• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * Copyright (C) ST-Ericsson SA 2010
4  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
5  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
6  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
7  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
8  * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
9  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/platform_device.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/semaphore.h>
27 #include <linux/platform_data/dma-ste-dma40.h>
28 
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/ctr.h>
32 #include <crypto/internal/des.h>
33 #include <crypto/scatterwalk.h>
34 
35 #include <linux/platform_data/crypto-ux500.h>
36 
37 #include "cryp_p.h"
38 #include "cryp.h"
39 
40 #define CRYP_MAX_KEY_SIZE	32
41 #define BYTES_PER_WORD		4
42 
43 static int cryp_mode;
44 static atomic_t session_id;
45 
46 static struct stedma40_chan_cfg *mem_to_engine;
47 static struct stedma40_chan_cfg *engine_to_mem;
48 
49 /**
50  * struct cryp_driver_data - data specific to the driver.
51  *
52  * @device_list: A list of registered devices to choose from.
53  * @device_allocation: A semaphore initialized with number of devices.
54  */
55 struct cryp_driver_data {
56 	struct klist device_list;
57 	struct semaphore device_allocation;
58 };
59 
60 /**
61  * struct cryp_ctx - Crypto context
62  * @config: Crypto mode.
63  * @key[CRYP_MAX_KEY_SIZE]: Key.
64  * @keylen: Length of key.
65  * @iv: Pointer to initialization vector.
66  * @indata: Pointer to indata.
67  * @outdata: Pointer to outdata.
68  * @datalen: Length of indata.
69  * @outlen: Length of outdata.
70  * @blocksize: Size of blocks.
71  * @updated: Updated flag.
72  * @dev_ctx: Device dependent context.
73  * @device: Pointer to the device.
74  */
75 struct cryp_ctx {
76 	struct cryp_config config;
77 	u8 key[CRYP_MAX_KEY_SIZE];
78 	u32 keylen;
79 	u8 *iv;
80 	const u8 *indata;
81 	u8 *outdata;
82 	u32 datalen;
83 	u32 outlen;
84 	u32 blocksize;
85 	u8 updated;
86 	struct cryp_device_context dev_ctx;
87 	struct cryp_device_data *device;
88 	u32 session_id;
89 };
90 
91 static struct cryp_driver_data driver_data;
92 
93 /**
94  * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
95  * @in: Data to convert.
96  */
uint8p_to_uint32_be(u8 * in)97 static inline u32 uint8p_to_uint32_be(u8 *in)
98 {
99 	u32 *data = (u32 *)in;
100 
101 	return cpu_to_be32p(data);
102 }
103 
104 /**
105  * swap_bits_in_byte - mirror the bits in a byte
106  * @b: the byte to be mirrored
107  *
108  * The bits are swapped the following way:
109  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
110  *  nibble 2 (n2) bits 4-7.
111  *
112  *  Nibble 1 (n1):
113  *  (The "old" (moved) bit is replaced with a zero)
114  *  1. Move bit 6 and 7, 4 positions to the left.
115  *  2. Move bit 3 and 5, 2 positions to the left.
116  *  3. Move bit 1-4, 1 position to the left.
117  *
118  *  Nibble 2 (n2):
119  *  1. Move bit 0 and 1, 4 positions to the right.
120  *  2. Move bit 2 and 4, 2 positions to the right.
121  *  3. Move bit 3-6, 1 position to the right.
122  *
123  *  Combine the two nibbles to a complete and swapped byte.
124  */
125 
swap_bits_in_byte(u8 b)126 static inline u8 swap_bits_in_byte(u8 b)
127 {
128 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
129 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
130 				  right shift 2 */
131 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
132 				  right shift 1 */
133 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
134 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
135 				  left shift 2 */
136 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
137 				  left shift 1 */
138 
139 	u8 n1;
140 	u8 n2;
141 
142 	/* Swap most significant nibble */
143 	/* Right shift 4, bits 6 and 7 */
144 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
145 	/* Right shift 2, bits 3 and 5 */
146 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147 	/* Right shift 1, bits 1-4 */
148 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
149 
150 	/* Swap least significant nibble */
151 	/* Left shift 4, bits 0 and 1 */
152 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
153 	/* Left shift 2, bits 2 and 4 */
154 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155 	/* Left shift 1, bits 3-6 */
156 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
157 
158 	return n1 | n2;
159 }
160 
swap_words_in_key_and_bits_in_byte(const u8 * in,u8 * out,u32 len)161 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162 						      u8 *out, u32 len)
163 {
164 	unsigned int i = 0;
165 	int j;
166 	int index = 0;
167 
168 	j = len - BYTES_PER_WORD;
169 	while (j >= 0) {
170 		for (i = 0; i < BYTES_PER_WORD; i++) {
171 			index = len - j - BYTES_PER_WORD + i;
172 			out[j + i] =
173 				swap_bits_in_byte(in[index]);
174 		}
175 		j -= BYTES_PER_WORD;
176 	}
177 }
178 
add_session_id(struct cryp_ctx * ctx)179 static void add_session_id(struct cryp_ctx *ctx)
180 {
181 	/*
182 	 * We never want 0 to be a valid value, since this is the default value
183 	 * for the software context.
