1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58
59 #include "amdgpu_ras.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75
76 #define WREG32_SDMA(instance, offset, value) \
77 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85
86 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
87 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
88 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
89 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
100 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
101 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
102 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
112 };
113
114 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
115 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
116 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
117 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
118 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
120 };
121
122 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
123 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
124 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
125 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
126 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
128 };
129
130 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
131 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
133 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
134 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
135 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
136 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
137 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
142 };
143
144 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
146 };
147
148 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
149 {
150 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
151 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
153 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
154 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
155 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
176 };
177
178 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
179 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
180 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
181 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
182 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
183 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
186 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
205 };
206
207 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
208 {
209 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
210 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
211 };
212
213 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
214 {
215 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
216 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
217 };
218
219 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
220 {
221 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
222 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
223 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
224 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
225 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
226 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
227 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
228 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
229 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
230 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
234 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
235 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
236 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
240 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
241 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
242 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
245 };
246
247 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
248 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
250 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
251 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
252 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
253 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
254 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
255 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
256 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
257 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
258 };
259
sdma_v4_0_get_reg_offset(struct amdgpu_device * adev,u32 instance,u32 offset)260 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
261 u32 instance, u32 offset)
262 {
263 switch (instance) {
264 case 0:
265 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
266 case 1:
267 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
268 case 2:
269 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
270 case 3:
271 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
272 case 4:
273 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
274 case 5:
275 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
276 case 6:
277 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
278 case 7:
279 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
280 default:
281 break;
282 }
283 return 0;
284 }
285
sdma_v4_0_seq_to_irq_id(int seq_num)286 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
287 {
288 switch (seq_num) {
289 case 0:
290 return SOC15_IH_CLIENTID_SDMA0;
291 case 1:
292 return SOC15_IH_CLIENTID_SDMA1;
293 case 2:
294 return SOC15_IH_CLIENTID_SDMA2;
295 case 3:
296 return SOC15_IH_CLIENTID_SDMA3;
297 case 4:
298 return SOC15_IH_CLIENTID_SDMA4;
299 case 5:
300 return SOC15_IH_CLIENTID_SDMA5;
301 case 6:
302 return SOC15_IH_CLIENTID_SDMA6;
303 case 7:
304 return SOC15_IH_CLIENTID_SDMA7;
305 default:
306 break;
307 }
308 return -EINVAL;
309 }
310
sdma_v4_0_irq_id_to_seq(unsigned client_id)311 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
312 {
313 switch (client_id) {
314 case SOC15_IH_CLIENTID_SDMA0:
315 return 0;
316 case SOC15_IH_CLIENTID_SDMA1:
317 return 1;
318 case SOC15_IH_CLIENTID_SDMA2:
319 return 2;
320 case SOC15_IH_CLIENTID_SDMA3:
321 return 3;
322 case SOC15_IH_CLIENTID_SDMA4:
323 return 4;
324 case SOC15_IH_CLIENTID_SDMA5:
325 return 5;
326 case SOC15_IH_CLIENTID_SDMA6:
327 return 6;
328 case SOC15_IH_CLIENTID_SDMA7:
329 return 7;
330 default:
331 break;
332 }
333 return -EINVAL;
334 }
335
sdma_v4_0_init_golden_registers(struct amdgpu_device * adev)336 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
337 {
338 switch (adev->asic_type) {
339 case CHIP_VEGA10:
340 soc15_program_register_sequence(adev,
341 golden_settings_sdma_4,
342 ARRAY_SIZE(golden_settings_sdma_4));
343 soc15_program_register_sequence(adev,
344 golden_settings_sdma_vg10,
345 ARRAY_SIZE(golden_settings_sdma_vg10));
346 break;
347 case CHIP_VEGA12:
348 soc15_program_register_sequence(adev,
349 golden_settings_sdma_4,
350 ARRAY_SIZE(golden_settings_sdma_4));
351 soc15_program_register_sequence(adev,
352 golden_settings_sdma_vg12,
353 ARRAY_SIZE(golden_settings_sdma_vg12));
354 break;
355 case CHIP_VEGA20:
356 soc15_program_register_sequence(adev,
357 golden_settings_sdma0_4_2_init,
358 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
359 soc15_program_register_sequence(adev,
360 golden_settings_sdma0_4_2,
361 ARRAY_SIZE(golden_settings_sdma0_4_2));
362 soc15_program_register_sequence(adev,
363 golden_settings_sdma1_4_2,
364 ARRAY_SIZE(golden_settings_sdma1_4_2));
365 break;
366 case CHIP_ARCTURUS:
367 soc15_program_register_sequence(adev,
368 golden_settings_sdma_arct,
369 ARRAY_SIZE(golden_settings_sdma_arct));
370 break;
371 case CHIP_RAVEN:
372 soc15_program_register_sequence(adev,
373 golden_settings_sdma_4_1,
374 ARRAY_SIZE(golden_settings_sdma_4_1));
375 if (adev->rev_id >= 8)
376 soc15_program_register_sequence(adev,
377 golden_settings_sdma_rv2,
378 ARRAY_SIZE(golden_settings_sdma_rv2));
379 else
380 soc15_program_register_sequence(adev,
381 golden_settings_sdma_rv1,
382 ARRAY_SIZE(golden_settings_sdma_rv1));
383 break;
384 case CHIP_RENOIR:
385 soc15_program_register_sequence(adev,
386 golden_settings_sdma_4_3,
387 ARRAY_SIZE(golden_settings_sdma_4_3));
388 break;
389 default:
390 break;
391 }
392 }
393
sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance * sdma_inst)394 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
395 {
396 int err = 0;
397 const struct sdma_firmware_header_v1_0 *hdr;
398
399 err = amdgpu_ucode_validate(sdma_inst->fw);
400 if (err)
401 return err;
402
403 hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
404 sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
405 sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
406
407 if (sdma_inst->feature_version >= 20)
408 sdma_inst->burst_nop = true;
409
410 return 0;
411 }
412
sdma_v4_0_destroy_inst_ctx(struct amdgpu_device * adev)413 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
414 {
415 int i;
416
417 for (i = 0; i < adev->sdma.num_instances; i++) {
418 if (adev->sdma.instance[i].fw != NULL)
419 release_firmware(adev->sdma.instance[i].fw);
420
421 /* arcturus shares the same FW memory across
422 all SDMA isntances */
423 if (adev->asic_type == CHIP_ARCTURUS)
424 break;
425 }
426
427 memset((void*)adev->sdma.instance, 0,
428 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
429 }
430
431 /**
432 * sdma_v4_0_init_microcode - load ucode images from disk
433 *
434 * @adev: amdgpu_device pointer
435 *
436 * Use the firmware interface to load the ucode images into
437 * the driver (not loaded into hw).
438 * Returns 0 on success, error on failure.
439 */
440
441 // emulation only, won't work on real chip
442 // vega10 real chip need to use PSP to load firmware
sdma_v4_0_init_microcode(struct amdgpu_device * adev)443 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
444 {
445 const char *chip_name;
446 char fw_name[30];
447 int err = 0, i;
448 struct amdgpu_firmware_info *info = NULL;
449 const struct common_firmware_header *header = NULL;
450
451 DRM_DEBUG("\n");
452
453 switch (adev->asic_type) {
454 case CHIP_VEGA10:
455 chip_name = "vega10";
456 break;
457 case CHIP_VEGA12:
458 chip_name = "vega12";
459 break;
460 case CHIP_VEGA20:
461 chip_name = "vega20";
462 break;
463 case CHIP_RAVEN:
464 if (adev->rev_id >= 8)
465 chip_name = "raven2";
466 else if (adev->pdev->device == 0x15d8)
467 chip_name = "picasso";
468 else
469 chip_name = "raven";
470 break;
471 case CHIP_ARCTURUS:
472 chip_name = "arcturus";
473 break;
474 case CHIP_RENOIR:
475 chip_name = "renoir";
476 break;
477 default:
478 BUG();
479 }
480
481 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
482
483 err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
484 if (err)
485 goto out;
486
487 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
488 if (err)
489 goto out;
490
491 for (i = 1; i < adev->sdma.num_instances; i++) {
492 if (adev->asic_type == CHIP_ARCTURUS) {
493 /* Acturus will leverage the same FW memory
494 for every SDMA instance */
495 memcpy((void*)&adev->sdma.instance[i],
496 (void*)&adev->sdma.instance[0],
497 sizeof(struct amdgpu_sdma_instance));
498 }
499 else {
500 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
501
502 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
503 if (err)
504 goto out;
505
506 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
507 if (err)
508 goto out;
509 }
510 }
511
512 DRM_DEBUG("psp_load == '%s'\n",
513 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
514
515 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
516 for (i = 0; i < adev->sdma.num_instances; i++) {
517 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
518 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
519 info->fw = adev->sdma.instance[i].fw;
520 header = (const struct common_firmware_header *)info->fw->data;
521 adev->firmware.fw_size +=
522 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
523 }
524 }
525
526 out:
527 if (err) {
528 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
529 sdma_v4_0_destroy_inst_ctx(adev);
530 }
531 return err;
532 }
533
534 /**
535 * sdma_v4_0_ring_get_rptr - get the current read pointer
536 *
537 * @ring: amdgpu ring pointer
538 *
539 * Get the current rptr from the hardware (VEGA10+).
