• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aes.h>
36 #include <crypto/gcm.h>
37 #include <crypto/xts.h>
38 #include <crypto/internal/aead.h>
39 #include <linux/platform_data/crypto-atmel.h>
40 #include <dt-bindings/dma/at91.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43 
44 #define ATMEL_AES_PRIORITY	300
45 
46 #define ATMEL_AES_BUFFER_ORDER	2
47 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48 
49 #define CFB8_BLOCK_SIZE		1
50 #define CFB16_BLOCK_SIZE	2
51 #define CFB32_BLOCK_SIZE	4
52 #define CFB64_BLOCK_SIZE	8
53 
54 #define SIZE_IN_WORDS(x)	((x) >> 2)
55 
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72 
73 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74 				 AES_FLAGS_ENCRYPT |		\
75 				 AES_FLAGS_GTAGEN)
76 
77 #define AES_FLAGS_BUSY		BIT(3)
78 #define AES_FLAGS_DUMP_REG	BIT(4)
79 #define AES_FLAGS_OWN_SHA	BIT(5)
80 
81 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82 
83 #define ATMEL_AES_QUEUE_LENGTH	50
84 
85 #define ATMEL_AES_DMA_THRESHOLD		256
86 
87 
88 struct atmel_aes_caps {
89 	bool			has_dualbuff;
90 	bool			has_cfb64;
91 	bool			has_ctr32;
92 	bool			has_gcm;
93 	bool			has_xts;
94 	bool			has_authenc;
95 	u32			max_burst_size;
96 };
97 
98 struct atmel_aes_dev;
99 
100 
101 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
102 
103 
104 struct atmel_aes_base_ctx {
105 	struct atmel_aes_dev	*dd;
106 	atmel_aes_fn_t		start;
107 	int			keylen;
108 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
109 	u16			block_size;
110 	bool			is_aead;
111 };
112 
113 struct atmel_aes_ctx {
114 	struct atmel_aes_base_ctx	base;
115 };
116 
117 struct atmel_aes_ctr_ctx {
118 	struct atmel_aes_base_ctx	base;
119 
120 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
121 	size_t			offset;
122 	struct scatterlist	src[2];
123 	struct scatterlist	dst[2];
124 };
125 
126 struct atmel_aes_gcm_ctx {
127 	struct atmel_aes_base_ctx	base;
128 
129 	struct scatterlist	src[2];
130 	struct scatterlist	dst[2];
131 
132 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 	size_t			textlen;
136 
137 	const u32		*ghash_in;
138 	u32			*ghash_out;
139 	atmel_aes_fn_t		ghash_resume;
140 };
141 
142 struct atmel_aes_xts_ctx {
143 	struct atmel_aes_base_ctx	base;
144 
145 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
146 };
147 
148 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
149 struct atmel_aes_authenc_ctx {
150 	struct atmel_aes_base_ctx	base;
151 	struct atmel_sha_authenc_ctx	*auth;
152 };
153 #endif
154 
155 struct atmel_aes_reqctx {
156 	unsigned long		mode;
157 	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
158 };
159 
160 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
161 struct atmel_aes_authenc_reqctx {
162 	struct atmel_aes_reqctx	base;
163 
164 	struct scatterlist	src[2];
165 	struct scatterlist	dst[2];
166 	size_t			textlen;
167 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168 
169 	/* auth_req MUST be place last. */
170 	struct ahash_request	auth_req;
171 };
172 #endif
173 
174 struct atmel_aes_dma {
175 	struct dma_chan		*chan;
176 	struct scatterlist	*sg;
177 	int			nents;
178 	unsigned int		remainder;
179 	unsigned int		sg_len;
180 };
181 
182 struct atmel_aes_dev {
183 	struct list_head	list;
184 	unsigned long		phys_base;
185 	void __iomem		*io_base;
186 
187 	struct crypto_async_request	*areq;
188 	struct atmel_aes_base_ctx	*ctx;
189 
190 	bool			is_async;
191 	atmel_aes_fn_t		resume;
192 	atmel_aes_fn_t		cpu_transfer_complete;
193 
194 	struct device		*dev;
195 	struct clk		*iclk;
196 	int			irq;
197 
198 	unsigned long		flags;
199 
200 	spinlock_t		lock;
201 	struct crypto_queue	queue;
202 
203 	struct tasklet_struct	done_task;
204 	struct tasklet_struct	queue_task;
205 
206 	size_t			total;
207 	size_t			datalen;
208 	u32			*data;
209 
210 	struct atmel_aes_dma	src;
211 	struct atmel_aes_dma	dst;
212 
213 	size_t			buflen;
214 	void			*buf;
215 	struct scatterlist	aligned_sg;
216 	struct scatterlist	*real_dst;
217 
218 	struct atmel_aes_caps	caps;
219 
220 	u32			hw_version;
221 };
222 
223 struct atmel_aes_drv {
224 	struct list_head	dev_list;
225 	spinlock_t		lock;
226 };
227 
228 static struct atmel_aes_drv atmel_aes = {
229 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231 };
232 
233 #ifdef VERBOSE_DEBUG
atmel_aes_reg_name(u32 offset,char * tmp,size_t sz)234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235 {
236 	switch (offset) {
237 	case AES_CR:
238 		return "CR";
239 
240 	case AES_MR:
241 		return "MR";
242 
243 	case AES_ISR:
244 		return "ISR";
245 
246 	case AES_IMR:
247 		return "IMR";
248 
249 	case AES_IER:
250 		return "IER";
251 
252 	case AES_IDR:
253 		return "IDR";
254 
255 	case AES_KEYWR(0):
256 	case AES_KEYWR(1):
257 	case AES_KEYWR(2):
258 	case AES_KEYWR(3):
259 	case AES_KEYWR(4):
260 	case AES_KEYWR(5):
261 	case AES_KEYWR(6):
262 	case AES_KEYWR(7):
263 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264 		break;
265 
266 	case AES_IDATAR(0):
267 	case AES_IDATAR(1):
268 	case AES_IDATAR(2):
269 	case AES_IDATAR(3):
270 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271 		break;
272 
273 	case AES_ODATAR(0):
274 	case AES_ODATAR(1):
275 	case AES_ODATAR(2):
276 	case AES_ODATAR(3):
277 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278 		break;
279 
280 	case AES_IVR(0):
281 	case AES_IVR(1):
282 	case AES_IVR(2):
283 	case AES_IVR(3):
284 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285 		break;
286 
287 	case AES_AADLENR:
288 		return "AADLENR";
289 
290 	case AES_CLENR:
291 		return "CLENR";
292 
293 	case AES_GHASHR(0):
294 	case AES_GHASHR(1):
295 	case AES_GHASHR(2):
296 	case AES_GHASHR(3):
297 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298 		break;
299 
300 	case AES_TAGR(0):
301 	case AES_TAGR(1):
302 	case AES_TAGR(2):
303 	case AES_TAGR(3):
304 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305 		break;
306 
307 	case AES_CTRR:
308 		return "CTRR";
309 
310 	case AES_GCMHR(0):
311 	case AES_GCMHR(1):
312 	case AES_GCMHR(2):
313 	case AES_GCMHR(3):
314 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315 		break;
316 
317 	case AES_EMR:
318 		return "EMR";
319 
320 	case AES_TWR(0):
321 	case AES_TWR(1):
322 	case AES_TWR(2):
323 	case AES_TWR(3):
324 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325 		break;
326 
327 	case AES_ALPHAR(0):
328 	case AES_ALPHAR(1):
329 	case AES_ALPHAR(2):
330 	case AES_ALPHAR(3):
331 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332 		break;
333 
334 	default:
335 		snprintf(tmp, sz, "0x%02x", offset);
336 		break;
337 	}
338 
339 	return tmp;
340 }
341 #endif /* VERBOSE_DEBUG */
342 
343 /* Shared functions */
344 
atmel_aes_read(struct atmel_aes_dev * dd,u32 offset)345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346 {
347 	u32 value = readl_relaxed(dd->io_base + offset);
348 
349 #ifdef VERBOSE_DEBUG
350 	if (dd->flags & AES_FLAGS_DUMP_REG) {
351 		char tmp[16];
352 
353 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355 	}
356 #endif /* VERBOSE_DEBUG */
357 
358 	return value;
359 }
360 
atmel_aes_write(struct atmel_aes_dev * dd,u32 offset,u32 value)361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362 					u32 offset, u32 value)
363 {
364 #ifdef VERBOSE_DEBUG
365 	if (dd->flags & AES_FLAGS_DUMP_REG) {
366 		char tmp[16];
367 
368 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370 	}
371 #endif /* VERBOSE_DEBUG */
372 
373 	writel_relaxed(value, dd->io_base + offset);
374 }
375 
atmel_aes_read_n(struct atmel_aes_dev * dd,u32 offset,u32 * value,int count)376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377 					u32 *value, int count)
378 {
379 	for (; count--; value++, offset += 4)
380 		*value = atmel_aes_read(dd, offset);
381 }
382 
atmel_aes_write_n(struct atmel_aes_dev * dd,u32 offset,const u32 * value,int count)383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384 			      const u32 *value, int count)
385 {
386 	for (; count--; value++, offset += 4)
387 		atmel_aes_write(dd, offset, *value);
388 }
389 
atmel_aes_read_block(struct atmel_aes_dev * dd,u32 offset,u32 * value)390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391 					u32 *value)
392 {
393 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394 }
395 
atmel_aes_write_block(struct atmel_aes_dev * dd,u32 offset,const u32 * value)396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397 					 const u32 *value)
398 {
399 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400 }
401 
atmel_aes_wait_for_data_ready(struct atmel_aes_dev * dd,atmel_aes_fn_t resume)402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403 						atmel_aes_fn_t resume)
404 {
405 	u32 isr = atmel_aes_read(dd, AES_ISR);
406 
407 	if (unlikely(isr & AES_INT_DATARDY))
408 		return resume(dd);
409 
410 	dd->resume = resume;
411 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412 	return -EINPROGRESS;
413 }
414 
atmel_aes_padlen(size_t len,size_t block_size)415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416 {
417 	len &= block_size - 1;
418 	return len ? block_size - len : 0;
419 }
420 
atmel_aes_find_dev(struct atmel_aes_base_ctx * ctx)421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 {
423 	struct atmel_aes_dev *aes_dd = NULL;
424 	struct atmel_aes_dev *tmp;
425 
426 	spin_lock_bh(&atmel_aes.lock);
427 	if (!ctx->dd) {
428 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429 			aes_dd = tmp;
430 			break;
431 		}
432 		ctx->dd = aes_dd;
433 	} else {
434 		aes_dd = ctx->dd;
435 	}
436 
437 	spin_unlock_bh(&atmel_aes.lock);
438 
439 	return aes_dd;
440 }
441 
atmel_aes_hw_init(struct atmel_aes_dev * dd)442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443 {
444 	int err;
445 
446 	err = clk_enable(dd->iclk);
447 	if (err)
448 		return err;
449 
450 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452 
453 	return 0;
454 }
455 
atmel_aes_get_version(struct atmel_aes_dev * dd)456 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
457 {
458 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
