1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Applied Micro X-Gene SoC DMA engine Driver
4 *
5 * Copyright (c) 2015, Applied Micro Circuits Corporation
6 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
7 * Loc Ho <lho@apm.com>
8 *
9 * NOTE: PM support is currently not available.
10 */
11
12 #include <linux/acpi.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23
24 #include "dmaengine.h"
25
26 /* X-Gene DMA ring csr registers and bit definations */
27 #define XGENE_DMA_RING_CONFIG 0x04
28 #define XGENE_DMA_RING_ENABLE BIT(31)
29 #define XGENE_DMA_RING_ID 0x08
30 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
31 #define XGENE_DMA_RING_ID_BUF 0x0C
32 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
33 #define XGENE_DMA_RING_THRESLD0_SET1 0x30
34 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
35 #define XGENE_DMA_RING_THRESLD1_SET1 0x34
36 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
37 #define XGENE_DMA_RING_HYSTERESIS 0x68
38 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
39 #define XGENE_DMA_RING_STATE 0x6C
40 #define XGENE_DMA_RING_STATE_WR_BASE 0x70
41 #define XGENE_DMA_RING_NE_INT_MODE 0x017C
42 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
43 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
44 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
45 ((m) &= (~BIT(31 - (v))))
46 #define XGENE_DMA_RING_CLKEN 0xC208
47 #define XGENE_DMA_RING_SRST 0xC200
48 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
49 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
50 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
51 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
52 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
53 #define XGENE_DMA_RING_CMD_OFFSET 0x2C
54 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
55 #define XGENE_DMA_RING_COHERENT_SET(m) \
56 (((u32 *)(m))[2] |= BIT(4))
57 #define XGENE_DMA_RING_ADDRL_SET(m, v) \
58 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
59 #define XGENE_DMA_RING_ADDRH_SET(m, v) \
60 (((u32 *)(m))[3] |= ((v) >> 35))
61 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
62 (((u32 *)(m))[3] |= BIT(19))
63 #define XGENE_DMA_RING_SIZE_SET(m, v) \
64 (((u32 *)(m))[3] |= ((v) << 23))
65 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \
66 (((u32 *)(m))[3] |= BIT(27))
67 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
68 (((u32 *)(m))[3] |= (0x7 << 28))
69 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
70 (((u32 *)(m))[4] |= 0x3)
71 #define XGENE_DMA_RING_SELTHRSH_SET(m) \
72 (((u32 *)(m))[4] |= BIT(3))
73 #define XGENE_DMA_RING_TYPE_SET(m, v) \
74 (((u32 *)(m))[4] |= ((v) << 19))
75
76 /* X-Gene DMA device csr registers and bit definitions */
77 #define XGENE_DMA_IPBRR 0x0
78 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
79 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
80 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
81 #define XGENE_DMA_GCR 0x10
82 #define XGENE_DMA_CH_SETUP(v) \
83 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
84 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
85 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
86 #define XGENE_DMA_RAID6_CONT 0x14
87 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
88 #define XGENE_DMA_INT 0x70
89 #define XGENE_DMA_INT_MASK 0x74
90 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
91 #define XGENE_DMA_INT_ALL_UNMASK 0x0
92 #define XGENE_DMA_INT_MASK_SHIFT 0x14
93 #define XGENE_DMA_RING_INT0_MASK 0x90A0
94 #define XGENE_DMA_RING_INT1_MASK 0x90A8
95 #define XGENE_DMA_RING_INT2_MASK 0x90B0
96 #define XGENE_DMA_RING_INT3_MASK 0x90B8
97 #define XGENE_DMA_RING_INT4_MASK 0x90C0
98 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
99 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
100 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
101 #define XGENE_DMA_BLK_MEM_RDY 0xD074
102 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
103 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
104
105 /* X-Gene SoC EFUSE csr register and bit defination */
106 #define XGENE_SOC_JTAG1_SHADOW 0x18
107 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
108
109 /* X-Gene DMA Descriptor format */
110 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
111 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
112 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
113 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
114 #define XGENE_DMA_DESC_ELERR_POS 46
115 #define XGENE_DMA_DESC_RTYPE_POS 56
116 #define XGENE_DMA_DESC_LERR_POS 60
117 #define XGENE_DMA_DESC_BUFLEN_POS 48
118 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48
119 #define XGENE_DMA_DESC_ELERR_RD(m) \
120 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
121 #define XGENE_DMA_DESC_LERR_RD(m) \
122 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
123 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \
124 (((elerr) << 4) | (lerr))
125
126 /* X-Gene DMA descriptor empty s/w signature */
127 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
128
129 /* X-Gene DMA configurable parameters defines */
130 #define XGENE_DMA_RING_NUM 512
131 #define XGENE_DMA_BUFNUM 0x0
132 #define XGENE_DMA_CPU_BUFNUM 0x18
133 #define XGENE_DMA_RING_OWNER_DMA 0x03
134 #define XGENE_DMA_RING_OWNER_CPU 0x0F
135 #define XGENE_DMA_RING_TYPE_REGULAR 0x01
136 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
137 #define XGENE_DMA_RING_NUM_CONFIG 5
138 #define XGENE_DMA_MAX_CHANNEL 4
139 #define XGENE_DMA_XOR_CHANNEL 0
140 #define XGENE_DMA_PQ_CHANNEL 1
141 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
142 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
143 #define XGENE_DMA_MAX_XOR_SRC 5
144 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
145 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
146
147 /* X-Gene DMA descriptor error codes */
148 #define ERR_DESC_AXI 0x01
149 #define ERR_BAD_DESC 0x02
150 #define ERR_READ_DATA_AXI 0x03
151 #define ERR_WRITE_DATA_AXI 0x04
152 #define ERR_FBP_TIMEOUT 0x05
153 #define ERR_ECC 0x06
154 #define ERR_DIFF_SIZE 0x08
155 #define ERR_SCT_GAT_LEN 0x09
156 #define ERR_CRC_ERR 0x11
157 #define ERR_CHKSUM 0x12
158 #define ERR_DIF 0x13
159
160 /* X-Gene DMA error interrupt codes */
161 #define ERR_DIF_SIZE_INT 0x0
162 #define ERR_GS_ERR_INT 0x1
163 #define ERR_FPB_TIMEO_INT 0x2
164 #define ERR_WFIFO_OVF_INT 0x3
165 #define ERR_RFIFO_OVF_INT 0x4
166 #define ERR_WR_TIMEO_INT 0x5
167 #define ERR_RD_TIMEO_INT 0x6
168 #define ERR_WR_ERR_INT 0x7
169 #define ERR_RD_ERR_INT 0x8
170 #define ERR_BAD_DESC_INT 0x9
171 #define ERR_DESC_DST_INT 0xA
172 #define ERR_DESC_SRC_INT 0xB
173
174 /* X-Gene DMA flyby operation code */
