1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
4 *
5 * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved.
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27
28 #include "dmaengine.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/tegra_apb_dma.h>
32
33 #define TEGRA_APBDMA_GENERAL 0x0
34 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
35
36 #define TEGRA_APBDMA_CONTROL 0x010
37 #define TEGRA_APBDMA_IRQ_MASK 0x01c
38 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
39
40 /* CSR register */
41 #define TEGRA_APBDMA_CHAN_CSR 0x00
42 #define TEGRA_APBDMA_CSR_ENB BIT(31)
43 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
44 #define TEGRA_APBDMA_CSR_HOLD BIT(29)
45 #define TEGRA_APBDMA_CSR_DIR BIT(28)
46 #define TEGRA_APBDMA_CSR_ONCE BIT(27)
47 #define TEGRA_APBDMA_CSR_FLOW BIT(21)
48 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
49 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK 0x1F
50 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
51
52 /* STATUS register */
53 #define TEGRA_APBDMA_CHAN_STATUS 0x004
54 #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
55 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
56 #define TEGRA_APBDMA_STATUS_HALT BIT(29)
57 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
58 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
59 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
60
61 #define TEGRA_APBDMA_CHAN_CSRE 0x00C
62 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE (1 << 31)
63
64 /* AHB memory address */
65 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
66
67 /* AHB sequence register */
68 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
69 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
70 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
76 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
80 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
82
83 /* APB address */
84 #define TEGRA_APBDMA_CHAN_APBPTR 0x018
85
86 /* APB sequence register */
87 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
88 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
93 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
94 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
95
96 /* Tegra148 specific registers */
97 #define TEGRA_APBDMA_CHAN_WCOUNT 0x20
98
99 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24
100
101 /*
102 * If any burst is in flight and DMA paused then this is the time to complete
103 * on-flight burst and update DMA status register.
104 */
105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
106
107 /* Channel base address offset from APBDMA base address */
108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
109
110 #define TEGRA_APBDMA_SLAVE_ID_INVALID (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
111
112 struct tegra_dma;
113
114 /*
115 * tegra_dma_chip_data Tegra chip specific DMA data
116 * @nr_channels: Number of channels available in the controller.
117 * @channel_reg_size: Channel register size/stride.
118 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119 * @support_channel_pause: Support channel wise pause of dma.
120 * @support_separate_wcount_reg: Support separate word count register.
121 */
122 struct tegra_dma_chip_data {
123 int nr_channels;
124 int channel_reg_size;
125 int max_dma_count;
126 bool support_channel_pause;
127 bool support_separate_wcount_reg;
128 };
129
130 /* DMA channel registers */
131 struct tegra_dma_channel_regs {
132 unsigned long csr;
133 unsigned long ahb_ptr;
134 unsigned long apb_ptr;
135 unsigned long ahb_seq;
136 unsigned long apb_seq;
137 unsigned long wcount;
138 };
139
140 /*
141 * tegra_dma_sg_req: DMA request details to configure hardware. This
142 * contains the details for one transfer to configure DMA hw.
143 * The client's request for data transfer can be broken into multiple
144 * sub-transfer as per requester details and hw support.
145 * This sub transfer get added in the list of transfer and point to Tegra
146 * DMA descriptor which manages the transfer details.
147 */
148 struct tegra_dma_sg_req {
149 struct tegra_dma_channel_regs ch_regs;
150 unsigned int req_len;
151 bool configured;
152 bool last_sg;
153 struct list_head node;
154 struct tegra_dma_desc *dma_desc;
155 unsigned int words_xferred;
156 };
157
158 /*
159 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
160 * This descriptor keep track of transfer status, callbacks and request
161 * counts etc.
162 */
163 struct tegra_dma_desc {
164 struct dma_async_tx_descriptor txd;
165 unsigned int bytes_requested;
166 unsigned int bytes_transferred;
167 enum dma_status dma_status;
168 struct list_head node;
169 struct list_head tx_list;
170 struct list_head cb_node;
171 int cb_count;
172 };
173
174 struct tegra_dma_channel;
175
176 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
177 bool to_terminate);
178
179 /* tegra_dma_channel: Channel specific information */
180 struct tegra_dma_channel {
181 struct dma_chan dma_chan;
182 char name[12];
183 bool config_init;
184 int id;
185 int irq;
186 void __iomem *chan_addr;
187 spinlock_t lock;
188 bool busy;
189 struct tegra_dma *tdma;
190 bool cyclic;
191
192 /* Different lists for managing the requests */
193 struct list_head free_sg_req;
194 struct list_head pending_sg_req;
195 struct list_head free_dma_desc;
196 struct list_head cb_desc;
197
198 /* ISR handler and tasklet for bottom half of isr handling */
199 dma_isr_handler isr_handler;
200 struct tasklet_struct tasklet;
201
202 /* Channel-slave specific configuration */
203 unsigned int slave_id;
204 struct dma_slave_config dma_sconfig;
205 struct tegra_dma_channel_regs channel_reg;
206 };
207
208 /* tegra_dma: Tegra DMA specific information */
209 struct tegra_dma {
210 struct dma_device dma_dev;
211 struct device *dev;
212 struct clk *dma_clk;
213 struct reset_control *rst;
214 spinlock_t global_lock;
215 void __iomem *base_addr;
216 const struct tegra_dma_chip_data *chip_data;
217
218 /*
219 * Counter for managing global pausing of the DMA controller.
220 * Only applicable for devices that don't support individual
221 * channel pausing.
