• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_hw_sequencer.h"
36 #include "dce110_timing_generator.h"
37 #include "dce/dce_hwseq.h"
38 #include "gpio_service_interface.h"
39 
40 #include "dce110_compressor.h"
41 
42 #include "bios/bios_parser_helper.h"
43 #include "timing_generator.h"
44 #include "mem_input.h"
45 #include "opp.h"
46 #include "ipp.h"
47 #include "transform.h"
48 #include "stream_encoder.h"
49 #include "link_encoder.h"
50 #include "link_hwss.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 
57 /* include DCE11 register header files */
58 #include "dce/dce_11_0_d.h"
59 #include "dce/dce_11_0_sh_mask.h"
60 #include "custom_float.h"
61 
62 #include "atomfirmware.h"
63 
64 /*
65  * All values are in milliseconds;
66  * For eDP, after power-up/power/down,
67  * 300/500 msec max. delay from LCDVCC to black video generation
68  */
69 #define PANEL_POWER_UP_TIMEOUT 300
70 #define PANEL_POWER_DOWN_TIMEOUT 500
71 #define HPD_CHECK_INTERVAL 10
72 
73 #define CTX \
74 	hws->ctx
75 
76 #define DC_LOGGER_INIT()
77 
78 #define REG(reg)\
79 	hws->regs->reg
80 
81 #undef FN
82 #define FN(reg_name, field_name) \
83 	hws->shifts->field_name, hws->masks->field_name
84 
85 struct dce110_hw_seq_reg_offsets {
86 	uint32_t crtc;
87 };
88 
89 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
90 {
91 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
92 },
93 {
94 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
95 },
96 {
97 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
98 },
99 {
100 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 }
102 };
103 
104 #define HW_REG_BLND(reg, id)\
105 	(reg + reg_offsets[id].blnd)
106 
107 #define HW_REG_CRTC(reg, id)\
108 	(reg + reg_offsets[id].crtc)
109 
110 #define MAX_WATERMARK 0xFFFF
111 #define SAFE_NBP_MARK 0x7FFF
112 
113 /*******************************************************************************
114  * Private definitions
115  ******************************************************************************/
116 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)117 static void dce110_init_pte(struct dc_context *ctx)
118 {
119 	uint32_t addr;
120 	uint32_t value = 0;
121 	uint32_t chunk_int = 0;
122 	uint32_t chunk_mul = 0;
123 
124 	addr = mmUNP_DVMM_PTE_CONTROL;
125 	value = dm_read_reg(ctx, addr);
126 
127 	set_reg_field_value(
128 		value,
129 		0,
130 		DVMM_PTE_CONTROL,
131 		DVMM_USE_SINGLE_PTE);
132 
133 	set_reg_field_value(
134 		value,
135 		1,
136 		DVMM_PTE_CONTROL,
137 		DVMM_PTE_BUFFER_MODE0);
138 
139 	set_reg_field_value(
140 		value,
141 		1,
142 		DVMM_PTE_CONTROL,
143 		DVMM_PTE_BUFFER_MODE1);
144 
145 	dm_write_reg(ctx, addr, value);
146 
147 	addr = mmDVMM_PTE_REQ;
148 	value = dm_read_reg(ctx, addr);
149 
150 	chunk_int = get_reg_field_value(
151 		value,
152 		DVMM_PTE_REQ,
153 		HFLIP_PTEREQ_PER_CHUNK_INT);
154 
155 	chunk_mul = get_reg_field_value(
156 		value,
157 		DVMM_PTE_REQ,
158 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
159 
160 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
161 
162 		set_reg_field_value(
163 			value,
164 			255,
165 			DVMM_PTE_REQ,
166 			MAX_PTEREQ_TO_ISSUE);
167 
168 		set_reg_field_value(
169 			value,
170 			4,
171 			DVMM_PTE_REQ,
172 			HFLIP_PTEREQ_PER_CHUNK_INT);
173 
174 		set_reg_field_value(
175 			value,
176 			4,
177 			DVMM_PTE_REQ,
178 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
179 
180 		dm_write_reg(ctx, addr, value);
181 	}
182 }
183 /**************************************************************************/
184 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)185 static void enable_display_pipe_clock_gating(
186 	struct dc_context *ctx,
187 	bool clock_gating)
188 {
189 	/*TODO*/
190 }
191 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)192 static bool dce110_enable_display_power_gating(
193 	struct dc *dc,
194 	uint8_t controller_id,
195 	struct dc_bios *dcb,
196 	enum pipe_gating_control power_gating)
197 {
198 	enum bp_result bp_result = BP_RESULT_OK;
199 	enum bp_pipe_control_action cntl;
200 	struct dc_context *ctx = dc->ctx;
201 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
202 
203 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
204 		return true;
205 
206 	if (power_gating == PIPE_GATING_CONTROL_INIT)
207 		cntl = ASIC_PIPE_INIT;
208 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
209 		cntl = ASIC_PIPE_ENABLE;
210 	else
211 		cntl = ASIC_PIPE_DISABLE;
212 
213 	if (controller_id == underlay_idx)
214 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
215 
216 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
217 
218 		bp_result = dcb->funcs->enable_disp_power_gating(
219 						dcb, controller_id + 1, cntl);
220 
221 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
222 		 * by default when command table is called
223 		 *
224 		 * Bios parser accepts controller_id = 6 as indicative of
225 		 * underlay pipe in dce110. But we do not support more
226 		 * than 3.