175 #define FLYBY_2SRC_XOR 0x80
176 #define FLYBY_3SRC_XOR 0x90
177 #define FLYBY_4SRC_XOR 0xA0
178 #define FLYBY_5SRC_XOR 0xB0
179
180 /* X-Gene DMA SW descriptor flags */
181 #define XGENE_DMA_FLAG_64B_DESC BIT(0)
182
183 /* Define to dump X-Gene DMA descriptor */
184 #define XGENE_DMA_DESC_DUMP(desc, m) \
185 print_hex_dump(KERN_ERR, (m), \
186 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
187
188 #define to_dma_desc_sw(tx) \
189 container_of(tx, struct xgene_dma_desc_sw, tx)
190 #define to_dma_chan(dchan) \
191 container_of(dchan, struct xgene_dma_chan, dma_chan)
192
193 #define chan_dbg(chan, fmt, arg...) \
194 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
195 #define chan_err(chan, fmt, arg...) \
196 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
197
198 struct xgene_dma_desc_hw {
199 __le64 m0;
200 __le64 m1;
201 __le64 m2;
202 __le64 m3;
203 };
204
205 enum xgene_dma_ring_cfgsize {
206 XGENE_DMA_RING_CFG_SIZE_512B,
207 XGENE_DMA_RING_CFG_SIZE_2KB,
208 XGENE_DMA_RING_CFG_SIZE_16KB,
209 XGENE_DMA_RING_CFG_SIZE_64KB,
210 XGENE_DMA_RING_CFG_SIZE_512KB,
211 XGENE_DMA_RING_CFG_SIZE_INVALID
212 };
213
214 struct xgene_dma_ring {
215 struct xgene_dma *pdma;
216 u8 buf_num;
217 u16 id;
218 u16 num;
219 u16 head;
220 u16 owner;
221 u16 slots;
222 u16 dst_ring_num;
223 u32 size;
224 void __iomem *cmd;
225 void __iomem *cmd_base;
226 dma_addr_t desc_paddr;
227 u32 state[XGENE_DMA_RING_NUM_CONFIG];
228 enum xgene_dma_ring_cfgsize cfgsize;
229 union {
230 void *desc_vaddr;
231 struct xgene_dma_desc_hw *desc_hw;
232 };
233 };
234
235 struct xgene_dma_desc_sw {
236 struct xgene_dma_desc_hw desc1;
237 struct xgene_dma_desc_hw desc2;
238 u32 flags;
239 struct list_head node;
240 struct list_head tx_list;
241 struct dma_async_tx_descriptor tx;
242 };
243
244 /**
245 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
246 * @dma_chan: dmaengine channel object member
247 * @pdma: X-Gene DMA device structure reference
248 * @dev: struct device reference for dma mapping api
249 * @id: raw id of this channel
250 * @rx_irq: channel IRQ
251 * @name: name of X-Gene DMA channel
252 * @lock: serializes enqueue/dequeue operations to the descriptor pool
253 * @pending: number of transaction request pushed to DMA controller for
254 * execution, but still waiting for completion,
255 * @max_outstanding: max number of outstanding request we can push to channel
256 * @ld_pending: descriptors which are queued to run, but have not yet been
257 * submitted to the hardware for execution
258 * @ld_running: descriptors which are currently being executing by the hardware
259 * @ld_completed: descriptors which have finished execution by the hardware.
260 * These descriptors have already had their cleanup actions run. They
261 * are waiting for the ACK bit to be set by the async tx API.
262 * @desc_pool: descriptor pool for DMA operations
263 * @tasklet: bottom half where all completed descriptors cleans
264 * @tx_ring: transmit ring descriptor that we use to prepare actual
265 * descriptors for further executions
266 * @rx_ring: receive ring descriptor that we use to get completed DMA
267 * descriptors during cleanup time
268 */
269 struct xgene_dma_chan {
270 struct dma_chan dma_chan;
271 struct xgene_dma *pdma;
272 struct device *dev;
273 int id;
274 int rx_irq;
275 char name[10];
276 spinlock_t lock;
277 int pending;
278 int max_outstanding;
279 struct list_head ld_pending;
280 struct list_head ld_running;
281 struct list_head ld_completed;
282 struct dma_pool *desc_pool;
283 struct tasklet_struct tasklet;
284 struct xgene_dma_ring tx_ring;
285 struct xgene_dma_ring rx_ring;
286 };
287
288 /**
289 * struct xgene_dma - internal representation of an X-Gene DMA device
290 * @err_irq: DMA error irq number
291 * @ring_num: start id number for DMA ring
292 * @csr_dma: base for DMA register access
293 * @csr_ring: base for DMA ring register access
294 * @csr_ring_cmd: base for DMA ring command register access
295 * @csr_efuse: base for efuse register access
296 * @dma_dev: embedded struct dma_device
297 * @chan: reference to X-Gene DMA channels
298 */
299 struct xgene_dma {
300 struct device *dev;
301 struct clk *clk;
302 int err_irq;
303 int ring_num;
304 void __iomem *csr_dma;
305 void __iomem *csr_ring;
306 void __iomem *csr_ring_cmd;
307 void __iomem *csr_efuse;
308 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
309 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
310 };
311
312 static const char * const xgene_dma_desc_err[] = {
313 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
314 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
315 [ERR_READ_DATA_AXI] = "AXI error when reading data",
316 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
317 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
318 [ERR_ECC] = "ECC double bit error",
319 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
320 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
321 [ERR_CRC_ERR] = "CRC error",
322 [ERR_CHKSUM] = "Checksum error",
323 [ERR_DIF] = "DIF error",
324 };
325
326 static const char * const xgene_dma_err[] = {
327 [ERR_DIF_SIZE_INT] = "DIF size error",
328 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
329 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
330 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
331 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
332 [ERR_WR_TIMEO_INT] = "Write time out error",
333 [ERR_RD_TIMEO_INT] = "Read time out error",
334 [ERR_WR_ERR_INT] = "HBF bus write error",
335 [ERR_RD_ERR_INT] = "HBF bus read error",
336 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
337 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
338 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
339 };
340
is_pq_enabled(struct xgene_dma * pdma)341 static bool is_pq_enabled(struct xgene_dma *pdma)
342 {
343 u32 val;
344
345 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
346 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
347 }
348
xgene_dma_encode_len(size_t len)349 static u64 xgene_dma_encode_len(size_t len)
350 {
351 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
352 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
353 XGENE_DMA_16K_BUFFER_LEN_CODE;
354 }
355
xgene_dma_encode_xor_flyby(u32 src_cnt)356 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
357 {
358 static u8 flyby_type[] = {
359 FLYBY_2SRC_XOR, /* Dummy */
360 FLYBY_2SRC_XOR, /* Dummy */
361 FLYBY_2SRC_XOR,
362 FLYBY_3SRC_XOR,
363 FLYBY_4SRC_XOR,
364 FLYBY_5SRC_XOR
365 };
366
367 return flyby_type[src_cnt];
368 }
369
xgene_dma_set_src_buffer(__le64 * ext8,size_t * len,dma_addr_t * paddr)370 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
