1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel IXP4xx NPE-C crypto driver
4 *
5 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18
19 #include <crypto/ctr.h>
20 #include <crypto/internal/des.h>
21 #include <crypto/aes.h>
22 #include <crypto/hmac.h>
23 #include <crypto/sha.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/authenc.h>
27 #include <crypto/scatterwalk.h>
28
29 #include <linux/soc/ixp4xx/npe.h>
30 #include <linux/soc/ixp4xx/qmgr.h>
31
32 #define MAX_KEYLEN 32
33
34 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
35 #define NPE_CTX_LEN 80
36 #define AES_BLOCK128 16
37
38 #define NPE_OP_HASH_VERIFY 0x01
39 #define NPE_OP_CCM_ENABLE 0x04
40 #define NPE_OP_CRYPT_ENABLE 0x08
41 #define NPE_OP_HASH_ENABLE 0x10
42 #define NPE_OP_NOT_IN_PLACE 0x20
43 #define NPE_OP_HMAC_DISABLE 0x40
44 #define NPE_OP_CRYPT_ENCRYPT 0x80
45
46 #define NPE_OP_CCM_GEN_MIC 0xcc
47 #define NPE_OP_HASH_GEN_ICV 0x50
48 #define NPE_OP_ENC_GEN_KEY 0xc9
49
50 #define MOD_ECB 0x0000
51 #define MOD_CTR 0x1000
52 #define MOD_CBC_ENC 0x2000
53 #define MOD_CBC_DEC 0x3000
54 #define MOD_CCM_ENC 0x4000
55 #define MOD_CCM_DEC 0x5000
56
57 #define KEYLEN_128 4
58 #define KEYLEN_192 6
59 #define KEYLEN_256 8
60
61 #define CIPH_DECR 0x0000
62 #define CIPH_ENCR 0x0400
63
64 #define MOD_DES 0x0000
65 #define MOD_TDEA2 0x0100
66 #define MOD_3DES 0x0200
67 #define MOD_AES 0x0800
68 #define MOD_AES128 (0x0800 | KEYLEN_128)
69 #define MOD_AES192 (0x0900 | KEYLEN_192)
70 #define MOD_AES256 (0x0a00 | KEYLEN_256)
71
72 #define MAX_IVLEN 16
73 #define NPE_ID 2 /* NPE C */
74 #define NPE_QLEN 16
75 /* Space for registering when the first
76 * NPE_QLEN crypt_ctl are busy */
77 #define NPE_QLEN_TOTAL 64
78
79 #define SEND_QID 29
80 #define RECV_QID 30
81
82 #define CTL_FLAG_UNUSED 0x0000
83 #define CTL_FLAG_USED 0x1000
84 #define CTL_FLAG_PERFORM_ABLK 0x0001
85 #define CTL_FLAG_GEN_ICV 0x0002
86 #define CTL_FLAG_GEN_REVAES 0x0004
87 #define CTL_FLAG_PERFORM_AEAD 0x0008
88 #define CTL_FLAG_MASK 0x000f
89
90 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
91
92 #define MD5_DIGEST_SIZE 16
93
94 struct buffer_desc {
95 u32 phys_next;
96 #ifdef __ARMEB__
97 u16 buf_len;
98 u16 pkt_len;
99 #else
100 u16 pkt_len;
101 u16 buf_len;
102 #endif
103 dma_addr_t phys_addr;
104 u32 __reserved[4];
105 struct buffer_desc *next;
106 enum dma_data_direction dir;
107 };
108
109 struct crypt_ctl {
110 #ifdef __ARMEB__
111 u8 mode; /* NPE_OP_* operation mode */
112 u8 init_len;
113 u16 reserved;
114 #else
115 u16 reserved;
116 u8 init_len;
117 u8 mode; /* NPE_OP_* operation mode */
118 #endif
119 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
120 dma_addr_t icv_rev_aes; /* icv or rev aes */
121 dma_addr_t src_buf;
122 dma_addr_t dst_buf;
123 #ifdef __ARMEB__
124 u16 auth_offs; /* Authentication start offset */
125 u16 auth_len; /* Authentication data length */
126 u16 crypt_offs; /* Cryption start offset */
127 u16 crypt_len; /* Cryption data length */
128 #else
129 u16 auth_len; /* Authentication data length */
130 u16 auth_offs; /* Authentication start offset */
131 u16 crypt_len; /* Cryption data length */
132 u16 crypt_offs; /* Cryption start offset */
133 #endif
134 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
135 u32 crypto_ctx; /* NPE Crypto Param structure address */
136
137 /* Used by Host: 4*4 bytes*/
138 unsigned ctl_flags;
139 union {
140 struct ablkcipher_request *ablk_req;
141 struct aead_request *aead_req;
142 struct crypto_tfm *tfm;
143 } data;
144 struct buffer_desc *regist_buf;
145 u8 *regist_ptr;
146 };
147
148 struct ablk_ctx {
149 struct buffer_desc *src;
150 struct buffer_desc *dst;
151 };
152
153 struct aead_ctx {
154 struct buffer_desc *src;
155 struct buffer_desc *dst;
156 struct scatterlist ivlist;
157 /* used when the hmac is not on one sg entry */
158 u8 *hmac_virt;
159 int encrypt;
160 };
161
162 struct ix_hash_algo {
163 u32 cfgword;
164 unsigned char *icv;
165 };
166
167 struct ix_sa_dir {
168 unsigned char *npe_ctx;
169 dma_addr_t npe_ctx_phys;
170 int npe_ctx_idx;
171 u8 npe_mode;
172 };
173
174 struct ixp_ctx {
175 struct ix_sa_dir encrypt;
176 struct ix_sa_dir decrypt;
177 int authkey_len;
178 u8 authkey[MAX_KEYLEN];
179 int enckey_len;
180 u8 enckey[MAX_KEYLEN];
181 u8 salt[MAX_IVLEN];
182 u8 nonce[CTR_RFC3686_NONCE_SIZE];
183 unsigned salted;
184 atomic_t configuring;
185 struct completion completion;
186 };
187
188 struct ixp_alg {
189 struct crypto_alg crypto;
190 const struct ix_hash_algo *hash;
191 u32 cfg_enc;
192 u32 cfg_dec;
193
194 int registered;
195 };
196
197 struct ixp_aead_alg {
198 struct aead_alg crypto;
199 const struct ix_hash_algo *hash;
200 u32 cfg_enc;
201 u32 cfg_dec;
202
203 int registered;
204 };
205
206 static const struct ix_hash_algo hash_alg_md5 = {
207 .cfgword = 0xAA010004,
208 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
209 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
210 };
211 static const struct ix_hash_algo hash_alg_sha1 = {
212 .cfgword = 0x00000005,
213 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
214 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
215 };
216
217 static struct npe *npe_c;
218 static struct dma_pool *buffer_pool = NULL;
219 static struct dma_pool *ctx_pool = NULL;
220
221 static struct crypt_ctl *crypt_virt = NULL;
222 static dma_addr_t crypt_phys;
223
224 static int support_aes = 1;
225
226 #define DRIVER_NAME "ixp4xx_crypto"
227
228 static struct platform_device *pdev;
229