184 	 */
185 	if (unlikely(atomic_inc_and_test(&session_id)))
186 		atomic_inc(&session_id);
187 
188 	ctx->session_id = atomic_read(&session_id);
189 }
190 
cryp_interrupt_handler(int irq,void * param)191 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192 {
193 	struct cryp_ctx *ctx;
194 	int count;
195 	struct cryp_device_data *device_data;
196 
197 	if (param == NULL) {
198 		BUG_ON(!param);
199 		return IRQ_HANDLED;
200 	}
201 
202 	/* The device is coming from the one found in hw_crypt_noxts. */
203 	device_data = (struct cryp_device_data *)param;
204 
205 	ctx = device_data->current_ctx;
206 
207 	if (ctx == NULL) {
208 		BUG_ON(!ctx);
209 		return IRQ_HANDLED;
210 	}
211 
212 	dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213 		cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214 		"out" : "in");
215 
216 	if (cryp_pending_irq_src(device_data,
217 				 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218 		if (ctx->outlen / ctx->blocksize > 0) {
219 			count = ctx->blocksize / 4;
220 
221 			readsl(&device_data->base->dout, ctx->outdata, count);
222 			ctx->outdata += count;
223 			ctx->outlen -= count;
224 
225 			if (ctx->outlen == 0) {
226 				cryp_disable_irq_src(device_data,
227 						     CRYP_IRQ_SRC_OUTPUT_FIFO);
228 			}
229 		}
230 	} else if (cryp_pending_irq_src(device_data,
231 					CRYP_IRQ_SRC_INPUT_FIFO)) {
232 		if (ctx->datalen / ctx->blocksize > 0) {
233 			count = ctx->blocksize / 4;
234 
235 			writesl(&device_data->base->din, ctx->indata, count);
236 
237 			ctx->indata += count;
238 			ctx->datalen -= count;
239 
240 			if (ctx->datalen == 0)
241 				cryp_disable_irq_src(device_data,
242 						   CRYP_IRQ_SRC_INPUT_FIFO);
243 
244 			if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245 				CRYP_PUT_BITS(&device_data->base->cr,
246 					      CRYP_START_ENABLE,
247 					      CRYP_CR_START_POS,
248 					      CRYP_CR_START_MASK);
249 
250 				cryp_wait_until_done(device_data);
251 			}
252 		}
253 	}
254 
255 	return IRQ_HANDLED;
256 }
257 
mode_is_aes(enum cryp_algo_mode mode)258 static int mode_is_aes(enum cryp_algo_mode mode)
259 {
260 	return	CRYP_ALGO_AES_ECB == mode ||
261 		CRYP_ALGO_AES_CBC == mode ||
262 		CRYP_ALGO_AES_CTR == mode ||
263 		CRYP_ALGO_AES_XTS == mode;
264 }
265 
cfg_iv(struct cryp_device_data * device_data,u32 left,u32 right,enum cryp_init_vector_index index)266 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267 		  enum cryp_init_vector_index index)
268 {
269 	struct cryp_init_vector_value vector_value;
270 
271 	dev_dbg(device_data->dev, "[%s]", __func__);
272 
273 	vector_value.init_value_left = left;
274 	vector_value.init_value_right = right;
275 
276 	return cryp_configure_init_vector(device_data,
277 					  index,
278 					  vector_value);
279 }
280 
cfg_ivs(struct cryp_device_data * device_data,struct cryp_ctx * ctx)281 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
282 {
283 	int i;
284 	int status = 0;
285 	int num_of_regs = ctx->blocksize / 8;
286 	u32 iv[AES_BLOCK_SIZE / 4];
287 
288 	dev_dbg(device_data->dev, "[%s]", __func__);
289 
290 	/*
291 	 * Since we loop on num_of_regs we need to have a check in case
292 	 * someone provides an incorrect blocksize which would force calling
293 	 * cfg_iv with i greater than 2 which is an error.
294 	 */
295 	if (num_of_regs > 2) {
296 		dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297 			__func__, ctx->blocksize);
298 		return -EINVAL;
299 	}
300 
301 	for (i = 0; i < ctx->blocksize / 4; i++)
302 		iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
303 
304 	for (i = 0; i < num_of_regs; i++) {
305 		status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306 				(enum cryp_init_vector_index) i);
307 		if (status != 0)
308 			return status;
309 	}
310 	return status;
311 }
312 
set_key(struct cryp_device_data * device_data,u32 left_key,u32 right_key,enum cryp_key_reg_index index)313 static int set_key(struct cryp_device_data *device_data,
314 		   u32 left_key,
315 		   u32 right_key,
316 		   enum cryp_key_reg_index index)
317 {
318 	struct cryp_key_value key_value;
319 	int cryp_error;
320 
321 	dev_dbg(device_data->dev, "[%s]", __func__);
322 
323 	key_value.key_value_left = left_key;
324 	key_value.key_value_right = right_key;
325 
326 	cryp_error = cryp_configure_key_values(device_data,
327 					       index,
328 					       key_value);
329 	if (cryp_error != 0)
330 		dev_err(device_data->dev, "[%s]: "
331 			"cryp_configure_key_values() failed!", __func__);
332 
333 	return cryp_error;
334 }
335 
cfg_keys(struct cryp_ctx * ctx)336 static int cfg_keys(struct cryp_ctx *ctx)
337 {
338 	int i;
339 	int num_of_regs = ctx->keylen / 8;
340 	u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341 	int cryp_error = 0;
342 
343 	dev_dbg(ctx->device->dev, "[%s]", __func__);
344 
345 	if (mode_is_aes(ctx->config.algomode)) {
346 		swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347 						   (u8 *)swapped_key,
348 						   ctx->keylen);
349 	} else {
350 		for (i = 0; i < ctx->keylen / 4; i++)
351 			swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
352 	}
353 
354 	for (i = 0; i < num_of_regs; i++) {
355 		cryp_error = set_key(ctx->device,
356 				     *(((u32 *)swapped_key)+i*2),
357 				     *(((u32 *)swapped_key)+i*2+1),
358 				     (enum cryp_key_reg_index) i);
359 
360 		if (cryp_error != 0) {
361 			dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362 					__func__);
363 			return cryp_error;
364 		}
365 	}
366 	return cryp_error;
367 }
368 
cryp_setup_context(struct cryp_ctx * ctx,struct cryp_device_data * device_data)369 static int cryp_setup_context(struct cryp_ctx *ctx,
370 			      struct cryp_device_data *device_data)
371 {
372 	u32 control_register = CRYP_CR_DEFAULT;
373 
374 	switch (cryp_mode) {
375 	case CRYP_MODE_INTERRUPT:
376 		writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377 		break;
378 
379 	case CRYP_MODE_DMA:
380 		writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381 		break;
382 
383 	default:
384 		break;
385 	}
386 
387 	if (ctx->updated == 0) {
388 		cryp_flush_inoutfifo(device_data);
389 		if (cfg_keys(ctx) != 0) {
390 			dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391 				__func__);
392 			return -EINVAL;
393 		}
394 
395 		if (ctx->iv &&
396 		    CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397 		    CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398 		    CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399 			if (cfg_ivs(device_data, ctx) != 0)
400 				return -EPERM;
401 		}
402 
403 		cryp_set_configuration(device_data, &ctx->config,
404 				       &control_register);
405 		add_session_id(ctx);
406 	} else if (ctx->updated == 1 &&
407 		   ctx->session_id != atomic_read(&session_id)) {
408 		cryp_flush_inoutfifo(device_data);
409 		cryp_restore_device_context(device_data, &ctx->dev_ctx);
410 
411 		add_session_id(ctx);
412 		control_register = ctx->dev_ctx.cr;
413 	} else
414 		control_register = ctx->dev_ctx.cr;
415 
416 	writel(control_register |
417 	       (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418 	       &device_data->base->cr);
419 
420 	return 0;
421 }
422 
cryp_get_device_data(struct cryp_ctx * ctx,struct cryp_device_data ** device_data)423 static int cryp_get_device_data(struct cryp_ctx *ctx,
424 				struct cryp_device_data **device_data)
425 {
426 	int ret;
427 	struct klist_iter device_iterator;
428 	struct klist_node *device_node;
429 	struct cryp_device_data *local_device_data = NULL;
430 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
431 
432 	/* Wait until a device is available */
433 	ret = down_interruptible(&driver_data.device_allocation);
434 	if (ret)
435 		return ret;  /* Interrupted */
436 
437 	/* Select a device */
438 	klist_iter_init(&driver_data.device_list, &device_iterator);
439 
440 	device_node = klist_next(&device_iterator);
441 	while (device_node) {
442 		local_device_data = container_of(device_node,
443 					   struct cryp_device_data, list_node);
444 		spin_lock(&local_device_data->ctx_lock);
445 		/* current_ctx allocates a device, NULL = unallocated */
446 		if (local_device_data->current_ctx) {
447 			device_node = klist_next(&device_iterator);
448 		} else {
449 			local_device_data->current_ctx = ctx;
450 			ctx->device = local_device_data;
451 			spin_unlock(&local_device_data->ctx_lock);
452 			break;
453 		}
454 		spin_unlock(&local_device_data->ctx_lock);
455 	}
456 	klist_iter_exit(&device_iterator);
457 
458 	if (!device_node) {
459 		/**
460 		 * No free device found.