222 */
223 u32 global_pause_count;
224
225 /* Some register need to be cache before suspend */
226 u32 reg_gen;
227
228 /* Last member of the structure */
229 struct tegra_dma_channel channels[0];
230 };
231
tdma_write(struct tegra_dma * tdma,u32 reg,u32 val)232 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
233 {
234 writel(val, tdma->base_addr + reg);
235 }
236
tdma_read(struct tegra_dma * tdma,u32 reg)237 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
238 {
239 return readl(tdma->base_addr + reg);
240 }
241
tdc_write(struct tegra_dma_channel * tdc,u32 reg,u32 val)242 static inline void tdc_write(struct tegra_dma_channel *tdc,
243 u32 reg, u32 val)
244 {
245 writel(val, tdc->chan_addr + reg);
246 }
247
tdc_read(struct tegra_dma_channel * tdc,u32 reg)248 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
249 {
250 return readl(tdc->chan_addr + reg);
251 }
252
to_tegra_dma_chan(struct dma_chan * dc)253 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
254 {
255 return container_of(dc, struct tegra_dma_channel, dma_chan);
256 }
257
txd_to_tegra_dma_desc(struct dma_async_tx_descriptor * td)258 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
259 struct dma_async_tx_descriptor *td)
260 {
261 return container_of(td, struct tegra_dma_desc, txd);
262 }
263
tdc2dev(struct tegra_dma_channel * tdc)264 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
265 {
266 return &tdc->dma_chan.dev->device;
267 }
268
269 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
270 static int tegra_dma_runtime_suspend(struct device *dev);
271 static int tegra_dma_runtime_resume(struct device *dev);
272
273 /* Get DMA desc from free list, if not there then allocate it. */
tegra_dma_desc_get(struct tegra_dma_channel * tdc)274 static struct tegra_dma_desc *tegra_dma_desc_get(
275 struct tegra_dma_channel *tdc)
276 {
277 struct tegra_dma_desc *dma_desc;
278 unsigned long flags;
279
280 spin_lock_irqsave(&tdc->lock, flags);
281
282 /* Do not allocate if desc are waiting for ack */
283 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
284 if (async_tx_test_ack(&dma_desc->txd)) {
285 list_del(&dma_desc->node);
286 spin_unlock_irqrestore(&tdc->lock, flags);
287 dma_desc->txd.flags = 0;
288 return dma_desc;
289 }
290 }
291
292 spin_unlock_irqrestore(&tdc->lock, flags);
293
294 /* Allocate DMA desc */
295 dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
296 if (!dma_desc)
297 return NULL;
298
299 dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
300 dma_desc->txd.tx_submit = tegra_dma_tx_submit;
301 dma_desc->txd.flags = 0;
302 return dma_desc;
303 }
304
tegra_dma_desc_put(struct tegra_dma_channel * tdc,struct tegra_dma_desc * dma_desc)305 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
306 struct tegra_dma_desc *dma_desc)
307 {
308 unsigned long flags;
309
310 spin_lock_irqsave(&tdc->lock, flags);
311 if (!list_empty(&dma_desc->tx_list))
312 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
313 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
314 spin_unlock_irqrestore(&tdc->lock, flags);
315 }
316
tegra_dma_sg_req_get(struct tegra_dma_channel * tdc)317 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
318 struct tegra_dma_channel *tdc)
319 {
320 struct tegra_dma_sg_req *sg_req = NULL;
321 unsigned long flags;
322
323 spin_lock_irqsave(&tdc->lock, flags);
324 if (!list_empty(&tdc->free_sg_req)) {
325 sg_req = list_first_entry(&tdc->free_sg_req,
326 typeof(*sg_req), node);
327 list_del(&sg_req->node);
328 spin_unlock_irqrestore(&tdc->lock, flags);
329 return sg_req;
330 }
331 spin_unlock_irqrestore(&tdc->lock, flags);
332
333 sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
334
335 return sg_req;
336 }
337
tegra_dma_slave_config(struct dma_chan * dc,struct dma_slave_config * sconfig)338 static int tegra_dma_slave_config(struct dma_chan *dc,
339 struct dma_slave_config *sconfig)
340 {
341 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
342
343 if (!list_empty(&tdc->pending_sg_req)) {
344 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
345 return -EBUSY;
346 }
347
348 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
349 if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
350 sconfig->device_fc) {
351 if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
352 return -EINVAL;
353 tdc->slave_id = sconfig->slave_id;
354 }
355 tdc->config_init = true;
356 return 0;
357 }
358
tegra_dma_global_pause(struct tegra_dma_channel * tdc,bool wait_for_burst_complete)359 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
360 bool wait_for_burst_complete)
361 {
362 struct tegra_dma *tdma = tdc->tdma;
363
364 spin_lock(&tdma->global_lock);
365
366 if (tdc->tdma->global_pause_count == 0) {
367 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
368 if (wait_for_burst_complete)
369 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
370 }
371
372 tdc->tdma->global_pause_count++;
373
374 spin_unlock(&tdma->global_lock);
375 }
376
tegra_dma_global_resume(struct tegra_dma_channel * tdc)377 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
378 {
379 struct tegra_dma *tdma = tdc->tdma;
380
381 spin_lock(&tdma->global_lock);
382
383 if (WARN_ON(tdc->tdma->global_pause_count == 0))
384 goto out;
385
386 if (--tdc->tdma->global_pause_count == 0)
387 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
388 TEGRA_APBDMA_GENERAL_ENABLE);
389
390 out:
391 spin_unlock(&tdma->global_lock);
392 }
393
tegra_dma_pause(struct tegra_dma_channel * tdc,bool wait_for_burst_complete)394 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
395 bool wait_for_burst_complete)
396 {
397 struct tegra_dma *tdma = tdc->tdma;
398
399 if (tdma->chip_data->support_channel_pause) {
400 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
401 TEGRA_APBDMA_CHAN_CSRE_PAUSE);
402 if (wait_for_burst_complete)
403 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
404 } else {
405 tegra_dma_global_pause(tdc, wait_for_burst_complete);
406 }
407 }
408
tegra_dma_resume(struct tegra_dma_channel * tdc)409 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
410 {
411 struct tegra_dma *tdma = tdc->tdma;
412
413 if (tdma->chip_data->support_channel_pause) {
414 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
415 } else {
416 tegra_dma_global_resume(tdc);
417 }
418 }
419
tegra_dma_stop(struct tegra_dma_channel * tdc)420 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
421 {
422 u32 csr;
423 u32 status;
424
425 /* Disable interrupts */
426 csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
427 csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
428 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
429
430 /* Disable DMA */
431 csr &= ~TEGRA_APBDMA_CSR_ENB;
432 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
433
434 /* Clear interrupt status if it is there */
435 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
436 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
437 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
438 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
439 }
440 tdc->busy = false;
441 }
442
tegra_dma_start(struct tegra_dma_channel * tdc,struct tegra_dma_sg_req * sg_req)443 static void tegra_dma_start(struct tegra_dma_channel *tdc,
444 struct tegra_dma_sg_req *sg_req)
445 {
446 struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
447
448 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
449 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
450 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
451 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
452 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
453 if (tdc->tdma->chip_data->support_separate_wcount_reg)
454 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
455
456 /* Start DMA */
457 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
458 ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
459 }
460
tegra_dma_configure_for_next(struct tegra_dma_channel * tdc,struct tegra_dma_sg_req * nsg_req)461 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
462 struct tegra_dma_sg_req *nsg_req)
463 {
464 unsigned long status;
465
466 /*
467 * The DMA controller reloads the new configuration for next transfer
468 * after last burst of current transfer completes.