227 		 */
228 		if (controller_id < CONTROLLER_ID_MAX - 1)
229 			dm_write_reg(ctx,
230 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
231 				0);
232 	}
233 
234 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
235 		dce110_init_pte(ctx);
236 
237 	if (bp_result == BP_RESULT_OK)
238 		return true;
239 	else
240 		return false;
241 }
242 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)243 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
244 		const struct dc_plane_state *plane_state)
245 {
246 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
247 
248 	switch (plane_state->format) {
249 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
250 		prescale_params->scale = 0x2082;
251 		break;
252 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
253 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
254 		prescale_params->scale = 0x2020;
255 		break;
256 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
257 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
258 		prescale_params->scale = 0x2008;
259 		break;
260 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
261 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
262 		prescale_params->scale = 0x2000;
263 		break;
264 	default:
265 		ASSERT(false);
266 		break;
267 	}
268 }
269 
270 static bool
dce110_set_input_transfer_func(struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)271 dce110_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
272 			       const struct dc_plane_state *plane_state)
273 {
274 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
275 	const struct dc_transfer_func *tf = NULL;
276 	struct ipp_prescale_params prescale_params = { 0 };
277 	bool result = true;
278 
279 	if (ipp == NULL)
280 		return false;
281 
282 	if (plane_state->in_transfer_func)
283 		tf = plane_state->in_transfer_func;
284 
285 	build_prescale_params(&prescale_params, plane_state);
286 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
287 
288 	if (plane_state->gamma_correction &&
289 			!plane_state->gamma_correction->is_identity &&
290 			dce_use_lut(plane_state->format))
291 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
292 
293 	if (tf == NULL) {
294 		/* Default case if no input transfer function specified */
295 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
296 	} else if (tf->type == TF_TYPE_PREDEFINED) {
297 		switch (tf->tf) {
298 		case TRANSFER_FUNCTION_SRGB:
299 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
300 			break;
301 		case TRANSFER_FUNCTION_BT709:
302 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
303 			break;
304 		case TRANSFER_FUNCTION_LINEAR:
305 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
306 			break;
307 		case TRANSFER_FUNCTION_PQ:
308 		default:
309 			result = false;
310 			break;
311 		}
312 	} else if (tf->type == TF_TYPE_BYPASS) {
313 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
314 	} else {
315 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
316 		result = false;
317 	}
318 
319 	return result;
320 }
321 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)322 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
323 				    struct curve_points *arr_points,
324 				    uint32_t hw_points_num)
325 {
326 	struct custom_float_format fmt;
327 
328 	struct pwl_result_data *rgb = rgb_resulted;
329 
330 	uint32_t i = 0;
331 
332 	fmt.exponenta_bits = 6;
333 	fmt.mantissa_bits = 12;
334 	fmt.sign = true;
335 
336 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
337 					    &arr_points[0].custom_float_x)) {
338 		BREAK_TO_DEBUGGER();
339 		return false;
340 	}
341 
342 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
343 					    &arr_points[0].custom_float_offset)) {
344 		BREAK_TO_DEBUGGER();
345 		return false;
346 	}
347 
348 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
349 					    &arr_points[0].custom_float_slope)) {
350 		BREAK_TO_DEBUGGER();
351 		return false;
352 	}
353 
354 	fmt.mantissa_bits = 10;
355 	fmt.sign = false;
356 
357 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
358 					    &arr_points[1].custom_float_x)) {
359 		BREAK_TO_DEBUGGER();
360 		return false;
361 	}
362 
363 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
364 					    &arr_points[1].custom_float_y)) {
365 		BREAK_TO_DEBUGGER();
366 		return false;
367 	}
368 
369 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
370 					    &arr_points[1].custom_float_slope)) {
371 		BREAK_TO_DEBUGGER();
372 		return false;
373 	}
374 
375 	fmt.mantissa_bits = 12;
376 	fmt.sign = true;
377 
378 	while (i != hw_points_num) {
379 		if (!convert_to_custom_float_format(rgb->red, &fmt,
380 						    &rgb->red_reg)) {
381 			BREAK_TO_DEBUGGER();
382 			return false;
383 		}
384 
385 		if (!convert_to_custom_float_format(rgb->green, &fmt,
