1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
4 * Copyright (c) 2016, Intel Corporation.
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
11 #include <asm/mce.h>
12
13 #include "edac_module.h"
14 #include "skx_common.h"
15
16 #define EDAC_MOD_STR "skx_edac"
17
18 /*
19 * Debug macros
20 */
21 #define skx_printk(level, fmt, arg...) \
22 edac_printk(level, "skx", fmt, ##arg)
23
24 #define skx_mc_printk(mci, level, fmt, arg...) \
25 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
26
27 static struct list_head *skx_edac_list;
28
29 static u64 skx_tolm, skx_tohm;
30 static int skx_num_sockets;
31 static unsigned int nvdimm_count;
32
33 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
34 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
35
get_skx_dev(struct pci_bus * bus,u8 idx)36 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
37 {
38 struct skx_dev *d;
39
40 list_for_each_entry(d, skx_edac_list, list) {
41 if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
42 return d;
43 }
44
45 return NULL;
46 }
47
48 enum munittype {
49 CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
50 };
51
52 struct munit {
53 u16 did;
54 u16 devfn[SKX_NUM_IMC];
55 u8 busidx;
56 u8 per_socket;
57 enum munittype mtype;
58 };
59
60 /*
61 * List of PCI device ids that we need together with some device
62 * number and function numbers to tell which memory controller the
63 * device belongs to.
64 */
65 static const struct munit skx_all_munits[] = {
66 { 0x2054, { }, 1, 1, SAD_ALL },
67 { 0x2055, { }, 1, 1, UTIL_ALL },
68 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
69 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
70 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
71 { 0x208e, { }, 1, 0, SAD },
72 { }
73 };
74
get_all_munits(const struct munit * m)75 static int get_all_munits(const struct munit *m)
76 {
77 struct pci_dev *pdev, *prev;
78 struct skx_dev *d;
79 u32 reg;
80 int i = 0, ndev = 0;
81
82 prev = NULL;
83 for (;;) {
84 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
85 if (!pdev)
86 break;
87 ndev++;
88 if (m->per_socket == SKX_NUM_IMC) {
89 for (i = 0; i < SKX_NUM_IMC; i++)
90 if (m->devfn[i] == pdev->devfn)
91 break;
92 if (i == SKX_NUM_IMC)
93 goto fail;
94 }
95 d = get_skx_dev(pdev->bus, m->busidx);
96 if (!d)
97 goto fail;
98
99 /* Be sure that the device is enabled */
100 if (unlikely(pci_enable_device(pdev) < 0)) {
101 skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
102 PCI_VENDOR_ID_INTEL, m->did);
103 goto fail;
104 }
105
106 switch (m->mtype) {
107 case CHAN0: case CHAN1: case CHAN2:
108 pci_dev_get(pdev);
109 d->imc[i].chan[m->mtype].cdev = pdev;
110 break;
111 case SAD_ALL:
112 pci_dev_get(pdev);
113 d->sad_all = pdev;
114 break;
115 case UTIL_ALL:
116 pci_dev_get(pdev);
117 d->util_all = pdev;
118 break;
119 case SAD:
120 /*
121 * one of these devices per core, including cores
122 * that don't exist on this SKU. Ignore any that
123 * read a route table of zero, make sure all the
124 * non-zero values match.
125 */
126 pci_read_config_dword(pdev, 0xB4, ®);
127 if (reg != 0) {
128 if (d->mcroute == 0) {
129 d->mcroute = reg;
130 } else if (d->mcroute != reg) {
131 skx_printk(KERN_ERR, "mcroute mismatch\n");
132 goto fail;
133 }
134 }
135 ndev--;
136 break;
137 }
138
139 prev = pdev;
140 }
141
142 return ndev;
143 fail:
144 pci_dev_put(pdev);
145 return -ENODEV;
146 }
147
148 static const struct x86_cpu_id skx_cpuids[] = {
149 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
150 { }
151 };
152 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
153
154 #define SKX_GET_MTMTR(dev, reg) \
155 pci_read_config_dword((dev), 0x87c, &(reg))
156
skx_check_ecc(struct pci_dev * pdev)157 static bool skx_check_ecc(struct pci_dev *pdev)
158 {
159 u32 mtmtr;
160
161 SKX_GET_MTMTR(pdev, mtmtr);
162
163 return !!GET_BITFIELD(mtmtr, 2, 2);
164 }
165
skx_get_dimm_config(struct mem_ctl_info * mci)166 static int skx_get_dimm_config(struct mem_ctl_info *mci)
167 {
168 struct skx_pvt *pvt = mci->pvt_info;
169 struct skx_imc *imc = pvt->imc;
170 u32 mtr, amap, mcddrtcfg;
171 struct dimm_info *dimm;
172 int i, j;
173 int ndimms;
174
175 for (i = 0; i < SKX_NUM_CHANNELS; i++) {
176 ndimms = 0;
177 pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
178 pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
179 for (j = 0; j < SKX_NUM_DIMMS; j++) {
180 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
181 mci->n_layers, i, j, 0);
182 pci_read_config_dword(imc->chan[i].cdev,
183 0x80 + 4 * j, &mtr);
184 if (IS_DIMM_PRESENT(mtr)) {
185 ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j);
186 } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
187 ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
188 EDAC_MOD_STR);
189 nvdimm_count++;
190 }
191 }
192 if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
193 skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
194 return -ENODEV;
195 }
196 }
197
198 return 0;
199 }
200
201 #define SKX_MAX_SAD 24
202
203 #define SKX_GET_SAD(d, i, reg) \
204 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
205 #define SKX_GET_ILV(d, i, reg) \
206 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
207
208 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