461 		 * Since we allocated a device with down_interruptible, this
462 		 * should not be able to happen.
463 		 * Number of available devices, which are contained in
464 		 * device_allocation, is therefore decremented by not doing
465 		 * an up(device_allocation).
466 		 */
467 		return -EBUSY;
468 	}
469 
470 	*device_data = local_device_data;
471 
472 	return 0;
473 }
474 
cryp_dma_setup_channel(struct cryp_device_data * device_data,struct device * dev)475 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476 				   struct device *dev)
477 {
478 	struct dma_slave_config mem2cryp = {
479 		.direction = DMA_MEM_TO_DEV,
480 		.dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482 		.dst_maxburst = 4,
483 	};
484 	struct dma_slave_config cryp2mem = {
485 		.direction = DMA_DEV_TO_MEM,
486 		.src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487 		.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488 		.src_maxburst = 4,
489 	};
490 
491 	dma_cap_zero(device_data->dma.mask);
492 	dma_cap_set(DMA_SLAVE, device_data->dma.mask);
493 
494 	device_data->dma.cfg_mem2cryp = mem_to_engine;
495 	device_data->dma.chan_mem2cryp =
496 		dma_request_channel(device_data->dma.mask,
497 				    stedma40_filter,
498 				    device_data->dma.cfg_mem2cryp);
499 
500 	device_data->dma.cfg_cryp2mem = engine_to_mem;
501 	device_data->dma.chan_cryp2mem =
502 		dma_request_channel(device_data->dma.mask,
503 				    stedma40_filter,
504 				    device_data->dma.cfg_cryp2mem);
505 
506 	dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507 	dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
508 
509 	init_completion(&device_data->dma.cryp_dma_complete);
510 }
511 
cryp_dma_out_callback(void * data)512 static void cryp_dma_out_callback(void *data)
513 {
514 	struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
516 
517 	complete(&ctx->device->dma.cryp_dma_complete);
518 }
519 
cryp_set_dma_transfer(struct cryp_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)520 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521 				 struct scatterlist *sg,
522 				 int len,
523 				 enum dma_data_direction direction)
524 {
525 	struct dma_async_tx_descriptor *desc;
526 	struct dma_chan *channel = NULL;
527 	dma_cookie_t cookie;
528 
529 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
530 
531 	if (unlikely(!IS_ALIGNED((unsigned long)sg, 4))) {
532 		dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533 			"aligned! Addr: 0x%08lx", __func__, (unsigned long)sg);
534 		return -EFAULT;
535 	}
536 
537 	switch (direction) {
538 	case DMA_TO_DEVICE:
539 		channel = ctx->device->dma.chan_mem2cryp;
540 		ctx->device->dma.sg_src = sg;
541 		ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542 						 ctx->device->dma.sg_src,
543 						 ctx->device->dma.nents_src,
544 						 direction);
545 
546 		if (!ctx->device->dma.sg_src_len) {
547 			dev_dbg(ctx->device->dev,
548 				"[%s]: Could not map the sg list (TO_DEVICE)",
549 				__func__);
550 			return -EFAULT;
551 		}
552 
553 		dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554 			"(TO_DEVICE)", __func__);
555 
556 		desc = dmaengine_prep_slave_sg(channel,
557 				ctx->device->dma.sg_src,
558 				ctx->device->dma.sg_src_len,
559 				DMA_MEM_TO_DEV, DMA_CTRL_ACK);
560 		break;
561 
562 	case DMA_FROM_DEVICE:
563 		channel = ctx->device->dma.chan_cryp2mem;
564 		ctx->device->dma.sg_dst = sg;
565 		ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566 						 ctx->device->dma.sg_dst,
567 						 ctx->device->dma.nents_dst,
568 						 direction);
569 
570 		if (!ctx->device->dma.sg_dst_len) {
571 			dev_dbg(ctx->device->dev,
572 				"[%s]: Could not map the sg list (FROM_DEVICE)",
573 				__func__);
574 			return -EFAULT;
575 		}
576 
577 		dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578 			"(FROM_DEVICE)", __func__);
579 
580 		desc = dmaengine_prep_slave_sg(channel,
581 				ctx->device->dma.sg_dst,
582 				ctx->device->dma.sg_dst_len,
583 				DMA_DEV_TO_MEM,
584 				DMA_CTRL_ACK |
585 				DMA_PREP_INTERRUPT);
586 
587 		desc->callback = cryp_dma_out_callback;
588 		desc->callback_param = ctx;
589 		break;
590 
591 	default:
592 		dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593 			__func__);
594 		return -EFAULT;
595 	}
596 
597 	cookie = dmaengine_submit(desc);
598 	if (dma_submit_error(cookie)) {
599 		dev_dbg(ctx->device->dev, "[%s]: DMA submission failed\n",
600 			__func__);
601 		return cookie;
602 	}
603 
604 	dma_async_issue_pending(channel);
605 
606 	return 0;
607 }
608 
cryp_dma_done(struct cryp_ctx * ctx)609 static void cryp_dma_done(struct cryp_ctx *ctx)
610 {
611 	struct dma_chan *chan;
612 
613 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
614 
615 	chan = ctx->device->dma.chan_mem2cryp;
616 	dmaengine_terminate_all(chan);
617 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
618 		     ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
619 
620 	chan = ctx->device->dma.chan_cryp2mem;
621 	dmaengine_terminate_all(chan);
622 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
623 		     ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
624 }
625 
cryp_dma_write(struct cryp_ctx * ctx,struct scatterlist * sg,int len)626 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
627 			  int len)
628 {
629 	int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
630 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
631 
632 	if (error) {
633 		dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
634 			"failed", __func__);
635 		return error;
636 	}
637 
638 	return len;
639 }
640 
cryp_dma_read(struct cryp_ctx * ctx,struct scatterlist * sg,int len)641 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
642 {
643 	int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
644 	if (error) {
645 		dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
646 			"failed", __func__);
647 		return error;
648 	}
649 
650 	return len;
651 }
652 
cryp_polling_mode(struct cryp_ctx * ctx,struct cryp_device_data * device_data)653 static void cryp_polling_mode(struct cryp_ctx *ctx,
654 			      struct cryp_device_data *device_data)
655 {
656 	int len = ctx->blocksize / BYTES_PER_WORD;
657 	int remaining_length = ctx->datalen;
658 	u32 *indata = (u32 *)ctx->indata;
659 	u32 *outdata = (u32 *)ctx->outdata;
660 
661 	while (remaining_length > 0) {
662 		writesl(&device_data->base->din, indata, len);
663 		indata += len;