540 */
sdma_v4_0_ring_get_rptr(struct amdgpu_ring * ring)541 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
542 {
543 u64 *rptr;
544
545 /* XXX check if swapping is necessary on BE */
546 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
547
548 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
549 return ((*rptr) >> 2);
550 }
551
552 /**
553 * sdma_v4_0_ring_get_wptr - get the current write pointer
554 *
555 * @ring: amdgpu ring pointer
556 *
557 * Get the current wptr from the hardware (VEGA10+).
558 */
sdma_v4_0_ring_get_wptr(struct amdgpu_ring * ring)559 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
560 {
561 struct amdgpu_device *adev = ring->adev;
562 u64 wptr;
563
564 if (ring->use_doorbell) {
565 /* XXX check if swapping is necessary on BE */
566 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
567 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
568 } else {
569 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
570 wptr = wptr << 32;
571 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
572 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
573 ring->me, wptr);
574 }
575
576 return wptr >> 2;
577 }
578
579 /**
580 * sdma_v4_0_ring_set_wptr - commit the write pointer
581 *
582 * @ring: amdgpu ring pointer
583 *
584 * Write the wptr back to the hardware (VEGA10+).
585 */
sdma_v4_0_ring_set_wptr(struct amdgpu_ring * ring)586 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
587 {
588 struct amdgpu_device *adev = ring->adev;
589
590 DRM_DEBUG("Setting write pointer\n");
591 if (ring->use_doorbell) {
592 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
593
594 DRM_DEBUG("Using doorbell -- "
595 "wptr_offs == 0x%08x "
596 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
597 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
598 ring->wptr_offs,
599 lower_32_bits(ring->wptr << 2),
600 upper_32_bits(ring->wptr << 2));
601 /* XXX check if swapping is necessary on BE */
602 WRITE_ONCE(*wb, (ring->wptr << 2));
603 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
604 ring->doorbell_index, ring->wptr << 2);
605 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
606 } else {
607 DRM_DEBUG("Not using doorbell -- "
608 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
609 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
610 ring->me,
611 lower_32_bits(ring->wptr << 2),
612 ring->me,
613 upper_32_bits(ring->wptr << 2));
614 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
615 lower_32_bits(ring->wptr << 2));
616 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
617 upper_32_bits(ring->wptr << 2));
618 }
619 }
620
621 /**
622 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
623 *
624 * @ring: amdgpu ring pointer
625 *
626 * Get the current wptr from the hardware (VEGA10+).
627 */
sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring * ring)628 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
629 {
630 struct amdgpu_device *adev = ring->adev;
631 u64 wptr;
632
633 if (ring->use_doorbell) {
634 /* XXX check if swapping is necessary on BE */
635 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
636 } else {
637 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
638 wptr = wptr << 32;
639 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
640 }
641
642 return wptr >> 2;
643 }
644
645 /**
646 * sdma_v4_0_ring_set_wptr - commit the write pointer
647 *
648 * @ring: amdgpu ring pointer
649 *
650 * Write the wptr back to the hardware (VEGA10+).
651 */
sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring * ring)652 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
653 {
654 struct amdgpu_device *adev = ring->adev;
655
656 if (ring->use_doorbell) {
657 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
658
659 /* XXX check if swapping is necessary on BE */
660 WRITE_ONCE(*wb, (ring->wptr << 2));
661 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
662 } else {
663 uint64_t wptr = ring->wptr << 2;
664
665 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
666 lower_32_bits(wptr));
667 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
668 upper_32_bits(wptr));
669 }
670 }
671
sdma_v4_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)672 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
673 {
674 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
675 int i;
676
677 for (i = 0; i < count; i++)
678 if (sdma && sdma->burst_nop && (i == 0))
679 amdgpu_ring_write(ring, ring->funcs->nop |
680 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
681 else
682 amdgpu_ring_write(ring, ring->funcs->nop);
683 }
684
685 /**
686 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
687 *
688 * @ring: amdgpu ring pointer
689 * @ib: IB object to schedule
690 *
691 * Schedule an IB in the DMA ring (VEGA10).
692 */
sdma_v4_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)693 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
694 struct amdgpu_job *job,
695 struct amdgpu_ib *ib,
696 uint32_t flags)
697 {
698 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
699
700 /* IB packet must end on a 8 DW boundary */
701 sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
702
703 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
704 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
705 /* base must be 32 byte aligned */
706 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
707 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
708 amdgpu_ring_write(ring, ib->length_dw);
709 amdgpu_ring_write(ring, 0);
710 amdgpu_ring_write(ring, 0);
711
712 }
713
sdma_v4_0_wait_reg_mem(struct amdgpu_ring * ring,int mem_space,int hdp,uint32_t addr0,uint32_t addr1,uint32_t ref,uint32_t mask,uint32_t inv)714 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
715 int mem_space, int hdp,
716 uint32_t addr0, uint32_t addr1,
717 uint32_t ref, uint32_t mask,
718 uint32_t inv)
719 {
720 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
721 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
722 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
723 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
724 if (mem_space) {
725 /* memory */
726 amdgpu_ring_write(ring, addr0);
727 amdgpu_ring_write(ring, addr1);
728 } else {
729 /* registers */
730 amdgpu_ring_write(ring, addr0 << 2);
731 amdgpu_ring_write(ring, addr1 << 2);
732 }
733 amdgpu_ring_write(ring, ref); /* reference */
734 amdgpu_ring_write(ring, mask); /* mask */
735 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
736 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
737 }
738
739 /**
740 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
741 *
742 * @ring: amdgpu ring pointer
743 *
744 * Emit an hdp flush packet on the requested DMA ring.
745 */
sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)746 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
747 {
748 struct amdgpu_device *adev = ring->adev;
749 u32 ref_and_mask = 0;
750 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
751
752 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
753
754 sdma_v4_0_wait_reg_mem(ring, 0, 1,
755 adev->nbio_funcs->get_hdp_flush_done_offset(adev),
756 adev->nbio_funcs->get_hdp_flush_req_offset(adev),
757 ref_and_mask, ref_and_mask, 10);
758 }
759
760 /**
761 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
762 *
763 * @ring: amdgpu ring pointer
764 * @fence: amdgpu fence object
765 *
766 * Add a DMA fence packet to the ring to write
767 * the fence seq number and DMA trap packet to generate
768 * an interrupt if needed (VEGA10).
769 */
sdma_v4_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)770 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
771 unsigned flags)
772 {
773 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
774 /* write the fence */
775 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
776 /* zero in first two bits */
777 BUG_ON(addr & 0x3);
778 amdgpu_ring_write(ring, lower_32_bits(addr));
779 amdgpu_ring_write(ring, upper_32_bits(addr));
780 amdgpu_ring_write(ring, lower_32_bits(seq));
781
782 /* optionally write high bits as well */
783 if (write64bit) {
784 addr += 4;
785 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
786 /* zero in first two bits */
787 BUG_ON(addr & 0x3);
788 amdgpu_ring_write(ring, lower_32_bits(addr));
789 amdgpu_ring_write(ring, upper_32_bits(addr));
790 amdgpu_ring_write(ring, upper_32_bits(seq));
791 }
792
793 /* generate an interrupt */
794 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
795 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
796 }
797
798
799 /**
800 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
801 *
802 * @adev: amdgpu_device pointer
803 *
804 * Stop the gfx async dma ring buffers (VEGA10).