209 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
210 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
211 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
212 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
213 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
214 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
215
216 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
217 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
218
skx_sad_decode(struct decoded_addr * res)219 static bool skx_sad_decode(struct decoded_addr *res)
220 {
221 struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
222 u64 addr = res->addr;
223 int i, idx, tgt, lchan, shift;
224 u32 sad, ilv;
225 u64 limit, prev_limit;
226 int remote = 0;
227
228 /* Simple sanity check for I/O space or out of range */
229 if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
230 edac_dbg(0, "Address 0x%llx out of range\n", addr);
231 return false;
232 }
233
234 restart:
235 prev_limit = 0;
236 for (i = 0; i < SKX_MAX_SAD; i++) {
237 SKX_GET_SAD(d, i, sad);
238 limit = SKX_SAD_LIMIT(sad);
239 if (SKX_SAD_ENABLE(sad)) {
240 if (addr >= prev_limit && addr <= limit)
241 goto sad_found;
242 }
243 prev_limit = limit + 1;
244 }
245 edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
246 return false;
247
248 sad_found:
249 SKX_GET_ILV(d, i, ilv);
250
251 switch (SKX_SAD_INTERLEAVE(sad)) {
252 case 0:
253 idx = GET_BITFIELD(addr, 6, 8);
254 break;
255 case 1:
256 idx = GET_BITFIELD(addr, 8, 10);
257 break;
258 case 2:
259 idx = GET_BITFIELD(addr, 12, 14);
260 break;
261 case 3:
262 idx = GET_BITFIELD(addr, 30, 32);
263 break;
264 }
265
266 tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
267
268 /* If point to another node, find it and start over */
269 if (SKX_ILV_REMOTE(tgt)) {
270 if (remote) {
271 edac_dbg(0, "Double remote!\n");
272 return false;
273 }
274 remote = 1;
275 list_for_each_entry(d, skx_edac_list, list) {
276 if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
277 goto restart;
278 }
279 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
280 return false;
281 }
282
283 if (SKX_SAD_MOD3(sad) == 0) {
284 lchan = SKX_ILV_TARGET(tgt);
285 } else {
286 switch (SKX_SAD_MOD3MODE(sad)) {
287 case 0:
288 shift = 6;
289 break;
290 case 1:
291 shift = 8;
292 break;
293 case 2:
294 shift = 12;
295 break;
296 default:
297 edac_dbg(0, "illegal mod3mode\n");
298 return false;
299 }
300 switch (SKX_SAD_MOD3ASMOD2(sad)) {
301 case 0:
302 lchan = (addr >> shift) % 3;
303 break;
304 case 1:
305 lchan = (addr >> shift) % 2;
306 break;
307 case 2:
308 lchan = (addr >> shift) % 2;
309 lchan = (lchan << 1) | !lchan;
310 break;
311 case 3:
312 lchan = ((addr >> shift) % 2) << 1;
313 break;
314 }
315 lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
316 }
317
318 res->dev = d;
319 res->socket = d->imc[0].src_id;
320 res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
321 res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
322
323 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
324 res->addr, res->socket, res->imc, res->channel);
325 return true;
326 }
327
328 #define SKX_MAX_TAD 8
329
330 #define SKX_GET_TADBASE(d, mc, i, reg) \
331 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
332 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
333 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
334 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
335 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
336
337 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
338 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
339 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
340 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
341 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
342 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
343 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
344
345 /* which bit used for both socket and channel interleave */
346 static int skx_granularity[] = { 6, 8, 12, 30 };
347
skx_do_interleave(u64 addr,int shift,int ways,u64 lowbits)348 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
349 {
350 addr >>= shift;
351 addr /= ways;
352 addr <<= shift;
353
354 return addr | (lowbits & ((1ull << shift) - 1));
355 }
356
skx_tad_decode(struct decoded_addr * res)357 static bool skx_tad_decode(struct decoded_addr *res)
358 {
359 int i;
360 u32 base, wayness, chnilvoffset;
361 int skt_interleave_bit, chn_interleave_bit;
362 u64 channel_addr;
363
364 for (i = 0; i < SKX_MAX_TAD; i++) {
365 SKX_GET_TADBASE(res->dev, res->imc, i, base);
366 SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
367 if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
368 goto tad_found;
369 }
370 edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
371 return false;
372
373 tad_found:
374 res->sktways = SKX_TAD_SKTWAYS(wayness);
375 res->chanways = SKX_TAD_CHNWAYS(wayness);
376 skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
377 chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
378
379 SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
380 channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
381
382 if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