crypt_virt2phys(struct crypt_ctl * virt)230 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
231 {
232 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
233 }
234
crypt_phys2virt(dma_addr_t phys)235 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
236 {
237 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
238 }
239
cipher_cfg_enc(struct crypto_tfm * tfm)240 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
241 {
242 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
243 }
244
cipher_cfg_dec(struct crypto_tfm * tfm)245 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
246 {
247 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
248 }
249
ix_hash(struct crypto_tfm * tfm)250 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
251 {
252 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
253 }
254
setup_crypt_desc(void)255 static int setup_crypt_desc(void)
256 {
257 struct device *dev = &pdev->dev;
258 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
259 crypt_virt = dma_alloc_coherent(dev,
260 NPE_QLEN * sizeof(struct crypt_ctl),
261 &crypt_phys, GFP_ATOMIC);
262 if (!crypt_virt)
263 return -ENOMEM;
264 return 0;
265 }
266
267 static spinlock_t desc_lock;
get_crypt_desc(void)268 static struct crypt_ctl *get_crypt_desc(void)
269 {
270 int i;
271 static int idx = 0;
272 unsigned long flags;
273
274 spin_lock_irqsave(&desc_lock, flags);
275
276 if (unlikely(!crypt_virt))
277 setup_crypt_desc();
278 if (unlikely(!crypt_virt)) {
279 spin_unlock_irqrestore(&desc_lock, flags);
280 return NULL;
281 }
282 i = idx;
283 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
284 if (++idx >= NPE_QLEN)
285 idx = 0;
286 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
287 spin_unlock_irqrestore(&desc_lock, flags);
288 return crypt_virt +i;
289 } else {
290 spin_unlock_irqrestore(&desc_lock, flags);
291 return NULL;
292 }
293 }
294
295 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)296 static struct crypt_ctl *get_crypt_desc_emerg(void)
297 {
298 int i;
299 static int idx = NPE_QLEN;
300 struct crypt_ctl *desc;
301 unsigned long flags;
302
303 desc = get_crypt_desc();
304 if (desc)
305 return desc;
306 if (unlikely(!crypt_virt))
307 return NULL;
308
309 spin_lock_irqsave(&emerg_lock, flags);
310 i = idx;
311 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
312 if (++idx >= NPE_QLEN_TOTAL)
313 idx = NPE_QLEN;
314 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
315 spin_unlock_irqrestore(&emerg_lock, flags);
316 return crypt_virt +i;
317 } else {
318 spin_unlock_irqrestore(&emerg_lock, flags);
319 return NULL;
320 }
321 }
322
free_buf_chain(struct device * dev,struct buffer_desc * buf,dma_addr_t phys)323 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
324 dma_addr_t phys)
325 {
326 while (buf) {
327 struct buffer_desc *buf1;
328 u32 phys1;
329
330 buf1 = buf->next;
331 phys1 = buf->phys_next;
332 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
333 dma_pool_free(buffer_pool, buf, phys);
334 buf = buf1;
335 phys = phys1;
336 }
337 }
338
339 static struct tasklet_struct crypto_done_tasklet;
340
finish_scattered_hmac(struct crypt_ctl * crypt)341 static void finish_scattered_hmac(struct crypt_ctl *crypt)
342 {
343 struct aead_request *req = crypt->data.aead_req;
344 struct aead_ctx *req_ctx = aead_request_ctx(req);
345 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
346 int authsize = crypto_aead_authsize(tfm);
347 int decryptlen = req->assoclen + req->cryptlen - authsize;
348
349 if (req_ctx->encrypt) {
350 scatterwalk_map_and_copy(req_ctx->hmac_virt,
351 req->dst, decryptlen, authsize, 1);
352 }
353 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
354 }
355
one_packet(dma_addr_t phys)356 static void one_packet(dma_addr_t phys)
357 {
358 struct device *dev = &pdev->dev;
359 struct crypt_ctl *crypt;
360 struct ixp_ctx *ctx;
361 int failed;
362
363 failed = phys & 0x1 ? -EBADMSG : 0;
364 phys &= ~0x3;
365 crypt = crypt_phys2virt(phys);
366
367 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
368 case CTL_FLAG_PERFORM_AEAD: {
369 struct aead_request *req = crypt->data.aead_req;
370 struct aead_ctx *req_ctx = aead_request_ctx(req);
371
372 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
373 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
374 if (req_ctx->hmac_virt) {
375 finish_scattered_hmac(crypt);
376 }
377 req->base.complete(&req->base, failed);
378 break;
379 }
380 case CTL_FLAG_PERFORM_ABLK: {
381 struct ablkcipher_request *req = crypt->data.ablk_req;
382 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
383
384 if (req_ctx->dst) {
385 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
386 }
387 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
388 req->base.complete(&req->base, failed);
389 break;
390 }
391 case CTL_FLAG_GEN_ICV:
392 ctx = crypto_tfm_ctx(crypt->data.tfm);
393 dma_pool_free(ctx_pool, crypt->regist_ptr,
394 crypt->regist_buf->phys_addr);
395 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
396 if (atomic_dec_and_test(&ctx->configuring))
397 complete(&ctx->completion);
398 break;
399 case CTL_FLAG_GEN_REVAES:
400 ctx = crypto_tfm_ctx(crypt->data.tfm);
401 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
402 if (atomic_dec_and_test(&ctx->configuring))
403 complete(&ctx->completion);
404 break;
405 default:
406 BUG();
407 }
408 crypt->ctl_flags = CTL_FLAG_UNUSED;
409 }
410
irqhandler(void * _unused)411 static void irqhandler(void *_unused)
412 {
413 tasklet_schedule(&crypto_done_tasklet);
414 }
415
