break;
221 }
222 return state_idx;
223 }
224
225 /**
226 * teo_select - Selects the next idle state to enter.
227 * @drv: cpuidle driver containing state data.
228 * @dev: Target CPU.
229 * @stop_tick: Indication on whether or not to stop the scheduler tick.
230 */
teo_select(struct cpuidle_driver * drv,struct cpuidle_device * dev,bool * stop_tick)231 static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
232 bool *stop_tick)
233 {
234 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
235 int latency_req = cpuidle_governor_latency_req(dev->cpu);
236 unsigned int duration_us, hits, misses, early_hits;
237 int max_early_idx, constraint_idx, idx, i;
238 ktime_t delta_tick;
239
240 if (dev->last_state_idx >= 0) {
241 teo_update(drv, dev);
242 dev->last_state_idx = -1;
243 }
244
245 cpu_data->time_span_ns = local_clock();
246
247 cpu_data->sleep_length_ns = tick_nohz_get_sleep_length(&delta_tick);
248 duration_us = ktime_to_us(cpu_data->sleep_length_ns);
249
250 hits = 0;
251 misses = 0;
252 early_hits = 0;
253 max_early_idx = -1;
254 constraint_idx = drv->state_count;
255 idx = -1;
256
257 for (i = 0; i < drv->state_count; i++) {
258 struct cpuidle_state *s = &drv->states[i];
259 struct cpuidle_state_usage *su = &dev->states_usage[i];
260
261 if (s->disabled || su->disable) {
262 /*
263 * Ignore disabled states with target residencies beyond
264 * the anticipated idle duration.
265 */
266 if (s->target_residency > duration_us)
267 continue;
268
269 /*
270 * This state is disabled, so the range of idle duration
271 * values corresponding to it is covered by the current
272 * candidate state, but still the "hits" and "misses"
273 * metrics of the disabled state need to be used to
274 * decide whether or not the state covering the range in
275 * question is good enough.
276 */
277 hits = cpu_data->states[i].hits;
278 misses = cpu_data->states[i].misses;
279
280 if (early_hits >= cpu_data->states[i].early_hits ||
281 idx < 0)
282 continue;
283
284 /*
285 * If the current candidate state has been the one with
286 * the maximum "early hits" metric so far, the "early
287 * hits" metric of the disabled state replaces the
288 * current "early hits" count to avoid selecting a
289 * deeper state with lower "early hits" metric.
290 */
291 if (max_early_idx == idx) {
292 early_hits = cpu_data->states[i].early_hits;
293 continue;
294 }
295
296 /*
297 * The current candidate state is closer to the disabled
298 * one than the current maximum "early hits" state, so
299 * replace the latter with it, but in case the maximum
300 * "early hits" state index has not been set so far,
301 * check if the current candidate state is not too
302 * shallow for that role.
303 */
304 if (!(tick_nohz_tick_stopped() &&
305 drv->states[idx].target_residency < TICK_USEC)) {
306 early_hits = cpu_data->states[i].early_hits;
307 max_early_idx = idx;
308 }
309
310 continue;
311 }
312
313 if (idx < 0) {
314 idx = i; /* first enabled state */
315 hits = cpu_data->states[i].hits;
316 misses = cpu_data->states[i].misses;
317 }
318
319 if (s->target_residency > duration_us)
320 break;
321
322 if (s->exit_latency > latency_req && constraint_idx > i)
323 constraint_idx = i;
324
325 idx = i;
326 hits = cpu_data->states[i].hits;
327 misses = cpu_data->states[i].misses;
328
329 if (early_hits < cpu_data->states[i].early_hits &&
330 !(tick_nohz_tick_stopped() &&
331 drv->states[i].target_residency < TICK_USEC)) {
332 early_hits = cpu_data->states[i].early_hits;
333 max_early_idx = i;
334 }
335 }
336
337 /*
338 * If the "hits" metric of the idle state matching the sleep length is
339 * greater than its "misses" metric, that is the one to use. Otherwise,
340 * it is more likely that one of the shallower states will match the
341 * idle duration observed after wakeup, so take the one with the maximum
342 * "early hits" metric, but if that cannot be determined, just use the
343 * state selected so far.