805 */
sdma_v4_0_gfx_stop(struct amdgpu_device * adev)806 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
807 {
808 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
809 u32 rb_cntl, ib_cntl;
810 int i, unset = 0;
811
812 for (i = 0; i < adev->sdma.num_instances; i++) {
813 sdma[i] = &adev->sdma.instance[i].ring;
814
815 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
816 amdgpu_ttm_set_buffer_funcs_status(adev, false);
817 unset = 1;
818 }
819
820 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
821 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
822 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
823 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
824 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
825 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
826
827 sdma[i]->sched.ready = false;
828 }
829 }
830
831 /**
832 * sdma_v4_0_rlc_stop - stop the compute async dma engines
833 *
834 * @adev: amdgpu_device pointer
835 *
836 * Stop the compute async dma queues (VEGA10).
837 */
sdma_v4_0_rlc_stop(struct amdgpu_device * adev)838 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
839 {
840 /* XXX todo */
841 }
842
843 /**
844 * sdma_v4_0_page_stop - stop the page async dma engines
845 *
846 * @adev: amdgpu_device pointer
847 *
848 * Stop the page async dma ring buffers (VEGA10).
849 */
sdma_v4_0_page_stop(struct amdgpu_device * adev)850 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
851 {
852 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
853 u32 rb_cntl, ib_cntl;
854 int i;
855 bool unset = false;
856
857 for (i = 0; i < adev->sdma.num_instances; i++) {
858 sdma[i] = &adev->sdma.instance[i].page;
859
860 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
861 (unset == false)) {
862 amdgpu_ttm_set_buffer_funcs_status(adev, false);
863 unset = true;
864 }
865
866 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
867 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
868 RB_ENABLE, 0);
869 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
870 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
871 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
872 IB_ENABLE, 0);
873 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
874
875 sdma[i]->sched.ready = false;
876 }
877 }
878
879 /**
880 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
881 *
882 * @adev: amdgpu_device pointer
883 * @enable: enable/disable the DMA MEs context switch.
884 *
885 * Halt or unhalt the async dma engines context switch (VEGA10).
886 */
sdma_v4_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)887 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
888 {
889 u32 f32_cntl, phase_quantum = 0;
890 int i;
891
892 if (amdgpu_sdma_phase_quantum) {
893 unsigned value = amdgpu_sdma_phase_quantum;
894 unsigned unit = 0;
895
896 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
897 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
898 value = (value + 1) >> 1;
899 unit++;
900 }
901 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
902 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
903 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
904 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
905 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
906 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
907 WARN_ONCE(1,
908 "clamping sdma_phase_quantum to %uK clock cycles\n",
909 value << unit);
910 }
911 phase_quantum =
912 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
913 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
914 }
915
916 for (i = 0; i < adev->sdma.num_instances; i++) {
917 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
918 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
919 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
920 if (enable && amdgpu_sdma_phase_quantum) {
921 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
922 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
923 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
924 }
925 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
926 }
927
928 }
929
930 /**
931 * sdma_v4_0_enable - stop the async dma engines
932 *
933 * @adev: amdgpu_device pointer
934 * @enable: enable/disable the DMA MEs.
935 *
936 * Halt or unhalt the async dma engines (VEGA10).
937 */
sdma_v4_0_enable(struct amdgpu_device * adev,bool enable)938 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
939 {
940 u32 f32_cntl;
941 int i;
942
943 if (enable == false) {
944 sdma_v4_0_gfx_stop(adev);
945 sdma_v4_0_rlc_stop(adev);
946 if (adev->sdma.has_page_queue)
947 sdma_v4_0_page_stop(adev);
948 }
949
950 for (i = 0; i < adev->sdma.num_instances; i++) {
951 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
952 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
953 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
954 }
955 }
956
957 /**
958 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
959 */
sdma_v4_0_rb_cntl(struct amdgpu_ring * ring,uint32_t rb_cntl)960 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
961 {
962 /* Set ring buffer size in dwords */
963 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
964
965 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
966 #ifdef __BIG_ENDIAN
967 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
968 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
969 RPTR_WRITEBACK_SWAP_ENABLE, 1);
970 #endif
971 return rb_cntl;
972 }
973
974 /**
975 * sdma_v4_0_gfx_resume - setup and start the async dma engines
976 *
977 * @adev: amdgpu_device pointer
978 * @i: instance to resume
979 *
980 * Set up the gfx DMA ring buffers and enable them (VEGA10).
981 * Returns 0 for success, error for failure.
982 */
sdma_v4_0_gfx_resume(struct amdgpu_device * adev,unsigned int i)983 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
984 {
985 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
986 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
987 u32 wb_offset;
988 u32 doorbell;
989 u32 doorbell_offset;
990 u64 wptr_gpu_addr;
991
992 wb_offset = (ring->rptr_offs * 4);
993
994 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
995 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
996 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
997
998 /* Initialize the ring buffer's read and write pointers */
999 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1000 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1001 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1002 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1003
1004 /* set the wb address whether it's enabled or not */
1005 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1006 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1007 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1008 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1009
1010 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1011 RPTR_WRITEBACK_ENABLE, 1);
1012
1013 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1014 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1015
1016 ring->wptr = 0;
1017
1018 /* before programing wptr to a less value, need set minor_ptr_update first */
1019 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1020
1021 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1022 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1023
1024 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1025 ring->use_doorbell);
1026 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1027 SDMA0_GFX_DOORBELL_OFFSET,
1028 OFFSET, ring->doorbell_index);
1029 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1030 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1031
1032 sdma_v4_0_ring_set_wptr(ring);
1033
1034 /* set minor_ptr_update to 0 after wptr programed */
1035 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1036
1037 /* setup the wptr shadow polling */
1038 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1039 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1040 lower_32_bits(wptr_gpu_addr));
1041 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1042 upper_32_bits(wptr_gpu_addr));
1043 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1044 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1045 SDMA0_GFX_RB_WPTR_POLL_CNTL,
1046 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1047 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1048
1049 /* enable DMA RB */
1050 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1051 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1052
1053 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1054 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1055 #ifdef __BIG_ENDIAN
1056 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1057 #endif
1058 /* enable DMA IBs */
1059 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1060
1061 ring->sched.ready = true;
1062 }
1063
1064 /**
1065 * sdma_v4_0_page_resume - setup and start the async dma engines
1066 *
1067 * @adev: amdgpu_device pointer
1068 * @i: instance to resume
1069 *
1070 * Set up the page DMA ring buffers and enable them (VEGA10).
1071 * Returns 0 for success, error for failure.