469 * If there is no IEC status then this makes sure that last burst
470 * has not be completed. There may be case that last burst is on
471 * flight and so it can complete but because DMA is paused, it
472 * will not generates interrupt as well as not reload the new
473 * configuration.
474 * If there is already IEC status then interrupt handler need to
475 * load new configuration.
476 */
477 tegra_dma_pause(tdc, false);
478 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
479
480 /*
481 * If interrupt is pending then do nothing as the ISR will handle
482 * the programing for new request.
483 */
484 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
485 dev_err(tdc2dev(tdc),
486 "Skipping new configuration as interrupt is pending\n");
487 tegra_dma_resume(tdc);
488 return;
489 }
490
491 /* Safe to program new configuration */
492 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
493 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
494 if (tdc->tdma->chip_data->support_separate_wcount_reg)
495 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
496 nsg_req->ch_regs.wcount);
497 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
498 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
499 nsg_req->configured = true;
500 nsg_req->words_xferred = 0;
501
502 tegra_dma_resume(tdc);
503 }
504
tdc_start_head_req(struct tegra_dma_channel * tdc)505 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
506 {
507 struct tegra_dma_sg_req *sg_req;
508
509 if (list_empty(&tdc->pending_sg_req))
510 return;
511
512 sg_req = list_first_entry(&tdc->pending_sg_req,
513 typeof(*sg_req), node);
514 tegra_dma_start(tdc, sg_req);
515 sg_req->configured = true;
516 sg_req->words_xferred = 0;
517 tdc->busy = true;
518 }
519
tdc_configure_next_head_desc(struct tegra_dma_channel * tdc)520 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
521 {
522 struct tegra_dma_sg_req *hsgreq;
523 struct tegra_dma_sg_req *hnsgreq;
524
525 if (list_empty(&tdc->pending_sg_req))
526 return;
527
528 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
529 if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
530 hnsgreq = list_first_entry(&hsgreq->node,
531 typeof(*hnsgreq), node);
532 tegra_dma_configure_for_next(tdc, hnsgreq);
533 }
534 }
535
get_current_xferred_count(struct tegra_dma_channel * tdc,struct tegra_dma_sg_req * sg_req,unsigned long status)536 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
537 struct tegra_dma_sg_req *sg_req, unsigned long status)
538 {
539 return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
540 }
541
tegra_dma_abort_all(struct tegra_dma_channel * tdc)542 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
543 {
544 struct tegra_dma_sg_req *sgreq;
545 struct tegra_dma_desc *dma_desc;
546
547 while (!list_empty(&tdc->pending_sg_req)) {
548 sgreq = list_first_entry(&tdc->pending_sg_req,
549 typeof(*sgreq), node);
550 list_move_tail(&sgreq->node, &tdc->free_sg_req);
551 if (sgreq->last_sg) {
552 dma_desc = sgreq->dma_desc;
553 dma_desc->dma_status = DMA_ERROR;
554 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
555
556 /* Add in cb list if it is not there. */
557 if (!dma_desc->cb_count)
558 list_add_tail(&dma_desc->cb_node,
559 &tdc->cb_desc);
560 dma_desc->cb_count++;
561 }
562 }
563 tdc->isr_handler = NULL;
564 }
565
handle_continuous_head_request(struct tegra_dma_channel * tdc,struct tegra_dma_sg_req * last_sg_req,bool to_terminate)566 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
567 struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
568 {
569 struct tegra_dma_sg_req *hsgreq = NULL;
570
571 if (list_empty(&tdc->pending_sg_req)) {
572 dev_err(tdc2dev(tdc), "DMA is running without req\n");
573 tegra_dma_stop(tdc);
574 return false;
575 }
576
577 /*
578 * Check that head req on list should be in flight.
579 * If it is not in flight then abort transfer as
580 * looping of transfer can not continue.
581 */
582 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
583 if (!hsgreq->configured) {
584 tegra_dma_stop(tdc);
585 dev_err(tdc2dev(tdc), "Error in DMA transfer, aborting DMA\n");
586 tegra_dma_abort_all(tdc);
587 return false;
588 }
589
590 /* Configure next request */
591 if (!to_terminate)
592 tdc_configure_next_head_desc(tdc);
593 return true;
594 }
595
handle_once_dma_done(struct tegra_dma_channel * tdc,bool to_terminate)596 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
597 bool to_terminate)
598 {
599 struct tegra_dma_sg_req *sgreq;
600 struct tegra_dma_desc *dma_desc;
601
602 tdc->busy = false;
603 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
604 dma_desc = sgreq->dma_desc;
605 dma_desc->bytes_transferred += sgreq->req_len;
606
607 list_del(&sgreq->node);
608 if (sgreq->last_sg) {
609 dma_desc->dma_status = DMA_COMPLETE;
610 dma_cookie_complete(&dma_desc->txd);
611 if (!dma_desc->cb_count)
612 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
613 dma_desc->cb_count++;
614 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
615 }
616 list_add_tail(&sgreq->node, &tdc->free_sg_req);
617
618 /* Do not start DMA if it is going to be terminate */
619 if (to_terminate || list_empty(&tdc->pending_sg_req))
620 return;
621
622 tdc_start_head_req(tdc);
623 }
624
handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel * tdc,bool to_terminate)625 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
626 bool to_terminate)
627 {
628 struct tegra_dma_sg_req *sgreq;
629 struct tegra_dma_desc *dma_desc;
630 bool st;
631
632 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
633 dma_desc = sgreq->dma_desc;
634 /* if we dma for long enough the transfer count will wrap */
635 dma_desc->bytes_transferred =
636 (dma_desc->bytes_transferred + sgreq->req_len) %
637 dma_desc->bytes_requested;
638
639 /* Callback need to be call */
640 if (!dma_desc->cb_count)
641 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
642 dma_desc->cb_count++;
643
644 sgreq->words_xferred = 0;
645
646 /* If not last req then put at end of pending list */
647 if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
648 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
649 sgreq->configured = false;
650 st = handle_continuous_head_request(tdc, sgreq, to_terminate);
651 if (!st)
652 dma_desc->dma_status = DMA_ERROR;
653 }
654 }
655
tegra_dma_tasklet(unsigned long data)656 static void tegra_dma_tasklet(unsigned long data)
657 {