664 		remaining_length -= (len * BYTES_PER_WORD);
665 		cryp_wait_until_done(device_data);
666 
667 		readsl(&device_data->base->dout, outdata, len);
668 		outdata += len;
669 		cryp_wait_until_done(device_data);
670 	}
671 }
672 
cryp_disable_power(struct device * dev,struct cryp_device_data * device_data,bool save_device_context)673 static int cryp_disable_power(struct device *dev,
674 			      struct cryp_device_data *device_data,
675 			      bool save_device_context)
676 {
677 	int ret = 0;
678 
679 	dev_dbg(dev, "[%s]", __func__);
680 
681 	spin_lock(&device_data->power_state_spinlock);
682 	if (!device_data->power_state)
683 		goto out;
684 
685 	spin_lock(&device_data->ctx_lock);
686 	if (save_device_context && device_data->current_ctx) {
687 		cryp_save_device_context(device_data,
688 				&device_data->current_ctx->dev_ctx,
689 				cryp_mode);
690 		device_data->restore_dev_ctx = true;
691 	}
692 	spin_unlock(&device_data->ctx_lock);
693 
694 	clk_disable(device_data->clk);
695 	ret = regulator_disable(device_data->pwr_regulator);
696 	if (ret)
697 		dev_err(dev, "[%s]: "
698 				"regulator_disable() failed!",
699 				__func__);
700 
701 	device_data->power_state = false;
702 
703 out:
704 	spin_unlock(&device_data->power_state_spinlock);
705 
706 	return ret;
707 }
708 
cryp_enable_power(struct device * dev,struct cryp_device_data * device_data,bool restore_device_context)709 static int cryp_enable_power(
710 		struct device *dev,
711 		struct cryp_device_data *device_data,
712 		bool restore_device_context)
713 {
714 	int ret = 0;
715 
716 	dev_dbg(dev, "[%s]", __func__);
717 
718 	spin_lock(&device_data->power_state_spinlock);
719 	if (!device_data->power_state) {
720 		ret = regulator_enable(device_data->pwr_regulator);
721 		if (ret) {
722 			dev_err(dev, "[%s]: regulator_enable() failed!",
723 					__func__);
724 			goto out;
725 		}
726 
727 		ret = clk_enable(device_data->clk);
728 		if (ret) {
729 			dev_err(dev, "[%s]: clk_enable() failed!",
730 					__func__);
731 			regulator_disable(device_data->pwr_regulator);
732 			goto out;
733 		}
734 		device_data->power_state = true;
735 	}
736 
737 	if (device_data->restore_dev_ctx) {
738 		spin_lock(&device_data->ctx_lock);
739 		if (restore_device_context && device_data->current_ctx) {
740 			device_data->restore_dev_ctx = false;
741 			cryp_restore_device_context(device_data,
742 					&device_data->current_ctx->dev_ctx);
743 		}
744 		spin_unlock(&device_data->ctx_lock);
745 	}
746 out:
747 	spin_unlock(&device_data->power_state_spinlock);
748 
749 	return ret;
750 }
751 
hw_crypt_noxts(struct cryp_ctx * ctx,struct cryp_device_data * device_data)752 static int hw_crypt_noxts(struct cryp_ctx *ctx,
753 			  struct cryp_device_data *device_data)
754 {
755 	int ret = 0;
756 
757 	const u8 *indata = ctx->indata;
758 	u8 *outdata = ctx->outdata;
759 	u32 datalen = ctx->datalen;
760 	u32 outlen = datalen;
761 
762 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
763 
764 	ctx->outlen = ctx->datalen;
765 
766 	if (unlikely(!IS_ALIGNED((unsigned long)indata, 4))) {
767 		pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
768 			 "0x%08lx", __func__, (unsigned long)indata);
769 		return -EINVAL;
770 	}
771 
772 	ret = cryp_setup_context(ctx, device_data);
773 
774 	if (ret)
775 		goto out;
776 
777 	if (cryp_mode == CRYP_MODE_INTERRUPT) {
778 		cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
779 				    CRYP_IRQ_SRC_OUTPUT_FIFO);
780 
781 		/*
782 		 * ctx->outlen is decremented in the cryp_interrupt_handler
783 		 * function. We had to add cpu_relax() (barrier) to make sure
784 		 * that gcc didn't optimze away this variable.
785 		 */
786 		while (ctx->outlen > 0)
787 			cpu_relax();
788 	} else if (cryp_mode == CRYP_MODE_POLLING ||
789 		   cryp_mode == CRYP_MODE_DMA) {
790 		/*
791 		 * The reason for having DMA in this if case is that if we are
792 		 * running cryp_mode = 2, then we separate DMA routines for
793 		 * handling cipher/plaintext > blocksize, except when
794 		 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
795 		 * the polling mode. Overhead of doing DMA setup eats up the
796 		 * benefits using it.
797 		 */
798 		cryp_polling_mode(ctx, device_data);
799 	} else {
800 		dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
801 			__func__);
802 		ret = -EPERM;
803 		goto out;
804 	}
805 
806 	cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
807 	ctx->updated = 1;
808 
809 out:
810 	ctx->indata = indata;
811 	ctx->outdata = outdata;
812 	ctx->datalen = datalen;
813 	ctx->outlen = outlen;
814 
815 	return ret;
816 }
817 
get_nents(struct scatterlist * sg,int nbytes)818 static int get_nents(struct scatterlist *sg, int nbytes)
819 {
820 	int nents = 0;
821 
822 	while (nbytes > 0) {
823 		nbytes -= sg->length;
824 		sg = sg_next(sg);
825 		nents++;
826 	}
827 
828 	return nents;
829 }
830 
ablk_dma_crypt(struct ablkcipher_request * areq)831 static int ablk_dma_crypt(struct ablkcipher_request *areq)
832 {
833 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
834 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
835 	struct cryp_device_data *device_data;
836 
837 	int bytes_written = 0;
838 	int bytes_read = 0;
839 	int ret;
840 
841 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
842 
843 	ctx->datalen = areq->nbytes;
844 	ctx->outlen = areq->nbytes;
845 
846 	ret = cryp_get_device_data(ctx, &device_data);
847 	if (ret)
848 		return ret;
849 
850 	ret = cryp_setup_context(ctx, device_data);
851 	if (ret)
852 		goto out;
853 
854 	/* We have the device now, so store the nents in the dma struct. */
855 	ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
856 	ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
857 
858 	/* Enable DMA in- and output. */
859 	cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
860 
861 	bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
862 	bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
863 
864 	wait_for_completion(&ctx->device->dma.cryp_dma_complete);
865 	cryp_dma_done(ctx);
866 
867 	cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
868 	ctx->updated = 1;
869 
870 out:
871 	spin_lock(&device_data->ctx_lock);
872 	device_data->current_ctx = NULL;
873 	ctx->device = NULL;
874 	spin_unlock(&device_data->ctx_lock);
875 
876 	/*
877 	 * The down_interruptible part for this semaphore is called in
878 	 * cryp_get_device_data.