371 dma_addr_t *paddr)
372 {
373 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
374 *len : XGENE_DMA_MAX_BYTE_CNT;
375
376 *ext8 |= cpu_to_le64(*paddr);
377 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
378 *len -= nbytes;
379 *paddr += nbytes;
380 }
381
xgene_dma_lookup_ext8(struct xgene_dma_desc_hw * desc,int idx)382 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
383 {
384 switch (idx) {
385 case 0:
386 return &desc->m1;
387 case 1:
388 return &desc->m0;
389 case 2:
390 return &desc->m3;
391 case 3:
392 return &desc->m2;
393 default:
394 pr_err("Invalid dma descriptor index\n");
395 }
396
397 return NULL;
398 }
399
xgene_dma_init_desc(struct xgene_dma_desc_hw * desc,u16 dst_ring_num)400 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
401 u16 dst_ring_num)
402 {
403 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
404 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
405 XGENE_DMA_DESC_RTYPE_POS);
406 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
407 desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
408 XGENE_DMA_DESC_HOENQ_NUM_POS);
409 }
410
xgene_dma_prep_xor_desc(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc_sw,dma_addr_t * dst,dma_addr_t * src,u32 src_cnt,size_t * nbytes,const u8 * scf)411 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
412 struct xgene_dma_desc_sw *desc_sw,
413 dma_addr_t *dst, dma_addr_t *src,
414 u32 src_cnt, size_t *nbytes,
415 const u8 *scf)
416 {
417 struct xgene_dma_desc_hw *desc1, *desc2;
418 size_t len = *nbytes;
419 int i;
420
421 desc1 = &desc_sw->desc1;
422 desc2 = &desc_sw->desc2;
423
424 /* Initialize DMA descriptor */
425 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
426
427 /* Set destination address */
428 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
429 desc1->m3 |= cpu_to_le64(*dst);
430
431 /* We have multiple source addresses, so need to set NV bit*/
432 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
433
434 /* Set flyby opcode */
435 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
436
437 /* Set 1st to 5th source addresses */
438 for (i = 0; i < src_cnt; i++) {
439 len = *nbytes;
440 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
441 xgene_dma_lookup_ext8(desc2, i - 1),
442 &len, &src[i]);
443 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
444 }
445
446 /* Update meta data */
447 *nbytes = len;
448 *dst += XGENE_DMA_MAX_BYTE_CNT;
449
450 /* We need always 64B descriptor to perform xor or pq operations */
451 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
452 }
453
xgene_dma_tx_submit(struct dma_async_tx_descriptor * tx)454 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
455 {
456 struct xgene_dma_desc_sw *desc;
457 struct xgene_dma_chan *chan;
458 dma_cookie_t cookie;
459
460 if (unlikely(!tx))
461 return -EINVAL;
462
463 chan = to_dma_chan(tx->chan);
464 desc = to_dma_desc_sw(tx);
465
466 spin_lock_bh(&chan->lock);
467
468 cookie = dma_cookie_assign(tx);
469
470 /* Add this transaction list onto the tail of the pending queue */
471 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
472
473 spin_unlock_bh(&chan->lock);
474
475 return cookie;
476 }
477
xgene_dma_clean_descriptor(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc)478 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
479 struct xgene_dma_desc_sw *desc)
480 {
481 list_del(&desc->node);
482 chan_dbg(chan, "LD %p free\n", desc);
483 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
484 }
485
xgene_dma_alloc_descriptor(struct xgene_dma_chan * chan)486 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
487 struct xgene_dma_chan *chan)
488 {
489 struct xgene_dma_desc_sw *desc;
490 dma_addr_t phys;
491
492 desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
493 if (!desc) {
494 chan_err(chan, "Failed to allocate LDs\n");
495 return NULL;
496 }
497
498 INIT_LIST_HEAD(&desc->tx_list);
499 desc->tx.phys = phys;
500 desc->tx.tx_submit = xgene_dma_tx_submit;
501 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
502
503 chan_dbg(chan, "LD %p allocated\n", desc);
504
505 return desc;
506 }
507
508 /**
509 * xgene_dma_clean_completed_descriptor - free all descriptors which
510 * has been completed and acked
511 * @chan: X-Gene DMA channel
512 *
513 * This function is used on all completed and acked descriptors.
514 */
xgene_dma_clean_completed_descriptor(struct xgene_dma_chan * chan)515 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
516 {
517 struct xgene_dma_desc_sw *desc, *_desc;
518
519 /* Run the callback for each descriptor, in order */
520 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
521 if (async_tx_test_ack(&desc->tx))
522 xgene_dma_clean_descriptor(chan, desc);
523 }
524 }
525
526 /**
527 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
528 * @chan: X-Gene DMA channel
529 * @desc: descriptor to cleanup and free
530 *
531 * This function is used on a descriptor which has been executed by the DMA
532 * controller. It will run any callbacks, submit any dependencies.
533 */
xgene_dma_run_tx_complete_actions(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc)534 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
535 struct xgene_dma_desc_sw *desc)
536 {
537 struct dma_async_tx_descriptor *tx = &desc->tx;
538
539 /*
540 * If this is not the last transaction in the group,
541 * then no need to complete cookie and run any callback as
542 * this is not the tx_descriptor which had been sent to caller
543 * of this DMA request
544 */
545
546 if (tx->cookie == 0)
547 return;
548
549 dma_cookie_complete(tx);
550 dma_descriptor_unmap(tx);
551
552 /* Run the link descriptor callback function */
553 dmaengine_desc_get_callback_invoke(tx, NULL);
554
555 /* Run any dependencies */
556 dma_run_dependencies(tx);
557 }
558
559 /**
560 * xgene_dma_clean_running_descriptor - move the completed descriptor from
561 * ld_running to ld_completed
562 * @chan: X-Gene DMA channel
563 * @desc: the descriptor which is completed
564 *
565 * Free the descriptor directly if acked by async_tx api,
566 * else move it to queue ld_completed.
567 */
xgene_dma_clean_running_descriptor(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc)568 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
569 struct xgene_dma_desc_sw *desc)
570 {
571 /* Remove from the list of running transactions */
572 list_del(&desc->node);
573
574 /*
575 * the client is allowed to attach dependent operations
576 * until 'ack' is set
577 */
578 if (!async_tx_test_ack(&desc->tx)) {
579 /*
580 * Move this descriptor to the list of descriptors which is
581 * completed, but still awaiting the 'ack' bit to be set.