386 						    &rgb->green_reg)) {
387 			BREAK_TO_DEBUGGER();
388 			return false;
389 		}
390 
391 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
392 						    &rgb->blue_reg)) {
393 			BREAK_TO_DEBUGGER();
394 			return false;
395 		}
396 
397 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
398 						    &rgb->delta_red_reg)) {
399 			BREAK_TO_DEBUGGER();
400 			return false;
401 		}
402 
403 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
404 						    &rgb->delta_green_reg)) {
405 			BREAK_TO_DEBUGGER();
406 			return false;
407 		}
408 
409 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
410 						    &rgb->delta_blue_reg)) {
411 			BREAK_TO_DEBUGGER();
412 			return false;
413 		}
414 
415 		++rgb;
416 		++i;
417 	}
418 
419 	return true;
420 }
421 
422 #define MAX_LOW_POINT      25
423 #define NUMBER_REGIONS     16
424 #define NUMBER_SW_SEGMENTS 16
425 
426 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)427 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
428 				      struct pwl_params *regamma_params)
429 {
430 	struct curve_points *arr_points;
431 	struct pwl_result_data *rgb_resulted;
432 	struct pwl_result_data *rgb;
433 	struct pwl_result_data *rgb_plus_1;
434 	struct fixed31_32 y_r;
435 	struct fixed31_32 y_g;
436 	struct fixed31_32 y_b;
437 	struct fixed31_32 y1_min;
438 	struct fixed31_32 y3_max;
439 
440 	int32_t region_start, region_end;
441 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
442 
443 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
444 		return false;
445 
446 	arr_points = regamma_params->arr_points;
447 	rgb_resulted = regamma_params->rgb_resulted;
448 	hw_points = 0;
449 
450 	memset(regamma_params, 0, sizeof(struct pwl_params));
451 
452 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
453 		/* 16 segments
454 		 * segments are from 2^-11 to 2^5
455 		 */
456 		region_start = -11;
457 		region_end = region_start + NUMBER_REGIONS;
458 
459 		for (i = 0; i < NUMBER_REGIONS; i++)
460 			seg_distr[i] = 4;
461 
462 	} else {
463 		/* 10 segments
464 		 * segment is from 2^-10 to 2^1
465 		 * We include an extra segment for range [2^0, 2^1). This is to
466 		 * ensure that colors with normalized values of 1 don't miss the
467 		 * LUT.
468 		 */
469 		region_start = -10;
470 		region_end = 1;
471 
472 		seg_distr[0] = 4;
473 		seg_distr[1] = 4;
474 		seg_distr[2] = 4;
475 		seg_distr[3] = 4;
476 		seg_distr[4] = 4;
477 		seg_distr[5] = 4;
478 		seg_distr[6] = 4;
479 		seg_distr[7] = 4;
480 		seg_distr[8] = 4;
481 		seg_distr[9] = 4;
482 		seg_distr[10] = 0;
483 		seg_distr[11] = -1;
484 		seg_distr[12] = -1;
485 		seg_distr[13] = -1;
486 		seg_distr[14] = -1;
487 		seg_distr[15] = -1;
488 	}
489 
490 	for (k = 0; k < 16; k++) {
491 		if (seg_distr[k] != -1)
492 			hw_points += (1 << seg_distr[k]);
493 	}
494 
495 	j = 0;
496 	for (k = 0; k < (region_end - region_start); k++) {
497 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
498 		start_index = (region_start + k + MAX_LOW_POINT) *
499 				NUMBER_SW_SEGMENTS;
500 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
501 				i += increment) {
502 			if (j == hw_points - 1)
503 				break;
504 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
505 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
506 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
507 			j++;
508 		}
509 	}
510 
511 	/* last point */
512 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
513 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
514 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
515 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
516 
517 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
518 					     dc_fixpt_from_int(region_start));
519 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
520 					     dc_fixpt_from_int(region_end));
521 
522 	y_r = rgb_resulted[0].red;
523 	y_g = rgb_resulted[0].green;
524 	y_b = rgb_resulted[0].blue;
525 
526 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
527 
528 	arr_points[0].y = y1_min;
529 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
530 						 arr_points[0].x);
531 
532 	y_r = rgb_resulted[hw_points - 1].red;
533 	y_g = rgb_resulted[hw_points - 1].green;
534 	y_b = rgb_resulted[hw_points - 1].blue;
535 
536 	/* see comment above, m_arrPoints[1].y should be the Y value for the
537 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
538 	 */
539 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
540 
541 	arr_points[1].y = y3_max;
542 
543 	arr_points[1].slope = dc_fixpt_zero;
544 
545 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
546 		/* for PQ, we want to have a straight line from last HW X point,
547 		 * and the slope to be such that we hit 1.0 at 10000 nits.