459 }
460 
atmel_aes_hw_version_init(struct atmel_aes_dev * dd)461 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462 {
463 	int err;
464 
465 	err = atmel_aes_hw_init(dd);
466 	if (err)
467 		return err;
468 
469 	dd->hw_version = atmel_aes_get_version(dd);
470 
471 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472 
473 	clk_disable(dd->iclk);
474 	return 0;
475 }
476 
atmel_aes_set_mode(struct atmel_aes_dev * dd,const struct atmel_aes_reqctx * rctx)477 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478 				      const struct atmel_aes_reqctx *rctx)
479 {
480 	/* Clear all but persistent flags and set request flags. */
481 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
482 }
483 
atmel_aes_is_encrypt(const struct atmel_aes_dev * dd)484 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
485 {
486 	return (dd->flags & AES_FLAGS_ENCRYPT);
487 }
488 
489 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
490 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491 #endif
492 
atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev * dd)493 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
494 {
495 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
496 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
497 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
498 	unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
499 
500 	if (req->nbytes < ivsize)
501 		return;
502 
503 	if (rctx->mode & AES_FLAGS_ENCRYPT) {
504 		scatterwalk_map_and_copy(req->info, req->dst,
505 					 req->nbytes - ivsize, ivsize, 0);
506 	} else {
507 		if (req->src == req->dst)
508 			memcpy(req->info, rctx->lastc, ivsize);
509 		else
510 			scatterwalk_map_and_copy(req->info, req->src,
511 						 req->nbytes - ivsize,
512 						 ivsize, 0);
513 	}
514 }
515 
atmel_aes_complete(struct atmel_aes_dev * dd,int err)516 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
517 {
518 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
519 	if (dd->ctx->is_aead)
520 		atmel_aes_authenc_complete(dd, err);
521 #endif
522 
523 	clk_disable(dd->iclk);
524 	dd->flags &= ~AES_FLAGS_BUSY;
525 
526 	if (!dd->ctx->is_aead)
527 		atmel_aes_set_iv_as_last_ciphertext_block(dd);
528 
529 	if (dd->is_async)
530 		dd->areq->complete(dd->areq, err);
531 
532 	tasklet_schedule(&dd->queue_task);
533 
534 	return err;
535 }
536 
atmel_aes_write_ctrl_key(struct atmel_aes_dev * dd,bool use_dma,const u32 * iv,const u32 * key,int keylen)537 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
538 				     const u32 *iv, const u32 *key, int keylen)
539 {
540 	u32 valmr = 0;
541 
542 	/* MR register must be set before IV registers */
543 	if (keylen == AES_KEYSIZE_128)
544 		valmr |= AES_MR_KEYSIZE_128;
545 	else if (keylen == AES_KEYSIZE_192)
546 		valmr |= AES_MR_KEYSIZE_192;
547 	else
548 		valmr |= AES_MR_KEYSIZE_256;
549 
550 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
551 
552 	if (use_dma) {
553 		valmr |= AES_MR_SMOD_IDATAR0;
554 		if (dd->caps.has_dualbuff)
555 			valmr |= AES_MR_DUALBUFF;
556 	} else {
557 		valmr |= AES_MR_SMOD_AUTO;
558 	}
559 
560 	atmel_aes_write(dd, AES_MR, valmr);
561 
562 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
563 
564 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
565 		atmel_aes_write_block(dd, AES_IVR(0), iv);
566 }
567 
atmel_aes_write_ctrl(struct atmel_aes_dev * dd,bool use_dma,const u32 * iv)568 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
569 					const u32 *iv)
570 
571 {
572 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
573 				 dd->ctx->key, dd->ctx->keylen);
574 }
575 
576 /* CPU transfer */
577 
atmel_aes_cpu_transfer(struct atmel_aes_dev * dd)578 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
579 {
580 	int err = 0;
581 	u32 isr;
582 
583 	for (;;) {
584 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
585 		dd->data += 4;
586 		dd->datalen -= AES_BLOCK_SIZE;
587 
588 		if (dd->datalen < AES_BLOCK_SIZE)
589 			break;
590 
591 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
592 
593 		isr = atmel_aes_read(dd, AES_ISR);
594 		if (!(isr & AES_INT_DATARDY)) {
595 			dd->resume = atmel_aes_cpu_transfer;
596 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
597 			return -EINPROGRESS;
598 		}
599 	}
600 
601 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
602 				 dd->buf, dd->total))
603 		err = -EINVAL;
604 
605 	if (err)
606 		return atmel_aes_complete(dd, err);
607 
608 	return dd->cpu_transfer_complete(dd);
609 }
610 
atmel_aes_cpu_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)611 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
612 			       struct scatterlist *src,
613 			       struct scatterlist *dst,
614 			       size_t len,
615 			       atmel_aes_fn_t resume)
616 {
617 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
618 
619 	if (unlikely(len == 0))
620 		return -EINVAL;
621 
622 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
623 
624 	dd->total = len;
625 	dd->real_dst = dst;
626 	dd->cpu_transfer_complete = resume;
627 	dd->datalen = len + padlen;
628 	dd->data = (u32 *)dd->buf;
629 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
630 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
631 }
632 
633 
634 /* DMA transfer */
635 
636 static void atmel_aes_dma_callback(void *data);
637 
atmel_aes_check_aligned(struct atmel_aes_dev * dd,struct scatterlist * sg,size_t len,struct atmel_aes_dma * dma)638 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
639 				    struct scatterlist *sg,
640 				    size_t len,
641 				    struct atmel_aes_dma *dma)
642 {
643 	int nents;
644 
645 	if (!IS_ALIGNED(len, dd->ctx->block_size))
646 		return false;
647 
648 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
649 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
650 			return false;
651 
652 		if (len <= sg->length) {
653 			if (!IS_ALIGNED(len, dd->ctx->block_size))
654 				return false;
655 
656 			dma->nents = nents+1;
657 			dma->remainder = sg->length - len;
658 			sg->length = len;
659 			return true;
660 		}
661 
662 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
663 			return false;
664 
665 		len -= sg->length;
666 	}
667 
668 	return false;
669 }
670 
atmel_aes_restore_sg(const struct atmel_aes_dma * dma)671 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
672 {
673 	struct scatterlist *sg = dma->sg;
674 	int nents = dma->nents;
675 
676 	if (!dma->remainder)
677 		return;
678 
679 	while (--nents > 0 && sg)
680 		sg = sg_next(sg);
681 
682 	if (!sg)
683 		return;
684 
685 	sg->length += dma->remainder;
686 }
687 
atmel_aes_map(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len)688 static int atmel_aes_map(struct atmel_aes_dev *dd,
689 			 struct scatterlist *src,
690 			 struct scatterlist *dst,
691 			 size_t len)
692 {
693 	bool src_aligned, dst_aligned;
694 	size_t padlen;
695 
696 	dd->total = len;
697 	dd->src.sg = src;
698 	dd->dst.sg = dst;
699 	dd->real_dst = dst;
700 
701 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
702 	if (src == dst)
703 		dst_aligned = src_aligned;
704 	else
705 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
706 	if (!src_aligned || !dst_aligned) {
707 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
708 
709 		if (dd->buflen < len + padlen)
710 			return -ENOMEM;
711 
712 		if (!src_aligned) {
713 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
714 			dd->src.sg = &dd->aligned_sg;
715 			dd->src.nents = 1;
716 			dd->src.remainder = 0;
717 		}
718 
719 		if (!dst_aligned) {
720 			dd->dst.sg = &dd->aligned_sg;
721 			dd->dst.nents = 1;
722 			dd->dst.remainder = 0;
723 		}
724 
725 		sg_init_table(&dd->aligned_sg, 1);
726 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
727 	}
728 
729 	if (dd->src.sg == dd->dst.sg) {
730 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
731 					    DMA_BIDIRECTIONAL);
732 		dd->dst.sg_len = dd->src.sg_len;
733 		if (!dd->src.sg_len)
734 			return -EFAULT;
735 	} else {
736 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
737 					    DMA_TO_DEVICE);
738 		if (!dd->src.sg_len)
739 			return -EFAULT;
740 
741 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
742 					    DMA_FROM_DEVICE);
743 		if (!dd->dst.sg_len) {
744 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
745 				     DMA_TO_DEVICE);
746 			return -EFAULT;
747 		}
748 	}
749 
750 	return 0;
751 }
752 
atmel_aes_unmap(struct atmel_aes_dev * dd)753 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
754 {
755 	if (dd->src.sg == dd->dst.sg) {
756 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
757 			     DMA_BIDIRECTIONAL);
758 
759 		if (dd->src.sg != &dd->aligned_sg)
760 			atmel_aes_restore_sg(&dd->src);
761 	} else {
762 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
763 			     DMA_FROM_DEVICE);
764 
765 		if (dd->dst.sg != &dd->aligned_sg)
766 			atmel_aes_restore_sg(&dd->dst);
767 
768 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
769 			     DMA_TO_DEVICE);
770 
771 		if (dd->src.sg != &dd->aligned_sg)
772 			atmel_aes_restore_sg(&dd->src);
773 	}
774 
775 	if (dd->dst.sg == &dd->aligned_sg)
776 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
777 				    dd->buf, dd->total);
778 }
779 
atmel_aes_dma_transfer_start(struct atmel_aes_dev * dd,enum dma_slave_buswidth addr_width,enum dma_transfer_direction dir,u32 maxburst)780 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
781 					enum dma_slave_buswidth addr_width,
782 					enum dma_transfer_direction dir,
783 					u32 maxburst)
784 {
785 	struct dma_async_tx_descriptor *desc;
786 	struct dma_slave_config config;
787 	dma_async_tx_callback callback;
788 	struct atmel_aes_dma *dma;
789 	int err;
790 
791 	memset(&config, 0, sizeof(config));
792 	config.direction = dir;
793 	config.src_addr_width = addr_width;
794 	config.dst_addr_width = addr_width;
795 	config.src_maxburst = maxburst;
796 	config.dst_maxburst = maxburst;
797 
798 	switch (dir) {
799 	case DMA_MEM_TO_DEV:
800 		dma = &dd->src;
801 		callback = NULL;