582 */
583 list_add_tail(&desc->node, &chan->ld_completed);
584 return;
585 }
586
587 chan_dbg(chan, "LD %p free\n", desc);
588 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
589 }
590
xgene_chan_xfer_request(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc_sw)591 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
592 struct xgene_dma_desc_sw *desc_sw)
593 {
594 struct xgene_dma_ring *ring = &chan->tx_ring;
595 struct xgene_dma_desc_hw *desc_hw;
596
597 /* Get hw descriptor from DMA tx ring */
598 desc_hw = &ring->desc_hw[ring->head];
599
600 /*
601 * Increment the head count to point next
602 * descriptor for next time
603 */
604 if (++ring->head == ring->slots)
605 ring->head = 0;
606
607 /* Copy prepared sw descriptor data to hw descriptor */
608 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
609
610 /*
611 * Check if we have prepared 64B descriptor,
612 * in this case we need one more hw descriptor
613 */
614 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
615 desc_hw = &ring->desc_hw[ring->head];
616
617 if (++ring->head == ring->slots)
618 ring->head = 0;
619
620 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
621 }
622
623 /* Increment the pending transaction count */
624 chan->pending += ((desc_sw->flags &
625 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
626
627 /* Notify the hw that we have descriptor ready for execution */
628 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
629 2 : 1, ring->cmd);
630 }
631
632 /**
633 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
634 * @chan : X-Gene DMA channel
635 *
636 * LOCKING: must hold chan->lock
637 */
xgene_chan_xfer_ld_pending(struct xgene_dma_chan * chan)638 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
639 {
640 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
641
642 /*
643 * If the list of pending descriptors is empty, then we
644 * don't need to do any work at all
645 */
646 if (list_empty(&chan->ld_pending)) {
647 chan_dbg(chan, "No pending LDs\n");
648 return;
649 }
650
651 /*
652 * Move elements from the queue of pending transactions onto the list
653 * of running transactions and push it to hw for further executions
654 */
655 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
656 /*
657 * Check if have pushed max number of transactions to hw
658 * as capable, so let's stop here and will push remaining
659 * elements from pening ld queue after completing some
660 * descriptors that we have already pushed
661 */
662 if (chan->pending >= chan->max_outstanding)
663 return;
664
665 xgene_chan_xfer_request(chan, desc_sw);
666
667 /*
668 * Delete this element from ld pending queue and append it to
669 * ld running queue
670 */
671 list_move_tail(&desc_sw->node, &chan->ld_running);
672 }
673 }
674
675 /**
676 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
677 * and move them to ld_completed to free until flag 'ack' is set
678 * @chan: X-Gene DMA channel
679 *
680 * This function is used on descriptors which have been executed by the DMA
681 * controller. It will run any callbacks, submit any dependencies, then
682 * free these descriptors if flag 'ack' is set.
683 */
xgene_dma_cleanup_descriptors(struct xgene_dma_chan * chan)684 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
685 {
686 struct xgene_dma_ring *ring = &chan->rx_ring;
687 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
688 struct xgene_dma_desc_hw *desc_hw;
689 struct list_head ld_completed;
690 u8 status;
691
692 INIT_LIST_HEAD(&ld_completed);
693
694 spin_lock(&chan->lock);
695
696 /* Clean already completed and acked descriptors */
697 xgene_dma_clean_completed_descriptor(chan);
698
699 /* Move all completed descriptors to ld completed queue, in order */
700 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
701 /* Get subsequent hw descriptor from DMA rx ring */
702 desc_hw = &ring->desc_hw[ring->head];
703
704 /* Check if this descriptor has been completed */
705 if (unlikely(le64_to_cpu(desc_hw->m0) ==
706 XGENE_DMA_DESC_EMPTY_SIGNATURE))
707 break;
708
709 if (++ring->head == ring->slots)
710 ring->head = 0;
711
712 /* Check if we have any error with DMA transactions */
713 status = XGENE_DMA_DESC_STATUS(
714 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
715 desc_hw->m0)),
716 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
717 desc_hw->m0)));
718 if (status) {
719 /* Print the DMA error type */
720 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
721
722 /*
723 * We have DMA transactions error here. Dump DMA Tx
724 * and Rx descriptors for this request */
725 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
726 "X-Gene DMA TX DESC1: ");
727
728 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
729 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
730 "X-Gene DMA TX DESC2: ");
731
732 XGENE_DMA_DESC_DUMP(desc_hw,
733 "X-Gene DMA RX ERR DESC: ");
734 }
735
736 /* Notify the hw about this completed descriptor */
737 iowrite32(-1, ring->cmd);
738
739 /* Mark this hw descriptor as processed */
740 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
741
742 /*
743 * Decrement the pending transaction count
744 * as we have processed one
745 */
746 chan->pending -= ((desc_sw->flags &
747 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
748
749 /*
750 * Delete this node from ld running queue and append it to
751 * ld completed queue for further processing
752 */
753 list_move_tail(&desc_sw->node, &ld_completed);
754 }
755
756 /*
757 * Start any pending transactions automatically
758 * In the ideal case, we keep the DMA controller busy while we go
759 * ahead and free the descriptors below.
760 */
761 xgene_chan_xfer_ld_pending(chan);
762
763 spin_unlock(&chan->lock);
764
765 /* Run the callback for each descriptor, in order */
766 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
767 xgene_dma_run_tx_complete_actions(chan, desc_sw);
768 xgene_dma_clean_running_descriptor(chan, desc_sw);
769 }
770 }
771
xgene_dma_alloc_chan_resources(struct dma_chan * dchan)772 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
773 {
774 struct xgene_dma_chan *chan = to_dma_chan(dchan);
775
776 /* Has this channel already been allocated? */
777 if (chan->desc_pool)
778 return 1;
779
780 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