879 	 */
880 	up(&driver_data.device_allocation);
881 
882 	if (unlikely(bytes_written != bytes_read))
883 		return -EPERM;
884 
885 	return 0;
886 }
887 
ablk_crypt(struct ablkcipher_request * areq)888 static int ablk_crypt(struct ablkcipher_request *areq)
889 {
890 	struct ablkcipher_walk walk;
891 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
892 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
893 	struct cryp_device_data *device_data;
894 	unsigned long src_paddr;
895 	unsigned long dst_paddr;
896 	int ret;
897 	int nbytes;
898 
899 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
900 
901 	ret = cryp_get_device_data(ctx, &device_data);
902 	if (ret)
903 		goto out;
904 
905 	ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
906 	ret = ablkcipher_walk_phys(areq, &walk);
907 
908 	if (ret) {
909 		pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
910 			__func__);
911 		goto out;
912 	}
913 
914 	while ((nbytes = walk.nbytes) > 0) {
915 		ctx->iv = walk.iv;
916 		src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
917 		ctx->indata = phys_to_virt(src_paddr);
918 
919 		dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
920 		ctx->outdata = phys_to_virt(dst_paddr);
921 
922 		ctx->datalen = nbytes - (nbytes % ctx->blocksize);
923 
924 		ret = hw_crypt_noxts(ctx, device_data);
925 		if (ret)
926 			goto out;
927 
928 		nbytes -= ctx->datalen;
929 		ret = ablkcipher_walk_done(areq, &walk, nbytes);
930 		if (ret)
931 			goto out;
932 	}
933 	ablkcipher_walk_complete(&walk);
934 
935 out:
936 	/* Release the device */
937 	spin_lock(&device_data->ctx_lock);
938 	device_data->current_ctx = NULL;
939 	ctx->device = NULL;
940 	spin_unlock(&device_data->ctx_lock);
941 
942 	/*
943 	 * The down_interruptible part for this semaphore is called in
944 	 * cryp_get_device_data.
945 	 */
946 	up(&driver_data.device_allocation);
947 
948 	return ret;
949 }
950 
aes_ablkcipher_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)951 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
952 				 const u8 *key, unsigned int keylen)
953 {
954 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
955 	u32 *flags = &cipher->base.crt_flags;
956 
957 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
958 
959 	switch (keylen) {
960 	case AES_KEYSIZE_128:
961 		ctx->config.keysize = CRYP_KEY_SIZE_128;
962 		break;
963 
964 	case AES_KEYSIZE_192:
965 		ctx->config.keysize = CRYP_KEY_SIZE_192;
966 		break;
967 
968 	case AES_KEYSIZE_256:
969 		ctx->config.keysize = CRYP_KEY_SIZE_256;
970 		break;
971 
972 	default:
973 		pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
974 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
975 		return -EINVAL;
976 	}
977 
978 	memcpy(ctx->key, key, keylen);
979 	ctx->keylen = keylen;
980 
981 	ctx->updated = 0;
982 
983 	return 0;
984 }
985 
des_ablkcipher_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)986 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
987 				 const u8 *key, unsigned int keylen)
988 {
989 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
990 	int err;
991 
992 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
993 
994 	err = verify_ablkcipher_des_key(cipher, key);
995 	if (err)
996 		return err;
997 
998 	memcpy(ctx->key, key, keylen);
999 	ctx->keylen = keylen;
1000 
1001 	ctx->updated = 0;
1002 	return 0;
1003 }
1004 
des3_ablkcipher_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)1005 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1006 				  const u8 *key, unsigned int keylen)
1007 {
1008 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1009 	int err;
1010 
1011 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1012 
1013 	err = verify_ablkcipher_des3_key(cipher, key);
1014 	if (err)
1015 		return err;
1016 
1017 	memcpy(ctx->key, key, keylen);
1018 	ctx->keylen = keylen;
1019 
1020 	ctx->updated = 0;
1021 	return 0;
1022 }
1023 
cryp_blk_encrypt(struct ablkcipher_request * areq)1024 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1025 {
1026 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1027 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1028 
1029 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1030 
1031 	ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1032 
1033 	/*
1034 	 * DMA does not work for DES due to a hw bug */
1035 	if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1036 		return ablk_dma_crypt(areq);
1037 
1038 	/* For everything except DMA, we run the non DMA version. */
1039 	return ablk_crypt(areq);
1040 }
1041 
cryp_blk_decrypt(struct ablkcipher_request * areq)1042 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1043 {
1044 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1045 	struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1046 
1047 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1048 
1049 	ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1050 
1051 	/* DMA does not work for DES due to a hw bug */
1052 	if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1053 		return ablk_dma_crypt(areq);
1054 
1055 	/* For everything except DMA, we run the non DMA version. */
1056 	return ablk_crypt(areq);
1057 }
1058 
1059 struct cryp_algo_template {
1060 	enum cryp_algo_mode algomode;
1061 	struct crypto_alg crypto;
1062 };
1063 
cryp_cra_init(struct crypto_tfm * tfm)1064 static int cryp_cra_init(struct crypto_tfm *tfm)
1065 {
1066 	struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1067 	struct crypto_alg *alg = tfm->__crt_alg;
1068 	struct cryp_algo_template *cryp_alg = container_of(alg,
1069 			struct cryp_algo_template,
1070 			crypto);
1071 
1072 	ctx->config.algomode = cryp_alg->algomode;
1073 	ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1074 
1075 	return 0;
1076 }
1077 
1078 static struct cryp_algo_template cryp_algs[] = {
1079 	{
1080 		.algomode = CRYP_ALGO_AES_ECB,
1081 		.crypto = {
1082 			.cra_name = "aes",
1083 			.cra_driver_name = "aes-ux500",
1084 			.cra_priority =	300,
1085 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1086 					CRYPTO_ALG_ASYNC,
1087 			.cra_blocksize = AES_BLOCK_SIZE,
1088 			.cra_ctxsize = sizeof(struct cryp_ctx),
1089 			.cra_alignmask = 3,
1090 			.cra_type = &crypto_ablkcipher_type,
1091 			.cra_init = cryp_cra_init,
1092 			.cra_module = THIS_MODULE,
1093 			.cra_u = {
1094 				.ablkcipher = {
1095 					.min_keysize = AES_MIN_KEY_SIZE,
1096 					.max_keysize = AES_MAX_KEY_SIZE,
1097 					.setkey = aes_ablkcipher_setkey,
1098 					.encrypt = cryp_blk_encrypt,
1099 					.decrypt = cryp_blk_decrypt
1100 				}
1101 			}
1102 		}
1103 	},
1104 	{
1105 		.algomode = CRYP_ALGO_AES_ECB,