crypto_done_action(unsigned long arg)416 static void crypto_done_action(unsigned long arg)
417 {
418 int i;
419
420 for(i=0; i<4; i++) {
421 dma_addr_t phys = qmgr_get_entry(RECV_QID);
422 if (!phys)
423 return;
424 one_packet(phys);
425 }
426 tasklet_schedule(&crypto_done_tasklet);
427 }
428
init_ixp_crypto(struct device * dev)429 static int init_ixp_crypto(struct device *dev)
430 {
431 int ret = -ENODEV;
432 u32 msg[2] = { 0, 0 };
433
434 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
435 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
436 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
437 return ret;
438 }
439 npe_c = npe_request(NPE_ID);
440 if (!npe_c)
441 return ret;
442
443 if (!npe_running(npe_c)) {
444 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
445 if (ret)
446 goto npe_release;
447 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
448 goto npe_error;
449 } else {
450 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
451 goto npe_error;
452
453 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454 goto npe_error;
455 }
456
457 switch ((msg[1]>>16) & 0xff) {
458 case 3:
459 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
460 npe_name(npe_c));
461 support_aes = 0;
462 break;
463 case 4:
464 case 5:
465 support_aes = 1;
466 break;
467 default:
468 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
469 npe_name(npe_c));
470 ret = -ENODEV;
471 goto npe_release;
472 }
473 /* buffer_pool will also be used to sometimes store the hmac,
474 * so assure it is large enough
475 */
476 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
477 buffer_pool = dma_pool_create("buffer", dev,
478 sizeof(struct buffer_desc), 32, 0);
479 ret = -ENOMEM;
480 if (!buffer_pool) {
481 goto err;
482 }
483 ctx_pool = dma_pool_create("context", dev,
484 NPE_CTX_LEN, 16, 0);
485 if (!ctx_pool) {
486 goto err;
487 }
488 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
489 "ixp_crypto:out", NULL);
490 if (ret)
491 goto err;
492 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
493 "ixp_crypto:in", NULL);
494 if (ret) {
495 qmgr_release_queue(SEND_QID);
496 goto err;
497 }
498 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
499 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
500
501 qmgr_enable_irq(RECV_QID);
502 return 0;
503
504 npe_error:
505 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
506 ret = -EIO;
507 err:
508 dma_pool_destroy(ctx_pool);
509 dma_pool_destroy(buffer_pool);
510 npe_release:
511 npe_release(npe_c);
512 return ret;
513 }
514
release_ixp_crypto(struct device * dev)515 static void release_ixp_crypto(struct device *dev)
516 {
517 qmgr_disable_irq(RECV_QID);
518 tasklet_kill(&crypto_done_tasklet);
519
520 qmgr_release_queue(SEND_QID);
521 qmgr_release_queue(RECV_QID);
522
523 dma_pool_destroy(ctx_pool);
524 dma_pool_destroy(buffer_pool);
525
526 npe_release(npe_c);
527
528 if (crypt_virt) {
529 dma_free_coherent(dev,
530 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
531 crypt_virt, crypt_phys);
532 }
533 }
534
reset_sa_dir(struct ix_sa_dir * dir)535 static void reset_sa_dir(struct ix_sa_dir *dir)
536 {
537 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
538 dir->npe_ctx_idx = 0;
539 dir->npe_mode = 0;
540 }
541
init_sa_dir(struct ix_sa_dir * dir)542 static int init_sa_dir(struct ix_sa_dir *dir)
543 {
544 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
545 if (!dir->npe_ctx) {
546 return -ENOMEM;
547 }
548 reset_sa_dir(dir);
549 return 0;
550 }
551
free_sa_dir(struct ix_sa_dir * dir)552 static void free_sa_dir(struct ix_sa_dir *dir)
553 {
554 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
555 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
556 }
557
init_tfm(struct crypto_tfm * tfm)558 static int init_tfm(struct crypto_tfm *tfm)
559 {
560 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
561 int ret;
562
563 atomic_set(&ctx->configuring, 0);
564 ret = init_sa_dir(&ctx->encrypt);
565 if (ret)
566 return ret;
567 ret = init_sa_dir(&ctx->decrypt);
568 if (ret) {
569 free_sa_dir(&ctx->encrypt);
570 }
571 return ret;
572 }
573
init_tfm_ablk(struct crypto_tfm * tfm)574 static int init_tfm_ablk(struct crypto_tfm *tfm)
575 {
576 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
577 return init_tfm(tfm);
578 }
579
init_tfm_aead(struct crypto_aead * tfm)580 static int init_tfm_aead(struct crypto_aead *tfm)
581 {
582 crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
583 return init_tfm(crypto_aead_tfm(tfm));
584 }
585
exit_tfm(struct crypto_tfm * tfm)586 static void exit_tfm(struct crypto_tfm *tfm)
587 {
588 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
589 free_sa_dir(&ctx->encrypt);
590 free_sa_dir(&ctx->decrypt);
591 }
592
exit_tfm_aead(struct crypto_aead * tfm)593 static void exit_tfm_aead(struct crypto_aead *tfm)
594 {
595 exit_tfm(crypto_aead_tfm(tfm));
596 }
597
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)598 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
599 int init_len, u32 ctx_addr, const u8 *key, int key_len)
600 {
601 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
602 struct crypt_ctl *crypt;
603 struct buffer_desc *buf;
604 int i;
605 u8 *pad;
606 dma_addr_t pad_phys, buf_phys;
607
608 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
609 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
610 if (!pad)
611 return -ENOMEM;
612 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
613 if (!buf) {
614 dma_pool_free(ctx_pool, pad, pad_phys);
615 return -ENOMEM;
616 }