658 struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
659 struct dmaengine_desc_callback cb;
660 struct tegra_dma_desc *dma_desc;
661 unsigned long flags;
662 int cb_count;
663
664 spin_lock_irqsave(&tdc->lock, flags);
665 while (!list_empty(&tdc->cb_desc)) {
666 dma_desc = list_first_entry(&tdc->cb_desc,
667 typeof(*dma_desc), cb_node);
668 list_del(&dma_desc->cb_node);
669 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
670 cb_count = dma_desc->cb_count;
671 dma_desc->cb_count = 0;
672 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
673 cb.callback);
674 spin_unlock_irqrestore(&tdc->lock, flags);
675 while (cb_count--)
676 dmaengine_desc_callback_invoke(&cb, NULL);
677 spin_lock_irqsave(&tdc->lock, flags);
678 }
679 spin_unlock_irqrestore(&tdc->lock, flags);
680 }
681
tegra_dma_isr(int irq,void * dev_id)682 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
683 {
684 struct tegra_dma_channel *tdc = dev_id;
685 unsigned long status;
686 unsigned long flags;
687
688 spin_lock_irqsave(&tdc->lock, flags);
689
690 trace_tegra_dma_isr(&tdc->dma_chan, irq);
691 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
692 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
693 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
694 tdc->isr_handler(tdc, false);
695 tasklet_schedule(&tdc->tasklet);
696 spin_unlock_irqrestore(&tdc->lock, flags);
697 return IRQ_HANDLED;
698 }
699
700 spin_unlock_irqrestore(&tdc->lock, flags);
701 dev_info(tdc2dev(tdc),
702 "Interrupt already served status 0x%08lx\n", status);
703 return IRQ_NONE;
704 }
705
tegra_dma_tx_submit(struct dma_async_tx_descriptor * txd)706 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
707 {
708 struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
709 struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
710 unsigned long flags;
711 dma_cookie_t cookie;
712
713 spin_lock_irqsave(&tdc->lock, flags);
714 dma_desc->dma_status = DMA_IN_PROGRESS;
715 cookie = dma_cookie_assign(&dma_desc->txd);
716 list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
717 spin_unlock_irqrestore(&tdc->lock, flags);
718 return cookie;
719 }
720
tegra_dma_issue_pending(struct dma_chan * dc)721 static void tegra_dma_issue_pending(struct dma_chan *dc)
722 {
723 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
724 unsigned long flags;
725
726 spin_lock_irqsave(&tdc->lock, flags);
727 if (list_empty(&tdc->pending_sg_req)) {
728 dev_err(tdc2dev(tdc), "No DMA request\n");
729 goto end;
730 }
731 if (!tdc->busy) {
732 tdc_start_head_req(tdc);
733
734 /* Continuous single mode: Configure next req */
735 if (tdc->cyclic) {
736 /*
737 * Wait for 1 burst time for configure DMA for
738 * next transfer.
739 */
740 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
741 tdc_configure_next_head_desc(tdc);
742 }
743 }
744 end:
745 spin_unlock_irqrestore(&tdc->lock, flags);
746 }
747
tegra_dma_terminate_all(struct dma_chan * dc)748 static int tegra_dma_terminate_all(struct dma_chan *dc)
749 {
750 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
751 struct tegra_dma_sg_req *sgreq;
752 struct tegra_dma_desc *dma_desc;
753 unsigned long flags;
754 unsigned long status;
755 unsigned long wcount;
756 bool was_busy;
757
758 spin_lock_irqsave(&tdc->lock, flags);
759 if (list_empty(&tdc->pending_sg_req)) {
760 spin_unlock_irqrestore(&tdc->lock, flags);
761 return 0;
762 }
763
764 if (!tdc->busy)
765 goto skip_dma_stop;
766
767 /* Pause DMA before checking the queue status */
768 tegra_dma_pause(tdc, true);
769
770 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
771 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
772 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
773 tdc->isr_handler(tdc, true);
774 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
775 }
776 if (tdc->tdma->chip_data->support_separate_wcount_reg)
777 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
778 else
779 wcount = status;
780
781 was_busy = tdc->busy;
782 tegra_dma_stop(tdc);
783
784 if (!list_empty(&tdc->pending_sg_req) && was_busy) {
785 sgreq = list_first_entry(&tdc->pending_sg_req,
786 typeof(*sgreq), node);
787 sgreq->dma_desc->bytes_transferred +=
788 get_current_xferred_count(tdc, sgreq, wcount);
789 }
790 tegra_dma_resume(tdc);
791
792 skip_dma_stop:
793 tegra_dma_abort_all(tdc);
794
795 while (!list_empty(&tdc->cb_desc)) {
796 dma_desc = list_first_entry(&tdc->cb_desc,
797 typeof(*dma_desc), cb_node);
798 list_del(&dma_desc->cb_node);
799 dma_desc->cb_count = 0;
800 }
801 spin_unlock_irqrestore(&tdc->lock, flags);
802 return 0;
803 }
804
tegra_dma_sg_bytes_xferred(struct tegra_dma_channel * tdc,struct tegra_dma_sg_req * sg_req)805 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
806 struct tegra_dma_sg_req *sg_req)
807 {
808 unsigned long status, wcount = 0;
809
810 if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
811 return 0;
812
813 if (tdc->tdma->chip_data->support_separate_wcount_reg)
814 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
815
816 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
817
818 if (!tdc->tdma->chip_data->support_separate_wcount_reg)
819 wcount = status;
820
821 if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
822 return sg_req->req_len;
823
824 wcount = get_current_xferred_count(tdc, sg_req, wcount);
825
826 if (!wcount) {
827 /*
828 * If wcount wasn't ever polled for this SG before, then
829 * simply assume that transfer hasn't started yet.
830 *
831 * Otherwise it's the end of the transfer.
832 *
833 * The alternative would be to poll the status register
834 * until EOC bit is set or wcount goes UP. That's so
835 * because EOC bit is getting set only after the last
836 * burst's completion and counter is less than the actual
837 * transfer size by 4 bytes. The counter value wraps around
838 * in a cyclic mode before EOC is set(!), so we can't easily
839 * distinguish start of transfer from its end.
840 */
841 if (sg_req->words_xferred)
842 wcount = sg_req->req_len - 4;
843
844 } else if (wcount < sg_req->words_xferred) {
845 /*
846 * This case will never happen for a non-cyclic transfer.
847 *
848 * For a cyclic transfer, although it is possible for the
849 * next transfer to have already started (resetting the word
850 * count), this case should still not happen because we should
851 * have detected that the EOC bit is set and hence the transfer
852 * was completed.