383 /* Must handle channel first, then socket */
384 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
385 res->chanways, channel_addr);
386 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
387 res->sktways, channel_addr);
388 } else {
389 /* Handle socket then channel. Preserve low bits from original address */
390 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
391 res->sktways, res->addr);
392 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
393 res->chanways, res->addr);
394 }
395
396 res->chan_addr = channel_addr;
397
398 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
399 res->addr, res->chan_addr, res->sktways, res->chanways);
400 return true;
401 }
402
403 #define SKX_MAX_RIR 4
404
405 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
406 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
407 0x108 + 4 * (i), &(reg))
408 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
409 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
410 0x120 + 16 * (idx) + 4 * (i), &(reg))
411
412 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
413 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
414 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
415 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
416 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
417
skx_rir_decode(struct decoded_addr * res)418 static bool skx_rir_decode(struct decoded_addr *res)
419 {
420 int i, idx, chan_rank;
421 int shift;
422 u32 rirway, rirlv;
423 u64 rank_addr, prev_limit = 0, limit;
424
425 if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
426 shift = 6;
427 else
428 shift = 13;
429
430 for (i = 0; i < SKX_MAX_RIR; i++) {
431 SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
432 limit = SKX_RIR_LIMIT(rirway);
433 if (SKX_RIR_VALID(rirway)) {
434 if (prev_limit <= res->chan_addr &&
435 res->chan_addr <= limit)
436 goto rir_found;
437 }
438 prev_limit = limit;
439 }
440 edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
441 return false;
442
443 rir_found:
444 rank_addr = res->chan_addr >> shift;
445 rank_addr /= SKX_RIR_WAYS(rirway);
446 rank_addr <<= shift;
447 rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
448
449 res->rank_address = rank_addr;
450 idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
451
452 SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
453 res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
454 chan_rank = SKX_RIR_CHAN_RANK(rirlv);
455 res->channel_rank = chan_rank;
456 res->dimm = chan_rank / 4;
457 res->rank = chan_rank % 4;
458
459 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
460 res->addr, res->dimm, res->rank,
461 res->channel_rank, res->rank_address);
462 return true;
463 }
464
465 static u8 skx_close_row[] = {
466 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
467 };
468
469 static u8 skx_close_column[] = {
470 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
471 };
472
473 static u8 skx_open_row[] = {
474 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
475 };
476
477 static u8 skx_open_column[] = {
478 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
479 };
480
481 static u8 skx_open_fine_column[] = {
482 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
483 };
484
skx_bits(u64 addr,int nbits,u8 * bits)485 static int skx_bits(u64 addr, int nbits, u8 *bits)
486 {
487 int i, res = 0;
488
489 for (i = 0; i < nbits; i++)
490 res |= ((addr >> bits[i]) & 1) << i;
491 return res;
492 }
493
skx_bank_bits(u64 addr,int b0,int b1,int do_xor,int x0,int x1)494 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
495 {
496 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
497
498 if (do_xor)
499 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
500
501 return ret;
502 }
503
skx_mad_decode(struct decoded_addr * r)504 static bool skx_mad_decode(struct decoded_addr *r)
505 {
506 struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
507 int bg0 = dimm->fine_grain_bank ? 6 : 13;
508
509 if (dimm->close_pg) {
510 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
511 r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
512 r->column |= 0x400; /* C10 is autoprecharge, always set */
513 r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
514 r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
515 } else {
516 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
517 if (dimm->fine_grain_bank)
518 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
519 else
520 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
521 r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
522 r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
523 }
524 r->row &= (1u << dimm->rowbits) - 1;
525
526 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
527 r->addr, r->row, r->column, r->bank_address,
528 r->bank_group);
529 return true;
530 }
531
skx_decode(struct decoded_addr * res)532 static bool skx_decode(struct decoded_addr *res)
533 {
534 return skx_sad_decode(res) && skx_tad_decode(res) &&
535 skx_rir_decode(res) && skx_mad_decode(res);
536 }
537
538 static struct notifier_block skx_mce_dec = {
539 .notifier_call = skx_mce_check_error,
540 .priority = MCE_PRIO_EDAC,
541 };
542
543 #ifdef CONFIG_EDAC_DEBUG
544 /*
545 * Debug feature.