1106 		.crypto = {
1107 			.cra_name = "ecb(aes)",
1108 			.cra_driver_name = "ecb-aes-ux500",
1109 			.cra_priority = 300,
1110 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1111 					CRYPTO_ALG_ASYNC,
1112 			.cra_blocksize = AES_BLOCK_SIZE,
1113 			.cra_ctxsize = sizeof(struct cryp_ctx),
1114 			.cra_alignmask = 3,
1115 			.cra_type = &crypto_ablkcipher_type,
1116 			.cra_init = cryp_cra_init,
1117 			.cra_module = THIS_MODULE,
1118 			.cra_u = {
1119 				.ablkcipher = {
1120 					.min_keysize = AES_MIN_KEY_SIZE,
1121 					.max_keysize = AES_MAX_KEY_SIZE,
1122 					.setkey = aes_ablkcipher_setkey,
1123 					.encrypt = cryp_blk_encrypt,
1124 					.decrypt = cryp_blk_decrypt,
1125 				}
1126 			}
1127 		}
1128 	},
1129 	{
1130 		.algomode = CRYP_ALGO_AES_CBC,
1131 		.crypto = {
1132 			.cra_name = "cbc(aes)",
1133 			.cra_driver_name = "cbc-aes-ux500",
1134 			.cra_priority = 300,
1135 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1136 					CRYPTO_ALG_ASYNC,
1137 			.cra_blocksize = AES_BLOCK_SIZE,
1138 			.cra_ctxsize = sizeof(struct cryp_ctx),
1139 			.cra_alignmask = 3,
1140 			.cra_type = &crypto_ablkcipher_type,
1141 			.cra_init = cryp_cra_init,
1142 			.cra_module = THIS_MODULE,
1143 			.cra_u = {
1144 				.ablkcipher = {
1145 					.min_keysize = AES_MIN_KEY_SIZE,
1146 					.max_keysize = AES_MAX_KEY_SIZE,
1147 					.setkey = aes_ablkcipher_setkey,
1148 					.encrypt = cryp_blk_encrypt,
1149 					.decrypt = cryp_blk_decrypt,
1150 					.ivsize = AES_BLOCK_SIZE,
1151 				}
1152 			}
1153 		}
1154 	},
1155 	{
1156 		.algomode = CRYP_ALGO_AES_CTR,
1157 		.crypto = {
1158 			.cra_name = "ctr(aes)",
1159 			.cra_driver_name = "ctr-aes-ux500",
1160 			.cra_priority = 300,
1161 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1162 						CRYPTO_ALG_ASYNC,
1163 			.cra_blocksize = AES_BLOCK_SIZE,
1164 			.cra_ctxsize = sizeof(struct cryp_ctx),
1165 			.cra_alignmask = 3,
1166 			.cra_type = &crypto_ablkcipher_type,
1167 			.cra_init = cryp_cra_init,
1168 			.cra_module = THIS_MODULE,
1169 			.cra_u = {
1170 				.ablkcipher = {
1171 					.min_keysize = AES_MIN_KEY_SIZE,
1172 					.max_keysize = AES_MAX_KEY_SIZE,
1173 					.setkey = aes_ablkcipher_setkey,
1174 					.encrypt = cryp_blk_encrypt,
1175 					.decrypt = cryp_blk_decrypt,
1176 					.ivsize = AES_BLOCK_SIZE,
1177 				}
1178 			}
1179 		}
1180 	},
1181 	{
1182 		.algomode = CRYP_ALGO_DES_ECB,
1183 		.crypto = {
1184 			.cra_name = "ecb(des)",
1185 			.cra_driver_name = "ecb-des-ux500",
1186 			.cra_priority = 300,
1187 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1188 					CRYPTO_ALG_ASYNC,
1189 			.cra_blocksize = DES_BLOCK_SIZE,
1190 			.cra_ctxsize = sizeof(struct cryp_ctx),
1191 			.cra_alignmask = 3,
1192 			.cra_type = &crypto_ablkcipher_type,
1193 			.cra_init = cryp_cra_init,
1194 			.cra_module = THIS_MODULE,
1195 			.cra_u = {
1196 				.ablkcipher = {
1197 					.min_keysize = DES_KEY_SIZE,
1198 					.max_keysize = DES_KEY_SIZE,
1199 					.setkey = des_ablkcipher_setkey,
1200 					.encrypt = cryp_blk_encrypt,
1201 					.decrypt = cryp_blk_decrypt,
1202 				}
1203 			}
1204 		}
1205 	},
1206 	{
1207 		.algomode = CRYP_ALGO_TDES_ECB,
1208 		.crypto = {
1209 			.cra_name = "ecb(des3_ede)",
1210 			.cra_driver_name = "ecb-des3_ede-ux500",
1211 			.cra_priority = 300,
1212 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1213 					CRYPTO_ALG_ASYNC,
1214 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1215 			.cra_ctxsize = sizeof(struct cryp_ctx),
1216 			.cra_alignmask = 3,
1217 			.cra_type = &crypto_ablkcipher_type,
1218 			.cra_init = cryp_cra_init,
1219 			.cra_module = THIS_MODULE,
1220 			.cra_u = {
1221 				.ablkcipher = {
1222 					.min_keysize = DES3_EDE_KEY_SIZE,
1223 					.max_keysize = DES3_EDE_KEY_SIZE,
1224 					.setkey = des3_ablkcipher_setkey,
1225 					.encrypt = cryp_blk_encrypt,
1226 					.decrypt = cryp_blk_decrypt,
1227 				}
1228 			}
1229 		}
1230 	},
1231 	{
1232 		.algomode = CRYP_ALGO_DES_CBC,
1233 		.crypto = {
1234 			.cra_name = "cbc(des)",
1235 			.cra_driver_name = "cbc-des-ux500",
1236 			.cra_priority = 300,
1237 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1238 					CRYPTO_ALG_ASYNC,
1239 			.cra_blocksize = DES_BLOCK_SIZE,
1240 			.cra_ctxsize = sizeof(struct cryp_ctx),
1241 			.cra_alignmask = 3,
1242 			.cra_type = &crypto_ablkcipher_type,
1243 			.cra_init = cryp_cra_init,
1244 			.cra_module = THIS_MODULE,
1245 			.cra_u = {
1246 				.ablkcipher = {
1247 					.min_keysize = DES_KEY_SIZE,
1248 					.max_keysize = DES_KEY_SIZE,
1249 					.setkey = des_ablkcipher_setkey,
1250 					.encrypt = cryp_blk_encrypt,
1251 					.decrypt = cryp_blk_decrypt,
1252 				}
1253 			}
1254 		}
1255 	},
1256 	{
1257 		.algomode = CRYP_ALGO_TDES_CBC,
1258 		.crypto = {
1259 			.cra_name = "cbc(des3_ede)",
1260 			.cra_driver_name = "cbc-des3_ede-ux500",
1261 			.cra_priority = 300,
1262 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1263 					CRYPTO_ALG_ASYNC,
1264 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1265 			.cra_ctxsize = sizeof(struct cryp_ctx),
1266 			.cra_alignmask = 3,
1267 			.cra_type = &crypto_ablkcipher_type,
1268 			.cra_init = cryp_cra_init,
1269 			.cra_module = THIS_MODULE,
1270 			.cra_u = {
1271 				.ablkcipher = {
1272 					.min_keysize = DES3_EDE_KEY_SIZE,
1273 					.max_keysize = DES3_EDE_KEY_SIZE,
1274 					.setkey = des3_ablkcipher_setkey,
1275 					.encrypt = cryp_blk_encrypt,
1276 					.decrypt = cryp_blk_decrypt,
1277 					.ivsize = DES3_EDE_BLOCK_SIZE,
1278 				}
1279 			}
1280 		}
1281 	}
1282 };
1283 
1284 /**
1285  * cryp_algs_register_all -
1286  */
cryp_algs_register_all(void)1287 static int cryp_algs_register_all(void)
1288 {
1289 	int ret;
1290 	int i;
1291 	int count;
1292 
1293 	pr_debug("[%s]", __func__);
1294 
1295 	for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1296 		ret = crypto_register_alg(&cryp_algs[i].crypto);
1297 		if (ret) {
1298 			count = i;
1299 			pr_err("[%s] alg registration failed",
1300 					cryp_algs[i].crypto.cra_driver_name);
1301 			goto unreg;
1302 		}
1303 	}
1304 	return 0;
1305 unreg:
1306 	for (i = 0; i < count; i++)
1307 		crypto_unregister_alg(&cryp_algs[i].crypto);
1308 	return ret;
1309 }
1310 
1311 /**
1312  * cryp_algs_unregister_all -
1313  */
cryp_algs_unregister_all(void)1314 static void cryp_algs_unregister_all(void)
1315 {
1316 	int i;
1317 
1318 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1319 
1320 	for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1321 		crypto_unregister_alg(&cryp_algs[i].crypto);
1322 }
1323 
ux500_cryp_probe(struct platform_device * pdev)1324 static int ux500_cryp_probe(struct platform_device *pdev)