853 */
854 WARN_ON_ONCE(1);
855
856 wcount = sg_req->req_len - 4;
857 } else {
858 sg_req->words_xferred = wcount;
859 }
860
861 return wcount;
862 }
863
tegra_dma_tx_status(struct dma_chan * dc,dma_cookie_t cookie,struct dma_tx_state * txstate)864 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
865 dma_cookie_t cookie, struct dma_tx_state *txstate)
866 {
867 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
868 struct tegra_dma_desc *dma_desc;
869 struct tegra_dma_sg_req *sg_req;
870 enum dma_status ret;
871 unsigned long flags;
872 unsigned int residual;
873 unsigned int bytes = 0;
874
875 ret = dma_cookie_status(dc, cookie, txstate);
876 if (ret == DMA_COMPLETE)
877 return ret;
878
879 spin_lock_irqsave(&tdc->lock, flags);
880
881 /* Check on wait_ack desc status */
882 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
883 if (dma_desc->txd.cookie == cookie) {
884 ret = dma_desc->dma_status;
885 goto found;
886 }
887 }
888
889 /* Check in pending list */
890 list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
891 dma_desc = sg_req->dma_desc;
892 if (dma_desc->txd.cookie == cookie) {
893 bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
894 ret = dma_desc->dma_status;
895 goto found;
896 }
897 }
898
899 dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
900 dma_desc = NULL;
901
902 found:
903 if (dma_desc && txstate) {
904 residual = dma_desc->bytes_requested -
905 ((dma_desc->bytes_transferred + bytes) %
906 dma_desc->bytes_requested);
907 dma_set_residue(txstate, residual);
908 }
909
910 trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
911 spin_unlock_irqrestore(&tdc->lock, flags);
912 return ret;
913 }
914
get_bus_width(struct tegra_dma_channel * tdc,enum dma_slave_buswidth slave_bw)915 static inline int get_bus_width(struct tegra_dma_channel *tdc,
916 enum dma_slave_buswidth slave_bw)
917 {
918 switch (slave_bw) {
919 case DMA_SLAVE_BUSWIDTH_1_BYTE:
920 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
921 case DMA_SLAVE_BUSWIDTH_2_BYTES:
922 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
923 case DMA_SLAVE_BUSWIDTH_4_BYTES:
924 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
925 case DMA_SLAVE_BUSWIDTH_8_BYTES:
926 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
927 default:
928 dev_warn(tdc2dev(tdc),
929 "slave bw is not supported, using 32bits\n");
930 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
931 }
932 }
933
get_burst_size(struct tegra_dma_channel * tdc,u32 burst_size,enum dma_slave_buswidth slave_bw,int len)934 static inline int get_burst_size(struct tegra_dma_channel *tdc,
935 u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
936 {
937 int burst_byte;
938 int burst_ahb_width;
939
940 /*
941 * burst_size from client is in terms of the bus_width.
942 * convert them into AHB memory width which is 4 byte.
943 */
944 burst_byte = burst_size * slave_bw;
945 burst_ahb_width = burst_byte / 4;
946
947 /* If burst size is 0 then calculate the burst size based on length */
948 if (!burst_ahb_width) {
949 if (len & 0xF)
950 return TEGRA_APBDMA_AHBSEQ_BURST_1;
951 else if ((len >> 4) & 0x1)
952 return TEGRA_APBDMA_AHBSEQ_BURST_4;
953 else
954 return TEGRA_APBDMA_AHBSEQ_BURST_8;
955 }
956 if (burst_ahb_width < 4)
957 return TEGRA_APBDMA_AHBSEQ_BURST_1;
958 else if (burst_ahb_width < 8)
959 return TEGRA_APBDMA_AHBSEQ_BURST_4;
960 else
961 return TEGRA_APBDMA_AHBSEQ_BURST_8;
962 }
963
get_transfer_param(struct tegra_dma_channel * tdc,enum dma_transfer_direction direction,unsigned long * apb_addr,unsigned long * apb_seq,unsigned long * csr,unsigned int * burst_size,enum dma_slave_buswidth * slave_bw)964 static int get_transfer_param(struct tegra_dma_channel *tdc,
965 enum dma_transfer_direction direction, unsigned long *apb_addr,
966 unsigned long *apb_seq, unsigned long *csr, unsigned int *burst_size,
967 enum dma_slave_buswidth *slave_bw)
968 {
969 switch (direction) {
970 case DMA_MEM_TO_DEV:
971 *apb_addr = tdc->dma_sconfig.dst_addr;
972 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
973 *burst_size = tdc->dma_sconfig.dst_maxburst;
974 *slave_bw = tdc->dma_sconfig.dst_addr_width;
975 *csr = TEGRA_APBDMA_CSR_DIR;
976 return 0;
977
978 case DMA_DEV_TO_MEM:
979 *apb_addr = tdc->dma_sconfig.src_addr;
980 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
981 *burst_size = tdc->dma_sconfig.src_maxburst;
982 *slave_bw = tdc->dma_sconfig.src_addr_width;
983 *csr = 0;
984 return 0;
985
986 default:
987 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
988 return -EINVAL;
989 }
990 return -EINVAL;
991 }
992
tegra_dma_prep_wcount(struct tegra_dma_channel * tdc,struct tegra_dma_channel_regs * ch_regs,u32 len)993 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
994 struct tegra_dma_channel_regs *ch_regs, u32 len)
995 {
996 u32 len_field = (len - 4) & 0xFFFC;
997
998 if (tdc->tdma->chip_data->support_separate_wcount_reg)
999 ch_regs->wcount = len_field;
1000 else
1001 ch_regs->csr |= len_field;
1002 }
1003
tegra_dma_prep_slave_sg(struct dma_chan * dc,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1004 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
1005 struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
1006 enum dma_transfer_direction direction, unsigned long flags,
1007 void *context)
1008 {
1009 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1010 struct tegra_dma_desc *dma_desc;
1011 unsigned int i;
1012 struct scatterlist *sg;
1013 unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1014 struct list_head req_list;
1015 struct tegra_dma_sg_req *sg_req = NULL;
1016 u32 burst_size;
1017 enum dma_slave_buswidth slave_bw;
1018
1019 if (!tdc->config_init) {
1020 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1021 return NULL;
1022 }
1023 if (sg_len < 1) {
1024 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1025 return NULL;
1026 }
1027
1028 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1029 &burst_size, &slave_bw) < 0)
1030 return NULL;
1031
1032 INIT_LIST_HEAD(&req_list);
1033
1034 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1035 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1036 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1037 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1038