1072 */
sdma_v4_0_page_resume(struct amdgpu_device * adev,unsigned int i)1073 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1074 {
1075 struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1076 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1077 u32 wb_offset;
1078 u32 doorbell;
1079 u32 doorbell_offset;
1080 u64 wptr_gpu_addr;
1081
1082 wb_offset = (ring->rptr_offs * 4);
1083
1084 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1085 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1086 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1087
1088 /* Initialize the ring buffer's read and write pointers */
1089 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1090 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1091 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1092 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1093
1094 /* set the wb address whether it's enabled or not */
1095 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1096 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1097 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1098 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1099
1100 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1101 RPTR_WRITEBACK_ENABLE, 1);
1102
1103 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1104 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1105
1106 ring->wptr = 0;
1107
1108 /* before programing wptr to a less value, need set minor_ptr_update first */
1109 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1110
1111 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1112 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1113
1114 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1115 ring->use_doorbell);
1116 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1117 SDMA0_PAGE_DOORBELL_OFFSET,
1118 OFFSET, ring->doorbell_index);
1119 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1120 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1121
1122 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1123 sdma_v4_0_page_ring_set_wptr(ring);
1124
1125 /* set minor_ptr_update to 0 after wptr programed */
1126 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1127
1128 /* setup the wptr shadow polling */
1129 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1130 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1131 lower_32_bits(wptr_gpu_addr));
1132 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1133 upper_32_bits(wptr_gpu_addr));
1134 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1135 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1136 SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1137 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1138 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1139
1140 /* enable DMA RB */
1141 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1142 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1143
1144 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1145 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1146 #ifdef __BIG_ENDIAN
1147 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1148 #endif
1149 /* enable DMA IBs */
1150 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1151
1152 ring->sched.ready = true;
1153 }
1154
1155 static void
sdma_v4_1_update_power_gating(struct amdgpu_device * adev,bool enable)1156 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1157 {
1158 uint32_t def, data;
1159
1160 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1161 /* enable idle interrupt */
1162 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1163 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1164
1165 if (data != def)
1166 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1167 } else {
1168 /* disable idle interrupt */
1169 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1170 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1171 if (data != def)
1172 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1173 }
1174 }
1175
sdma_v4_1_init_power_gating(struct amdgpu_device * adev)1176 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1177 {
1178 uint32_t def, data;
1179
1180 /* Enable HW based PG. */
1181 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1182 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1183 if (data != def)
1184 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1185
1186 /* enable interrupt */
1187 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1188 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1189 if (data != def)
1190 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1191
1192 /* Configure hold time to filter in-valid power on/off request. Use default right now */
1193 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1194 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1195 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1196 /* Configure switch time for hysteresis purpose. Use default right now */
1197 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1198 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1199 if(data != def)
1200 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1201 }
1202
sdma_v4_0_init_pg(struct amdgpu_device * adev)1203 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1204 {
1205 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1206 return;
1207
1208 switch (adev->asic_type) {
1209 case CHIP_RAVEN:
1210 case CHIP_RENOIR:
1211 sdma_v4_1_init_power_gating(adev);
1212 sdma_v4_1_update_power_gating(adev, true);
1213 break;
1214 default:
1215 break;
1216 }
1217 }
1218
1219 /**
1220 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1221 *
1222 * @adev: amdgpu_device pointer
1223 *
1224 * Set up the compute DMA queues and enable them (VEGA10).
1225 * Returns 0 for success, error for failure.
1226 */
sdma_v4_0_rlc_resume(struct amdgpu_device * adev)1227 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1228 {
1229 sdma_v4_0_init_pg(adev);
1230
1231 return 0;
1232 }
1233
1234 /**
1235 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1236 *
1237 * @adev: amdgpu_device pointer
1238 *
1239 * Loads the sDMA0/1 ucode.
1240 * Returns 0 for success, -EINVAL if the ucode is not available.
1241 */
sdma_v4_0_load_microcode(struct amdgpu_device * adev)1242 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1243 {
1244 const struct sdma_firmware_header_v1_0 *hdr;
1245 const __le32 *fw_data;
1246 u32 fw_size;
1247 int i, j;
1248
1249 /* halt the MEs */
1250 sdma_v4_0_enable(adev, false);
1251
1252 for (i = 0; i < adev->sdma.num_instances; i++) {
1253 if (!adev->sdma.instance[i].fw)
1254 return -EINVAL;
1255
1256 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1257 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1258 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1259
1260 fw_data = (const __le32 *)
1261 (adev->sdma.instance[i].fw->data +
1262 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1263
1264 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1265
1266 for (j = 0; j < fw_size; j++)
1267 WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1268 le32_to_cpup(fw_data++));
1269
1270 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1271 adev->sdma.instance[i].fw_version);
1272 }
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * sdma_v4_0_start - setup and start the async dma engines
1279 *
1280 * @adev: amdgpu_device pointer
1281 *
1282 * Set up the DMA engines and enable them (VEGA10).
1283 * Returns 0 for success, error for failure.
1284 */
sdma_v4_0_start(struct amdgpu_device * adev)1285 static int sdma_v4_0_start(struct amdgpu_device *adev)
1286 {
1287 struct amdgpu_ring *ring;
1288 int i, r = 0;
1289
1290 if (amdgpu_sriov_vf(adev)) {
1291 sdma_v4_0_ctx_switch_enable(adev, false);
1292 sdma_v4_0_enable(adev, false);
1293 } else {
1294
1295 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1296 r = sdma_v4_0_load_microcode(adev);
1297 if (r)
1298 return r;
1299 }
1300
1301 /* unhalt the MEs */
1302 sdma_v4_0_enable(adev, true);
1303 /* enable sdma ring preemption */
1304 sdma_v4_0_ctx_switch_enable(adev, true);
1305 }
1306
1307 /* start the gfx rings and rlc compute queues */
1308 for (i = 0; i < adev->sdma.num_instances; i++) {
1309 uint32_t temp;
1310
1311 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1312 sdma_v4_0_gfx_resume(adev, i);
1313 if (adev->sdma.has_page_queue)
1314 sdma_v4_0_page_resume(adev, i);
1315
1316 /* set utc l1 enable flag always to 1 */
1317 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1318 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1319 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1320
1321 if (!amdgpu_sriov_vf(adev)) {
1322 /* unhalt engine */
1323 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1324 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1325 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1326 }
1327 }
1328
1329 if (amdgpu_sriov_vf(adev)) {
1330 sdma_v4_0_ctx_switch_enable(adev, true);
1331 sdma_v4_0_enable(adev, true);
1332 } else {
1333 r = sdma_v4_0_rlc_resume(adev);
1334 if (r)
1335 return r;
1336 }
1337
1338 for (i = 0; i < adev->sdma.num_instances; i++) {
1339 ring = &adev->sdma.instance[i].ring;
1340
1341 r = amdgpu_ring_test_helper(ring);
1342 if (r)
1343 return r;
1344
1345 if (adev->sdma.has_page_queue) {
1346 struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1347
1348 r = amdgpu_ring_test_helper(page);
1349 if (r)
1350 return r;
1351
1352 if (adev->mman.buffer_funcs_ring == page)
1353 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1354 }
1355
1356 if (adev->mman.buffer_funcs_ring == ring)
1357 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1358 }
1359
1360 return r;
1361 }
1362
1363 /**
1364 * sdma_v4_0_ring_test_ring - simple async dma engine test
1365 *
1366 * @ring: amdgpu_ring structure holding ring information
1367 *
1368 * Test the DMA engine by writing using it to write an
1369 * value to memory. (VEGA10).
1370 * Returns 0 for success, error for failure.
1371 */
sdma_v4_0_ring_test_ring(struct amdgpu_ring * ring)1372 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1373 {
1374 struct amdgpu_device *adev = ring->adev;
1375 unsigned i;
1376 unsigned index;
1377 int r;
1378 u32 tmp;
1379 u64 gpu_addr;
1380
1381 r = amdgpu_device_wb_get(adev, &index);
1382 if (r)
1383 return r;
1384
1385 gpu_addr = adev->wb.gpu_addr + (index * 4);
1386 tmp = 0xCAFEDEAD;
1387 adev->wb.wb[index] = cpu_to_le32(tmp);
1388
1389 r = amdgpu_ring_alloc(ring, 5);
1390 if (r)
1391 goto error_free_wb;
1392
1393 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1394 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1395 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1396 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1397 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1398 amdgpu_ring_write(ring, 0xDEADBEEF);
1399 amdgpu_ring_commit(ring);
1400
1401 for (i = 0; i < adev->usec_timeout; i++) {
1402 tmp = le32_to_cpu(adev->wb.wb[index]);
1403 if (tmp == 0xDEADBEEF)
1404 break;
1405 udelay(1);
1406 }
1407
1408 if (i >= adev->usec_timeout)
1409 r = -ETIMEDOUT;
1410
1411 error_free_wb:
1412 amdgpu_device_wb_free(adev, index);
1413 return r;
1414 }
1415
1416 /**
1417 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1418 *
1419 * @ring: amdgpu_ring structure holding ring information
1420 *
1421 * Test a simple IB in the DMA ring (VEGA10).
1422 * Returns 0 on success, error on failure.