546 * Exercise the address decode logic by writing an address to
547 * /sys/kernel/debug/edac/skx_test/addr.
548 */
549 static struct dentry *skx_test;
550
debugfs_u64_set(void * data,u64 val)551 static int debugfs_u64_set(void *data, u64 val)
552 {
553 struct mce m;
554
555 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
556
557 memset(&m, 0, sizeof(m));
558 /* ADDRV + MemRd + Unknown channel */
559 m.status = MCI_STATUS_ADDRV + 0x90;
560 /* One corrected error */
561 m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
562 m.addr = val;
563 skx_mce_check_error(NULL, 0, &m);
564
565 return 0;
566 }
567 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
568
setup_skx_debug(void)569 static void setup_skx_debug(void)
570 {
571 skx_test = edac_debugfs_create_dir("skx_test");
572 if (!skx_test)
573 return;
574
575 if (!edac_debugfs_create_file("addr", 0200, skx_test,
576 NULL, &fops_u64_wo)) {
577 debugfs_remove(skx_test);
578 skx_test = NULL;
579 }
580 }
581
teardown_skx_debug(void)582 static void teardown_skx_debug(void)
583 {
584 debugfs_remove_recursive(skx_test);
585 }
586 #else
setup_skx_debug(void)587 static inline void setup_skx_debug(void) {}
teardown_skx_debug(void)588 static inline void teardown_skx_debug(void) {}
589 #endif /*CONFIG_EDAC_DEBUG*/
590
591 /*
592 * skx_init:
593 * make sure we are running on the correct cpu model
594 * search for all the devices we need
595 * check which DIMMs are present.
596 */
skx_init(void)597 static int __init skx_init(void)
598 {
599 const struct x86_cpu_id *id;
600 const struct munit *m;
601 const char *owner;
602 int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
603 u8 mc = 0, src_id, node_id;
604 struct skx_dev *d;
605
606 edac_dbg(2, "\n");
607
608 owner = edac_get_owner();
609 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
610 return -EBUSY;
611
612 id = x86_match_cpu(skx_cpuids);
613 if (!id)
614 return -ENODEV;
615
616 rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
617 if (rc)
618 return rc;
619
620 rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list);
621 if (rc < 0)
622 goto fail;
623 if (rc == 0) {
624 edac_dbg(2, "No memory controllers found\n");
625 return -ENODEV;
626 }
627 skx_num_sockets = rc;
628
629 for (m = skx_all_munits; m->did; m++) {
630 rc = get_all_munits(m);
631 if (rc < 0)
632 goto fail;
633 if (rc != m->per_socket * skx_num_sockets) {
634 edac_dbg(2, "Expected %d, got %d of 0x%x\n",
635 m->per_socket * skx_num_sockets, rc, m->did);
636 rc = -ENODEV;
637 goto fail;
638 }
639 }
640
641 list_for_each_entry(d, skx_edac_list, list) {
642 rc = skx_get_src_id(d, 0xf0, &src_id);
643 if (rc < 0)
644 goto fail;
645 rc = skx_get_node_id(d, &node_id);
646 if (rc < 0)
647 goto fail;
648 edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
649 for (i = 0; i < SKX_NUM_IMC; i++) {
650 d->imc[i].mc = mc++;
651 d->imc[i].lmc = i;
652 d->imc[i].src_id = src_id;
653 d->imc[i].node_id = node_id;
654 rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
655 "Skylake Socket", EDAC_MOD_STR,
656 skx_get_dimm_config);
657 if (rc < 0)
658 goto fail;
659 }
660 }
661
662 skx_set_decode(skx_decode);
663
664 if (nvdimm_count && skx_adxl_get() == -ENODEV)
665 skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
666
667 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
668 opstate_init();
669
670 setup_skx_debug();
671
672 mce_register_decode_chain(&skx_mce_dec);
673
674 return 0;
675 fail:
676 skx_remove();
677 return rc;
678 }
679
skx_exit(void)680 static void __exit skx_exit(void)
681 {
682 edac_dbg(2, "\n");
683 mce_unregister_decode_chain(&skx_mce_dec);
684 teardown_skx_debug();
685 if (nvdimm_count)
686 skx_adxl_put();
687 skx_remove();
688 }
689
690 module_init(skx_init);
691 module_exit(skx_exit);
692
693 module_param(edac_op_state, int, 0444);
694 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
695
696 MODULE_LICENSE("GPL v2");
697 MODULE_AUTHOR("Tony Luck");
698 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
699