1039 csr |= TEGRA_APBDMA_CSR_ONCE;
1040
1041 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1042 csr |= TEGRA_APBDMA_CSR_FLOW;
1043 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1044 }
1045
1046 if (flags & DMA_PREP_INTERRUPT) {
1047 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1048 } else {
1049 WARN_ON_ONCE(1);
1050 return NULL;
1051 }
1052
1053 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1054
1055 dma_desc = tegra_dma_desc_get(tdc);
1056 if (!dma_desc) {
1057 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1058 return NULL;
1059 }
1060 INIT_LIST_HEAD(&dma_desc->tx_list);
1061 INIT_LIST_HEAD(&dma_desc->cb_node);
1062 dma_desc->cb_count = 0;
1063 dma_desc->bytes_requested = 0;
1064 dma_desc->bytes_transferred = 0;
1065 dma_desc->dma_status = DMA_IN_PROGRESS;
1066
1067 /* Make transfer requests */
1068 for_each_sg(sgl, sg, sg_len, i) {
1069 u32 len, mem;
1070
1071 mem = sg_dma_address(sg);
1072 len = sg_dma_len(sg);
1073
1074 if ((len & 3) || (mem & 3) ||
1075 (len > tdc->tdma->chip_data->max_dma_count)) {
1076 dev_err(tdc2dev(tdc),
1077 "DMA length/memory address is not supported\n");
1078 tegra_dma_desc_put(tdc, dma_desc);
1079 return NULL;
1080 }
1081
1082 sg_req = tegra_dma_sg_req_get(tdc);
1083 if (!sg_req) {
1084 dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1085 tegra_dma_desc_put(tdc, dma_desc);
1086 return NULL;
1087 }
1088
1089 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1090 dma_desc->bytes_requested += len;
1091
1092 sg_req->ch_regs.apb_ptr = apb_ptr;
1093 sg_req->ch_regs.ahb_ptr = mem;
1094 sg_req->ch_regs.csr = csr;
1095 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1096 sg_req->ch_regs.apb_seq = apb_seq;
1097 sg_req->ch_regs.ahb_seq = ahb_seq;
1098 sg_req->configured = false;
1099 sg_req->last_sg = false;
1100 sg_req->dma_desc = dma_desc;
1101 sg_req->req_len = len;
1102
1103 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1104 }
1105 sg_req->last_sg = true;
1106 if (flags & DMA_CTRL_ACK)
1107 dma_desc->txd.flags = DMA_CTRL_ACK;
1108
1109 /*
1110 * Make sure that mode should not be conflicting with currently
1111 * configured mode.
1112 */
1113 if (!tdc->isr_handler) {
1114 tdc->isr_handler = handle_once_dma_done;
1115 tdc->cyclic = false;
1116 } else {
1117 if (tdc->cyclic) {
1118 dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1119 tegra_dma_desc_put(tdc, dma_desc);
1120 return NULL;
1121 }
1122 }
1123
1124 return &dma_desc->txd;
1125 }
1126
tegra_dma_prep_dma_cyclic(struct dma_chan * dc,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1127 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1128 struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1129 size_t period_len, enum dma_transfer_direction direction,
1130 unsigned long flags)
1131 {
1132 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1133 struct tegra_dma_desc *dma_desc = NULL;
1134 struct tegra_dma_sg_req *sg_req = NULL;
1135 unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1136 int len;
1137 size_t remain_len;
1138 dma_addr_t mem = buf_addr;
1139 u32 burst_size;
1140 enum dma_slave_buswidth slave_bw;
1141
1142 if (!buf_len || !period_len) {
1143 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1144 return NULL;
1145 }
1146
1147 if (!tdc->config_init) {
1148 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1149 return NULL;
1150 }
1151
1152 /*
1153 * We allow to take more number of requests till DMA is
1154 * not started. The driver will loop over all requests.
1155 * Once DMA is started then new requests can be queued only after
1156 * terminating the DMA.
1157 */
1158 if (tdc->busy) {
1159 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1160 return NULL;
1161 }
1162
1163 /*
1164 * We only support cycle transfer when buf_len is multiple of
1165 * period_len.
1166 */
1167 if (buf_len % period_len) {
1168 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1169 return NULL;
1170 }
1171
1172 len = period_len;
1173 if ((len & 3) || (buf_addr & 3) ||
1174 (len > tdc->tdma->chip_data->max_dma_count)) {
1175 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1176 return NULL;
1177 }
1178
1179 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1180 &burst_size, &slave_bw) < 0)
1181 return NULL;
1182
1183 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1184 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1185 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1186 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1187
1188 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1189 csr |= TEGRA_APBDMA_CSR_FLOW;
1190 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1191 }
1192
1193 if (flags & DMA_PREP_INTERRUPT) {
1194 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1195 } else {
1196 WARN_ON_ONCE(1);
1197 return NULL;
1198 }
1199
1200 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1201
1202 dma_desc = tegra_dma_desc_get(tdc);
1203 if (!dma_desc) {
1204 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1205 return NULL;
1206 }
1207
1208 INIT_LIST_HEAD(&dma_desc->tx_list);
1209 INIT_LIST_HEAD(&dma_desc->cb_node);
1210 dma_desc->cb_count = 0;
1211
1212 dma_desc->bytes_transferred = 0;
1213 dma_desc->bytes_requested = buf_len;
1214 remain_len = buf_len;
1215
1216 /* Split transfer equal to period size */
1217 while (remain_len) {
1218 sg_req = tegra_dma_sg_req_get(tdc);
1219 if (!sg_req) {
1220 dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1221 tegra_dma_desc_put(tdc, dma_desc);
1222 return NULL;
1223 }
1224
1225 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1226 sg_req->ch_regs.apb_ptr = apb_ptr;
1227 sg_req->ch_regs.ahb_ptr = mem;
1228 sg_req->ch_regs.csr = csr;
1229 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1230 sg_req->ch_regs.apb_seq = apb_seq;
1231 sg_req->ch_regs.ahb_seq = ahb_seq;
1232 sg_req->configured = false;
1233 sg_req->last_sg = false;
1234 sg_req->dma_desc = dma_desc;
1235 sg_req->req_len = len;
1236
1237 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1238 remain_len -= len;
1239 mem += len;
1240 }
1241 sg_req->last_sg = true;
1242 if (flags & DMA_CTRL_ACK)
1243 dma_desc->txd.flags = DMA_CTRL_ACK;
1244
1245 /*
1246 * Make sure that mode should not be conflicting with currently
1247 * configured mode.