617 crypt = get_crypt_desc_emerg();
618 if (!crypt) {
619 dma_pool_free(ctx_pool, pad, pad_phys);
620 dma_pool_free(buffer_pool, buf, buf_phys);
621 return -EAGAIN;
622 }
623
624 memcpy(pad, key, key_len);
625 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
626 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
627 pad[i] ^= xpad;
628 }
629
630 crypt->data.tfm = tfm;
631 crypt->regist_ptr = pad;
632 crypt->regist_buf = buf;
633
634 crypt->auth_offs = 0;
635 crypt->auth_len = HMAC_PAD_BLOCKLEN;
636 crypt->crypto_ctx = ctx_addr;
637 crypt->src_buf = buf_phys;
638 crypt->icv_rev_aes = target;
639 crypt->mode = NPE_OP_HASH_GEN_ICV;
640 crypt->init_len = init_len;
641 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
642
643 buf->next = 0;
644 buf->buf_len = HMAC_PAD_BLOCKLEN;
645 buf->pkt_len = 0;
646 buf->phys_addr = pad_phys;
647
648 atomic_inc(&ctx->configuring);
649 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
650 BUG_ON(qmgr_stat_overflow(SEND_QID));
651 return 0;
652 }
653
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)654 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
655 const u8 *key, int key_len, unsigned digest_len)
656 {
657 u32 itarget, otarget, npe_ctx_addr;
658 unsigned char *cinfo;
659 int init_len, ret = 0;
660 u32 cfgword;
661 struct ix_sa_dir *dir;
662 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
663 const struct ix_hash_algo *algo;
664
665 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
666 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
667 algo = ix_hash(tfm);
668
669 /* write cfg word to cryptinfo */
670 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
671 #ifndef __ARMEB__
672 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
673 #endif
674 *(u32*)cinfo = cpu_to_be32(cfgword);
675 cinfo += sizeof(cfgword);
676
677 /* write ICV to cryptinfo */
678 memcpy(cinfo, algo->icv, digest_len);
679 cinfo += digest_len;
680
681 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
682 + sizeof(algo->cfgword);
683 otarget = itarget + digest_len;
684 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
685 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
686
687 dir->npe_ctx_idx += init_len;
688 dir->npe_mode |= NPE_OP_HASH_ENABLE;
689
690 if (!encrypt)
691 dir->npe_mode |= NPE_OP_HASH_VERIFY;
692
693 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
694 init_len, npe_ctx_addr, key, key_len);
695 if (ret)
696 return ret;
697 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
698 init_len, npe_ctx_addr, key, key_len);
699 }
700
gen_rev_aes_key(struct crypto_tfm * tfm)701 static int gen_rev_aes_key(struct crypto_tfm *tfm)
702 {
703 struct crypt_ctl *crypt;
704 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
705 struct ix_sa_dir *dir = &ctx->decrypt;
706
707 crypt = get_crypt_desc_emerg();
708 if (!crypt) {
709 return -EAGAIN;
710 }
711 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
712
713 crypt->data.tfm = tfm;
714 crypt->crypt_offs = 0;
715 crypt->crypt_len = AES_BLOCK128;
716 crypt->src_buf = 0;
717 crypt->crypto_ctx = dir->npe_ctx_phys;
718 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
719 crypt->mode = NPE_OP_ENC_GEN_KEY;
720 crypt->init_len = dir->npe_ctx_idx;
721 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
722
723 atomic_inc(&ctx->configuring);
724 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
725 BUG_ON(qmgr_stat_overflow(SEND_QID));
726 return 0;
727 }
728
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)729 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
730 const u8 *key, int key_len)
731 {
732 u8 *cinfo;
733 u32 cipher_cfg;
734 u32 keylen_cfg = 0;
735 struct ix_sa_dir *dir;
736 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
737 u32 *flags = &tfm->crt_flags;
738
739 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
740 cinfo = dir->npe_ctx;
741
742 if (encrypt) {
743 cipher_cfg = cipher_cfg_enc(tfm);
744 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
745 } else {
746 cipher_cfg = cipher_cfg_dec(tfm);
747 }
748 if (cipher_cfg & MOD_AES) {
749 switch (key_len) {
750 case 16: keylen_cfg = MOD_AES128; break;
751 case 24: keylen_cfg = MOD_AES192; break;
752 case 32: keylen_cfg = MOD_AES256; break;
753 default:
754 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
755 return -EINVAL;
756 }
757 cipher_cfg |= keylen_cfg;
758 } else {
759 crypto_des_verify_key(tfm, key);
760 }
761 /* write cfg word to cryptinfo */
762 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
763 cinfo += sizeof(cipher_cfg);
764
765 /* write cipher key to cryptinfo */
766 memcpy(cinfo, key, key_len);
767 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
768 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
769 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
770 key_len = DES3_EDE_KEY_SIZE;
771 }
772 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
773 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
774 if ((cipher_cfg & MOD_AES) && !encrypt) {
775 return gen_rev_aes_key(tfm);
776 }
777 return 0;
778 }
779
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)780 static struct buffer_desc *chainup_buffers(struct device *dev,
781 struct scatterlist *sg, unsigned nbytes,
782 struct buffer_desc *buf, gfp_t flags,
783 enum dma_data_direction dir)
784 {
785 for (; nbytes > 0; sg = sg_next(sg)) {
786 unsigned len = min(nbytes, sg->length);
787 struct buffer_desc *next_buf;
788 dma_addr_t next_buf_phys;
789 void *ptr;
790
791 nbytes -= len;
792 ptr = sg_virt(sg);