548 		 */
549 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
550 
551 		arr_points[1].slope = dc_fixpt_div(
552 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
553 				dc_fixpt_sub(end_value, arr_points[1].x));
554 	}
555 
556 	regamma_params->hw_points_num = hw_points;
557 
558 	k = 0;
559 	for (i = 1; i < 16; i++) {
560 		if (seg_distr[k] != -1) {
561 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
562 			regamma_params->arr_curve_points[i].offset =
563 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
564 		}
565 		k++;
566 	}
567 
568 	if (seg_distr[k] != -1)
569 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
570 
571 	rgb = rgb_resulted;
572 	rgb_plus_1 = rgb_resulted + 1;
573 
574 	i = 1;
575 
576 	while (i != hw_points + 1) {
577 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
578 			rgb_plus_1->red = rgb->red;
579 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
580 			rgb_plus_1->green = rgb->green;
581 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
582 			rgb_plus_1->blue = rgb->blue;
583 
584 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
585 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
586 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
587 
588 		++rgb_plus_1;
589 		++rgb;
590 		++i;
591 	}
592 
593 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
594 
595 	return true;
596 }
597 
598 static bool
dce110_set_output_transfer_func(struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)599 dce110_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
600 				const struct dc_stream_state *stream)
601 {
602 	struct transform *xfm = pipe_ctx->plane_res.xfm;
603 
604 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
605 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
606 
607 	if (stream->out_transfer_func &&
608 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
609 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
610 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
611 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
612 							 &xfm->regamma_params)) {
613 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
614 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
615 	} else {
616 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
617 	}
618 
619 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
620 
621 	return true;
622 }
623 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)624 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
625 {
626 	bool is_hdmi_tmds;
627 	bool is_dp;
628 
629 	ASSERT(pipe_ctx->stream);
630 
631 	if (pipe_ctx->stream_res.stream_enc == NULL)
632 		return;  /* this is not root pipe */
633 
634 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
635 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
636 
637 	if (!is_hdmi_tmds && !is_dp)
638 		return;
639 
640 	if (is_hdmi_tmds)
641 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
642 			pipe_ctx->stream_res.stream_enc,
643 			&pipe_ctx->stream_res.encoder_info_frame);
644 	else
645 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
646 			pipe_ctx->stream_res.stream_enc,
647 			&pipe_ctx->stream_res.encoder_info_frame);
648 }
649 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)650 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
651 {
652 	enum dc_lane_count lane_count =
653 		pipe_ctx->stream->link->cur_link_settings.lane_count;
654 
655 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
656 	struct dc_link *link = pipe_ctx->stream->link;
657 
658 
659 	uint32_t active_total_with_borders;
660 	uint32_t early_control = 0;
661 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
662 
663 	/* For MST, there are multiply stream go to only one link.