1248 */
1249 if (!tdc->isr_handler) {
1250 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1251 tdc->cyclic = true;
1252 } else {
1253 if (!tdc->cyclic) {
1254 dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1255 tegra_dma_desc_put(tdc, dma_desc);
1256 return NULL;
1257 }
1258 }
1259
1260 return &dma_desc->txd;
1261 }
1262
tegra_dma_alloc_chan_resources(struct dma_chan * dc)1263 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1264 {
1265 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1266 struct tegra_dma *tdma = tdc->tdma;
1267 int ret;
1268
1269 dma_cookie_init(&tdc->dma_chan);
1270 tdc->config_init = false;
1271
1272 ret = pm_runtime_get_sync(tdma->dev);
1273 if (ret < 0)
1274 return ret;
1275
1276 return 0;
1277 }
1278
tegra_dma_free_chan_resources(struct dma_chan * dc)1279 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1280 {
1281 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1282 struct tegra_dma *tdma = tdc->tdma;
1283 struct tegra_dma_desc *dma_desc;
1284 struct tegra_dma_sg_req *sg_req;
1285 struct list_head dma_desc_list;
1286 struct list_head sg_req_list;
1287 unsigned long flags;
1288
1289 INIT_LIST_HEAD(&dma_desc_list);
1290 INIT_LIST_HEAD(&sg_req_list);
1291
1292 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1293
1294 if (tdc->busy)
1295 tegra_dma_terminate_all(dc);
1296
1297 spin_lock_irqsave(&tdc->lock, flags);
1298 list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1299 list_splice_init(&tdc->free_sg_req, &sg_req_list);
1300 list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1301 INIT_LIST_HEAD(&tdc->cb_desc);
1302 tdc->config_init = false;
1303 tdc->isr_handler = NULL;
1304 spin_unlock_irqrestore(&tdc->lock, flags);
1305
1306 while (!list_empty(&dma_desc_list)) {
1307 dma_desc = list_first_entry(&dma_desc_list,
1308 typeof(*dma_desc), node);
1309 list_del(&dma_desc->node);
1310 kfree(dma_desc);
1311 }
1312
1313 while (!list_empty(&sg_req_list)) {
1314 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1315 list_del(&sg_req->node);
1316 kfree(sg_req);
1317 }
1318 pm_runtime_put(tdma->dev);
1319
1320 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1321 }
1322
tegra_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1323 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1324 struct of_dma *ofdma)
1325 {
1326 struct tegra_dma *tdma = ofdma->of_dma_data;
1327 struct dma_chan *chan;
1328 struct tegra_dma_channel *tdc;
1329
1330 if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1331 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1332 return NULL;
1333 }
1334
1335 chan = dma_get_any_slave_channel(&tdma->dma_dev);
1336 if (!chan)
1337 return NULL;
1338
1339 tdc = to_tegra_dma_chan(chan);
1340 tdc->slave_id = dma_spec->args[0];
1341
1342 return chan;
1343 }
1344
1345 /* Tegra20 specific DMA controller information */
1346 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1347 .nr_channels = 16,
1348 .channel_reg_size = 0x20,
1349 .max_dma_count = 1024UL * 64,
1350 .support_channel_pause = false,
1351 .support_separate_wcount_reg = false,
1352 };
1353
1354 /* Tegra30 specific DMA controller information */
1355 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1356 .nr_channels = 32,
1357 .channel_reg_size = 0x20,
1358 .max_dma_count = 1024UL * 64,
1359 .support_channel_pause = false,
1360 .support_separate_wcount_reg = false,
1361 };
1362
1363 /* Tegra114 specific DMA controller information */
1364 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1365 .nr_channels = 32,
1366 .channel_reg_size = 0x20,
1367 .max_dma_count = 1024UL * 64,
1368 .support_channel_pause = true,
1369 .support_separate_wcount_reg = false,
1370 };
1371
1372 /* Tegra148 specific DMA controller information */
1373 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1374 .nr_channels = 32,
1375 .channel_reg_size = 0x40,
1376 .max_dma_count = 1024UL * 64,
1377 .support_channel_pause = true,
1378 .support_separate_wcount_reg = true,
1379 };
1380
tegra_dma_probe(struct platform_device * pdev)1381 static int tegra_dma_probe(struct platform_device *pdev)
1382 {
1383 struct resource *res;
1384 struct tegra_dma *tdma;
1385 int ret;
1386 int i;
1387 const struct tegra_dma_chip_data *cdata;
1388
1389 cdata = of_device_get_match_data(&pdev->dev);
1390 if (!cdata) {
1391 dev_err(&pdev->dev, "Error: No device match data found\n");
1392 return -ENODEV;
1393 }
1394
1395 tdma = devm_kzalloc(&pdev->dev,
1396 struct_size(tdma, channels, cdata->nr_channels),
1397 GFP_KERNEL);
1398 if (!tdma)
1399 return -ENOMEM;
1400
1401 tdma->dev = &pdev->dev;
1402 tdma->chip_data = cdata;
1403 platform_set_drvdata(pdev, tdma);
1404
1405 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1406 tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1407 if (IS_ERR(tdma->base_addr))
1408 return PTR_ERR(tdma->base_addr);
1409
1410 tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1411 if (IS_ERR(tdma->dma_clk)) {
1412 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1413 return PTR_ERR(tdma->dma_clk);
1414 }
1415
1416 tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1417 if (IS_ERR(tdma->rst)) {
1418 dev_err(&pdev->dev, "Error: Missing reset\n");
1419 return PTR_ERR(tdma->rst);
1420 }
1421
1422 spin_lock_init(&tdma->global_lock);
1423
1424 pm_runtime_enable(&pdev->dev);
1425 if (!pm_runtime_enabled(&pdev->dev))
1426 ret = tegra_dma_runtime_resume(&pdev->dev);
1427 else
1428 ret = pm_runtime_get_sync(&pdev->dev);
1429
1430 if (ret < 0) {
1431 pm_runtime_disable(&pdev->dev);
1432 return ret;
1433 }
1434
1435 /* Reset DMA controller */
1436 reset_control_assert(tdma->rst);
1437 udelay(2);
1438 reset_control_deassert(tdma->rst);
1439
1440 /* Enable global DMA registers */
1441 tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1442 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1443 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1444
1445 pm_runtime_put(&pdev->dev);
1446
1447 INIT_LIST_HEAD(&tdma->dma_dev.channels);
1448 for (i = 0; i < cdata->nr_channels; i++) {
1449 struct tegra_dma_channel *tdc = &tdma->channels[i];
1450
1451 tdc->chan_addr = tdma->base_addr +
1452 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1453 (i * cdata->channel_reg_size);
1454
1455 res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1456 if (!res) {
1457 ret = -EINVAL;
1458 dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1459 goto err_irq;
1460 }
1461 tdc->irq = res->start;
1462 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1463 ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1464 if (ret) {
1465 dev_err(&pdev->dev,
1466 "request_irq failed with err %d channel %d\n",
1467 ret, i);
1468 goto err_irq;
1469 }
1470
1471 tdc->dma_chan.device = &tdma->dma_dev;
1472 dma_cookie_init(&tdc->dma_chan);
1473 list_add_tail(&tdc->dma_chan.device_node,
1474 &tdma->dma_dev.channels);
1475 tdc->tdma = tdma;
1476 tdc->id = i;