802 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
803 		break;
804 
805 	case DMA_DEV_TO_MEM:
806 		dma = &dd->dst;
807 		callback = atmel_aes_dma_callback;
808 		config.src_addr = dd->phys_base + AES_ODATAR(0);
809 		break;
810 
811 	default:
812 		return -EINVAL;
813 	}
814 
815 	err = dmaengine_slave_config(dma->chan, &config);
816 	if (err)
817 		return err;
818 
819 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
820 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
821 	if (!desc)
822 		return -ENOMEM;
823 
824 	desc->callback = callback;
825 	desc->callback_param = dd;
826 	dmaengine_submit(desc);
827 	dma_async_issue_pending(dma->chan);
828 
829 	return 0;
830 }
831 
atmel_aes_dma_transfer_stop(struct atmel_aes_dev * dd,enum dma_transfer_direction dir)832 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
833 					enum dma_transfer_direction dir)
834 {
835 	struct atmel_aes_dma *dma;
836 
837 	switch (dir) {
838 	case DMA_MEM_TO_DEV:
839 		dma = &dd->src;
840 		break;
841 
842 	case DMA_DEV_TO_MEM:
843 		dma = &dd->dst;
844 		break;
845 
846 	default:
847 		return;
848 	}
849 
850 	dmaengine_terminate_all(dma->chan);
851 }
852 
atmel_aes_dma_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)853 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
854 			       struct scatterlist *src,
855 			       struct scatterlist *dst,
856 			       size_t len,
857 			       atmel_aes_fn_t resume)
858 {
859 	enum dma_slave_buswidth addr_width;
860 	u32 maxburst;
861 	int err;
862 
863 	switch (dd->ctx->block_size) {
864 	case CFB8_BLOCK_SIZE:
865 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
866 		maxburst = 1;
867 		break;
868 
869 	case CFB16_BLOCK_SIZE:
870 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
871 		maxburst = 1;
872 		break;
873 
874 	case CFB32_BLOCK_SIZE:
875 	case CFB64_BLOCK_SIZE:
876 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
877 		maxburst = 1;
878 		break;
879 
880 	case AES_BLOCK_SIZE:
881 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
882 		maxburst = dd->caps.max_burst_size;
883 		break;
884 
885 	default:
886 		err = -EINVAL;
887 		goto exit;
888 	}
889 
890 	err = atmel_aes_map(dd, src, dst, len);
891 	if (err)
892 		goto exit;
893 
894 	dd->resume = resume;
895 
896 	/* Set output DMA transfer first */
897 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
898 					   maxburst);
899 	if (err)
900 		goto unmap;
901 
902 	/* Then set input DMA transfer */
903 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
904 					   maxburst);
905 	if (err)
906 		goto output_transfer_stop;
907 
908 	return -EINPROGRESS;
909 
910 output_transfer_stop:
911 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
912 unmap:
913 	atmel_aes_unmap(dd);
914 exit:
915 	return atmel_aes_complete(dd, err);
916 }
917 
atmel_aes_dma_stop(struct atmel_aes_dev * dd)918 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
919 {
920 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
921 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
922 	atmel_aes_unmap(dd);
923 }
924 
atmel_aes_dma_callback(void * data)925 static void atmel_aes_dma_callback(void *data)
926 {
927 	struct atmel_aes_dev *dd = data;
928 
929 	atmel_aes_dma_stop(dd);
930 	dd->is_async = true;
931 	(void)dd->resume(dd);
932 }
933 
atmel_aes_handle_queue(struct atmel_aes_dev * dd,struct crypto_async_request * new_areq)934 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
935 				  struct crypto_async_request *new_areq)
936 {
937 	struct crypto_async_request *areq, *backlog;
938 	struct atmel_aes_base_ctx *ctx;
939 	unsigned long flags;
940 	bool start_async;
941 	int err, ret = 0;
942 
943 	spin_lock_irqsave(&dd->lock, flags);
944 	if (new_areq)
945 		ret = crypto_enqueue_request(&dd->queue, new_areq);
946 	if (dd->flags & AES_FLAGS_BUSY) {
947 		spin_unlock_irqrestore(&dd->lock, flags);
948 		return ret;
949 	}
950 	backlog = crypto_get_backlog(&dd->queue);
951 	areq = crypto_dequeue_request(&dd->queue);
952 	if (areq)
953 		dd->flags |= AES_FLAGS_BUSY;
954 	spin_unlock_irqrestore(&dd->lock, flags);
955 
956 	if (!areq)
957 		return ret;
958 
959 	if (backlog)
960 		backlog->complete(backlog, -EINPROGRESS);
961 
962 	ctx = crypto_tfm_ctx(areq->tfm);
963 
964 	dd->areq = areq;
965 	dd->ctx = ctx;
966 	start_async = (areq != new_areq);
967 	dd->is_async = start_async;
968 
969 	/* WARNING: ctx->start() MAY change dd->is_async. */
970 	err = ctx->start(dd);
971 	return (start_async) ? ret : err;
972 }
973 
974 
975 /* AES async block ciphers */
976 
atmel_aes_transfer_complete(struct atmel_aes_dev * dd)977 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
978 {
979 	return atmel_aes_complete(dd, 0);
980 }
981 
atmel_aes_start(struct atmel_aes_dev * dd)982 static int atmel_aes_start(struct atmel_aes_dev *dd)
983 {
984 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
985 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
986 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
987 			dd->ctx->block_size != AES_BLOCK_SIZE);
988 	int err;
989 
990 	atmel_aes_set_mode(dd, rctx);
991 
992 	err = atmel_aes_hw_init(dd);
993 	if (err)
994 		return atmel_aes_complete(dd, err);
995 
996 	atmel_aes_write_ctrl(dd, use_dma, req->info);
997 	if (use_dma)
998 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
999 					   atmel_aes_transfer_complete);
1000 
1001 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1002 				   atmel_aes_transfer_complete);
1003 }
1004 
1005 static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx * ctx)1006 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1007 {
1008 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1009 }
1010 
atmel_aes_ctr_transfer(struct atmel_aes_dev * dd)1011 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012 {
1013 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1015 	struct scatterlist *src, *dst;
1016 	u32 ctr, blocks;
1017 	size_t datalen;
1018 	bool use_dma, fragmented = false;
1019 
1020 	/* Check for transfer completion. */
1021 	ctx->offset += dd->total;
1022 	if (ctx->offset >= req->nbytes)
1023 		return atmel_aes_transfer_complete(dd);
1024 
1025 	/* Compute data length. */
1026 	datalen = req->nbytes - ctx->offset;
1027 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1028 	ctr = be32_to_cpu(ctx->iv[3]);
1029 	if (dd->caps.has_ctr32) {
1030 		/* Check 32bit counter overflow. */
1031 		u32 start = ctr;
1032 		u32 end = start + blocks - 1;
1033 
1034 		if (end < start) {
1035 			ctr |= 0xffffffff;
1036 			datalen = AES_BLOCK_SIZE * -start;
1037 			fragmented = true;
1038 		}
1039 	} else {
1040 		/* Check 16bit counter overflow. */
1041 		u16 start = ctr & 0xffff;
1042 		u16 end = start + (u16)blocks - 1;
1043 
1044 		if (blocks >> 16 || end < start) {
1045 			ctr |= 0xffff;
1046 			datalen = AES_BLOCK_SIZE * (0x10000-start);
1047 			fragmented = true;
1048 		}
1049 	}
1050 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1051 
1052 	/* Jump to offset. */
1053 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1054 	dst = ((req->src == req->dst) ? src :
1055 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1056 
1057 	/* Configure hardware. */
1058 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1059 	if (unlikely(fragmented)) {
1060 		/*
1061 		 * Increment the counter manually to cope with the hardware
1062 		 * counter overflow.
1063 		 */
1064 		ctx->iv[3] = cpu_to_be32(ctr);
1065 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1066 	}
1067 
1068 	if (use_dma)
1069 		return atmel_aes_dma_start(dd, src, dst, datalen,
1070 					   atmel_aes_ctr_transfer);
1071 
1072 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1073 				   atmel_aes_ctr_transfer);
1074 }
1075 
atmel_aes_ctr_start(struct atmel_aes_dev * dd)1076 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1077 {
1078 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1079 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1080 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1081 	int err;
1082 
1083 	atmel_aes_set_mode(dd, rctx);
1084 
1085 	err = atmel_aes_hw_init(dd);
1086 	if (err)
1087 		return atmel_aes_complete(dd, err);
1088 
1089 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1090 	ctx->offset = 0;
1091 	dd->total = 0;
1092 	return atmel_aes_ctr_transfer(dd);
1093 }
1094 
atmel_aes_crypt(struct ablkcipher_request * req,unsigned long mode)1095 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1096 {
1097 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1098 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1099 	struct atmel_aes_reqctx *rctx;
1100 	struct atmel_aes_dev *dd;
1101 
1102 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1103 	case AES_FLAGS_CFB8:
1104 		ctx->block_size = CFB8_BLOCK_SIZE;
1105 		break;
1106 
1107 	case AES_FLAGS_CFB16:
1108 		ctx->block_size = CFB16_BLOCK_SIZE;
1109 		break;
1110 
1111 	case AES_FLAGS_CFB32:
1112 		ctx->block_size = CFB32_BLOCK_SIZE;
1113 		break;
1114 
1115 	case AES_FLAGS_CFB64:
1116 		ctx->block_size = CFB64_BLOCK_SIZE;
1117 		break;
1118 
1119 	default:
1120 		ctx->block_size = AES_BLOCK_SIZE;
1121 		break;
1122 	}
1123 	ctx->is_aead = false;
1124 
1125 	dd = atmel_aes_find_dev(ctx);
1126 	if (!dd)
1127 		return -ENODEV;
1128 
1129 	rctx = ablkcipher_request_ctx(req);
1130 	rctx->mode = mode;
1131 
1132 	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1133 		unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1134 
1135 		if (req->nbytes >= ivsize)
1136 			scatterwalk_map_and_copy(rctx->lastc, req->src,
1137 						 req->nbytes - ivsize,
1138 						 ivsize, 0);
1139 	}
1140 
1141 	return atmel_aes_handle_queue(dd, &req->base);
1142 }
1143 
atmel_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1144 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1145 			   unsigned int keylen)
1146 {
1147 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1148 
1149 	if (keylen != AES_KEYSIZE_128 &&
1150 	    keylen != AES_KEYSIZE_192 &&
1151 	    keylen != AES_KEYSIZE_256) {