664 	 * connect DIG back_end to front_end while enable_stream and
665 	 * disconnect them during disable_stream
666 	 * BY this, it is logic clean to separate stream and link */
667 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
668 						    pipe_ctx->stream_res.stream_enc->id, true);
669 
670 	link->dc->hwss.update_info_frame(pipe_ctx);
671 
672 	/* enable early control to avoid corruption on DP monitor*/
673 	active_total_with_borders =
674 			timing->h_addressable
675 				+ timing->h_border_left
676 				+ timing->h_border_right;
677 
678 	if (lane_count != 0)
679 		early_control = active_total_with_borders % lane_count;
680 
681 	if (early_control == 0)
682 		early_control = lane_count;
683 
684 	tg->funcs->set_early_control(tg, early_control);
685 
686 	/* enable audio only within mode set */
687 	if (pipe_ctx->stream_res.audio != NULL) {
688 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
689 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
690 	}
691 
692 
693 
694 
695 }
696 
697 /*todo: cloned in stream enc, fix*/
is_panel_backlight_on(struct dce_hwseq * hws)698 static bool is_panel_backlight_on(struct dce_hwseq *hws)
699 {
700 	uint32_t value;
701 
702 	REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
703 
704 	return value;
705 }
706 
is_panel_powered_on(struct dce_hwseq * hws)707 static bool is_panel_powered_on(struct dce_hwseq *hws)
708 {
709 	uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
710 
711 
712 	REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
713 
714 	REG_GET_2(LVTMA_PWRSEQ_CNTL, LVTMA_DIGON, &dig_on, LVTMA_DIGON_OVRD, &dig_on_ovrd);
715 
716 	return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
717 }
718 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)719 static enum bp_result link_transmitter_control(
720 		struct dc_bios *bios,
721 	struct bp_transmitter_control *cntl)
722 {
723 	enum bp_result result;
724 
725 	result = bios->funcs->transmitter_control(bios, cntl);
726 
727 	return result;
728 }
729 
730 /*
731  * @brief
732  * eDP only.
733  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)734 void dce110_edp_wait_for_hpd_ready(
735 		struct dc_link *link,
736 		bool power_up)
737 {
738 	struct dc_context *ctx = link->ctx;
739 	struct graphics_object_id connector = link->link_enc->connector;
740 	struct gpio *hpd;
741 	bool edp_hpd_high = false;
742 	uint32_t time_elapsed = 0;
743 	uint32_t timeout = power_up ?
744 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
745 
746 	if (dal_graphics_object_id_get_connector_id(connector)
747 			!= CONNECTOR_ID_EDP) {
748 		BREAK_TO_DEBUGGER();
749 		return;
750 	}
751 
752 	if (!power_up)
753 		/*
754 		 * From KV, we will not HPD low after turning off VCC -
755 		 * instead, we will check the SW timer in power_up().
756 		 */
757 		return;
758 
759 	/*
760 	 * When we power on/off the eDP panel,
761 	 * we need to wait until SENSE bit is high/low.
762 	 */
763 
764 	/* obtain HPD */
765 	/* TODO what to do with this? */
766 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
767 
768 	if (!hpd) {
769 		BREAK_TO_DEBUGGER();
770 		return;
771 	}
772 
773 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
774 
775 	/* wait until timeout or panel detected */
776 
777 	do {
778 		uint32_t detected = 0;
779 
780 		dal_gpio_get_value(hpd, &detected);
781 
782 		if (!(detected ^ power_up)) {
783 			edp_hpd_high = true;
784 			break;
785 		}
786 
787 		msleep(HPD_CHECK_INTERVAL);
788 
789 		time_elapsed += HPD_CHECK_INTERVAL;
790 	} while (time_elapsed < timeout);
791 
792 	dal_gpio_close(hpd);
793 
794 	dal_gpio_destroy_irq(&hpd);
795 
796 	if (false == edp_hpd_high) {
797 		DC_LOG_ERROR(
798 				"%s: wait timed out!\n", __func__);
799 	}
800 }
801 
dce110_edp_power_control(struct dc_link * link,bool power_up)802 void dce110_edp_power_control(
803 		struct dc_link *link,
804 		bool power_up)
805 {
806 	struct dc_context *ctx = link->ctx;
807 	struct dce_hwseq *hwseq = ctx->dc->hwseq;
808 	struct bp_transmitter_control cntl = { 0 };
809 	enum bp_result bp_result;
810 
811 
812 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
813 			!= CONNECTOR_ID_EDP) {
814 		BREAK_TO_DEBUGGER();
815 		return;
816 	}
817 
818 	if (power_up != is_panel_powered_on(hwseq)) {
819 		/* Send VBIOS command to prompt eDP panel power */
820 		if (power_up) {
821 			unsigned long long current_ts = dm_get_timestamp(ctx);
822 			unsigned long long duration_in_ms =
823 					div64_u64(dm_get_elapse_time_in_ns(
824 							ctx,
825 							current_ts,
826 							link->link_trace.time_stamp.edp_poweroff), 1000000);
827 			unsigned long long wait_time_ms = 0;
828 
829 			/* max 500ms from LCDVDD off to on */
830 			unsigned long long edp_poweroff_time_ms = 500;
831 
832 			if (link->local_sink != NULL)
833 				edp_poweroff_time_ms =
834 						500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
835 			if (link->link_trace.time_stamp.edp_poweroff == 0)
836 				wait_time_ms = edp_poweroff_time_ms;
837 			else if (duration_in_ms < edp_poweroff_time_ms)
838 				wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
839 
840 			if (wait_time_ms) {
841 				msleep(wait_time_ms);
842 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
843 						__func__, wait_time_ms);
844 			}
845 
846 		}
847 
848 		DC_LOG_HW_RESUME_S3(
849 				"%s: Panel Power action: %s\n",
850 				__func__, (power_up ? "On":"Off"));
851 
852 		cntl.action = power_up ?