1325 {
1326 	int ret;
1327 	struct resource *res;
1328 	struct resource *res_irq;
1329 	struct cryp_device_data *device_data;
1330 	struct cryp_protection_config prot = {
1331 		.privilege_access = CRYP_STATE_ENABLE
1332 	};
1333 	struct device *dev = &pdev->dev;
1334 
1335 	dev_dbg(dev, "[%s]", __func__);
1336 	device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1337 	if (!device_data) {
1338 		ret = -ENOMEM;
1339 		goto out;
1340 	}
1341 
1342 	device_data->dev = dev;
1343 	device_data->current_ctx = NULL;
1344 
1345 	/* Grab the DMA configuration from platform data. */
1346 	mem_to_engine = &((struct cryp_platform_data *)
1347 			 dev->platform_data)->mem_to_engine;
1348 	engine_to_mem = &((struct cryp_platform_data *)
1349 			 dev->platform_data)->engine_to_mem;
1350 
1351 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1352 	if (!res) {
1353 		dev_err(dev, "[%s]: platform_get_resource() failed",
1354 				__func__);
1355 		ret = -ENODEV;
1356 		goto out;
1357 	}
1358 
1359 	device_data->phybase = res->start;
1360 	device_data->base = devm_ioremap_resource(dev, res);
1361 	if (IS_ERR(device_data->base)) {
1362 		dev_err(dev, "[%s]: ioremap failed!", __func__);
1363 		ret = PTR_ERR(device_data->base);
1364 		goto out;
1365 	}
1366 
1367 	spin_lock_init(&device_data->ctx_lock);
1368 	spin_lock_init(&device_data->power_state_spinlock);
1369 
1370 	/* Enable power for CRYP hardware block */
1371 	device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1372 	if (IS_ERR(device_data->pwr_regulator)) {
1373 		dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1374 		ret = PTR_ERR(device_data->pwr_regulator);
1375 		device_data->pwr_regulator = NULL;
1376 		goto out;
1377 	}
1378 
1379 	/* Enable the clk for CRYP hardware block */
1380 	device_data->clk = devm_clk_get(&pdev->dev, NULL);
1381 	if (IS_ERR(device_data->clk)) {
1382 		dev_err(dev, "[%s]: clk_get() failed!", __func__);
1383 		ret = PTR_ERR(device_data->clk);
1384 		goto out_regulator;
1385 	}
1386 
1387 	ret = clk_prepare(device_data->clk);
1388 	if (ret) {
1389 		dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1390 		goto out_regulator;
1391 	}
1392 
1393 	/* Enable device power (and clock) */
1394 	ret = cryp_enable_power(device_data->dev, device_data, false);
1395 	if (ret) {
1396 		dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1397 		goto out_clk_unprepare;
1398 	}
1399 
1400 	if (cryp_check(device_data)) {
1401 		dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1402 		ret = -EINVAL;
1403 		goto out_power;
1404 	}
1405 
1406 	if (cryp_configure_protection(device_data, &prot)) {
1407 		dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1408 			__func__);
1409 		ret = -EINVAL;
1410 		goto out_power;
1411 	}
1412 
1413 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1414 	if (!res_irq) {
1415 		dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1416 			__func__);
1417 		ret = -ENODEV;
1418 		goto out_power;
1419 	}
1420 
1421 	ret = devm_request_irq(&pdev->dev, res_irq->start,
1422 			       cryp_interrupt_handler, 0, "cryp1", device_data);
1423 	if (ret) {
1424 		dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1425 		goto out_power;
1426 	}
1427 
1428 	if (cryp_mode == CRYP_MODE_DMA)
1429 		cryp_dma_setup_channel(device_data, dev);
1430 
1431 	platform_set_drvdata(pdev, device_data);
1432 
1433 	/* Put the new device into the device list... */
1434 	klist_add_tail(&device_data->list_node, &driver_data.device_list);
1435 
1436 	/* ... and signal that a new device is available. */
1437 	up(&driver_data.device_allocation);
1438 
1439 	atomic_set(&session_id, 1);
1440 
1441 	ret = cryp_algs_register_all();
1442 	if (ret) {
1443 		dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1444 			__func__);
1445 		goto out_power;
1446 	}
1447 
1448 	dev_info(dev, "successfully registered\n");
1449 
1450 	return 0;
1451 
1452 out_power:
1453 	cryp_disable_power(device_data->dev, device_data, false);
1454 
1455 out_clk_unprepare:
1456 	clk_unprepare(device_data->clk);
1457 
1458 out_regulator:
1459 	regulator_put(device_data->pwr_regulator);
1460 
1461 out:
1462 	return ret;
1463 }
1464 
ux500_cryp_remove(struct platform_device * pdev)1465 static int ux500_cryp_remove(struct platform_device *pdev)
1466 {
1467 	struct cryp_device_data *device_data;
1468 
1469 	dev_dbg(&pdev->dev, "[%s]", __func__);
1470 	device_data = platform_get_drvdata(pdev);
1471 	if (!device_data) {
1472 		dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1473 			__func__);
1474 		return -ENOMEM;
1475 	}
1476 
1477 	/* Try to decrease the number of available devices. */
1478 	if (down_trylock(&driver_data.device_allocation))
1479 		return -EBUSY;
1480 
1481 	/* Check that the device is free */
1482 	spin_lock(&device_data->ctx_lock);
1483 	/* current_ctx allocates a device, NULL = unallocated */
1484 	if (device_data->current_ctx) {
1485 		/* The device is busy */
1486 		spin_unlock(&device_data->ctx_lock);
1487 		/* Return the device to the pool. */
1488 		up(&driver_data.device_allocation);
1489 		return -EBUSY;
1490 	}
1491 
1492 	spin_unlock(&device_data->ctx_lock);
1493 
1494 	/* Remove the device from the list */
1495 	if (klist_node_attached(&device_data->list_node))
1496 		klist_remove(&device_data->list_node);
1497 
1498 	/* If this was the last device, remove the services */
1499 	if (list_empty(&driver_data.device_list.k_list))
1500 		cryp_algs_unregister_all();
1501 
1502 	if (cryp_disable_power(&pdev->dev, device_data, false))
1503 		dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1504 			__func__);
1505 
1506 	clk_unprepare(device_data->clk);
1507 	regulator_put(device_data->pwr_regulator);
1508 
1509 	return 0;
1510 }
1511 
ux500_cryp_shutdown(struct platform_device * pdev)1512 static void ux500_cryp_shutdown(struct platform_device *pdev)
1513 {
1514 	struct cryp_device_data *device_data;
1515 
1516 	dev_dbg(&pdev->dev, "[%s]", __func__);
1517 
1518 	device_data = platform_get_drvdata(pdev);
1519 	if (!device_data) {
1520 		dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1521 			__func__);
1522 		return;
1523 	}
1524 
1525 	/* Check that the device is free */
1526 	spin_lock(&device_data->ctx_lock);
1527 	/* current_ctx allocates a device, NULL = unallocated */
1528 	if (!device_data->current_ctx) {
1529 		if (down_trylock(&driver_data.device_allocation))
1530 			dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1531 				"Shutting down anyway...", __func__);
1532 		/**
1533 		 * (Allocate the device)
1534 		 * Need to set this to non-null (dummy) value,
1535 		 * to avoid usage if context switching.