793 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
794 if (!next_buf) {
795 buf = NULL;
796 break;
797 }
798 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
799 buf->next = next_buf;
800 buf->phys_next = next_buf_phys;
801 buf = next_buf;
802
803 buf->phys_addr = sg_dma_address(sg);
804 buf->buf_len = len;
805 buf->dir = dir;
806 }
807 buf->next = NULL;
808 buf->phys_next = 0;
809 return buf;
810 }
811
ablk_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)812 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
813 unsigned int key_len)
814 {
815 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
816 u32 *flags = &tfm->base.crt_flags;
817 int ret;
818
819 init_completion(&ctx->completion);
820 atomic_inc(&ctx->configuring);
821
822 reset_sa_dir(&ctx->encrypt);
823 reset_sa_dir(&ctx->decrypt);
824
825 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
826 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
827
828 ret = setup_cipher(&tfm->base, 0, key, key_len);
829 if (ret)
830 goto out;
831 ret = setup_cipher(&tfm->base, 1, key, key_len);
832 if (ret)
833 goto out;
834
835 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
836 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
837 ret = -EINVAL;
838 } else {
839 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
840 }
841 }
842 out:
843 if (!atomic_dec_and_test(&ctx->configuring))
844 wait_for_completion(&ctx->completion);
845 return ret;
846 }
847
ablk_des3_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)848 static int ablk_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
849 unsigned int key_len)
850 {
851 return verify_ablkcipher_des3_key(tfm, key) ?:
852 ablk_setkey(tfm, key, key_len);
853 }
854
ablk_rfc3686_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)855 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
856 unsigned int key_len)
857 {
858 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
859
860 /* the nonce is stored in bytes at end of key */
861 if (key_len < CTR_RFC3686_NONCE_SIZE)
862 return -EINVAL;
863
864 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
865 CTR_RFC3686_NONCE_SIZE);
866
867 key_len -= CTR_RFC3686_NONCE_SIZE;
868 return ablk_setkey(tfm, key, key_len);
869 }
870
ablk_perform(struct ablkcipher_request * req,int encrypt)871 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
872 {
873 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
874 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
875 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
876 struct ix_sa_dir *dir;
877 struct crypt_ctl *crypt;
878 unsigned int nbytes = req->nbytes;
879 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
880 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
881 struct buffer_desc src_hook;
882 struct device *dev = &pdev->dev;
883 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
884 GFP_KERNEL : GFP_ATOMIC;
885
886 if (qmgr_stat_full(SEND_QID))
887 return -EAGAIN;
888 if (atomic_read(&ctx->configuring))
889 return -EAGAIN;
890
891 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
892
893 crypt = get_crypt_desc();
894 if (!crypt)
895 return -ENOMEM;
896
897 crypt->data.ablk_req = req;
898 crypt->crypto_ctx = dir->npe_ctx_phys;
899 crypt->mode = dir->npe_mode;
900 crypt->init_len = dir->npe_ctx_idx;
901
902 crypt->crypt_offs = 0;
903 crypt->crypt_len = nbytes;
904
905 BUG_ON(ivsize && !req->info);
906 memcpy(crypt->iv, req->info, ivsize);
907 if (req->src != req->dst) {
908 struct buffer_desc dst_hook;
909 crypt->mode |= NPE_OP_NOT_IN_PLACE;
910 /* This was never tested by Intel
911 * for more than one dst buffer, I think. */
912 req_ctx->dst = NULL;
913 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
914 flags, DMA_FROM_DEVICE))
915 goto free_buf_dest;
916 src_direction = DMA_TO_DEVICE;
917 req_ctx->dst = dst_hook.next;
918 crypt->dst_buf = dst_hook.phys_next;
919 } else {
920 req_ctx->dst = NULL;
921 }
922 req_ctx->src = NULL;
923 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
924 flags, src_direction))
925 goto free_buf_src;
926
927 req_ctx->src = src_hook.next;
928 crypt->src_buf = src_hook.phys_next;
929 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
930 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
931 BUG_ON(qmgr_stat_overflow(SEND_QID));
932 return -EINPROGRESS;
933
934 free_buf_src:
935 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
936 free_buf_dest:
937 if (req->src != req->dst) {
938 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
939 }
940 crypt->ctl_flags = CTL_FLAG_UNUSED;
941 return -ENOMEM;
942 }
943
ablk_encrypt(struct ablkcipher_request * req)944 static int ablk_encrypt(struct ablkcipher_request *req)
945 {
946 return ablk_perform(req, 1);
947 }
948
ablk_decrypt(struct ablkcipher_request * req)949 static int ablk_decrypt(struct ablkcipher_request *req)
950 {
951 return ablk_perform(req, 0);
952 }
953
ablk_rfc3686_crypt(struct ablkcipher_request * req)954 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
955 {
956 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
957 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
958 u8 iv[CTR_RFC3686_BLOCK_SIZE];
959 u8 *info = req->info;
960 int ret;
961
962 /* set up counter block */
963 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
964 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
965
966 /* initialize counter portion of counter block */
967 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
968 cpu_to_be32(1);
969
970 req->info = iv;