781 sizeof(struct xgene_dma_desc_sw),
782 0, 0);
783 if (!chan->desc_pool) {
784 chan_err(chan, "Failed to allocate descriptor pool\n");
785 return -ENOMEM;
786 }
787
788 chan_dbg(chan, "Allocate descriptor pool\n");
789
790 return 1;
791 }
792
793 /**
794 * xgene_dma_free_desc_list - Free all descriptors in a queue
795 * @chan: X-Gene DMA channel
796 * @list: the list to free
797 *
798 * LOCKING: must hold chan->lock
799 */
xgene_dma_free_desc_list(struct xgene_dma_chan * chan,struct list_head * list)800 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
801 struct list_head *list)
802 {
803 struct xgene_dma_desc_sw *desc, *_desc;
804
805 list_for_each_entry_safe(desc, _desc, list, node)
806 xgene_dma_clean_descriptor(chan, desc);
807 }
808
xgene_dma_free_chan_resources(struct dma_chan * dchan)809 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
810 {
811 struct xgene_dma_chan *chan = to_dma_chan(dchan);
812
813 chan_dbg(chan, "Free all resources\n");
814
815 if (!chan->desc_pool)
816 return;
817
818 /* Process all running descriptor */
819 xgene_dma_cleanup_descriptors(chan);
820
821 spin_lock_bh(&chan->lock);
822
823 /* Clean all link descriptor queues */
824 xgene_dma_free_desc_list(chan, &chan->ld_pending);
825 xgene_dma_free_desc_list(chan, &chan->ld_running);
826 xgene_dma_free_desc_list(chan, &chan->ld_completed);
827
828 spin_unlock_bh(&chan->lock);
829
830 /* Delete this channel DMA pool */
831 dma_pool_destroy(chan->desc_pool);
832 chan->desc_pool = NULL;
833 }
834
xgene_dma_prep_xor(struct dma_chan * dchan,dma_addr_t dst,dma_addr_t * src,u32 src_cnt,size_t len,unsigned long flags)835 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
836 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
837 u32 src_cnt, size_t len, unsigned long flags)
838 {
839 struct xgene_dma_desc_sw *first = NULL, *new;
840 struct xgene_dma_chan *chan;
841 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
842 0x01, 0x01, 0x01, 0x01, 0x01};
843
844 if (unlikely(!dchan || !len))
845 return NULL;
846
847 chan = to_dma_chan(dchan);
848
849 do {
850 /* Allocate the link descriptor from DMA pool */
851 new = xgene_dma_alloc_descriptor(chan);
852 if (!new)
853 goto fail;
854
855 /* Prepare xor DMA descriptor */
856 xgene_dma_prep_xor_desc(chan, new, &dst, src,
857 src_cnt, &len, multi);
858
859 if (!first)
860 first = new;
861
862 new->tx.cookie = 0;
863 async_tx_ack(&new->tx);
864
865 /* Insert the link descriptor to the LD ring */
866 list_add_tail(&new->node, &first->tx_list);
867 } while (len);
868
869 new->tx.flags = flags; /* client is in control of this ack */
870 new->tx.cookie = -EBUSY;
871 list_splice(&first->tx_list, &new->tx_list);
872
873 return &new->tx;
874
875 fail:
876 if (!first)
877 return NULL;
878
879 xgene_dma_free_desc_list(chan, &first->tx_list);
880 return NULL;
881 }
882
xgene_dma_prep_pq(struct dma_chan * dchan,dma_addr_t * dst,dma_addr_t * src,u32 src_cnt,const u8 * scf,size_t len,unsigned long flags)883 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
884 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
885 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
886 {
887 struct xgene_dma_desc_sw *first = NULL, *new;
888 struct xgene_dma_chan *chan;
889 size_t _len = len;
890 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
891 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
892
893 if (unlikely(!dchan || !len))
894 return NULL;
895
896 chan = to_dma_chan(dchan);
897
898 /*
899 * Save source addresses on local variable, may be we have to
900 * prepare two descriptor to generate P and Q if both enabled
901 * in the flags by client
902 */
903 memcpy(_src, src, sizeof(*src) * src_cnt);
904
905 if (flags & DMA_PREP_PQ_DISABLE_P)
906 len = 0;
907
908 if (flags & DMA_PREP_PQ_DISABLE_Q)
909 _len = 0;
910
911 do {
912 /* Allocate the link descriptor from DMA pool */
913 new = xgene_dma_alloc_descriptor(chan);
914 if (!new)
915 goto fail;
916
917 if (!first)
918 first = new;
919
920 new->tx.cookie = 0;
921 async_tx_ack(&new->tx);
922
923 /* Insert the link descriptor to the LD ring */
924 list_add_tail(&new->node, &first->tx_list);
925
926 /*
927 * Prepare DMA descriptor to generate P,
928 * if DMA_PREP_PQ_DISABLE_P flag is not set
929 */
930 if (len) {
931 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
932 src_cnt, &len, multi);
933 continue;
934 }
935
936 /*
937 * Prepare DMA descriptor to generate Q,
938 * if DMA_PREP_PQ_DISABLE_Q flag is not set
939 */
940 if (_len) {
941 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
942 src_cnt, &_len, scf);
943 }
944 } while (len || _len);
945
946 new->tx.flags = flags; /* client is in control of this ack */
947 new->tx.cookie = -EBUSY;
948 list_splice(&first->tx_list, &new->tx_list);
949
950 return &new->tx;
951
952 fail:
953 if (!first)
954 return NULL;
955
956 xgene_dma_free_desc_list(chan, &first->tx_list);
957 return NULL;
958 }
959
xgene_dma_issue_pending(struct dma_chan * dchan)960 static void xgene_dma_issue_pending(struct dma_chan *dchan)
961 {
962 struct xgene_dma_chan *chan = to_dma_chan(dchan);
963
964 spin_lock_bh(&chan->lock);
965 xgene_chan_xfer_ld_pending(chan);
966 spin_unlock_bh(&chan->lock);
967 }
968
xgene_dma_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)969 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
970 dma_cookie_t cookie,
971 struct dma_tx_state *txstate)
972 {
973 return dma_cookie_status(dchan, cookie, txstate);
974 }
975
xgene_dma_tasklet_cb(unsigned long data)976 static void xgene_dma_tasklet_cb(unsigned long data)
977 {
978 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
979
980 /* Run all cleanup for descriptors which have been completed */
981 xgene_dma_cleanup_descriptors(chan);
982
983 /* Re-enable DMA channel IRQ */
984 enable_irq(chan->rx_irq);
985 }
986
xgene_dma_chan_ring_isr(int irq,void * id)987 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
988 {
989 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
990
991 BUG_ON(!chan);
992
993 /*
994 * Disable DMA channel IRQ until we process completed
995 * descriptors
996 */
997 disable_irq_nosync(chan->rx_irq);
998
999 /*
1000 * Schedule the tasklet to handle all cleanup of the current
1001 * transaction. It will start a new transaction if there is
1002 * one pending.