1536 		 */
1537 		device_data->current_ctx++;
1538 	}
1539 	spin_unlock(&device_data->ctx_lock);
1540 
1541 	/* Remove the device from the list */
1542 	if (klist_node_attached(&device_data->list_node))
1543 		klist_remove(&device_data->list_node);
1544 
1545 	/* If this was the last device, remove the services */
1546 	if (list_empty(&driver_data.device_list.k_list))
1547 		cryp_algs_unregister_all();
1548 
1549 	if (cryp_disable_power(&pdev->dev, device_data, false))
1550 		dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1551 			__func__);
1552 
1553 }
1554 
1555 #ifdef CONFIG_PM_SLEEP
ux500_cryp_suspend(struct device * dev)1556 static int ux500_cryp_suspend(struct device *dev)
1557 {
1558 	int ret;
1559 	struct platform_device *pdev = to_platform_device(dev);
1560 	struct cryp_device_data *device_data;
1561 	struct resource *res_irq;
1562 	struct cryp_ctx *temp_ctx = NULL;
1563 
1564 	dev_dbg(dev, "[%s]", __func__);
1565 
1566 	/* Handle state? */
1567 	device_data = platform_get_drvdata(pdev);
1568 	if (!device_data) {
1569 		dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1570 		return -ENOMEM;
1571 	}
1572 
1573 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1574 	if (!res_irq)
1575 		dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1576 	else
1577 		disable_irq(res_irq->start);
1578 
1579 	spin_lock(&device_data->ctx_lock);
1580 	if (!device_data->current_ctx)
1581 		device_data->current_ctx++;
1582 	spin_unlock(&device_data->ctx_lock);
1583 
1584 	if (device_data->current_ctx == ++temp_ctx) {
1585 		if (down_interruptible(&driver_data.device_allocation))
1586 			dev_dbg(dev, "[%s]: down_interruptible() failed",
1587 				__func__);
1588 		ret = cryp_disable_power(dev, device_data, false);
1589 
1590 	} else
1591 		ret = cryp_disable_power(dev, device_data, true);
1592 
1593 	if (ret)
1594 		dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1595 
1596 	return ret;
1597 }
1598 
ux500_cryp_resume(struct device * dev)1599 static int ux500_cryp_resume(struct device *dev)
1600 {
1601 	int ret = 0;
1602 	struct platform_device *pdev = to_platform_device(dev);
1603 	struct cryp_device_data *device_data;
1604 	struct resource *res_irq;
1605 	struct cryp_ctx *temp_ctx = NULL;
1606 
1607 	dev_dbg(dev, "[%s]", __func__);
1608 
1609 	device_data = platform_get_drvdata(pdev);
1610 	if (!device_data) {
1611 		dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1612 		return -ENOMEM;
1613 	}
1614 
1615 	spin_lock(&device_data->ctx_lock);
1616 	if (device_data->current_ctx == ++temp_ctx)
1617 		device_data->current_ctx = NULL;
1618 	spin_unlock(&device_data->ctx_lock);
1619 
1620 
1621 	if (!device_data->current_ctx)
1622 		up(&driver_data.device_allocation);
1623 	else
1624 		ret = cryp_enable_power(dev, device_data, true);
1625 
1626 	if (ret)
1627 		dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1628 	else {
1629 		res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1630 		if (res_irq)
1631 			enable_irq(res_irq->start);
1632 	}
1633 
1634 	return ret;
1635 }
1636 #endif
1637 
1638 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1639 
1640 static const struct of_device_id ux500_cryp_match[] = {
1641 	{ .compatible = "stericsson,ux500-cryp" },
1642 	{ },
1643 };
1644 MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1645 
1646 static struct platform_driver cryp_driver = {
1647 	.probe  = ux500_cryp_probe,
1648 	.remove = ux500_cryp_remove,
1649 	.shutdown = ux500_cryp_shutdown,
1650 	.driver = {
1651 		.name  = "cryp1",
1652 		.of_match_table = ux500_cryp_match,
1653 		.pm    = &ux500_cryp_pm,
1654 	}
1655 };
1656 
ux500_cryp_mod_init(void)1657 static int __init ux500_cryp_mod_init(void)
1658 {
1659 	pr_debug("[%s] is called!", __func__);
1660 	klist_init(&driver_data.device_list, NULL, NULL);
1661 	/* Initialize the semaphore to 0 devices (locked state) */
1662 	sema_init(&driver_data.device_allocation, 0);
1663 	return platform_driver_register(&cryp_driver);
1664 }
1665 
ux500_cryp_mod_fini(void)1666 static void __exit ux500_cryp_mod_fini(void)
1667 {
1668 	pr_debug("[%s] is called!", __func__);
1669 	platform_driver_unregister(&cryp_driver);
1670 }
1671 
1672 module_init(ux500_cryp_mod_init);
1673 module_exit(ux500_cryp_mod_fini);
1674 
1675 module_param(cryp_mode, int, 0);
1676 
1677 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1678 MODULE_ALIAS_CRYPTO("aes-all");
1679 MODULE_ALIAS_CRYPTO("des-all");
1680 
1681 MODULE_LICENSE("GPL");
1682