971 ret = ablk_perform(req, 1);
972 req->info = info;
973 return ret;
974 }
975
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)976 static int aead_perform(struct aead_request *req, int encrypt,
977 int cryptoffset, int eff_cryptlen, u8 *iv)
978 {
979 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
980 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
981 unsigned ivsize = crypto_aead_ivsize(tfm);
982 unsigned authsize = crypto_aead_authsize(tfm);
983 struct ix_sa_dir *dir;
984 struct crypt_ctl *crypt;
985 unsigned int cryptlen;
986 struct buffer_desc *buf, src_hook;
987 struct aead_ctx *req_ctx = aead_request_ctx(req);
988 struct device *dev = &pdev->dev;
989 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
990 GFP_KERNEL : GFP_ATOMIC;
991 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
992 unsigned int lastlen;
993
994 if (qmgr_stat_full(SEND_QID))
995 return -EAGAIN;
996 if (atomic_read(&ctx->configuring))
997 return -EAGAIN;
998
999 if (encrypt) {
1000 dir = &ctx->encrypt;
1001 cryptlen = req->cryptlen;
1002 } else {
1003 dir = &ctx->decrypt;
1004 /* req->cryptlen includes the authsize when decrypting */
1005 cryptlen = req->cryptlen -authsize;
1006 eff_cryptlen -= authsize;
1007 }
1008 crypt = get_crypt_desc();
1009 if (!crypt)
1010 return -ENOMEM;
1011
1012 crypt->data.aead_req = req;
1013 crypt->crypto_ctx = dir->npe_ctx_phys;
1014 crypt->mode = dir->npe_mode;
1015 crypt->init_len = dir->npe_ctx_idx;
1016
1017 crypt->crypt_offs = cryptoffset;
1018 crypt->crypt_len = eff_cryptlen;
1019
1020 crypt->auth_offs = 0;
1021 crypt->auth_len = req->assoclen + cryptlen;
1022 BUG_ON(ivsize && !req->iv);
1023 memcpy(crypt->iv, req->iv, ivsize);
1024
1025 buf = chainup_buffers(dev, req->src, crypt->auth_len,
1026 &src_hook, flags, src_direction);
1027 req_ctx->src = src_hook.next;
1028 crypt->src_buf = src_hook.phys_next;
1029 if (!buf)
1030 goto free_buf_src;
1031
1032 lastlen = buf->buf_len;
1033 if (lastlen >= authsize)
1034 crypt->icv_rev_aes = buf->phys_addr +
1035 buf->buf_len - authsize;
1036
1037 req_ctx->dst = NULL;
1038
1039 if (req->src != req->dst) {
1040 struct buffer_desc dst_hook;
1041
1042 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1043 src_direction = DMA_TO_DEVICE;
1044
1045 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1046 &dst_hook, flags, DMA_FROM_DEVICE);
1047 req_ctx->dst = dst_hook.next;
1048 crypt->dst_buf = dst_hook.phys_next;
1049
1050 if (!buf)
1051 goto free_buf_dst;
1052
1053 if (encrypt) {
1054 lastlen = buf->buf_len;
1055 if (lastlen >= authsize)
1056 crypt->icv_rev_aes = buf->phys_addr +
1057 buf->buf_len - authsize;
1058 }
1059 }
1060
1061 if (unlikely(lastlen < authsize)) {
1062 /* The 12 hmac bytes are scattered,
1063 * we need to copy them into a safe buffer */
1064 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1065 &crypt->icv_rev_aes);
1066 if (unlikely(!req_ctx->hmac_virt))
1067 goto free_buf_dst;
1068 if (!encrypt) {
1069 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1070 req->src, cryptlen, authsize, 0);
1071 }
1072 req_ctx->encrypt = encrypt;
1073 } else {
1074 req_ctx->hmac_virt = NULL;
1075 }
1076
1077 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1078 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1079 BUG_ON(qmgr_stat_overflow(SEND_QID));
1080 return -EINPROGRESS;
1081
1082 free_buf_dst:
1083 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1084 free_buf_src:
1085 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1086 crypt->ctl_flags = CTL_FLAG_UNUSED;
1087 return -ENOMEM;
1088 }
1089
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1090 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1091 {
1092 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1093 u32 *flags = &tfm->base.crt_flags;
1094 unsigned digest_len = crypto_aead_maxauthsize(tfm);
1095 int ret;
1096
1097 if (!ctx->enckey_len && !ctx->authkey_len)
1098 return 0;
1099 init_completion(&ctx->completion);
1100 atomic_inc(&ctx->configuring);
1101
1102 reset_sa_dir(&ctx->encrypt);
1103 reset_sa_dir(&ctx->decrypt);
1104
1105 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1106 if (ret)
1107 goto out;
1108 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1109 if (ret)
1110 goto out;
1111 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1112 ctx->authkey_len, digest_len);
1113 if (ret)
1114 goto out;
1115 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1116 ctx->authkey_len, digest_len);
1117 if (ret)
1118 goto out;
1119
1120 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1121 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
1122 ret = -EINVAL;
1123 goto out;
1124 } else {
1125 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1126 }
1127 }
1128 out:
1129 if (!atomic_dec_and_test(&ctx->configuring))
1130 wait_for_completion(&ctx->completion);
1131 return ret;
1132 }
1133
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1134 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1135 {
1136 int max = crypto_aead_maxauthsize(tfm) >> 2;
1137
1138 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1139 return -EINVAL;
1140 return aead_setup(tfm, authsize);
1141 }
1142
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1143 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1144 unsigned int keylen)
1145 {
1146 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1147 struct crypto_authenc_keys keys;
1148
1149 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1150 goto badkey;
1151