853 			TRANSMITTER_CONTROL_POWER_ON :
854 			TRANSMITTER_CONTROL_POWER_OFF;
855 		cntl.transmitter = link->link_enc->transmitter;
856 		cntl.connector_obj_id = link->link_enc->connector;
857 		cntl.coherent = false;
858 		cntl.lanes_number = LANE_COUNT_FOUR;
859 		cntl.hpd_sel = link->link_enc->hpd_source;
860 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
861 
862 		if (!power_up)
863 			/*save driver power off time stamp*/
864 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
865 		else
866 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
867 
868 		if (bp_result != BP_RESULT_OK)
869 			DC_LOG_ERROR(
870 					"%s: Panel Power bp_result: %d\n",
871 					__func__, bp_result);
872 	} else {
873 		DC_LOG_HW_RESUME_S3(
874 				"%s: Skipping Panel Power action: %s\n",
875 				__func__, (power_up ? "On":"Off"));
876 	}
877 }
878 
879 /*todo: cloned in stream enc, fix*/
880 /*
881  * @brief
882  * eDP only. Control the backlight of the eDP panel
883  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)884 void dce110_edp_backlight_control(
885 		struct dc_link *link,
886 		bool enable)
887 {
888 	struct dc_context *ctx = link->ctx;
889 	struct dce_hwseq *hws = ctx->dc->hwseq;
890 	struct bp_transmitter_control cntl = { 0 };
891 
892 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
893 		!= CONNECTOR_ID_EDP) {
894 		BREAK_TO_DEBUGGER();
895 		return;
896 	}
897 
898 	if (enable && is_panel_backlight_on(hws)) {
899 		DC_LOG_HW_RESUME_S3(
900 				"%s: panel already powered up. Do nothing.\n",
901 				__func__);
902 		return;
903 	}
904 
905 	/* Send VBIOS command to control eDP panel backlight */
906 
907 	DC_LOG_HW_RESUME_S3(
908 			"%s: backlight action: %s\n",
909 			__func__, (enable ? "On":"Off"));
910 
911 	cntl.action = enable ?
912 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
913 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
914 
915 	/*cntl.engine_id = ctx->engine;*/
916 	cntl.transmitter = link->link_enc->transmitter;
917 	cntl.connector_obj_id = link->link_enc->connector;
918 	/*todo: unhardcode*/
919 	cntl.lanes_number = LANE_COUNT_FOUR;
920 	cntl.hpd_sel = link->link_enc->hpd_source;
921 	cntl.signal = SIGNAL_TYPE_EDP;
922 
923 	/* For eDP, the following delays might need to be considered
924 	 * after link training completed:
925 	 * idle period - min. accounts for required BS-Idle pattern,
926 	 * max. allows for source frame synchronization);
927 	 * 50 msec max. delay from valid video data from source
928 	 * to video on dislpay or backlight enable.
929 	 *
930 	 * Disable the delay for now.
931 	 * Enable it in the future if necessary.