1003 */
1004 tasklet_schedule(&chan->tasklet);
1005
1006 return IRQ_HANDLED;
1007 }
1008
xgene_dma_err_isr(int irq,void * id)1009 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1010 {
1011 struct xgene_dma *pdma = (struct xgene_dma *)id;
1012 unsigned long int_mask;
1013 u32 val, i;
1014
1015 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1016
1017 /* Clear DMA interrupts */
1018 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1019
1020 /* Print DMA error info */
1021 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1022 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1023 dev_err(pdma->dev,
1024 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1025
1026 return IRQ_HANDLED;
1027 }
1028
xgene_dma_wr_ring_state(struct xgene_dma_ring * ring)1029 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1030 {
1031 int i;
1032
1033 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1034
1035 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1036 iowrite32(ring->state[i], ring->pdma->csr_ring +
1037 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1038 }
1039
xgene_dma_clr_ring_state(struct xgene_dma_ring * ring)1040 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1041 {
1042 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1043 xgene_dma_wr_ring_state(ring);
1044 }
1045
xgene_dma_setup_ring(struct xgene_dma_ring * ring)1046 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1047 {
1048 void *ring_cfg = ring->state;
1049 u64 addr = ring->desc_paddr;
1050 u32 i, val;
1051
1052 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1053
1054 /* Clear DMA ring state */
1055 xgene_dma_clr_ring_state(ring);
1056
1057 /* Set DMA ring type */
1058 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1059
1060 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1061 /* Set recombination buffer and timeout */
1062 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1063 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1064 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1065 }
1066
1067 /* Initialize DMA ring state */
1068 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1069 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1070 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1071 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1072 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1073 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1074
1075 /* Write DMA ring configurations */
1076 xgene_dma_wr_ring_state(ring);
1077
1078 /* Set DMA ring id */
1079 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1080 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1081
1082 /* Set DMA ring buffer */
1083 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1084 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1085
1086 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1087 return;
1088
1089 /* Set empty signature to DMA Rx ring descriptors */
1090 for (i = 0; i < ring->slots; i++) {
1091 struct xgene_dma_desc_hw *desc;
1092
1093 desc = &ring->desc_hw[i];
1094 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1095 }
1096
1097 /* Enable DMA Rx ring interrupt */
1098 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1099 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1100 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1101 }
1102
xgene_dma_clear_ring(struct xgene_dma_ring * ring)1103 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1104 {
1105 u32 ring_id, val;
1106
1107 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1108 /* Disable DMA Rx ring interrupt */
1109 val = ioread32(ring->pdma->csr_ring +
1110 XGENE_DMA_RING_NE_INT_MODE);
1111 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1112 iowrite32(val, ring->pdma->csr_ring +
1113 XGENE_DMA_RING_NE_INT_MODE);
1114 }
1115
1116 /* Clear DMA ring state */
1117 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1118 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1119
1120 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1121 xgene_dma_clr_ring_state(ring);
1122 }
1123
xgene_dma_set_ring_cmd(struct xgene_dma_ring * ring)1124 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1125 {
1126 ring->cmd_base = ring->pdma->csr_ring_cmd +
1127 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1128 XGENE_DMA_RING_NUM));
1129
1130 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1131 }
1132
xgene_dma_get_ring_size(struct xgene_dma_chan * chan,enum xgene_dma_ring_cfgsize cfgsize)1133 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1134 enum xgene_dma_ring_cfgsize cfgsize)
1135 {
1136 int size;
1137
1138 switch (cfgsize) {
1139 case XGENE_DMA_RING_CFG_SIZE_512B:
1140 size = 0x200;
1141 break;
1142 case XGENE_DMA_RING_CFG_SIZE_2KB:
1143 size = 0x800;
1144 break;
1145 case XGENE_DMA_RING_CFG_SIZE_16KB:
1146 size = 0x4000;
1147 break;
1148 case XGENE_DMA_RING_CFG_SIZE_64KB:
1149 size = 0x10000;
1150 break;
1151 case XGENE_DMA_RING_CFG_SIZE_512KB:
1152 size = 0x80000;
1153 break;
1154 default:
1155 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1156 return -EINVAL;
1157 }
1158
1159 return size;
1160 }
1161
xgene_dma_delete_ring_one(struct xgene_dma_ring * ring)1162 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1163 {
1164 /* Clear DMA ring configurations */
1165 xgene_dma_clear_ring(ring);
1166
1167 /* De-allocate DMA ring descriptor */
1168 if (ring->desc_vaddr) {
1169 dma_free_coherent(ring->pdma->dev, ring->size,
1170 ring->desc_vaddr, ring->desc_paddr);
1171 ring->desc_vaddr = NULL;
1172 }
1173 }
1174
xgene_dma_delete_chan_rings(struct xgene_dma_chan * chan)1175 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1176 {
1177 xgene_dma_delete_ring_one(&chan->rx_ring);
1178 xgene_dma_delete_ring_one(&chan->tx_ring);
1179 }
1180
xgene_dma_create_ring_one(struct xgene_dma_chan * chan,struct xgene_dma_ring * ring,enum xgene_dma_ring_cfgsize cfgsize)1181 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1182 struct xgene_dma_ring *ring,
1183 enum xgene_dma_ring_cfgsize cfgsize)
1184 {
1185 int ret;
1186
1187 /* Setup DMA ring descriptor variables */
1188 ring->pdma = chan->pdma;
1189 ring->cfgsize = cfgsize;
1190 ring->num = chan->pdma->ring_num++;
1191 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1192
1193 ret = xgene_dma_get_ring_size(chan, cfgsize);
1194 if (ret <= 0)
1195 return ret;
1196 ring->size = ret;
1197
1198 /* Allocate memory for DMA ring descriptor */
1199 ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1200 &ring->desc_paddr, GFP_KERNEL);
1201 if (!ring->desc_vaddr) {
1202 chan_err(chan, "Failed to allocate ring desc\n");
1203 return -ENOMEM;
1204 }
1205
1206 /* Configure and enable DMA ring */
1207 xgene_dma_set_ring_cmd(ring);
1208 xgene_dma_setup_ring(ring);
1209
1210 return 0;
1211 }
1212
xgene_dma_create_chan_rings(struct xgene_dma_chan * chan)1213 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1214 {
1215 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1216 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1217 int ret;
1218
1219 /* Create DMA Rx ring descriptor */
1220 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1221 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1222
1223 ret = xgene_dma_create_ring_one(chan, rx_ring,
1224 XGENE_DMA_RING_CFG_SIZE_64KB);
1225 if (ret)
1226 return ret;
1227
1228 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1229 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1230
1231 /* Create DMA Tx ring descriptor */
1232 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1233 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1234
1235 ret = xgene_dma_create_ring_one(chan, tx_ring,
1236 XGENE_DMA_RING_CFG_SIZE_64KB);
1237 if (ret) {
1238 xgene_dma_delete_ring_one(rx_ring);
1239 return ret;
1240 }
1241
1242 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1243
1244 chan_dbg(chan,
1245 "Tx ring id 0x%X num %d desc 0x%p\n",
1246 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1247
1248 /* Set the max outstanding request possible to this channel */
1249 chan->max_outstanding = tx_ring->slots;
1250
1251 return ret;
1252 }
1253
xgene_dma_init_rings(struct xgene_dma * pdma)1254 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1255 {
1256 int ret, i, j;
1257
1258 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1259 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1260 if (ret) {
1261 for (j = 0; j < i; j++)
1262 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1263 return ret;
1264 }
1265 }
1266
1267 return ret;
1268 }
1269
xgene_dma_enable(struct xgene_dma * pdma)1270 static void xgene_dma_enable(struct xgene_dma *pdma)
1271 {
1272 u32 val;
1273
1274 /* Configure and enable DMA engine */