1152 if (keys.authkeylen > sizeof(ctx->authkey))
1153 goto badkey;
1154
1155 if (keys.enckeylen > sizeof(ctx->enckey))
1156 goto badkey;
1157
1158 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1159 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1160 ctx->authkey_len = keys.authkeylen;
1161 ctx->enckey_len = keys.enckeylen;
1162
1163 memzero_explicit(&keys, sizeof(keys));
1164 return aead_setup(tfm, crypto_aead_authsize(tfm));
1165 badkey:
1166 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1167 memzero_explicit(&keys, sizeof(keys));
1168 return -EINVAL;
1169 }
1170
des3_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1171 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1172 unsigned int keylen)
1173 {
1174 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1175 struct crypto_authenc_keys keys;
1176 int err;
1177
1178 err = crypto_authenc_extractkeys(&keys, key, keylen);
1179 if (unlikely(err))
1180 goto badkey;
1181
1182 err = -EINVAL;
1183 if (keys.authkeylen > sizeof(ctx->authkey))
1184 goto badkey;
1185
1186 err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1187 if (err)
1188 goto badkey;
1189
1190 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1191 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1192 ctx->authkey_len = keys.authkeylen;
1193 ctx->enckey_len = keys.enckeylen;
1194
1195 memzero_explicit(&keys, sizeof(keys));
1196 return aead_setup(tfm, crypto_aead_authsize(tfm));
1197 badkey:
1198 memzero_explicit(&keys, sizeof(keys));
1199 return err;
1200 }
1201
aead_encrypt(struct aead_request * req)1202 static int aead_encrypt(struct aead_request *req)
1203 {
1204 return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1205 }
1206
aead_decrypt(struct aead_request * req)1207 static int aead_decrypt(struct aead_request *req)
1208 {
1209 return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1210 }
1211
1212 static struct ixp_alg ixp4xx_algos[] = {
1213 {
1214 .crypto = {
1215 .cra_name = "cbc(des)",
1216 .cra_blocksize = DES_BLOCK_SIZE,
1217 .cra_u = { .ablkcipher = {
1218 .min_keysize = DES_KEY_SIZE,
1219 .max_keysize = DES_KEY_SIZE,
1220 .ivsize = DES_BLOCK_SIZE,
1221 }
1222 }
1223 },
1224 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1225 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1226
1227 }, {
1228 .crypto = {
1229 .cra_name = "ecb(des)",
1230 .cra_blocksize = DES_BLOCK_SIZE,
1231 .cra_u = { .ablkcipher = {
1232 .min_keysize = DES_KEY_SIZE,
1233 .max_keysize = DES_KEY_SIZE,
1234 }
1235 }
1236 },
1237 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1238 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1239 }, {
1240 .crypto = {
1241 .cra_name = "cbc(des3_ede)",
1242 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1243 .cra_u = { .ablkcipher = {
1244 .min_keysize = DES3_EDE_KEY_SIZE,
1245 .max_keysize = DES3_EDE_KEY_SIZE,
1246 .ivsize = DES3_EDE_BLOCK_SIZE,
1247 .setkey = ablk_des3_setkey,
1248 }
1249 }
1250 },
1251 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1252 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1253 }, {
1254 .crypto = {
1255 .cra_name = "ecb(des3_ede)",
1256 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1257 .cra_u = { .ablkcipher = {
1258 .min_keysize = DES3_EDE_KEY_SIZE,
1259 .max_keysize = DES3_EDE_KEY_SIZE,
1260 .setkey = ablk_des3_setkey,
1261 }
1262 }
1263 },
1264 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1265 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1266 }, {
1267 .crypto = {
1268 .cra_name = "cbc(aes)",
1269 .cra_blocksize = AES_BLOCK_SIZE,
1270 .cra_u = { .ablkcipher = {
1271 .min_keysize = AES_MIN_KEY_SIZE,
1272 .max_keysize = AES_MAX_KEY_SIZE,
1273 .ivsize = AES_BLOCK_SIZE,
1274 }
1275 }
1276 },
1277 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1278 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1279 }, {
1280 .crypto = {
1281 .cra_name = "ecb(aes)",
1282 .cra_blocksize = AES_BLOCK_SIZE,
1283 .cra_u = { .ablkcipher = {
1284 .min_keysize = AES_MIN_KEY_SIZE,
1285 .max_keysize = AES_MAX_KEY_SIZE,
1286 }
1287 }
1288 },
1289 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1290 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1291 }, {
1292 .crypto = {
1293 .cra_name = "ctr(aes)",
1294 .cra_blocksize = AES_BLOCK_SIZE,
1295 .cra_u = { .ablkcipher = {
1296 .min_keysize = AES_MIN_KEY_SIZE,
1297 .max_keysize = AES_MAX_KEY_SIZE,
1298 .ivsize = AES_BLOCK_SIZE,
1299 }
1300 }
1301 },
1302 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1303 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1304 }, {
1305 .crypto = {
1306 .cra_name = "rfc3686(ctr(aes))",
1307 .cra_blocksize = AES_BLOCK_SIZE,
1308 .cra_u = { .ablkcipher = {
1309 .min_keysize = AES_MIN_KEY_SIZE,
1310 .max_keysize = AES_MAX_KEY_SIZE,
1311 .ivsize = AES_BLOCK_SIZE,
1312 .setkey = ablk_rfc3686_setkey,
1313 .encrypt = ablk_rfc3686_crypt,
1314 .decrypt = ablk_rfc3686_crypt }
1315 }
1316 },
1317 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1318 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1319 } };
1320
1321 static struct ixp_aead_alg ixp4xx_aeads[] = {
1322 {
1323 .crypto = {
1324 .base = {
1325 .cra_name = "authenc(hmac(md5),cbc(des))",
1326 .cra_blocksize = DES_BLOCK_SIZE,
1327 },
1328 .ivsize = DES_BLOCK_SIZE,
1329 .maxauthsize = MD5_DIGEST_SIZE,
1330 },
1331 .hash = &hash_alg_md5,
1332 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1333 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1334 }, {
1335 .crypto = {
1336 .base = {