1152 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1153 		return -EINVAL;
1154 	}
1155 
1156 	memcpy(ctx->key, key, keylen);
1157 	ctx->keylen = keylen;
1158 
1159 	return 0;
1160 }
1161 
atmel_aes_ecb_encrypt(struct ablkcipher_request * req)1162 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1163 {
1164 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1165 }
1166 
atmel_aes_ecb_decrypt(struct ablkcipher_request * req)1167 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1168 {
1169 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1170 }
1171 
atmel_aes_cbc_encrypt(struct ablkcipher_request * req)1172 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1173 {
1174 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1175 }
1176 
atmel_aes_cbc_decrypt(struct ablkcipher_request * req)1177 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1178 {
1179 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1180 }
1181 
atmel_aes_ofb_encrypt(struct ablkcipher_request * req)1182 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1183 {
1184 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1185 }
1186 
atmel_aes_ofb_decrypt(struct ablkcipher_request * req)1187 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1188 {
1189 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1190 }
1191 
atmel_aes_cfb_encrypt(struct ablkcipher_request * req)1192 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1193 {
1194 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1195 }
1196 
atmel_aes_cfb_decrypt(struct ablkcipher_request * req)1197 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1198 {
1199 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1200 }
1201 
atmel_aes_cfb64_encrypt(struct ablkcipher_request * req)1202 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1203 {
1204 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1205 }
1206 
atmel_aes_cfb64_decrypt(struct ablkcipher_request * req)1207 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1208 {
1209 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1210 }
1211 
atmel_aes_cfb32_encrypt(struct ablkcipher_request * req)1212 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1213 {
1214 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1215 }
1216 
atmel_aes_cfb32_decrypt(struct ablkcipher_request * req)1217 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1218 {
1219 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1220 }
1221 
atmel_aes_cfb16_encrypt(struct ablkcipher_request * req)1222 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1223 {
1224 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1225 }
1226 
atmel_aes_cfb16_decrypt(struct ablkcipher_request * req)1227 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1228 {
1229 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1230 }
1231 
atmel_aes_cfb8_encrypt(struct ablkcipher_request * req)1232 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1233 {
1234 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1235 }
1236 
atmel_aes_cfb8_decrypt(struct ablkcipher_request * req)1237 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1238 {
1239 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1240 }
1241 
atmel_aes_ctr_encrypt(struct ablkcipher_request * req)1242 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1243 {
1244 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1245 }
1246 
atmel_aes_ctr_decrypt(struct ablkcipher_request * req)1247 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1248 {
1249 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1250 }
1251 
atmel_aes_cra_init(struct crypto_tfm * tfm)1252 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1253 {
1254 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1255 
1256 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1257 	ctx->base.start = atmel_aes_start;
1258 
1259 	return 0;
1260 }
1261 
atmel_aes_ctr_cra_init(struct crypto_tfm * tfm)1262 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1263 {
1264 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1265 
1266 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1267 	ctx->base.start = atmel_aes_ctr_start;
1268 
1269 	return 0;
1270 }
1271 
1272 static struct crypto_alg aes_algs[] = {
1273 {
1274 	.cra_name		= "ecb(aes)",
1275 	.cra_driver_name	= "atmel-ecb-aes",
1276 	.cra_priority		= ATMEL_AES_PRIORITY,
1277 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1278 	.cra_blocksize		= AES_BLOCK_SIZE,
1279 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1280 	.cra_alignmask		= 0xf,
1281 	.cra_type		= &crypto_ablkcipher_type,
1282 	.cra_module		= THIS_MODULE,
1283 	.cra_init		= atmel_aes_cra_init,
1284 	.cra_u.ablkcipher = {
1285 		.min_keysize	= AES_MIN_KEY_SIZE,
1286 		.max_keysize	= AES_MAX_KEY_SIZE,
1287 		.setkey		= atmel_aes_setkey,
1288 		.encrypt	= atmel_aes_ecb_encrypt,
1289 		.decrypt	= atmel_aes_ecb_decrypt,
1290 	}
1291 },
1292 {
1293 	.cra_name		= "cbc(aes)",
1294 	.cra_driver_name	= "atmel-cbc-aes",
1295 	.cra_priority		= ATMEL_AES_PRIORITY,
1296 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1297 	.cra_blocksize		= AES_BLOCK_SIZE,
1298 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1299 	.cra_alignmask		= 0xf,
1300 	.cra_type		= &crypto_ablkcipher_type,
1301 	.cra_module		= THIS_MODULE,
1302 	.cra_init		= atmel_aes_cra_init,
1303 	.cra_u.ablkcipher = {
1304 		.min_keysize	= AES_MIN_KEY_SIZE,
1305 		.max_keysize	= AES_MAX_KEY_SIZE,
1306 		.ivsize		= AES_BLOCK_SIZE,
1307 		.setkey		= atmel_aes_setkey,
1308 		.encrypt	= atmel_aes_cbc_encrypt,
1309 		.decrypt	= atmel_aes_cbc_decrypt,
1310 	}
1311 },
1312 {
1313 	.cra_name		= "ofb(aes)",
1314 	.cra_driver_name	= "atmel-ofb-aes",
1315 	.cra_priority		= ATMEL_AES_PRIORITY,
1316 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1317 	.cra_blocksize		= AES_BLOCK_SIZE,
1318 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1319 	.cra_alignmask		= 0xf,
1320 	.cra_type		= &crypto_ablkcipher_type,
1321 	.cra_module		= THIS_MODULE,
1322 	.cra_init		= atmel_aes_cra_init,
1323 	.cra_u.ablkcipher = {
1324 		.min_keysize	= AES_MIN_KEY_SIZE,
1325 		.max_keysize	= AES_MAX_KEY_SIZE,
1326 		.ivsize		= AES_BLOCK_SIZE,
1327 		.setkey		= atmel_aes_setkey,
1328 		.encrypt	= atmel_aes_ofb_encrypt,
1329 		.decrypt	= atmel_aes_ofb_decrypt,
1330 	}
1331 },
1332 {
1333 	.cra_name		= "cfb(aes)",
1334 	.cra_driver_name	= "atmel-cfb-aes",
1335 	.cra_priority		= ATMEL_AES_PRIORITY,
1336 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1337 	.cra_blocksize		= AES_BLOCK_SIZE,
1338 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1339 	.cra_alignmask		= 0xf,
1340 	.cra_type		= &crypto_ablkcipher_type,
1341 	.cra_module		= THIS_MODULE,
1342 	.cra_init		= atmel_aes_cra_init,
1343 	.cra_u.ablkcipher = {
1344 		.min_keysize	= AES_MIN_KEY_SIZE,
1345 		.max_keysize	= AES_MAX_KEY_SIZE,
1346 		.ivsize		= AES_BLOCK_SIZE,
1347 		.setkey		= atmel_aes_setkey,
1348 		.encrypt	= atmel_aes_cfb_encrypt,
1349 		.decrypt	= atmel_aes_cfb_decrypt,
1350 	}
1351 },
1352 {
1353 	.cra_name		= "cfb32(aes)",
1354 	.cra_driver_name	= "atmel-cfb32-aes",
1355 	.cra_priority		= ATMEL_AES_PRIORITY,
1356 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1357 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1358 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1359 	.cra_alignmask		= 0x3,
1360 	.cra_type		= &crypto_ablkcipher_type,
1361 	.cra_module		= THIS_MODULE,
1362 	.cra_init		= atmel_aes_cra_init,
1363 	.cra_u.ablkcipher = {
1364 		.min_keysize	= AES_MIN_KEY_SIZE,
1365 		.max_keysize	= AES_MAX_KEY_SIZE,
1366 		.ivsize		= AES_BLOCK_SIZE,
1367 		.setkey		= atmel_aes_setkey,
1368 		.encrypt	= atmel_aes_cfb32_encrypt,
1369 		.decrypt	= atmel_aes_cfb32_decrypt,
1370 	}
1371 },
1372 {
1373 	.cra_name		= "cfb16(aes)",
1374 	.cra_driver_name	= "atmel-cfb16-aes",
1375 	.cra_priority		= ATMEL_AES_PRIORITY,
1376 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1377 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1378 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1379 	.cra_alignmask		= 0x1,
1380 	.cra_type		= &crypto_ablkcipher_type,
1381 	.cra_module		= THIS_MODULE,
1382 	.cra_init		= atmel_aes_cra_init,
1383 	.cra_u.ablkcipher = {
1384 		.min_keysize	= AES_MIN_KEY_SIZE,
1385 		.max_keysize	= AES_MAX_KEY_SIZE,
1386 		.ivsize		= AES_BLOCK_SIZE,
1387 		.setkey		= atmel_aes_setkey,
1388 		.encrypt	= atmel_aes_cfb16_encrypt,
1389 		.decrypt	= atmel_aes_cfb16_decrypt,
1390 	}
1391 },
1392 {
1393 	.cra_name		= "cfb8(aes)",
1394 	.cra_driver_name	= "atmel-cfb8-aes",
1395 	.cra_priority		= ATMEL_AES_PRIORITY,
1396 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1397 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1398 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1399 	.cra_alignmask		= 0x0,
1400 	.cra_type		= &crypto_ablkcipher_type,
1401 	.cra_module		= THIS_MODULE,
1402 	.cra_init		= atmel_aes_cra_init,
1403 	.cra_u.ablkcipher = {
1404 		.min_keysize	= AES_MIN_KEY_SIZE,
1405 		.max_keysize	= AES_MAX_KEY_SIZE,
1406 		.ivsize		= AES_BLOCK_SIZE,
1407 		.setkey		= atmel_aes_setkey,
1408 		.encrypt	= atmel_aes_cfb8_encrypt,
1409 		.decrypt	= atmel_aes_cfb8_decrypt,
1410 	}
1411 },
1412 {
1413 	.cra_name		= "ctr(aes)",
1414 	.cra_driver_name	= "atmel-ctr-aes",
1415 	.cra_priority		= ATMEL_AES_PRIORITY,
1416 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1417 	.cra_blocksize		= 1,
1418 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1419 	.cra_alignmask		= 0xf,
1420 	.cra_type		= &crypto_ablkcipher_type,
1421 	.cra_module		= THIS_MODULE,
1422 	.cra_init		= atmel_aes_ctr_cra_init,
1423 	.cra_u.ablkcipher = {
1424 		.min_keysize	= AES_MIN_KEY_SIZE,
1425 		.max_keysize	= AES_MAX_KEY_SIZE,
1426 		.ivsize		= AES_BLOCK_SIZE,
1427 		.setkey		= atmel_aes_setkey,
1428 		.encrypt	= atmel_aes_ctr_encrypt,
1429 		.decrypt	= atmel_aes_ctr_decrypt,
1430 	}
1431 },
1432 };
1433 
1434 static struct crypto_alg aes_cfb64_alg = {
1435 	.cra_name		= "cfb64(aes)",