1423 */
sdma_v4_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)1424 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1425 {
1426 struct amdgpu_device *adev = ring->adev;
1427 struct amdgpu_ib ib;
1428 struct dma_fence *f = NULL;
1429 unsigned index;
1430 long r;
1431 u32 tmp = 0;
1432 u64 gpu_addr;
1433
1434 r = amdgpu_device_wb_get(adev, &index);
1435 if (r)
1436 return r;
1437
1438 gpu_addr = adev->wb.gpu_addr + (index * 4);
1439 tmp = 0xCAFEDEAD;
1440 adev->wb.wb[index] = cpu_to_le32(tmp);
1441 memset(&ib, 0, sizeof(ib));
1442 r = amdgpu_ib_get(adev, NULL, 256, &ib);
1443 if (r)
1444 goto err0;
1445
1446 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1447 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1448 ib.ptr[1] = lower_32_bits(gpu_addr);
1449 ib.ptr[2] = upper_32_bits(gpu_addr);
1450 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1451 ib.ptr[4] = 0xDEADBEEF;
1452 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1453 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1454 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1455 ib.length_dw = 8;
1456
1457 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1458 if (r)
1459 goto err1;
1460
1461 r = dma_fence_wait_timeout(f, false, timeout);
1462 if (r == 0) {
1463 r = -ETIMEDOUT;
1464 goto err1;
1465 } else if (r < 0) {
1466 goto err1;
1467 }
1468 tmp = le32_to_cpu(adev->wb.wb[index]);
1469 if (tmp == 0xDEADBEEF)
1470 r = 0;
1471 else
1472 r = -EINVAL;
1473
1474 err1:
1475 amdgpu_ib_free(adev, &ib, NULL);
1476 dma_fence_put(f);
1477 err0:
1478 amdgpu_device_wb_free(adev, index);
1479 return r;
1480 }
1481
1482
1483 /**
1484 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1485 *
1486 * @ib: indirect buffer to fill with commands
1487 * @pe: addr of the page entry
1488 * @src: src addr to copy from
1489 * @count: number of page entries to update
1490 *
1491 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1492 */
sdma_v4_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)1493 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1494 uint64_t pe, uint64_t src,
1495 unsigned count)
1496 {
1497 unsigned bytes = count * 8;
1498
1499 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1500 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1501 ib->ptr[ib->length_dw++] = bytes - 1;
1502 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1503 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1504 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1505 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1506 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1507
1508 }
1509
1510 /**
1511 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1512 *
1513 * @ib: indirect buffer to fill with commands
1514 * @pe: addr of the page entry
1515 * @addr: dst addr to write into pe
1516 * @count: number of page entries to update
1517 * @incr: increase next addr by incr bytes
1518 * @flags: access flags
1519 *
1520 * Update PTEs by writing them manually using sDMA (VEGA10).
1521 */
sdma_v4_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)1522 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1523 uint64_t value, unsigned count,
1524 uint32_t incr)
1525 {
1526 unsigned ndw = count * 2;
1527
1528 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1529 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1530 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1531 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1532 ib->ptr[ib->length_dw++] = ndw - 1;
1533 for (; ndw > 0; ndw -= 2) {
1534 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1535 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1536 value += incr;
1537 }
1538 }
1539
1540 /**
1541 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1542 *
1543 * @ib: indirect buffer to fill with commands
1544 * @pe: addr of the page entry
1545 * @addr: dst addr to write into pe
1546 * @count: number of page entries to update
1547 * @incr: increase next addr by incr bytes
1548 * @flags: access flags
1549 *
1550 * Update the page tables using sDMA (VEGA10).
1551 */
sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1552 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1553 uint64_t pe,
1554 uint64_t addr, unsigned count,
1555 uint32_t incr, uint64_t flags)
1556 {
1557 /* for physically contiguous pages (vram) */
1558 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1559 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1560 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1561 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1562 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1563 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1564 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1565 ib->ptr[ib->length_dw++] = incr; /* increment size */
1566 ib->ptr[ib->length_dw++] = 0;
1567 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1568 }
1569
1570 /**
1571 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1572 *
1573 * @ib: indirect buffer to fill with padding
1574 *
1575 */
sdma_v4_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1576 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1577 {
1578 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1579 u32 pad_count;
1580 int i;
1581
1582 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1583 for (i = 0; i < pad_count; i++)
1584 if (sdma && sdma->burst_nop && (i == 0))
1585 ib->ptr[ib->length_dw++] =
1586 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1587 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1588 else
1589 ib->ptr[ib->length_dw++] =
1590 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1591 }
1592
1593
1594 /**
1595 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1596 *
1597 * @ring: amdgpu_ring pointer
1598 *
1599 * Make sure all previous operations are completed (CIK).
1600 */
sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1601 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1602 {
1603 uint32_t seq = ring->fence_drv.sync_seq;
1604 uint64_t addr = ring->fence_drv.gpu_addr;
1605
1606 /* wait for idle */
1607 sdma_v4_0_wait_reg_mem(ring, 1, 0,
1608 addr & 0xfffffffc,
1609 upper_32_bits(addr) & 0xffffffff,
1610 seq, 0xffffffff, 4);
1611 }
1612
1613
1614 /**
1615 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1616 *
1617 * @ring: amdgpu_ring pointer
1618 * @vm: amdgpu_vm pointer
1619 *
1620 * Update the page table base and flush the VM TLB
1621 * using sDMA (VEGA10).
1622 */
sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1623 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1624 unsigned vmid, uint64_t pd_addr)
1625 {
1626 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1627 }
1628
sdma_v4_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1629 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1630 uint32_t reg, uint32_t val)
1631 {
1632 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1633 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1634 amdgpu_ring_write(ring, reg);
1635 amdgpu_ring_write(ring, val);
1636 }
1637
sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring * ring,uint32_t reg,uint32_t val,uint32_t mask)1638 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1639 uint32_t val, uint32_t mask)
1640 {
1641 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1642 }
1643
sdma_v4_0_fw_support_paging_queue(struct amdgpu_device * adev)1644 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1645 {
1646 uint fw_version = adev->sdma.instance[0].fw_version;
1647
1648 switch (adev->asic_type) {
1649 case CHIP_VEGA10:
1650 return fw_version >= 430;
1651 case CHIP_VEGA12:
1652 /*return fw_version >= 31;*/
1653 return false;
1654 case CHIP_VEGA20:
1655 return fw_version >= 123;
1656 default:
1657 return false;
1658 }
1659 }
1660
sdma_v4_0_early_init(void * handle)1661 static int sdma_v4_0_early_init(void *handle)
1662 {
1663 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1664 int r;
1665
1666 if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1667 adev->sdma.num_instances = 1;
1668 else if (adev->asic_type == CHIP_ARCTURUS)
1669 adev->sdma.num_instances = 8;
1670 else
1671 adev->sdma.num_instances = 2;
1672
1673 r = sdma_v4_0_init_microcode(adev);
1674 if (r) {
1675 DRM_ERROR("Failed to load sdma firmware!\n");
1676 return r;
1677 }
1678
1679 /* TODO: Page queue breaks driver reload under SRIOV */
1680 if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1681 adev->sdma.has_page_queue = false;
1682 else if (sdma_v4_0_fw_support_paging_queue(adev))
1683 adev->sdma.has_page_queue = true;
1684
1685 sdma_v4_0_set_ring_funcs(adev);
1686 sdma_v4_0_set_buffer_funcs(adev);
1687 sdma_v4_0_set_vm_pte_funcs(adev);
1688 sdma_v4_0_set_irq_funcs(adev);
1689
1690 return 0;
1691 }
1692
1693 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1694 struct ras_err_data *err_data,
1695 struct amdgpu_iv_entry *entry);
1696
sdma_v4_0_late_init(void * handle)1697 static int sdma_v4_0_late_init(void *handle)
1698 {
1699 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1700 struct ras_common_if **ras_if = &adev->sdma.ras_if;
1701 struct ras_ih_if ih_info = {
1702 .cb = sdma_v4_0_process_ras_data_cb,
1703 };
1704 struct ras_fs_if fs_info = {
1705 .sysfs_name = "sdma_err_count",
1706 .debugfs_name = "sdma_err_inject",
1707 };
1708 struct ras_common_if ras_block = {
1709 .block = AMDGPU_RAS_BLOCK__SDMA,
1710 .type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1711 .sub_block_index = 0,
1712 .name = "sdma",
1713 };
1714 int r, i;
1715
1716 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1717 amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1718 return 0;
1719 }
1720
1721 /* handle resume path. */
1722 if (*ras_if) {
1723 /* resend ras TA enable cmd during resume.