1337 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1338 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1339 },
1340 .ivsize = DES3_EDE_BLOCK_SIZE,
1341 .maxauthsize = MD5_DIGEST_SIZE,
1342 .setkey = des3_aead_setkey,
1343 },
1344 .hash = &hash_alg_md5,
1345 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1346 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1347 }, {
1348 .crypto = {
1349 .base = {
1350 .cra_name = "authenc(hmac(sha1),cbc(des))",
1351 .cra_blocksize = DES_BLOCK_SIZE,
1352 },
1353 .ivsize = DES_BLOCK_SIZE,
1354 .maxauthsize = SHA1_DIGEST_SIZE,
1355 },
1356 .hash = &hash_alg_sha1,
1357 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1358 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1359 }, {
1360 .crypto = {
1361 .base = {
1362 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1363 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1364 },
1365 .ivsize = DES3_EDE_BLOCK_SIZE,
1366 .maxauthsize = SHA1_DIGEST_SIZE,
1367 .setkey = des3_aead_setkey,
1368 },
1369 .hash = &hash_alg_sha1,
1370 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1371 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1372 }, {
1373 .crypto = {
1374 .base = {
1375 .cra_name = "authenc(hmac(md5),cbc(aes))",
1376 .cra_blocksize = AES_BLOCK_SIZE,
1377 },
1378 .ivsize = AES_BLOCK_SIZE,
1379 .maxauthsize = MD5_DIGEST_SIZE,
1380 },
1381 .hash = &hash_alg_md5,
1382 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1383 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1384 }, {
1385 .crypto = {
1386 .base = {
1387 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1388 .cra_blocksize = AES_BLOCK_SIZE,
1389 },
1390 .ivsize = AES_BLOCK_SIZE,
1391 .maxauthsize = SHA1_DIGEST_SIZE,
1392 },
1393 .hash = &hash_alg_sha1,
1394 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1395 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1396 } };
1397
1398 #define IXP_POSTFIX "-ixp4xx"
1399
1400 static const struct platform_device_info ixp_dev_info __initdata = {
1401 .name = DRIVER_NAME,
1402 .id = 0,
1403 .dma_mask = DMA_BIT_MASK(32),
1404 };
1405
ixp_module_init(void)1406 static int __init ixp_module_init(void)
1407 {
1408 int num = ARRAY_SIZE(ixp4xx_algos);
1409 int i, err;
1410
1411 pdev = platform_device_register_full(&ixp_dev_info);
1412 if (IS_ERR(pdev))
1413 return PTR_ERR(pdev);
1414
1415 spin_lock_init(&desc_lock);
1416 spin_lock_init(&emerg_lock);
1417
1418 err = init_ixp_crypto(&pdev->dev);
1419 if (err) {
1420 platform_device_unregister(pdev);
1421 return err;
1422 }
1423 for (i=0; i< num; i++) {
1424 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1425
1426 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1427 "%s"IXP_POSTFIX, cra->cra_name) >=
1428 CRYPTO_MAX_ALG_NAME)
1429 {
1430 continue;
1431 }
1432 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1433 continue;
1434 }
1435
1436 /* block ciphers */
1437 cra->cra_type = &crypto_ablkcipher_type;
1438 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1439 CRYPTO_ALG_KERN_DRIVER_ONLY |
1440 CRYPTO_ALG_ASYNC;
1441 if (!cra->cra_ablkcipher.setkey)
1442 cra->cra_ablkcipher.setkey = ablk_setkey;
1443 if (!cra->cra_ablkcipher.encrypt)
1444 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1445 if (!cra->cra_ablkcipher.decrypt)
1446 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1447 cra->cra_init = init_tfm_ablk;
1448
1449 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1450 cra->cra_module = THIS_MODULE;
1451 cra->cra_alignmask = 3;
1452 cra->cra_priority = 300;
1453 cra->cra_exit = exit_tfm;
1454 if (crypto_register_alg(cra))
1455 printk(KERN_ERR "Failed to register '%s'\n",
1456 cra->cra_name);
1457 else
1458 ixp4xx_algos[i].registered = 1;
1459 }
1460
1461 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1462 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1463
1464 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1465 "%s"IXP_POSTFIX, cra->base.cra_name) >=
1466 CRYPTO_MAX_ALG_NAME)
1467 continue;
1468 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1469 continue;
1470
1471 /* authenc */
1472 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1473 CRYPTO_ALG_ASYNC;
1474 cra->setkey = cra->setkey ?: aead_setkey;
1475 cra->setauthsize = aead_setauthsize;
1476 cra->encrypt = aead_encrypt;
1477 cra->decrypt = aead_decrypt;
1478 cra->init = init_tfm_aead;
1479 cra->exit = exit_tfm_aead;
1480
1481 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1482 cra->base.cra_module = THIS_MODULE;
1483 cra->base.cra_alignmask = 3;
1484 cra->base.cra_priority = 300;
1485
1486 if (crypto_register_aead(cra))
1487 printk(KERN_ERR "Failed to register '%s'\n",
1488 cra->base.cra_driver_name);
1489 else
1490 ixp4xx_aeads[i].registered = 1;
1491 }
1492 return 0;
1493 }
1494
ixp_module_exit(void)1495 static void __exit ixp_module_exit(void)
1496 {
1497 int num = ARRAY_SIZE(ixp4xx_algos);
1498 int i;
1499
1500 for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1501 if (ixp4xx_aeads[i].registered)
1502 crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1503 }
1504
1505 for (i=0; i< num; i++) {
1506 if (ixp4xx_algos[i].registered)
1507 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1508 }
1509 release_ixp_crypto(&pdev->dev);
1510 platform_device_unregister(pdev);
1511 }
1512
1513 module_init(ixp_module_init);
1514 module_exit(ixp_module_exit);
1515
1516 MODULE_LICENSE("GPL");
1517 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1518 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1519
1520