1436 	.cra_driver_name	= "atmel-cfb64-aes",
1437 	.cra_priority		= ATMEL_AES_PRIORITY,
1438 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1439 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1440 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1441 	.cra_alignmask		= 0x7,
1442 	.cra_type		= &crypto_ablkcipher_type,
1443 	.cra_module		= THIS_MODULE,
1444 	.cra_init		= atmel_aes_cra_init,
1445 	.cra_u.ablkcipher = {
1446 		.min_keysize	= AES_MIN_KEY_SIZE,
1447 		.max_keysize	= AES_MAX_KEY_SIZE,
1448 		.ivsize		= AES_BLOCK_SIZE,
1449 		.setkey		= atmel_aes_setkey,
1450 		.encrypt	= atmel_aes_cfb64_encrypt,
1451 		.decrypt	= atmel_aes_cfb64_decrypt,
1452 	}
1453 };
1454 
1455 
1456 /* gcm aead functions */
1457 
1458 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1459 			       const u32 *data, size_t datalen,
1460 			       const u32 *ghash_in, u32 *ghash_out,
1461 			       atmel_aes_fn_t resume);
1462 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1463 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1464 
1465 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1466 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1467 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1468 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1469 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1470 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1471 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1472 
1473 static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx * ctx)1474 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1475 {
1476 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1477 }
1478 
atmel_aes_gcm_ghash(struct atmel_aes_dev * dd,const u32 * data,size_t datalen,const u32 * ghash_in,u32 * ghash_out,atmel_aes_fn_t resume)1479 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1480 			       const u32 *data, size_t datalen,
1481 			       const u32 *ghash_in, u32 *ghash_out,
1482 			       atmel_aes_fn_t resume)
1483 {
1484 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1485 
1486 	dd->data = (u32 *)data;
1487 	dd->datalen = datalen;
1488 	ctx->ghash_in = ghash_in;
1489 	ctx->ghash_out = ghash_out;
1490 	ctx->ghash_resume = resume;
1491 
1492 	atmel_aes_write_ctrl(dd, false, NULL);
1493 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1494 }
1495 
atmel_aes_gcm_ghash_init(struct atmel_aes_dev * dd)1496 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1497 {
1498 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1499 
1500 	/* Set the data length. */
1501 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1502 	atmel_aes_write(dd, AES_CLENR, 0);
1503 
1504 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1505 	if (ctx->ghash_in)
1506 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1507 
1508 	return atmel_aes_gcm_ghash_finalize(dd);
1509 }
1510 
atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev * dd)1511 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1512 {
1513 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1514 	u32 isr;
1515 
1516 	/* Write data into the Input Data Registers. */
1517 	while (dd->datalen > 0) {
1518 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1519 		dd->data += 4;
1520 		dd->datalen -= AES_BLOCK_SIZE;
1521 
1522 		isr = atmel_aes_read(dd, AES_ISR);
1523 		if (!(isr & AES_INT_DATARDY)) {
1524 			dd->resume = atmel_aes_gcm_ghash_finalize;
1525 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1526 			return -EINPROGRESS;
1527 		}
1528 	}
1529 
1530 	/* Read the computed hash from GHASHRx. */
1531 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1532 
1533 	return ctx->ghash_resume(dd);
1534 }
1535 
1536 
atmel_aes_gcm_start(struct atmel_aes_dev * dd)1537 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1538 {
1539 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1540 	struct aead_request *req = aead_request_cast(dd->areq);
1541 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1542 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1543 	size_t ivsize = crypto_aead_ivsize(tfm);
1544 	size_t datalen, padlen;
1545 	const void *iv = req->iv;
1546 	u8 *data = dd->buf;
1547 	int err;
1548 
1549 	atmel_aes_set_mode(dd, rctx);
1550 
1551 	err = atmel_aes_hw_init(dd);
1552 	if (err)
1553 		return atmel_aes_complete(dd, err);
1554 
1555 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1556 		memcpy(ctx->j0, iv, ivsize);
1557 		ctx->j0[3] = cpu_to_be32(1);
1558 		return atmel_aes_gcm_process(dd);
1559 	}
1560 
1561 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1562 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1563 	if (datalen > dd->buflen)
1564 		return atmel_aes_complete(dd, -EINVAL);
1565 
1566 	memcpy(data, iv, ivsize);
1567 	memset(data + ivsize, 0, padlen + sizeof(u64));
1568 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1569 
1570 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1571 				   NULL, ctx->j0, atmel_aes_gcm_process);
1572 }
1573 
atmel_aes_gcm_process(struct atmel_aes_dev * dd)1574 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1575 {
1576 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1577 	struct aead_request *req = aead_request_cast(dd->areq);
1578 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1579 	bool enc = atmel_aes_is_encrypt(dd);
1580 	u32 authsize;
1581 
1582 	/* Compute text length. */
1583 	authsize = crypto_aead_authsize(tfm);
1584 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1585 
1586 	/*
1587 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1588 	 * fails when both the message and its associated data are empty.
1589 	 */
1590 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1591 		dd->flags |= AES_FLAGS_GTAGEN;
1592 
1593 	atmel_aes_write_ctrl(dd, false, NULL);
1594 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1595 }
1596 
atmel_aes_gcm_length(struct atmel_aes_dev * dd)1597 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1598 {
1599 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1600 	struct aead_request *req = aead_request_cast(dd->areq);
1601 	u32 j0_lsw, *j0 = ctx->j0;
1602 	size_t padlen;
1603 
1604 	/* Write incr32(J0) into IV. */
1605 	j0_lsw = j0[3];
1606 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1607 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1608 	j0[3] = j0_lsw;
1609 
1610 	/* Set aad and text lengths. */
1611 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1612 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1613 
1614 	/* Check whether AAD are present. */
1615 	if (unlikely(req->assoclen == 0)) {
1616 		dd->datalen = 0;
1617 		return atmel_aes_gcm_data(dd);
1618 	}
1619 
1620 	/* Copy assoc data and add padding. */
1621 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1622 	if (unlikely(req->assoclen + padlen > dd->buflen))
1623 		return atmel_aes_complete(dd, -EINVAL);
1624 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1625 
1626 	/* Write assoc data into the Input Data register. */
1627 	dd->data = (u32 *)dd->buf;
1628 	dd->datalen = req->assoclen + padlen;
1629 	return atmel_aes_gcm_data(dd);
1630 }
1631 
atmel_aes_gcm_data(struct atmel_aes_dev * dd)1632 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1633 {
1634 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1635 	struct aead_request *req = aead_request_cast(dd->areq);
1636 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1637 	struct scatterlist *src, *dst;
1638 	u32 isr, mr;
1639 
1640 	/* Write AAD first. */
1641 	while (dd->datalen > 0) {
1642 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1643 		dd->data += 4;
1644 		dd->datalen -= AES_BLOCK_SIZE;
1645 
1646 		isr = atmel_aes_read(dd, AES_ISR);
1647 		if (!(isr & AES_INT_DATARDY)) {
1648 			dd->resume = atmel_aes_gcm_data;
1649 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1650 			return -EINPROGRESS;
1651 		}
1652 	}
1653 
1654 	/* GMAC only. */
1655 	if (unlikely(ctx->textlen == 0))
1656 		return atmel_aes_gcm_tag_init(dd);
1657 
1658 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1659 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1660 	dst = ((req->src == req->dst) ? src :
1661 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1662 
1663 	if (use_dma) {
1664 		/* Update the Mode Register for DMA transfers. */
1665 		mr = atmel_aes_read(dd, AES_MR);
1666 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1667 		mr |= AES_MR_SMOD_IDATAR0;
1668 		if (dd->caps.has_dualbuff)
1669 			mr |= AES_MR_DUALBUFF;
1670 		atmel_aes_write(dd, AES_MR, mr);
1671 
1672 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1673 					   atmel_aes_gcm_tag_init);
1674 	}
1675 
1676 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1677 				   atmel_aes_gcm_tag_init);
1678 }
1679 
atmel_aes_gcm_tag_init(struct atmel_aes_dev * dd)1680 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1681 {
1682 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1683 	struct aead_request *req = aead_request_cast(dd->areq);
1684 	u64 *data = dd->buf;
1685 
1686 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1687 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1688 			dd->resume = atmel_aes_gcm_tag_init;
1689 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1690 			return -EINPROGRESS;
1691 		}
1692 
1693 		return atmel_aes_gcm_finalize(dd);
1694 	}
1695 
1696 	/* Read the GCM Intermediate Hash Word Registers. */
1697 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1698 
1699 	data[0] = cpu_to_be64(req->assoclen * 8);
1700 	data[1] = cpu_to_be64(ctx->textlen * 8);
1701 
1702 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1703 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1704 }
1705 
atmel_aes_gcm_tag(struct atmel_aes_dev * dd)1706 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1707 {
1708 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1709 	unsigned long flags;
1710 
1711 	/*
1712 	 * Change mode to CTR to complete the tag generation.
1713 	 * Use J0 as Initialization Vector.