1724 * prepare to handle failure.
1725 */
1726 ih_info.head = **ras_if;
1727 r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1728 if (r) {
1729 if (r == -EAGAIN) {
1730 /* request a gpu reset. will run again. */
1731 amdgpu_ras_request_reset_on_boot(adev,
1732 AMDGPU_RAS_BLOCK__SDMA);
1733 return 0;
1734 }
1735 /* fail to enable ras, cleanup all. */
1736 goto irq;
1737 }
1738 /* enable successfully. continue. */
1739 goto resume;
1740 }
1741
1742 *ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1743 if (!*ras_if)
1744 return -ENOMEM;
1745
1746 **ras_if = ras_block;
1747
1748 r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1749 if (r) {
1750 if (r == -EAGAIN) {
1751 amdgpu_ras_request_reset_on_boot(adev,
1752 AMDGPU_RAS_BLOCK__SDMA);
1753 r = 0;
1754 }
1755 goto feature;
1756 }
1757
1758 ih_info.head = **ras_if;
1759 fs_info.head = **ras_if;
1760
1761 r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1762 if (r)
1763 goto interrupt;
1764
1765 amdgpu_ras_debugfs_create(adev, &fs_info);
1766
1767 r = amdgpu_ras_sysfs_create(adev, &fs_info);
1768 if (r)
1769 goto sysfs;
1770 resume:
1771 for (i = 0; i < adev->sdma.num_instances; i++) {
1772 r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq,
1773 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1774 if (r)
1775 goto irq;
1776 }
1777
1778 return 0;
1779 irq:
1780 amdgpu_ras_sysfs_remove(adev, *ras_if);
1781 sysfs:
1782 amdgpu_ras_debugfs_remove(adev, *ras_if);
1783 amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1784 interrupt:
1785 amdgpu_ras_feature_enable(adev, *ras_if, 0);
1786 feature:
1787 kfree(*ras_if);
1788 *ras_if = NULL;
1789 return r;
1790 }
1791
sdma_v4_0_sw_init(void * handle)1792 static int sdma_v4_0_sw_init(void *handle)
1793 {
1794 struct amdgpu_ring *ring;
1795 int r, i;
1796 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1797
1798 /* SDMA trap event */
1799 for (i = 0; i < adev->sdma.num_instances; i++) {
1800 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1801 SDMA0_4_0__SRCID__SDMA_TRAP,
1802 &adev->sdma.trap_irq);
1803 if (r)
1804 return r;
1805 }
1806
1807 /* SDMA SRAM ECC event */
1808 for (i = 0; i < adev->sdma.num_instances; i++) {
1809 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1810 SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1811 &adev->sdma.ecc_irq);
1812 if (r)
1813 return r;
1814 }
1815
1816 for (i = 0; i < adev->sdma.num_instances; i++) {
1817 ring = &adev->sdma.instance[i].ring;
1818 ring->ring_obj = NULL;
1819 ring->use_doorbell = true;
1820
1821 DRM_INFO("use_doorbell being set to: [%s]\n",
1822 ring->use_doorbell?"true":"false");
1823
1824 /* doorbell size is 2 dwords, get DWORD offset */
1825 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1826
1827 sprintf(ring->name, "sdma%d", i);
1828 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1829 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1830 if (r)
1831 return r;
1832
1833 if (adev->sdma.has_page_queue) {
1834 ring = &adev->sdma.instance[i].page;
1835 ring->ring_obj = NULL;
1836 ring->use_doorbell = true;
1837
1838 /* paging queue use same doorbell index/routing as gfx queue
1839 * with 0x400 (4096 dwords) offset on second doorbell page
1840 */
1841 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1842 ring->doorbell_index += 0x400;
1843
1844 sprintf(ring->name, "page%d", i);
1845 r = amdgpu_ring_init(adev, ring, 1024,
1846 &adev->sdma.trap_irq,
1847 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1848 if (r)
1849 return r;
1850 }
1851 }
1852
1853 return r;
1854 }
1855
sdma_v4_0_sw_fini(void * handle)1856 static int sdma_v4_0_sw_fini(void *handle)
1857 {
1858 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1859 int i;
1860
1861 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1862 adev->sdma.ras_if) {
1863 struct ras_common_if *ras_if = adev->sdma.ras_if;
1864 struct ras_ih_if ih_info = {
1865 .head = *ras_if,
1866 };
1867
1868 /*remove fs first*/
1869 amdgpu_ras_debugfs_remove(adev, ras_if);
1870 amdgpu_ras_sysfs_remove(adev, ras_if);
1871 /*remove the IH*/
1872 amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1873 amdgpu_ras_feature_enable(adev, ras_if, 0);
1874 kfree(ras_if);
1875 }
1876
1877 for (i = 0; i < adev->sdma.num_instances; i++) {
1878 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1879 if (adev->sdma.has_page_queue)
1880 amdgpu_ring_fini(&adev->sdma.instance[i].page);
1881 }
1882
1883 sdma_v4_0_destroy_inst_ctx(adev);
1884
1885 return 0;
1886 }
1887
sdma_v4_0_hw_init(void * handle)1888 static int sdma_v4_0_hw_init(void *handle)
1889 {
1890 int r;
1891 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1892
1893 if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1894 adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1895 adev->asic_type == CHIP_RENOIR)
1896 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1897
1898 if (!amdgpu_sriov_vf(adev))
1899 sdma_v4_0_init_golden_registers(adev);
1900
1901 r = sdma_v4_0_start(adev);
1902
1903 return r;
1904 }
1905
sdma_v4_0_hw_fini(void * handle)1906 static int sdma_v4_0_hw_fini(void *handle)
1907 {
1908 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1909 int i;
1910
1911 if (amdgpu_sriov_vf(adev))
1912 return 0;
1913
1914 for (i = 0; i < adev->sdma.num_instances; i++) {
1915 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1916 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1917 }
1918
1919 sdma_v4_0_ctx_switch_enable(adev, false);
1920 sdma_v4_0_enable(adev, false);
1921
1922 if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1923 && adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1924 adev->asic_type == CHIP_RENOIR)
1925 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1926
1927 return 0;
1928 }
1929
sdma_v4_0_suspend(void * handle)1930 static int sdma_v4_0_suspend(void *handle)
1931 {
1932 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1933
1934 return sdma_v4_0_hw_fini(adev);
1935 }
1936
sdma_v4_0_resume(void * handle)1937 static int sdma_v4_0_resume(void *handle)
1938 {
1939 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1940
1941 return sdma_v4_0_hw_init(adev);
1942 }
1943
sdma_v4_0_is_idle(void * handle)1944 static bool sdma_v4_0_is_idle(void *handle)
1945 {
1946 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1947 u32 i;
1948
1949 for (i = 0; i < adev->sdma.num_instances; i++) {
1950 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1951
1952 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1953 return false;
1954 }
1955
1956 return true;
1957 }
1958
sdma_v4_0_wait_for_idle(void * handle)1959 static int sdma_v4_0_wait_for_idle(void *handle)
1960 {
1961 unsigned i, j;
1962 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1963 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1964
1965 for (i = 0; i < adev->usec_timeout; i++) {
1966 for (j = 0; j < adev->sdma.num_instances; j++) {
1967 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1968 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1969 break;
1970 }
1971 if (j == adev->sdma.num_instances)
1972 return 0;
1973 udelay(1);
1974 }
1975 return -ETIMEDOUT;
1976 }
1977
sdma_v4_0_soft_reset(void * handle)1978 static int sdma_v4_0_soft_reset(void *handle)
1979 {
1980 /* todo */
1981
1982 return 0;
1983 }
1984
sdma_v4_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1985 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1986 struct amdgpu_irq_src *source,
1987 unsigned type,
1988 enum amdgpu_interrupt_state state)
1989 {
1990 u32 sdma_cntl;
1991
1992 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1993 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1994 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1995 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1996
1997 return 0;
1998 }
1999
sdma_v4_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2000 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2001 struct amdgpu_irq_src *source,
2002 struct amdgpu_iv_entry *entry)
2003 {
2004 uint32_t instance;
2005
2006 DRM_DEBUG("IH: SDMA trap\n");
2007 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2008 switch (entry->ring_id) {
2009 case 0:
2010 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2011 break;
2012 case 1:
2013 if (adev->asic_type == CHIP_VEGA20)
2014 amdgpu_fence_process(&adev->sdma.instance[instance].page);
2015 break;
2016 case 2:
2017 /* XXX compute */
2018 break;
2019 case 3:
2020 if (adev->asic_type != CHIP_VEGA20)
2021 amdgpu_fence_process(&adev->sdma.instance[instance].page);
2022 break;
2023 }
2024 return 0;
2025 }
2026
sdma_v4_0_process_ras_data_cb(struct amdgpu_device * adev,struct ras_err_data * err_data,struct amdgpu_iv_entry * entry)2027 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2028 struct ras_err_data *err_data,
2029 struct amdgpu_iv_entry *entry)
2030 {