1275 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1276 XGENE_DMA_CH_SETUP(val);
1277 XGENE_DMA_ENABLE(val);
1278 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1279 }
1280
xgene_dma_disable(struct xgene_dma * pdma)1281 static void xgene_dma_disable(struct xgene_dma *pdma)
1282 {
1283 u32 val;
1284
1285 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1286 XGENE_DMA_DISABLE(val);
1287 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1288 }
1289
xgene_dma_mask_interrupts(struct xgene_dma * pdma)1290 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1291 {
1292 /*
1293 * Mask DMA ring overflow, underflow and
1294 * AXI write/read error interrupts
1295 */
1296 iowrite32(XGENE_DMA_INT_ALL_MASK,
1297 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1298 iowrite32(XGENE_DMA_INT_ALL_MASK,
1299 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1300 iowrite32(XGENE_DMA_INT_ALL_MASK,
1301 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1302 iowrite32(XGENE_DMA_INT_ALL_MASK,
1303 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1304 iowrite32(XGENE_DMA_INT_ALL_MASK,
1305 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1306
1307 /* Mask DMA error interrupts */
1308 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1309 }
1310
xgene_dma_unmask_interrupts(struct xgene_dma * pdma)1311 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1312 {
1313 /*
1314 * Unmask DMA ring overflow, underflow and
1315 * AXI write/read error interrupts
1316 */
1317 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1318 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1319 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1320 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1321 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1322 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1323 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1324 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1325 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1326 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1327
1328 /* Unmask DMA error interrupts */
1329 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1330 pdma->csr_dma + XGENE_DMA_INT_MASK);
1331 }
1332
xgene_dma_init_hw(struct xgene_dma * pdma)1333 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1334 {
1335 u32 val;
1336
1337 /* Associate DMA ring to corresponding ring HW */
1338 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1339 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1340
1341 /* Configure RAID6 polynomial control setting */
1342 if (is_pq_enabled(pdma))
1343 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1344 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1345 else
1346 dev_info(pdma->dev, "PQ is disabled in HW\n");
1347
1348 xgene_dma_enable(pdma);
1349 xgene_dma_unmask_interrupts(pdma);
1350
1351 /* Get DMA id and version info */
1352 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1353
1354 /* DMA device info */
1355 dev_info(pdma->dev,
1356 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1357 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1358 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1359 }
1360
xgene_dma_init_ring_mngr(struct xgene_dma * pdma)1361 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1362 {
1363 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1364 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1365 return 0;
1366
1367 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1368 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1369
1370 /* Bring up memory */
1371 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1372
1373 /* Force a barrier */
1374 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1375
1376 /* reset may take up to 1ms */
1377 usleep_range(1000, 1100);
1378
1379 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1380 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1381 dev_err(pdma->dev,
1382 "Failed to release ring mngr memory from shutdown\n");
1383 return -ENODEV;
1384 }
1385
1386 /* program threshold set 1 and all hysteresis */
1387 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1388 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1389 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1390 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1391 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1392 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1393
1394 /* Enable QPcore and assign error queue */
1395 iowrite32(XGENE_DMA_RING_ENABLE,
1396 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1397
1398 return 0;
1399 }
1400
xgene_dma_init_mem(struct xgene_dma * pdma)1401 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1402 {
1403 int ret;
1404
1405 ret = xgene_dma_init_ring_mngr(pdma);
1406 if (ret)
1407 return ret;
1408
1409 /* Bring up memory */
1410 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1411
1412 /* Force a barrier */
1413 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1414
1415 /* reset may take up to 1ms */
1416 usleep_range(1000, 1100);
1417
1418 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1419 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1420 dev_err(pdma->dev,
1421 "Failed to release DMA memory from shutdown\n");
1422 return -ENODEV;
1423 }
1424
1425 return 0;
1426 }
1427
xgene_dma_request_irqs(struct xgene_dma * pdma)1428 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1429 {
1430 struct xgene_dma_chan *chan;
1431 int ret, i, j;
1432
1433 /* Register DMA error irq */
1434 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1435 0, "dma_error", pdma);
1436 if (ret) {
1437 dev_err(pdma->dev,
1438 "Failed to register error IRQ %d\n", pdma->err_irq);
1439 return ret;
1440 }
1441
1442 /* Register DMA channel rx irq */
1443 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1444 chan = &pdma->chan[i];
1445 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1446 ret = devm_request_irq(chan->dev, chan->rx_irq,
1447 xgene_dma_chan_ring_isr,
1448 0, chan->name, chan);
1449 if (ret) {
1450 chan_err(chan, "Failed to register Rx IRQ %d\n",
1451 chan->rx_irq);
1452 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1453
1454 for (j = 0; j < i; j++) {
1455 chan = &pdma->chan[i];
1456 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1457 devm_free_irq(chan->dev, chan->rx_irq, chan);
1458 }
1459
1460 return ret;
1461 }
1462 }
1463
1464 return 0;
1465 }
1466
xgene_dma_free_irqs(struct xgene_dma * pdma)1467 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1468 {
1469 struct xgene_dma_chan *chan;
1470 int i;
1471
1472 /* Free DMA device error irq */
1473 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1474
1475 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1476 chan = &pdma->chan[i];
1477 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1478 devm_free_irq(chan->dev, chan->rx_irq, chan);
1479 }
1480 }
1481
xgene_dma_set_caps(struct xgene_dma_chan * chan,struct dma_device * dma_dev)1482 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1483 struct dma_device *dma_dev)
1484 {
1485 /* Initialize DMA device capability mask */
1486 dma_cap_zero(dma_dev->cap_mask);
1487
1488 /* Set DMA device capability */
1489
1490 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1491 * and channel 1 supports XOR, PQ both. First thing here is we have
1492 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1493 * we can make sure this by reading SoC Efuse register.
1494 * Second thing, we have hw errata that if we run channel 0 and
1495 * channel 1 simultaneously with executing XOR and PQ request,
1496 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1497 * if XOR and PQ supports on channel 1 is disabled.
1498 */
1499 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1500 is_pq_enabled(chan->pdma)) {
1501 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1502 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1503 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1504 !is_pq_enabled(chan->pdma)) {
1505 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1506 }
1507
1508 /* Set base and prep routines */
1509 dma_dev->dev = chan->dev;
1510 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1511 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1512 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1513 dma_dev->device_tx_status = xgene_dma_tx_status;
1514
1515 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1516 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1517 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1518 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1519 }
1520