1714 	 */
1715 	flags = dd->flags;
1716 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1717 	dd->flags |= AES_FLAGS_CTR;
1718 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1719 	dd->flags = flags;
1720 
1721 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1722 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1723 }
1724 
atmel_aes_gcm_finalize(struct atmel_aes_dev * dd)1725 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1726 {
1727 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1728 	struct aead_request *req = aead_request_cast(dd->areq);
1729 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1730 	bool enc = atmel_aes_is_encrypt(dd);
1731 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1732 	int err;
1733 
1734 	/* Read the computed tag. */
1735 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1736 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1737 	else
1738 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1739 
1740 	offset = req->assoclen + ctx->textlen;
1741 	authsize = crypto_aead_authsize(tfm);
1742 	if (enc) {
1743 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1744 		err = 0;
1745 	} else {
1746 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1747 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1748 	}
1749 
1750 	return atmel_aes_complete(dd, err);
1751 }
1752 
atmel_aes_gcm_crypt(struct aead_request * req,unsigned long mode)1753 static int atmel_aes_gcm_crypt(struct aead_request *req,
1754 			       unsigned long mode)
1755 {
1756 	struct atmel_aes_base_ctx *ctx;
1757 	struct atmel_aes_reqctx *rctx;
1758 	struct atmel_aes_dev *dd;
1759 
1760 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1761 	ctx->block_size = AES_BLOCK_SIZE;
1762 	ctx->is_aead = true;
1763 
1764 	dd = atmel_aes_find_dev(ctx);
1765 	if (!dd)
1766 		return -ENODEV;
1767 
1768 	rctx = aead_request_ctx(req);
1769 	rctx->mode = AES_FLAGS_GCM | mode;
1770 
1771 	return atmel_aes_handle_queue(dd, &req->base);
1772 }
1773 
atmel_aes_gcm_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1774 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1775 				unsigned int keylen)
1776 {
1777 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1778 
1779 	if (keylen != AES_KEYSIZE_256 &&
1780 	    keylen != AES_KEYSIZE_192 &&
1781 	    keylen != AES_KEYSIZE_128) {
1782 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1783 		return -EINVAL;
1784 	}
1785 
1786 	memcpy(ctx->key, key, keylen);
1787 	ctx->keylen = keylen;
1788 
1789 	return 0;
1790 }
1791 
atmel_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1792 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1793 				     unsigned int authsize)
1794 {
1795 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1796 	switch (authsize) {
1797 	case 4:
1798 	case 8:
1799 	case 12:
1800 	case 13:
1801 	case 14:
1802 	case 15:
1803 	case 16:
1804 		break;
1805 	default:
1806 		return -EINVAL;
1807 	}
1808 
1809 	return 0;
1810 }
1811 
atmel_aes_gcm_encrypt(struct aead_request * req)1812 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1813 {
1814 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1815 }
1816 
atmel_aes_gcm_decrypt(struct aead_request * req)1817 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1818 {
1819 	return atmel_aes_gcm_crypt(req, 0);
1820 }
1821 
atmel_aes_gcm_init(struct crypto_aead * tfm)1822 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1823 {
1824 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1825 
1826 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1827 	ctx->base.start = atmel_aes_gcm_start;
1828 
1829 	return 0;
1830 }
1831 
1832 static struct aead_alg aes_gcm_alg = {
1833 	.setkey		= atmel_aes_gcm_setkey,
1834 	.setauthsize	= atmel_aes_gcm_setauthsize,
1835 	.encrypt	= atmel_aes_gcm_encrypt,
1836 	.decrypt	= atmel_aes_gcm_decrypt,
1837 	.init		= atmel_aes_gcm_init,
1838 	.ivsize		= GCM_AES_IV_SIZE,
1839 	.maxauthsize	= AES_BLOCK_SIZE,
1840 
1841 	.base = {
1842 		.cra_name		= "gcm(aes)",
1843 		.cra_driver_name	= "atmel-gcm-aes",
1844 		.cra_priority		= ATMEL_AES_PRIORITY,
1845 		.cra_flags		= CRYPTO_ALG_ASYNC,
1846 		.cra_blocksize		= 1,
1847 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1848 		.cra_alignmask		= 0xf,
1849 		.cra_module		= THIS_MODULE,
1850 	},
1851 };
1852 
1853 
1854 /* xts functions */
1855 
1856 static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx * ctx)1857 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1858 {
1859 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1860 }
1861 
1862 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1863 
atmel_aes_xts_start(struct atmel_aes_dev * dd)1864 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1865 {
1866 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1867 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1868 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1869 	unsigned long flags;
1870 	int err;
1871 
1872 	atmel_aes_set_mode(dd, rctx);
1873 
1874 	err = atmel_aes_hw_init(dd);
1875 	if (err)
1876 		return atmel_aes_complete(dd, err);
1877 
1878 	/* Compute the tweak value from req->info with ecb(aes). */
1879 	flags = dd->flags;
1880 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1881 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1882 	atmel_aes_write_ctrl_key(dd, false, NULL,
1883 				 ctx->key2, ctx->base.keylen);
1884 	dd->flags = flags;
1885 
1886 	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1887 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1888 }
1889 
atmel_aes_xts_process_data(struct atmel_aes_dev * dd)1890 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1891 {
1892 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1893 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1894 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1895 	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1896 	u8 *tweak_bytes = (u8 *)tweak;
1897 	int i;
1898 
1899 	/* Read the computed ciphered tweak value. */
1900 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1901 	/*
1902 	 * Hardware quirk:
1903 	 * the order of the ciphered tweak bytes need to be reversed before
1904 	 * writing them into the ODATARx registers.
1905 	 */
1906 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1907 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1908 
1909 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1910 		tweak_bytes[i] = tmp;
1911 	}
1912 
1913 	/* Process the data. */
1914 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1915 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1916 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1917 	if (use_dma)
1918 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1919 					   atmel_aes_transfer_complete);
1920 
1921 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1922 				   atmel_aes_transfer_complete);
1923 }
1924 
atmel_aes_xts_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1925 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1926 				unsigned int keylen)
1927 {
1928 	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1929 	int err;
1930 
1931 	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1932 	if (err)
1933 		return err;
1934 
1935 	memcpy(ctx->base.key, key, keylen/2);
1936 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1937 	ctx->base.keylen = keylen/2;
1938 
1939 	return 0;
1940 }
1941 
atmel_aes_xts_encrypt(struct ablkcipher_request * req)1942 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1943 {
1944 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1945 }
1946 
atmel_aes_xts_decrypt(struct ablkcipher_request * req)1947 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1948 {
1949 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1950 }
1951 
atmel_aes_xts_cra_init(struct crypto_tfm * tfm)1952 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1953 {
1954 	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1955 
1956 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1957 	ctx->base.start = atmel_aes_xts_start;
1958 
1959 	return 0;
1960 }
1961 
1962 static struct crypto_alg aes_xts_alg = {
1963 	.cra_name		= "xts(aes)",
1964 	.cra_driver_name	= "atmel-xts-aes",
1965 	.cra_priority		= ATMEL_AES_PRIORITY,
1966 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1967 	.cra_blocksize		= AES_BLOCK_SIZE,
1968 	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1969 	.cra_alignmask		= 0xf,
1970 	.cra_type		= &crypto_ablkcipher_type,
1971 	.cra_module		= THIS_MODULE,
1972 	.cra_init		= atmel_aes_xts_cra_init,
1973 	.cra_u.ablkcipher = {
1974 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1975 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1976 		.ivsize		= AES_BLOCK_SIZE,
1977 		.setkey		= atmel_aes_xts_setkey,
1978 		.encrypt	= atmel_aes_xts_encrypt,
1979 		.decrypt	= atmel_aes_xts_decrypt,
1980 	}
1981 };
1982 
1983 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1984 /* authenc aead functions */
1985 
1986 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1987 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1988 				  bool is_async);
1989 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1990 				      bool is_async);
1991 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1992 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1993 				   bool is_async);
1994 
atmel_aes_authenc_complete(struct atmel_aes_dev * dd,int err)1995 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1996 {
1997 	struct aead_request *req = aead_request_cast(dd->areq);
1998 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1999 
2000 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
2001 		atmel_sha_authenc_abort(&rctx->auth_req);
2002 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2003 }
2004 
atmel_aes_authenc_start(struct atmel_aes_dev * dd)2005 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
2006 {
2007 	struct aead_request *req = aead_request_cast(dd->areq);
2008 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2009 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2010 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2011 	int err;
2012 
2013 	atmel_aes_set_mode(dd, &rctx->base);
2014 
2015 	err = atmel_aes_hw_init(dd);
2016 	if (err)
2017 		return atmel_aes_complete(dd, err);
2018 
2019 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2020 					  atmel_aes_authenc_init, dd);
2021 }
2022 
atmel_aes_authenc_init(struct atmel_aes_dev * dd,int err,bool is_async)2023 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2024 				  bool is_async)
2025 {
2026 	struct aead_request *req = aead_request_cast(dd->areq);
2027 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2028 
2029 	if (is_async)
2030 		dd->is_async = true;
2031 	if (err)
2032 		return atmel_aes_complete(dd, err);
2033 
2034 	/* If here, we've got the ownership of the SHA device. */
2035 	dd->flags |= AES_FLAGS_OWN_SHA;
2036 
2037 	/* Configure the SHA device. */
2038 	return atmel_sha_authenc_init(&rctx->auth_req,
2039 				      req->src, req->assoclen,
2040 				      rctx->textlen,
2041 				      atmel_aes_authenc_transfer, dd);
2042 }
2043 
atmel_aes_authenc_transfer(struct atmel_aes_dev * dd,int err,bool is_async)2044 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2045 				      bool is_async)
2046 {
2047 	struct aead_request *req = aead_request_cast(dd->areq);
2048 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2049 	bool enc = atmel_aes_is_encrypt(dd);
2050 	struct scatterlist *src, *dst;
2051 	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2052 	u32 emr;
2053 
2054 	if (is_async)
2055 		dd->is_async = true;
2056 	if (err)
2057 		return atmel_aes_complete(dd, err);
2058 
2059 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2060 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2061 	dst = src;
2062 
2063 	if (req->src != req->dst)
2064 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2065 
2066 	/* Configure the AES device. */
2067 	memcpy(iv, req->iv, sizeof(iv));
2068 
2069 	/*
2070 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2071 	 * 'true' even if the data transfer is actually performed by the CPU (so
2072 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2073 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2074 	 * must be set to *_MR_SMOD_IDATAR0.
2075 	 */
2076 	atmel_aes_write_ctrl(dd, true, iv);
2077 	emr = AES_EMR_PLIPEN;
2078 	if (!enc)
2079 		emr |= AES_EMR_PLIPD;
2080 	atmel_aes_write(dd, AES_EMR, emr);
2081 
2082 	/* Transfer data. */
2083 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2084 				   atmel_aes_authenc_digest);
2085 }
2086 
atmel_aes_authenc_digest(struct atmel_aes_dev * dd)2087 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2088 {
2089 	struct aead_request *req = aead_request_cast(dd->areq);
2090 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2091 
2092 	/* atmel_sha_authenc_final() releases the SHA device. */
2093 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2094 	return atmel_sha_authenc_final(&rctx->auth_req,
2095 				       rctx->digest, sizeof(rctx->digest),
2096 				       atmel_aes_authenc_final, dd);
2097 }
2098 
atmel_aes_authenc_final(struct atmel_aes_dev * dd,int err,bool is_async)2099 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2100 				   bool is_async)
2101 {
2102 	struct aead_request *req = aead_request_cast(dd->areq);
2103 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2104 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2105 	bool enc = atmel_aes_is_encrypt(dd);
2106 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2107 	u32 offs, authsize;
2108 
2109 	if (is_async)
2110 		dd->is_async = true;
2111 	if (err)
2112 		goto complete;
2113 
2114 	offs = req->assoclen + rctx->textlen;
2115 	authsize = crypto_aead_authsize(tfm);
2116 	if (enc) {
2117 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2118 	} else {
2119 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2120 		if (crypto_memneq(idigest, odigest, authsize))
2121 			err = -EBADMSG;
2122 	}
2123 
2124 complete:
2125 	return atmel_aes_complete(dd, err);
2126 }
2127 
atmel_aes_authenc_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)2128 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2129 				    unsigned int keylen)
2130 {
2131 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2132 	struct crypto_authenc_keys keys;
2133 	u32 flags;
2134 	int err;
2135 
2136 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2137 		goto badkey;
2138 
2139 	if (keys.enckeylen > sizeof(ctx->base.key))
2140 		goto badkey;
2141 
2142 	/* Save auth key. */
2143 	flags = crypto_aead_get_flags(tfm);
2144 	err = atmel_sha_authenc_setkey(ctx->auth,
2145 				       keys.authkey, keys.authkeylen,
2146 				       &flags);
2147 	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2148 	if (err) {
2149 		memzero_explicit(&keys, sizeof(keys));
2150 		return err;
2151 	}
2152 
2153 	/* Save enc key. */
2154 	ctx->base.keylen = keys.enckeylen;
2155 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2156 
2157 	memzero_explicit(&keys, sizeof(keys));
2158 	return 0;
2159 
2160 badkey:
2161 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2162 	memzero_explicit(&keys, sizeof(keys));
2163 	return -EINVAL;
2164 }
2165 
atmel_aes_authenc_init_tfm(struct crypto_aead * tfm,unsigned long auth_mode)2166 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2167 				      unsigned long auth_mode)
2168 {
2169 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2170 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2171 
2172 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2173 	if (IS_ERR(ctx->auth))
2174 		return PTR_ERR(ctx->auth);
2175 
2176 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2177 				      auth_reqsize));
2178 	ctx->base.start = atmel_aes_authenc_start;
2179 
2180 	return 0;
2181 }
2182 
atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead * tfm)2183 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2184 {
2185 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2186 }
2187 
atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead * tfm)2188 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2189 {
2190 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2191 }
2192 
atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead * tfm)2193 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2194 {
2195 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2196 }
2197 
atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead * tfm)2198 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2199 {
2200 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2201 }
2202 
atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead * tfm)2203 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2204 {
2205 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2206 }
2207 
atmel_aes_authenc_exit_tfm(struct crypto_aead * tfm)2208 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2209 {
2210 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2211 
2212 	atmel_sha_authenc_free(ctx->auth);
2213 }
2214 
atmel_aes_authenc_crypt(struct aead_request * req,unsigned long mode)2215 static int atmel_aes_authenc_crypt(struct aead_request *req,
2216 				   unsigned long mode)
2217 {
2218 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2219 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2220 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2221 	u32 authsize = crypto_aead_authsize(tfm);
2222 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2223 	struct atmel_aes_dev *dd;
2224 
2225 	/* Compute text length. */
2226 	if (!enc && req->cryptlen < authsize)
2227 		return -EINVAL;
2228 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2229 
2230 	/*
2231 	 * Currently, empty messages are not supported yet:
2232 	 * the SHA auto-padding can be used only on non-empty messages.