2031 uint32_t err_source;
2032 int instance;
2033
2034 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2035 if (instance < 0)
2036 return 0;
2037
2038 switch (entry->src_id) {
2039 case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
2040 err_source = 0;
2041 break;
2042 case SDMA0_4_0__SRCID__SDMA_ECC:
2043 err_source = 1;
2044 break;
2045 default:
2046 return 0;
2047 }
2048
2049 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
2050
2051 amdgpu_ras_reset_gpu(adev, 0);
2052
2053 return AMDGPU_RAS_SUCCESS;
2054 }
2055
sdma_v4_0_process_ecc_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2056 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
2057 struct amdgpu_irq_src *source,
2058 struct amdgpu_iv_entry *entry)
2059 {
2060 struct ras_common_if *ras_if = adev->sdma.ras_if;
2061 struct ras_dispatch_if ih_data = {
2062 .entry = entry,
2063 };
2064
2065 if (!ras_if)
2066 return 0;
2067
2068 ih_data.head = *ras_if;
2069
2070 amdgpu_ras_interrupt_dispatch(adev, &ih_data);
2071 return 0;
2072 }
2073
sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2074 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2075 struct amdgpu_irq_src *source,
2076 struct amdgpu_iv_entry *entry)
2077 {
2078 int instance;
2079
2080 DRM_ERROR("Illegal instruction in SDMA command stream\n");
2081
2082 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2083 if (instance < 0)
2084 return 0;
2085
2086 switch (entry->ring_id) {
2087 case 0:
2088 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2089 break;
2090 }
2091 return 0;
2092 }
2093
sdma_v4_0_set_ecc_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)2094 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2095 struct amdgpu_irq_src *source,
2096 unsigned type,
2097 enum amdgpu_interrupt_state state)
2098 {
2099 u32 sdma_edc_config;
2100
2101 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2102 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2103 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2104 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2105
2106 return 0;
2107 }
2108
sdma_v4_0_update_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)2109 static void sdma_v4_0_update_medium_grain_clock_gating(
2110 struct amdgpu_device *adev,
2111 bool enable)
2112 {
2113 uint32_t data, def;
2114 int i;
2115
2116 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2117 for (i = 0; i < adev->sdma.num_instances; i++) {
2118 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2119 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2120 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2121 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2122 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2123 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2124 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2125 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2126 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2127 if (def != data)
2128 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2129 }
2130 } else {
2131 for (i = 0; i < adev->sdma.num_instances; i++) {
2132 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2133 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2134 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2135 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2136 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2137 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2138 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2139 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2140 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2141 if (def != data)
2142 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2143 }
2144 }
2145 }
2146
2147
sdma_v4_0_update_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)2148 static void sdma_v4_0_update_medium_grain_light_sleep(
2149 struct amdgpu_device *adev,
2150 bool enable)
2151 {
2152 uint32_t data, def;
2153 int i;
2154
2155 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2156 for (i = 0; i < adev->sdma.num_instances; i++) {
2157 /* 1-not override: enable sdma mem light sleep */
2158 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2159 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2160 if (def != data)
2161 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2162 }
2163 } else {
2164 for (i = 0; i < adev->sdma.num_instances; i++) {
2165 /* 0-override:disable sdma mem light sleep */
2166 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2167 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2168 if (def != data)
2169 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2170 }
2171 }
2172 }
2173
sdma_v4_0_set_clockgating_state(void * handle,enum amd_clockgating_state state)2174 static int sdma_v4_0_set_clockgating_state(void *handle,
2175 enum amd_clockgating_state state)
2176 {
2177 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2178
2179 if (amdgpu_sriov_vf(adev))
2180 return 0;
2181
2182 switch (adev->asic_type) {
2183 case CHIP_VEGA10:
2184 case CHIP_VEGA12:
2185 case CHIP_VEGA20:
2186 case CHIP_RAVEN:
2187 case CHIP_ARCTURUS:
2188 case CHIP_RENOIR:
2189 sdma_v4_0_update_medium_grain_clock_gating(adev,
2190 state == AMD_CG_STATE_GATE ? true : false);
2191 sdma_v4_0_update_medium_grain_light_sleep(adev,
2192 state == AMD_CG_STATE_GATE ? true : false);
2193 break;
2194 default:
2195 break;
2196 }
2197 return 0;
2198 }
2199
sdma_v4_0_set_powergating_state(void * handle,enum amd_powergating_state state)2200 static int sdma_v4_0_set_powergating_state(void *handle,
2201 enum amd_powergating_state state)
2202 {
2203 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2204
2205 switch (adev->asic_type) {
2206 case CHIP_RAVEN:
2207 sdma_v4_1_update_power_gating(adev,
2208 state == AMD_PG_STATE_GATE ? true : false);
2209 break;
2210 default:
2211 break;
2212 }
2213
2214 return 0;
2215 }
2216
sdma_v4_0_get_clockgating_state(void * handle,u32 * flags)2217 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2218 {
2219 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2220 int data;
2221
2222 if (amdgpu_sriov_vf(adev))
2223 *flags = 0;
2224
2225 /* AMD_CG_SUPPORT_SDMA_MGCG */
2226 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2227 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2228 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2229
2230 /* AMD_CG_SUPPORT_SDMA_LS */
2231 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2232 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2233 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2234 }
2235
2236 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2237 .name = "sdma_v4_0",
2238 .early_init = sdma_v4_0_early_init,
2239 .late_init = sdma_v4_0_late_init,
2240 .sw_init = sdma_v4_0_sw_init,
2241 .sw_fini = sdma_v4_0_sw_fini,
2242 .hw_init = sdma_v4_0_hw_init,
2243 .hw_fini = sdma_v4_0_hw_fini,
2244 .suspend = sdma_v4_0_suspend,
2245 .resume = sdma_v4_0_resume,
2246 .is_idle = sdma_v4_0_is_idle,
2247 .wait_for_idle = sdma_v4_0_wait_for_idle,
2248 .soft_reset = sdma_v4_0_soft_reset,
2249 .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2250 .set_powergating_state = sdma_v4_0_set_powergating_state,
2251 .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2252 };
2253
2254 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2255 .type = AMDGPU_RING_TYPE_SDMA,
2256 .align_mask = 0xf,
2257 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2258 .support_64bit_ptrs = true,
2259 .vmhub = AMDGPU_MMHUB_0,
2260 .get_rptr = sdma_v4_0_ring_get_rptr,
2261 .get_wptr = sdma_v4_0_ring_get_wptr,
2262 .set_wptr = sdma_v4_0_ring_set_wptr,
2263 .emit_frame_size =
2264 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2265 3 + /* hdp invalidate */
2266 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2267 /* sdma_v4_0_ring_emit_vm_flush */
2268 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2269 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2270 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2271 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2272 .emit_ib = sdma_v4_0_ring_emit_ib,
2273 .emit_fence = sdma_v4_0_ring_emit_fence,
2274 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2275 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2276 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2277 .test_ring = sdma_v4_0_ring_test_ring,
2278 .test_ib = sdma_v4_0_ring_test_ib,
2279 .insert_nop = sdma_v4_0_ring_insert_nop,
2280 .pad_ib = sdma_v4_0_ring_pad_ib,
2281 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2282 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2283 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2284 };
2285
2286 /*
2287 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2288 * So create a individual constant ring_funcs for those instances.