344 */
345 if (hits <= misses && max_early_idx >= 0) {
346 idx = max_early_idx;
347 duration_us = drv->states[idx].target_residency;
348 }
349
350 /*
351 * If there is a latency constraint, it may be necessary to use a
352 * shallower idle state than the one selected so far.
353 */
354 if (constraint_idx < idx)
355 idx = constraint_idx;
356
357 if (idx < 0) {
358 idx = 0; /* No states enabled. Must use 0. */
359 } else if (idx > 0) {
360 unsigned int count = 0;
361 u64 sum = 0;
362
363 /*
364 * Count and sum the most recent idle duration values less than
365 * the current expected idle duration value.
366 */
367 for (i = 0; i < INTERVALS; i++) {
368 unsigned int val = cpu_data->intervals[i];
369
370 if (val >= duration_us)
371 continue;
372
373 count++;
374 sum += val;
375 }
376
377 /*
378 * Give up unless the majority of the most recent idle duration
379 * values are in the interesting range.
380 */
381 if (count > INTERVALS / 2) {
382 unsigned int avg_us = div64_u64(sum, count);
383
384 /*
385 * Avoid spending too much time in an idle state that
386 * would be too shallow.
387 */
388 if (!(tick_nohz_tick_stopped() && avg_us < TICK_USEC)) {
389 duration_us = avg_us;
390 if (drv->states[idx].target_residency > avg_us)
391 idx = teo_find_shallower_state(drv, dev,
392 idx, avg_us);
393 }
394 }
395 }
396
397 /*
398 * Don't stop the tick if the selected state is a polling one or if the
399 * expected idle duration is shorter than the tick period length.
400 */
401 if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
402 duration_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
403 unsigned int delta_tick_us = ktime_to_us(delta_tick);
404
405 *stop_tick = false;
406
407 /*
408 * The tick is not going to be stopped, so if the target
409 * residency of the state to be returned is not within the time
410 * till the closest timer including the tick, try to correct
411 * that.
412 */
413 if (idx > 0 && drv->states[idx].target_residency > delta_tick_us)
414 idx = teo_find_shallower_state(drv, dev, idx, delta_tick_us);
415 }
416
417 return idx;
418 }
419
420 /**
421 * teo_reflect - Note that governor data for the CPU need to be updated.
422 * @dev: Target CPU.
423 * @state: Entered state.
424 */
teo_reflect(struct cpuidle_device * dev,int state)425 static void teo_reflect(struct cpuidle_device *dev, int state)
426 {
427 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
428
429 dev->last_state_idx = state;
430 /*
431 * If the wakeup was not "natural", but triggered by one of the safety
432 * nets, assume that the CPU might have been idle for the entire sleep
433 * length time.
434 */
435 if (dev->poll_time_limit ||
436 (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) {
437 dev->poll_time_limit = false;
438 cpu_data->time_span_ns = cpu_data->sleep_length_ns;
439 } else {
440 cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns;
441 }
442 }
443
444 /**
445 * teo_enable_device - Initialize the governor's data for the target CPU.
446 * @drv: cpuidle driver (not used).
447 * @dev: Target CPU.
448 */
teo_enable_device(struct cpuidle_driver * drv,struct cpuidle_device * dev)449 static int teo_enable_device(struct cpuidle_driver *drv,
450 struct cpuidle_device *dev)
451 {
452 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
453 int i;
454
455 memset(cpu_data, 0, sizeof(*cpu_data));
456
457 for (i = 0; i < INTERVALS; i++)
458 cpu_data->intervals[i] = UINT_MAX;
459
460 return 0;
461 }
462
463 static struct cpuidle_governor teo_governor = {
464 .name = "teo",
465 .rating = 19,
466 .enable = teo_enable_device,
467 .select = teo_select,
468 .reflect = teo_reflect,
469 };
470
teo_governor_init(void)471 static int __init teo_governor_init(void)
472 {
473 return cpuidle_register_governor(&teo_governor);
474 }
475
476 postcore_initcall(teo_governor_init);
477