2233 	 * Hence a special case needs to be implemented for empty message.
2234 	 */
2235 	if (!rctx->textlen && !req->assoclen)
2236 		return -EINVAL;
2237 
2238 	rctx->base.mode = mode;
2239 	ctx->block_size = AES_BLOCK_SIZE;
2240 	ctx->is_aead = true;
2241 
2242 	dd = atmel_aes_find_dev(ctx);
2243 	if (!dd)
2244 		return -ENODEV;
2245 
2246 	return atmel_aes_handle_queue(dd, &req->base);
2247 }
2248 
atmel_aes_authenc_cbc_aes_encrypt(struct aead_request * req)2249 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2250 {
2251 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2252 }
2253 
atmel_aes_authenc_cbc_aes_decrypt(struct aead_request * req)2254 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2255 {
2256 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2257 }
2258 
2259 static struct aead_alg aes_authenc_algs[] = {
2260 {
2261 	.setkey		= atmel_aes_authenc_setkey,
2262 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2263 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2264 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2265 	.exit		= atmel_aes_authenc_exit_tfm,
2266 	.ivsize		= AES_BLOCK_SIZE,
2267 	.maxauthsize	= SHA1_DIGEST_SIZE,
2268 
2269 	.base = {
2270 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2271 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2272 		.cra_priority		= ATMEL_AES_PRIORITY,
2273 		.cra_flags		= CRYPTO_ALG_ASYNC,
2274 		.cra_blocksize		= AES_BLOCK_SIZE,
2275 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2276 		.cra_alignmask		= 0xf,
2277 		.cra_module		= THIS_MODULE,
2278 	},
2279 },
2280 {
2281 	.setkey		= atmel_aes_authenc_setkey,
2282 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2283 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2284 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2285 	.exit		= atmel_aes_authenc_exit_tfm,
2286 	.ivsize		= AES_BLOCK_SIZE,
2287 	.maxauthsize	= SHA224_DIGEST_SIZE,
2288 
2289 	.base = {
2290 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2291 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2292 		.cra_priority		= ATMEL_AES_PRIORITY,
2293 		.cra_flags		= CRYPTO_ALG_ASYNC,
2294 		.cra_blocksize		= AES_BLOCK_SIZE,
2295 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2296 		.cra_alignmask		= 0xf,
2297 		.cra_module		= THIS_MODULE,
2298 	},
2299 },
2300 {
2301 	.setkey		= atmel_aes_authenc_setkey,
2302 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2303 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2304 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2305 	.exit		= atmel_aes_authenc_exit_tfm,
2306 	.ivsize		= AES_BLOCK_SIZE,
2307 	.maxauthsize	= SHA256_DIGEST_SIZE,
2308 
2309 	.base = {
2310 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2311 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2312 		.cra_priority		= ATMEL_AES_PRIORITY,
2313 		.cra_flags		= CRYPTO_ALG_ASYNC,
2314 		.cra_blocksize		= AES_BLOCK_SIZE,
2315 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2316 		.cra_alignmask		= 0xf,
2317 		.cra_module		= THIS_MODULE,
2318 	},
2319 },
2320 {
2321 	.setkey		= atmel_aes_authenc_setkey,
2322 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2323 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2324 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2325 	.exit		= atmel_aes_authenc_exit_tfm,
2326 	.ivsize		= AES_BLOCK_SIZE,
2327 	.maxauthsize	= SHA384_DIGEST_SIZE,
2328 
2329 	.base = {
2330 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2331 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2332 		.cra_priority		= ATMEL_AES_PRIORITY,
2333 		.cra_flags		= CRYPTO_ALG_ASYNC,
2334 		.cra_blocksize		= AES_BLOCK_SIZE,
2335 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2336 		.cra_alignmask		= 0xf,
2337 		.cra_module		= THIS_MODULE,
2338 	},
2339 },
2340 {
2341 	.setkey		= atmel_aes_authenc_setkey,
2342 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2343 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2344 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2345 	.exit		= atmel_aes_authenc_exit_tfm,
2346 	.ivsize		= AES_BLOCK_SIZE,
2347 	.maxauthsize	= SHA512_DIGEST_SIZE,
2348 
2349 	.base = {
2350 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2351 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2352 		.cra_priority		= ATMEL_AES_PRIORITY,
2353 		.cra_flags		= CRYPTO_ALG_ASYNC,
2354 		.cra_blocksize		= AES_BLOCK_SIZE,
2355 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2356 		.cra_alignmask		= 0xf,
2357 		.cra_module		= THIS_MODULE,
2358 	},
2359 },
2360 };
2361 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2362 
2363 /* Probe functions */
2364 
atmel_aes_buff_init(struct atmel_aes_dev * dd)2365 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2366 {
2367 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2368 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2369 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2370 
2371 	if (!dd->buf) {
2372 		dev_err(dd->dev, "unable to alloc pages.\n");
2373 		return -ENOMEM;
2374 	}
2375 
2376 	return 0;
2377 }
2378 
atmel_aes_buff_cleanup(struct atmel_aes_dev * dd)2379 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2380 {
2381 	free_page((unsigned long)dd->buf);
2382 }
2383 
atmel_aes_filter(struct dma_chan * chan,void * slave)2384 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2385 {
2386 	struct at_dma_slave	*sl = slave;
2387 
2388 	if (sl && sl->dma_dev == chan->device->dev) {
2389 		chan->private = sl;
2390 		return true;
2391 	} else {
2392 		return false;
2393 	}
2394 }
2395 
atmel_aes_dma_init(struct atmel_aes_dev * dd,struct crypto_platform_data * pdata)2396 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2397 			      struct crypto_platform_data *pdata)
2398 {
2399 	struct at_dma_slave *slave;
2400 	dma_cap_mask_t mask;
2401 
2402 	dma_cap_zero(mask);
2403 	dma_cap_set(DMA_SLAVE, mask);
2404 
2405 	/* Try to grab 2 DMA channels */
2406 	slave = &pdata->dma_slave->rxdata;
2407 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2408 							slave, dd->dev, "tx");
2409 	if (!dd->src.chan)
2410 		goto err_dma_in;
2411 
2412 	slave = &pdata->dma_slave->txdata;
2413 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2414 							slave, dd->dev, "rx");
2415 	if (!dd->dst.chan)
2416 		goto err_dma_out;
2417 
2418 	return 0;
2419 
2420 err_dma_out:
2421 	dma_release_channel(dd->src.chan);
2422 err_dma_in:
2423 	dev_warn(dd->dev, "no DMA channel available\n");
2424 	return -ENODEV;
2425 }
2426 
atmel_aes_dma_cleanup(struct atmel_aes_dev * dd)2427 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2428 {
2429 	dma_release_channel(dd->dst.chan);
2430 	dma_release_channel(dd->src.chan);
2431 }
2432 
atmel_aes_queue_task(unsigned long data)2433 static void atmel_aes_queue_task(unsigned long data)
2434 {
2435 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2436 
2437 	atmel_aes_handle_queue(dd, NULL);
2438 }
2439 
atmel_aes_done_task(unsigned long data)2440 static void atmel_aes_done_task(unsigned long data)
2441 {
2442 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2443 
2444 	dd->is_async = true;
2445 	(void)dd->resume(dd);
2446 }
2447 
atmel_aes_irq(int irq,void * dev_id)2448 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2449 {
2450 	struct atmel_aes_dev *aes_dd = dev_id;
2451 	u32 reg;
2452 
2453 	reg = atmel_aes_read(aes_dd, AES_ISR);
2454 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2455 		atmel_aes_write(aes_dd, AES_IDR, reg);
2456 		if (AES_FLAGS_BUSY & aes_dd->flags)
2457 			tasklet_schedule(&aes_dd->done_task);
2458 		else
2459 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2460 		return IRQ_HANDLED;
2461 	}
2462 
2463 	return IRQ_NONE;
2464 }
2465 
atmel_aes_unregister_algs(struct atmel_aes_dev * dd)2466 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2467 {
2468 	int i;
2469 
2470 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2471 	if (dd->caps.has_authenc)
2472 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2473 			crypto_unregister_aead(&aes_authenc_algs[i]);
2474 #endif
2475 
2476 	if (dd->caps.has_xts)
2477 		crypto_unregister_alg(&aes_xts_alg);
2478 
2479 	if (dd->caps.has_gcm)
2480 		crypto_unregister_aead(&aes_gcm_alg);
2481 
2482 	if (dd->caps.has_cfb64)
2483 		crypto_unregister_alg(&aes_cfb64_alg);
2484 
2485 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2486 		crypto_unregister_alg(&aes_algs[i]);
2487 }
2488 
atmel_aes_register_algs(struct atmel_aes_dev * dd)2489 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2490 {
2491 	int err, i, j;
2492 