2289 */
2290 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2291 .type = AMDGPU_RING_TYPE_SDMA,
2292 .align_mask = 0xf,
2293 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2294 .support_64bit_ptrs = true,
2295 .vmhub = AMDGPU_MMHUB_1,
2296 .get_rptr = sdma_v4_0_ring_get_rptr,
2297 .get_wptr = sdma_v4_0_ring_get_wptr,
2298 .set_wptr = sdma_v4_0_ring_set_wptr,
2299 .emit_frame_size =
2300 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2301 3 + /* hdp invalidate */
2302 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2303 /* sdma_v4_0_ring_emit_vm_flush */
2304 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2305 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2306 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2307 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2308 .emit_ib = sdma_v4_0_ring_emit_ib,
2309 .emit_fence = sdma_v4_0_ring_emit_fence,
2310 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2311 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2312 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2313 .test_ring = sdma_v4_0_ring_test_ring,
2314 .test_ib = sdma_v4_0_ring_test_ib,
2315 .insert_nop = sdma_v4_0_ring_insert_nop,
2316 .pad_ib = sdma_v4_0_ring_pad_ib,
2317 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2318 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2319 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2320 };
2321
2322 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2323 .type = AMDGPU_RING_TYPE_SDMA,
2324 .align_mask = 0xf,
2325 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2326 .support_64bit_ptrs = true,
2327 .vmhub = AMDGPU_MMHUB_0,
2328 .get_rptr = sdma_v4_0_ring_get_rptr,
2329 .get_wptr = sdma_v4_0_page_ring_get_wptr,
2330 .set_wptr = sdma_v4_0_page_ring_set_wptr,
2331 .emit_frame_size =
2332 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2333 3 + /* hdp invalidate */
2334 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2335 /* sdma_v4_0_ring_emit_vm_flush */
2336 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2337 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2338 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2339 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2340 .emit_ib = sdma_v4_0_ring_emit_ib,
2341 .emit_fence = sdma_v4_0_ring_emit_fence,
2342 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2343 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2344 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2345 .test_ring = sdma_v4_0_ring_test_ring,
2346 .test_ib = sdma_v4_0_ring_test_ib,
2347 .insert_nop = sdma_v4_0_ring_insert_nop,
2348 .pad_ib = sdma_v4_0_ring_pad_ib,
2349 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2350 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2351 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2352 };
2353
2354 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2355 .type = AMDGPU_RING_TYPE_SDMA,
2356 .align_mask = 0xf,
2357 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2358 .support_64bit_ptrs = true,
2359 .vmhub = AMDGPU_MMHUB_1,
2360 .get_rptr = sdma_v4_0_ring_get_rptr,
2361 .get_wptr = sdma_v4_0_page_ring_get_wptr,
2362 .set_wptr = sdma_v4_0_page_ring_set_wptr,
2363 .emit_frame_size =
2364 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2365 3 + /* hdp invalidate */
2366 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2367 /* sdma_v4_0_ring_emit_vm_flush */
2368 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2369 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2370 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2371 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2372 .emit_ib = sdma_v4_0_ring_emit_ib,
2373 .emit_fence = sdma_v4_0_ring_emit_fence,
2374 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2375 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2376 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2377 .test_ring = sdma_v4_0_ring_test_ring,
2378 .test_ib = sdma_v4_0_ring_test_ib,
2379 .insert_nop = sdma_v4_0_ring_insert_nop,
2380 .pad_ib = sdma_v4_0_ring_pad_ib,
2381 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2382 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2383 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2384 };
2385
sdma_v4_0_set_ring_funcs(struct amdgpu_device * adev)2386 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2387 {
2388 int i;
2389
2390 for (i = 0; i < adev->sdma.num_instances; i++) {
2391 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2392 adev->sdma.instance[i].ring.funcs =
2393 &sdma_v4_0_ring_funcs_2nd_mmhub;
2394 else
2395 adev->sdma.instance[i].ring.funcs =
2396 &sdma_v4_0_ring_funcs;
2397 adev->sdma.instance[i].ring.me = i;
2398 if (adev->sdma.has_page_queue) {
2399 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2400 adev->sdma.instance[i].page.funcs =
2401 &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2402 else
2403 adev->sdma.instance[i].page.funcs =
2404 &sdma_v4_0_page_ring_funcs;
2405 adev->sdma.instance[i].page.me = i;
2406 }
2407 }
2408 }
2409
2410 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2411 .set = sdma_v4_0_set_trap_irq_state,
2412 .process = sdma_v4_0_process_trap_irq,
2413 };
2414
2415 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2416 .process = sdma_v4_0_process_illegal_inst_irq,
2417 };
2418
2419 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2420 .set = sdma_v4_0_set_ecc_irq_state,
2421 .process = sdma_v4_0_process_ecc_irq,
2422 };
2423
2424
2425
sdma_v4_0_set_irq_funcs(struct amdgpu_device * adev)2426 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2427 {
2428 switch (adev->sdma.num_instances) {
2429 case 1:
2430 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2431 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2432 break;
2433 case 8:
2434 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2435 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2436 break;
2437 case 2:
2438 default:
2439 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2440 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2441 break;
2442 }
2443 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2444 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2445 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2446 }
2447
2448 /**
2449 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2450 *
2451 * @ring: amdgpu_ring structure holding ring information
2452 * @src_offset: src GPU address
2453 * @dst_offset: dst GPU address
2454 * @byte_count: number of bytes to xfer
2455 *
2456 * Copy GPU buffers using the DMA engine (VEGA10/12).
2457 * Used by the amdgpu ttm implementation to move pages if
2458 * registered as the asic copy callback.
2459 */
sdma_v4_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count)2460 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2461 uint64_t src_offset,
2462 uint64_t dst_offset,
2463 uint32_t byte_count)
2464 {
2465 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2466 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2467 ib->ptr[ib->length_dw++] = byte_count - 1;
2468 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2469 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2470 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2471 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2472 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2473 }
2474
2475 /**
2476 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2477 *
2478 * @ring: amdgpu_ring structure holding ring information
2479 * @src_data: value to write to buffer
2480 * @dst_offset: dst GPU address
2481 * @byte_count: number of bytes to xfer
2482 *
2483 * Fill GPU buffers using the DMA engine (VEGA10/12).
2484 */
sdma_v4_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)2485 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2486 uint32_t src_data,
2487 uint64_t dst_offset,
2488 uint32_t byte_count)
2489 {
2490 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2491 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2492 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2493 ib->ptr[ib->length_dw++] = src_data;
2494 ib->ptr[ib->length_dw++] = byte_count - 1;
2495 }
2496
2497 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2498 .copy_max_bytes = 0x400000,
2499 .copy_num_dw = 7,
2500 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2501
2502 .fill_max_bytes = 0x400000,
2503 .fill_num_dw = 5,
2504 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2505 };
2506
sdma_v4_0_set_buffer_funcs(struct amdgpu_device * adev)2507 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2508 {
2509 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2510 if (adev->sdma.has_page_queue)
2511 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2512 else
2513 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2514 }
2515
2516 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2517 .copy_pte_num_dw = 7,
2518 .copy_pte = sdma_v4_0_vm_copy_pte,
2519
2520 .write_pte = sdma_v4_0_vm_write_pte,
2521 .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2522 };
2523
sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device * adev)2524 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2525 {
2526 struct drm_gpu_scheduler *sched;
2527 unsigned i;
2528
2529 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2530 for (i = 0; i < adev->sdma.num_instances; i++) {
2531 if (adev->sdma.has_page_queue)
2532 sched = &adev->sdma.instance[i].page.sched;
2533 else
2534 sched = &adev->sdma.instance[i].ring.sched;
2535 adev->vm_manager.vm_pte_rqs[i] =
2536 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2537 }
2538 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2539 }
2540
2541 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2542 .type = AMD_IP_BLOCK_TYPE_SDMA,
2543 .major = 4,
2544 .minor = 0,
2545 .rev = 0,
2546 .funcs = &sdma_v4_0_ip_funcs,
2547 };
2548