1477 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1478
1479 tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1480 (unsigned long)tdc);
1481 spin_lock_init(&tdc->lock);
1482
1483 INIT_LIST_HEAD(&tdc->pending_sg_req);
1484 INIT_LIST_HEAD(&tdc->free_sg_req);
1485 INIT_LIST_HEAD(&tdc->free_dma_desc);
1486 INIT_LIST_HEAD(&tdc->cb_desc);
1487 }
1488
1489 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1490 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1491 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1492
1493 tdma->global_pause_count = 0;
1494 tdma->dma_dev.dev = &pdev->dev;
1495 tdma->dma_dev.device_alloc_chan_resources =
1496 tegra_dma_alloc_chan_resources;
1497 tdma->dma_dev.device_free_chan_resources =
1498 tegra_dma_free_chan_resources;
1499 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1500 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1501 tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1502 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1503 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1504 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1505 tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1506 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1507 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1508 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1509 tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1510 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1511 tdma->dma_dev.device_config = tegra_dma_slave_config;
1512 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1513 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1514 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1515
1516 ret = dma_async_device_register(&tdma->dma_dev);
1517 if (ret < 0) {
1518 dev_err(&pdev->dev,
1519 "Tegra20 APB DMA driver registration failed %d\n", ret);
1520 goto err_irq;
1521 }
1522
1523 ret = of_dma_controller_register(pdev->dev.of_node,
1524 tegra_dma_of_xlate, tdma);
1525 if (ret < 0) {
1526 dev_err(&pdev->dev,
1527 "Tegra20 APB DMA OF registration failed %d\n", ret);
1528 goto err_unregister_dma_dev;
1529 }
1530
1531 dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1532 cdata->nr_channels);
1533 return 0;
1534
1535 err_unregister_dma_dev:
1536 dma_async_device_unregister(&tdma->dma_dev);
1537 err_irq:
1538 while (--i >= 0) {
1539 struct tegra_dma_channel *tdc = &tdma->channels[i];
1540
1541 free_irq(tdc->irq, tdc);
1542 tasklet_kill(&tdc->tasklet);
1543 }
1544
1545 pm_runtime_disable(&pdev->dev);
1546 if (!pm_runtime_status_suspended(&pdev->dev))
1547 tegra_dma_runtime_suspend(&pdev->dev);
1548 return ret;
1549 }
1550
tegra_dma_remove(struct platform_device * pdev)1551 static int tegra_dma_remove(struct platform_device *pdev)
1552 {
1553 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1554 int i;
1555 struct tegra_dma_channel *tdc;
1556
1557 dma_async_device_unregister(&tdma->dma_dev);
1558
1559 for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1560 tdc = &tdma->channels[i];
1561 free_irq(tdc->irq, tdc);
1562 tasklet_kill(&tdc->tasklet);
1563 }
1564
1565 pm_runtime_disable(&pdev->dev);
1566 if (!pm_runtime_status_suspended(&pdev->dev))
1567 tegra_dma_runtime_suspend(&pdev->dev);
1568
1569 return 0;
1570 }
1571
tegra_dma_runtime_suspend(struct device * dev)1572 static int tegra_dma_runtime_suspend(struct device *dev)
1573 {
1574 struct tegra_dma *tdma = dev_get_drvdata(dev);
1575 int i;
1576
1577 tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1578 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1579 struct tegra_dma_channel *tdc = &tdma->channels[i];
1580 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1581
1582 /* Only save the state of DMA channels that are in use */
1583 if (!tdc->config_init)
1584 continue;
1585
1586 ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1587 ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1588 ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1589 ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1590 ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1591 if (tdma->chip_data->support_separate_wcount_reg)
1592 ch_reg->wcount = tdc_read(tdc,
1593 TEGRA_APBDMA_CHAN_WCOUNT);
1594 }
1595
1596 clk_disable_unprepare(tdma->dma_clk);
1597
1598 return 0;
1599 }
1600
tegra_dma_runtime_resume(struct device * dev)1601 static int tegra_dma_runtime_resume(struct device *dev)
1602 {
1603 struct tegra_dma *tdma = dev_get_drvdata(dev);
1604 int i, ret;
1605
1606 ret = clk_prepare_enable(tdma->dma_clk);
1607 if (ret < 0) {
1608 dev_err(dev, "clk_enable failed: %d\n", ret);
1609 return ret;
1610 }
1611
1612 tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1613 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1614 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1615
1616 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1617 struct tegra_dma_channel *tdc = &tdma->channels[i];
1618 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1619
1620 /* Only restore the state of DMA channels that are in use */
1621 if (!tdc->config_init)
1622 continue;
1623
1624 if (tdma->chip_data->support_separate_wcount_reg)
1625 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1626 ch_reg->wcount);
1627 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1628 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1629 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1630 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1631 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1632 (ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1633 }
1634
1635 return 0;
1636 }
1637
1638 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1639 SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1640 NULL)
1641 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1642 pm_runtime_force_resume)
1643 };
1644
1645 static const struct of_device_id tegra_dma_of_match[] = {
1646 {
1647 .compatible = "nvidia,tegra148-apbdma",
1648 .data = &tegra148_dma_chip_data,
1649 }, {
1650 .compatible = "nvidia,tegra114-apbdma",
1651 .data = &tegra114_dma_chip_data,
1652 }, {
1653 .compatible = "nvidia,tegra30-apbdma",
1654 .data = &tegra30_dma_chip_data,
1655 }, {
1656 .compatible = "nvidia,tegra20-apbdma",
1657 .data = &tegra20_dma_chip_data,
1658 }, {
1659 },
1660 };
1661 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1662
1663 static struct platform_driver tegra_dmac_driver = {
1664 .driver = {
1665 .name = "tegra-apbdma",
1666 .pm = &tegra_dma_dev_pm_ops,
1667 .of_match_table = tegra_dma_of_match,
1668 },
1669 .probe = tegra_dma_probe,
1670 .remove = tegra_dma_remove,
1671 };
1672
1673 module_platform_driver(tegra_dmac_driver);
1674
1675 MODULE_ALIAS("platform:tegra20-apbdma");
1676 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1677 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1678 MODULE_LICENSE("GPL v2");
1679