2493 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2494 		err = crypto_register_alg(&aes_algs[i]);
2495 		if (err)
2496 			goto err_aes_algs;
2497 	}
2498 
2499 	if (dd->caps.has_cfb64) {
2500 		err = crypto_register_alg(&aes_cfb64_alg);
2501 		if (err)
2502 			goto err_aes_cfb64_alg;
2503 	}
2504 
2505 	if (dd->caps.has_gcm) {
2506 		err = crypto_register_aead(&aes_gcm_alg);
2507 		if (err)
2508 			goto err_aes_gcm_alg;
2509 	}
2510 
2511 	if (dd->caps.has_xts) {
2512 		err = crypto_register_alg(&aes_xts_alg);
2513 		if (err)
2514 			goto err_aes_xts_alg;
2515 	}
2516 
2517 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2518 	if (dd->caps.has_authenc) {
2519 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2520 			err = crypto_register_aead(&aes_authenc_algs[i]);
2521 			if (err)
2522 				goto err_aes_authenc_alg;
2523 		}
2524 	}
2525 #endif
2526 
2527 	return 0;
2528 
2529 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2530 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2531 err_aes_authenc_alg:
2532 	for (j = 0; j < i; j++)
2533 		crypto_unregister_aead(&aes_authenc_algs[j]);
2534 	crypto_unregister_alg(&aes_xts_alg);
2535 #endif
2536 err_aes_xts_alg:
2537 	crypto_unregister_aead(&aes_gcm_alg);
2538 err_aes_gcm_alg:
2539 	crypto_unregister_alg(&aes_cfb64_alg);
2540 err_aes_cfb64_alg:
2541 	i = ARRAY_SIZE(aes_algs);
2542 err_aes_algs:
2543 	for (j = 0; j < i; j++)
2544 		crypto_unregister_alg(&aes_algs[j]);
2545 
2546 	return err;
2547 }
2548 
atmel_aes_get_cap(struct atmel_aes_dev * dd)2549 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2550 {
2551 	dd->caps.has_dualbuff = 0;
2552 	dd->caps.has_cfb64 = 0;
2553 	dd->caps.has_ctr32 = 0;
2554 	dd->caps.has_gcm = 0;
2555 	dd->caps.has_xts = 0;
2556 	dd->caps.has_authenc = 0;
2557 	dd->caps.max_burst_size = 1;
2558 
2559 	/* keep only major version number */
2560 	switch (dd->hw_version & 0xff0) {
2561 	case 0x500:
2562 		dd->caps.has_dualbuff = 1;
2563 		dd->caps.has_cfb64 = 1;
2564 		dd->caps.has_ctr32 = 1;
2565 		dd->caps.has_gcm = 1;
2566 		dd->caps.has_xts = 1;
2567 		dd->caps.has_authenc = 1;
2568 		dd->caps.max_burst_size = 4;
2569 		break;
2570 	case 0x200:
2571 		dd->caps.has_dualbuff = 1;
2572 		dd->caps.has_cfb64 = 1;
2573 		dd->caps.has_ctr32 = 1;
2574 		dd->caps.has_gcm = 1;
2575 		dd->caps.max_burst_size = 4;
2576 		break;
2577 	case 0x130:
2578 		dd->caps.has_dualbuff = 1;
2579 		dd->caps.has_cfb64 = 1;
2580 		dd->caps.max_burst_size = 4;
2581 		break;
2582 	case 0x120:
2583 		break;
2584 	default:
2585 		dev_warn(dd->dev,
2586 				"Unmanaged aes version, set minimum capabilities\n");
2587 		break;
2588 	}
2589 }
2590 
2591 #if defined(CONFIG_OF)
2592 static const struct of_device_id atmel_aes_dt_ids[] = {
2593 	{ .compatible = "atmel,at91sam9g46-aes" },
2594 	{ /* sentinel */ }
2595 };
2596 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2597 
atmel_aes_of_init(struct platform_device * pdev)2598 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2599 {
2600 	struct device_node *np = pdev->dev.of_node;
2601 	struct crypto_platform_data *pdata;
2602 
2603 	if (!np) {
2604 		dev_err(&pdev->dev, "device node not found\n");
2605 		return ERR_PTR(-EINVAL);
2606 	}
2607 
2608 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2609 	if (!pdata)
2610 		return ERR_PTR(-ENOMEM);
2611 
2612 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2613 					sizeof(*(pdata->dma_slave)),
2614 					GFP_KERNEL);
2615 	if (!pdata->dma_slave) {
2616 		devm_kfree(&pdev->dev, pdata);
2617 		return ERR_PTR(-ENOMEM);
2618 	}
2619 
2620 	return pdata;
2621 }
2622 #else
atmel_aes_of_init(struct platform_device * pdev)2623 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2624 {
2625 	return ERR_PTR(-EINVAL);
2626 }
2627 #endif
2628 
atmel_aes_probe(struct platform_device * pdev)2629 static int atmel_aes_probe(struct platform_device *pdev)
2630 {
2631 	struct atmel_aes_dev *aes_dd;
2632 	struct crypto_platform_data *pdata;
2633 	struct device *dev = &pdev->dev;
2634 	struct resource *aes_res;
2635 	int err;
2636 
2637 	pdata = pdev->dev.platform_data;
2638 	if (!pdata) {
2639 		pdata = atmel_aes_of_init(pdev);
2640 		if (IS_ERR(pdata)) {
2641 			err = PTR_ERR(pdata);
2642 			goto aes_dd_err;
2643 		}
2644 	}
2645 
2646 	if (!pdata->dma_slave) {
2647 		err = -ENXIO;
2648 		goto aes_dd_err;
2649 	}
2650 
2651 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2652 	if (aes_dd == NULL) {
2653 		err = -ENOMEM;
2654 		goto aes_dd_err;
2655 	}
2656 
2657 	aes_dd->dev = dev;
2658 
2659 	platform_set_drvdata(pdev, aes_dd);
2660 
2661 	INIT_LIST_HEAD(&aes_dd->list);
2662 	spin_lock_init(&aes_dd->lock);
2663 
2664 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2665 					(unsigned long)aes_dd);
2666 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2667 					(unsigned long)aes_dd);
2668 
2669 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2670 
2671 	/* Get the base address */
2672 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2673 	if (!aes_res) {
2674 		dev_err(dev, "no MEM resource info\n");
2675 		err = -ENODEV;
2676 		goto res_err;
2677 	}
2678 	aes_dd->phys_base = aes_res->start;
2679 
2680 	/* Get the IRQ */
2681 	aes_dd->irq = platform_get_irq(pdev,  0);
2682 	if (aes_dd->irq < 0) {
2683 		err = aes_dd->irq;
2684 		goto res_err;
2685 	}
2686 
2687 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2688 			       IRQF_SHARED, "atmel-aes", aes_dd);
2689 	if (err) {
2690 		dev_err(dev, "unable to request aes irq.\n");
2691 		goto res_err;
2692 	}
2693 
2694 	/* Initializing the clock */
2695 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2696 	if (IS_ERR(aes_dd->iclk)) {
2697 		dev_err(dev, "clock initialization failed.\n");
2698 		err = PTR_ERR(aes_dd->iclk);
2699 		goto res_err;
2700 	}
2701 
2702 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2703 	if (IS_ERR(aes_dd->io_base)) {
2704 		dev_err(dev, "can't ioremap\n");
2705 		err = PTR_ERR(aes_dd->io_base);
2706 		goto res_err;
2707 	}
2708 
2709 	err = clk_prepare(aes_dd->iclk);
2710 	if (err)
2711 		goto res_err;
2712 
2713 	err = atmel_aes_hw_version_init(aes_dd);
2714 	if (err)
2715 		goto iclk_unprepare;
2716 
2717 	atmel_aes_get_cap(aes_dd);
2718 
2719 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2720 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2721 		err = -EPROBE_DEFER;
2722 		goto iclk_unprepare;
2723 	}
2724 #endif
2725 
2726 	err = atmel_aes_buff_init(aes_dd);
2727 	if (err)
2728 		goto err_aes_buff;
2729 
2730 	err = atmel_aes_dma_init(aes_dd, pdata);
2731 	if (err)
2732 		goto err_aes_dma;
2733 
2734 	spin_lock(&atmel_aes.lock);
2735 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2736 	spin_unlock(&atmel_aes.lock);
2737 
2738 	err = atmel_aes_register_algs(aes_dd);
2739 	if (err)
2740 		goto err_algs;
2741 
2742 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2743 			dma_chan_name(aes_dd->src.chan),
2744 			dma_chan_name(aes_dd->dst.chan));
2745 
2746 	return 0;
2747 
2748 err_algs:
2749 	spin_lock(&atmel_aes.lock);
2750 	list_del(&aes_dd->list);
2751 	spin_unlock(&atmel_aes.lock);
2752 	atmel_aes_dma_cleanup(aes_dd);
2753 err_aes_dma:
2754 	atmel_aes_buff_cleanup(aes_dd);
2755 err_aes_buff:
2756 iclk_unprepare:
2757 	clk_unprepare(aes_dd->iclk);
2758 res_err:
2759 	tasklet_kill(&aes_dd->done_task);
2760 	tasklet_kill(&aes_dd->queue_task);
2761 aes_dd_err:
2762 	if (err != -EPROBE_DEFER)
2763 		dev_err(dev, "initialization failed.\n");
2764 
2765 	return err;
2766 }
2767 
atmel_aes_remove(struct platform_device * pdev)2768 static int atmel_aes_remove(struct platform_device *pdev)
2769 {
2770 	struct atmel_aes_dev *aes_dd;
2771 
2772 	aes_dd = platform_get_drvdata(pdev);
2773 	if (!aes_dd)
2774 		return -ENODEV;
2775 	spin_lock(&atmel_aes.lock);
2776 	list_del(&aes_dd->list);
2777 	spin_unlock(&atmel_aes.lock);
2778 
2779 	atmel_aes_unregister_algs(aes_dd);
2780 
2781 	tasklet_kill(&aes_dd->done_task);
2782 	tasklet_kill(&aes_dd->queue_task);
2783 
2784 	atmel_aes_dma_cleanup(aes_dd);
2785 	atmel_aes_buff_cleanup(aes_dd);
2786 
2787 	clk_unprepare(aes_dd->iclk);
2788 
2789 	return 0;
2790 }
2791 
2792 static struct platform_driver atmel_aes_driver = {
2793 	.probe		= atmel_aes_probe,
2794 	.remove		= atmel_aes_remove,
2795 	.driver		= {
2796 		.name	= "atmel_aes",
2797 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2798 	},
2799 };
2800 
2801 module_platform_driver(atmel_aes_driver);
2802 
2803 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2804 MODULE_LICENSE("GPL v2");
2805 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2806