1521 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1522 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1523 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1524 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1525 }
1526 }
1527
xgene_dma_async_register(struct xgene_dma * pdma,int id)1528 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1529 {
1530 struct xgene_dma_chan *chan = &pdma->chan[id];
1531 struct dma_device *dma_dev = &pdma->dma_dev[id];
1532 int ret;
1533
1534 chan->dma_chan.device = dma_dev;
1535
1536 spin_lock_init(&chan->lock);
1537 INIT_LIST_HEAD(&chan->ld_pending);
1538 INIT_LIST_HEAD(&chan->ld_running);
1539 INIT_LIST_HEAD(&chan->ld_completed);
1540 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1541 (unsigned long)chan);
1542
1543 chan->pending = 0;
1544 chan->desc_pool = NULL;
1545 dma_cookie_init(&chan->dma_chan);
1546
1547 /* Setup dma device capabilities and prep routines */
1548 xgene_dma_set_caps(chan, dma_dev);
1549
1550 /* Initialize DMA device list head */
1551 INIT_LIST_HEAD(&dma_dev->channels);
1552 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1553
1554 /* Register with Linux async DMA framework*/
1555 ret = dma_async_device_register(dma_dev);
1556 if (ret) {
1557 chan_err(chan, "Failed to register async device %d", ret);
1558 tasklet_kill(&chan->tasklet);
1559
1560 return ret;
1561 }
1562
1563 /* DMA capability info */
1564 dev_info(pdma->dev,
1565 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1566 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1567 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1568
1569 return 0;
1570 }
1571
xgene_dma_init_async(struct xgene_dma * pdma)1572 static int xgene_dma_init_async(struct xgene_dma *pdma)
1573 {
1574 int ret, i, j;
1575
1576 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1577 ret = xgene_dma_async_register(pdma, i);
1578 if (ret) {
1579 for (j = 0; j < i; j++) {
1580 dma_async_device_unregister(&pdma->dma_dev[j]);
1581 tasklet_kill(&pdma->chan[j].tasklet);
1582 }
1583
1584 return ret;
1585 }
1586 }
1587
1588 return ret;
1589 }
1590
xgene_dma_async_unregister(struct xgene_dma * pdma)1591 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1592 {
1593 int i;
1594
1595 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1596 dma_async_device_unregister(&pdma->dma_dev[i]);
1597 }
1598
xgene_dma_init_channels(struct xgene_dma * pdma)1599 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1600 {
1601 struct xgene_dma_chan *chan;
1602 int i;
1603
1604 pdma->ring_num = XGENE_DMA_RING_NUM;
1605
1606 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1607 chan = &pdma->chan[i];
1608 chan->dev = pdma->dev;
1609 chan->pdma = pdma;
1610 chan->id = i;
1611 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1612 }
1613 }
1614
xgene_dma_get_resources(struct platform_device * pdev,struct xgene_dma * pdma)1615 static int xgene_dma_get_resources(struct platform_device *pdev,
1616 struct xgene_dma *pdma)
1617 {
1618 struct resource *res;
1619 int irq, i;
1620
1621 /* Get DMA csr region */
1622 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1623 if (!res) {
1624 dev_err(&pdev->dev, "Failed to get csr region\n");
1625 return -ENXIO;
1626 }
1627
1628 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1629 resource_size(res));
1630 if (!pdma->csr_dma) {
1631 dev_err(&pdev->dev, "Failed to ioremap csr region");
1632 return -ENOMEM;
1633 }
1634
1635 /* Get DMA ring csr region */
1636 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1637 if (!res) {
1638 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1639 return -ENXIO;
1640 }
1641
1642 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1643 resource_size(res));
1644 if (!pdma->csr_ring) {
1645 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1646 return -ENOMEM;
1647 }
1648
1649 /* Get DMA ring cmd csr region */
1650 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1651 if (!res) {
1652 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1653 return -ENXIO;
1654 }
1655
1656 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1657 resource_size(res));
1658 if (!pdma->csr_ring_cmd) {
1659 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1660 return -ENOMEM;
1661 }
1662
1663 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1664
1665 /* Get efuse csr region */
1666 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1667 if (!res) {
1668 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1669 return -ENXIO;
1670 }
1671
1672 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1673 resource_size(res));
1674 if (!pdma->csr_efuse) {
1675 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1676 return -ENOMEM;
1677 }
1678
1679 /* Get DMA error interrupt */
1680 irq = platform_get_irq(pdev, 0);
1681 if (irq <= 0)
1682 return -ENXIO;
1683
1684 pdma->err_irq = irq;
1685
1686 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1687 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1688 irq = platform_get_irq(pdev, i);
1689 if (irq <= 0)
1690 return -ENXIO;
1691
1692 pdma->chan[i - 1].rx_irq = irq;
1693 }
1694
1695 return 0;
1696 }
1697
xgene_dma_probe(struct platform_device * pdev)1698 static int xgene_dma_probe(struct platform_device *pdev)
1699 {
1700 struct xgene_dma *pdma;
1701 int ret, i;
1702
1703 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1704 if (!pdma)
1705 return -ENOMEM;
1706
1707 pdma->dev = &pdev->dev;
1708 platform_set_drvdata(pdev, pdma);
1709
1710 ret = xgene_dma_get_resources(pdev, pdma);
1711 if (ret)
1712 return ret;
1713
1714 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1715 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1716 dev_err(&pdev->dev, "Failed to get clk\n");
1717 return PTR_ERR(pdma->clk);
1718 }
1719
1720 /* Enable clk before accessing registers */
1721 if (!IS_ERR(pdma->clk)) {
1722 ret = clk_prepare_enable(pdma->clk);
1723 if (ret) {
1724 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1725 return ret;
1726 }
1727 }
1728
1729 /* Remove DMA RAM out of shutdown */
1730 ret = xgene_dma_init_mem(pdma);
1731 if (ret)
1732 goto err_clk_enable;
1733
1734 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1735 if (ret) {
1736 dev_err(&pdev->dev, "No usable DMA configuration\n");
1737 goto err_dma_mask;
1738 }
1739
1740 /* Initialize DMA channels software state */
1741 xgene_dma_init_channels(pdma);
1742
1743 /* Configue DMA rings */
1744 ret = xgene_dma_init_rings(pdma);
1745 if (ret)
1746 goto err_clk_enable;
1747
1748 ret = xgene_dma_request_irqs(pdma);
1749 if (ret)
1750 goto err_request_irq;
1751
1752 /* Configure and enable DMA engine */
1753 xgene_dma_init_hw(pdma);
1754
1755 /* Register DMA device with linux async framework */
1756 ret = xgene_dma_init_async(pdma);
1757 if (ret)
1758 goto err_async_init;
1759
1760 return 0;
1761
1762 err_async_init:
1763 xgene_dma_free_irqs(pdma);
1764
1765 err_request_irq:
1766 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1767 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1768
1769 err_dma_mask:
1770 err_clk_enable:
1771 if (!IS_ERR(pdma->clk))
1772 clk_disable_unprepare(pdma->clk);
1773
1774 return ret;
1775 }
1776
xgene_dma_remove(struct platform_device * pdev)1777 static int xgene_dma_remove(struct platform_device *pdev)
1778 {
1779 struct xgene_dma *pdma = platform_get_drvdata(pdev);
1780 struct xgene_dma_chan *chan;
1781 int i;
1782
1783 xgene_dma_async_unregister(pdma);
1784
1785 /* Mask interrupts and disable DMA engine */
1786 xgene_dma_mask_interrupts(pdma);
1787 xgene_dma_disable(pdma);
1788 xgene_dma_free_irqs(pdma);
1789
1790 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1791 chan = &pdma->chan[i];
1792 tasklet_kill(&chan->tasklet);
1793 xgene_dma_delete_chan_rings(chan);
1794 }
1795
1796 if (!IS_ERR(pdma->clk))
1797 clk_disable_unprepare(pdma->clk);
1798
1799 return 0;
1800 }
1801
1802 #ifdef CONFIG_ACPI
1803 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1804 {"APMC0D43", 0},
1805 {},
1806 };
1807 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1808 #endif
1809
1810 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1811 {.compatible = "apm,xgene-storm-dma",},
1812 {},
1813 };
1814 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1815
1816 static struct platform_driver xgene_dma_driver = {
1817 .probe = xgene_dma_probe,
1818 .remove = xgene_dma_remove,
1819 .driver = {
1820 .name = "X-Gene-DMA",
1821 .of_match_table = xgene_dma_of_match_ptr,
1822 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1823 },
1824 };
1825
1826 module_platform_driver(xgene_dma_driver);
1827
1828 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1829 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1830 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1831 MODULE_LICENSE("GPL");
1832 MODULE_VERSION("1.0");
1833