932 	 */
933 	/* dc_service_sleep_in_milliseconds(50); */
934 		/*edp 1.2*/
935 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
936 		edp_receiver_ready_T7(link);
937 	link_transmitter_control(ctx->dc_bios, &cntl);
938 	/*edp 1.2*/
939 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
940 		edp_receiver_ready_T9(link);
941 }
942 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)943 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
944 {
945 	/* notify audio driver for audio modes of monitor */
946 	struct dc *core_dc;
947 	struct pp_smu_funcs *pp_smu = NULL;
948 	struct clk_mgr *clk_mgr;
949 	unsigned int i, num_audio = 1;
950 
951 	if (!pipe_ctx->stream)
952 		return;
953 
954 	core_dc = pipe_ctx->stream->ctx->dc;
955 	clk_mgr = core_dc->clk_mgr;
956 
957 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
958 		return;
959 
960 	if (core_dc->res_pool->pp_smu)
961 		pp_smu = core_dc->res_pool->pp_smu;
962 
963 	if (pipe_ctx->stream_res.audio) {
964 		for (i = 0; i < MAX_PIPES; i++) {
965 			/*current_state not updated yet*/
966 			if (core_dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
967 				num_audio++;
968 		}
969 
970 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
971 
972 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
973 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
974 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
975 		/* un-mute audio */
976 		/* TODO: audio should be per stream rather than per link */
977 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
978 					pipe_ctx->stream_res.stream_enc, false);
979 		if (pipe_ctx->stream_res.audio)
980 			pipe_ctx->stream_res.audio->enabled = true;
981 	}
982 }
983 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)984 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
985 {
986 	struct dc *dc;
987 	struct pp_smu_funcs *pp_smu = NULL;
988 	struct clk_mgr *clk_mgr;
989 
990 	if (!pipe_ctx || !pipe_ctx->stream)
991 		return;
992 
993 	dc = pipe_ctx->stream->ctx->dc;
994 	clk_mgr = dc->clk_mgr;
995 
996 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
997 		return;
998 
999 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1000 			pipe_ctx->stream_res.stream_enc, true);
1001 	if (pipe_ctx->stream_res.audio) {
1002 		pipe_ctx->stream_res.audio->enabled = false;
1003 
1004 		if (dc->res_pool->pp_smu)
1005 			pp_smu = dc->res_pool->pp_smu;
1006 
1007 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1008 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1009 					pipe_ctx->stream_res.stream_enc);
1010 		else
1011 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1012 					pipe_ctx->stream_res.stream_enc);
1013 
1014 		if (clk_mgr->funcs->enable_pme_wa)
1015 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1016 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1017 
1018 		/* TODO: notify audio driver for if audio modes list changed
1019 		 * add audio mode list change flag */
1020 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1021 		 * stream->stream_engine_id);
1022 		 */
1023 	}
1024 }
1025 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1026 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1027 {
1028 	struct dc_stream_state *stream = pipe_ctx->stream;
1029 	struct dc_link *link = stream->link;
1030 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1031 
1032 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1033 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1034 			pipe_ctx->stream_res.stream_enc);
1035 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1036 			pipe_ctx->stream_res.stream_enc);
1037 	}
1038 
1039 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1040 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1041 			pipe_ctx->stream_res.stream_enc);
1042 
1043 	dc->hwss.disable_audio_stream(pipe_ctx);
1044 
1045 	link->link_enc->funcs->connect_dig_be_to_fe(
1046 			link->link_enc,
1047 			pipe_ctx->stream_res.stream_enc->id,
1048 			false);
1049 
1050 }
1051 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1052 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1053 		struct dc_link_settings *link_settings)
1054 {
1055 	struct encoder_unblank_param params = { { 0 } };
1056 	struct dc_stream_state *stream = pipe_ctx->stream;
1057 	struct dc_link *link = stream->link;
1058 
1059 	/* only 3 items below are used by unblank */
1060 	params.timing = pipe_ctx->stream->timing;
1061 	params.link_settings.link_rate = link_settings->link_rate;
1062 
1063 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1064 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1065 
1066 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1067 		link->dc->hwss.edp_backlight_control(link, true);
1068 	}
1069 }
1070 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1071 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1072 {
1073 	struct dc_stream_state *stream = pipe_ctx->stream;
1074 	struct dc_link *link = stream->link;
1075 
1076 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1077 		link->dc->hwss.edp_backlight_control(link, false);
1078 		dc_link_set_abm_disable(link);
1079 	}
1080 
1081 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1082 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1083 }
1084 
1085 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1086 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1087 {
1088 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1089 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1090 }
1091 
translate_to_dto_source(enum controller_id crtc_id)1092 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1093 {
1094 	switch (crtc_id) {
1095 	case CONTROLLER_ID_D0:
1096 		return DTO_SOURCE_ID0;
1097 	case CONTROLLER_ID_D1:
1098 		return DTO_SOURCE_ID1;
1099 	case CONTROLLER_ID_D2:
1100 		return DTO_SOURCE_ID2;
1101 	case CONTROLLER_ID_D3:
1102 		return DTO_SOURCE_ID3;
1103 	case CONTROLLER_ID_D4:
1104 		return DTO_SOURCE_ID4;
1105 	case CONTROLLER_ID_D5:
1106 		return DTO_SOURCE_ID5;
1107 	default:
1108 		return DTO_SOURCE_UNKNOWN;
1109 	}
1110 }
1111 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1112 static void build_audio_output(
1113 	struct dc_state *state,
1114 	const struct pipe_ctx *pipe_ctx,
1115 	struct audio_output *audio_output)
1116 {
1117 	const struct dc_stream_state *stream = pipe_ctx->stream;
1118 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1119 
1120 	audio_output->signal = pipe_ctx->stream->signal;
1121 
1122 	/* audio_crtc_info  */
1123 
1124 	audio_output->crtc_info.h_total =
1125 		stream->timing.h_total;
1126 
1127 	/*
1128 	 * Audio packets are sent during actual CRTC blank physical signal, we
1129 	 * need to specify actual active signal portion
1130 	 */
1131 	audio_output->crtc_info.h_active =
1132 			stream->timing.h_addressable
1133 			+ stream->timing.h_border_left
1134 			+ stream->timing.h_border_right;
1135 
1136 	audio_output->crtc_info.v_active =
1137 			stream->timing.v_addressable
1138 			+ stream->timing.v_border_top
1139 			+ stream->timing.v_border_bottom;
1140 
1141 	audio_output->crtc_info.pixel_repetition = 1;
1142 
1143 	audio_output->crtc_info.interlaced =
1144 			stream->timing.flags.INTERLACE;
1145 
1146 	audio_output->crtc_info.refresh_rate =
1147 		(stream->timing.pix_clk_100hz*100)/
1148 		(stream->timing.h_total*stream->timing.v_total);
1149 
1150 	audio_output->crtc_info.color_depth =
1151 		stream->timing.display_color_depth;
1152 
1153 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1154 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1155 
1156 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1157 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1158 
1159 /*for HDMI, audio ACR is with deep color ratio factor*/
1160 	if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
1161 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1162 				(stream->timing.pix_clk_100hz)) {
1163 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1164 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1165 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1166 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1167 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1168 
1169 		}
1170 	}
1171 
1172 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1173 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
1174 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1175 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1176 						state->clk_mgr);
1177 	}
1178 
1179 	audio_output->pll_info.feed_back_divider =
1180 			pipe_ctx->pll_settings.feedback_divider;
1181 
1182 	audio_output->pll_info.dto_source =
1183 		translate_to_dto_source(
1184 			pipe_ctx->stream_res.tg->inst + 1);
1185 
1186 	/* TODO hard code to enable for now. Need get from stream */
1187 	audio_output->pll_info.ss_enabled = true;
1188 
1189 	audio_output->pll_info.ss_percentage =
1190 			pipe_ctx->pll_settings.ss_percentage;
1191 }
1192 
get_surface_visual_confirm_color(const struct pipe_ctx * pipe_ctx,struct tg_color * color)1193 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1194 		struct tg_color *color)
1195 {
1196 	uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1197 
1198 	switch (pipe_ctx->plane_res.scl_data.format) {
1199 	case PIXEL_FORMAT_ARGB8888:
1200 		/* set boarder color to red */
1201 		color->color_r_cr = color_value;
1202 		break;
1203 
1204 	case PIXEL_FORMAT_ARGB2101010:
1205 		/* set boarder color to blue */
1206 		color->color_b_cb = color_value;
1207 		break;
1208 	case PIXEL_FORMAT_420BPP8:
1209 		/* set boarder color to green */
1210 		color->color_g_y = color_value;
1211 		break;
1212 	case PIXEL_FORMAT_420BPP10:
1213 		/* set boarder color to yellow */
1214 		color->color_g_y = color_value;
1215 		color->color_r_cr = color_value;
1216 		break;
1217 	case PIXEL_FORMAT_FP16:
1218 		/* set boarder color to white */
1219 		color->color_r_cr = color_value;
1220 		color->color_b_cb = color_value;
1221 		color->color_g_y = color_value;
1222 		break;
1223 	default:
1224 		break;
1225 	}
1226 }
1227 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1228 static void program_scaler(const struct dc *dc,
1229 		const struct pipe_ctx *pipe_ctx)
1230 {
1231 	struct tg_color color = {0};
1232 
1233 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1234 	/* TOFPGA */
1235 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1236 		return;
1237 #endif
1238 
1239 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1240 		get_surface_visual_confirm_color(pipe_ctx, &color);
1241 	else
1242 		color_space_to_black_color(dc,
1243 				pipe_ctx->stream->output_color_space,
1244 				&color);
1245 
1246 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1247 		pipe_ctx->plane_res.xfm,
1248 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1249 		&pipe_ctx->stream->bit_depth_params);
1250 
1251 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1252 		/*
1253 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1254 		 * alternate between Cb and Cr, so both channels need the pixel
1255 		 * value for Y
1256 		 */
1257 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1258 			color.color_r_cr = color.color_g_y;
1259 
1260 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1261 				pipe_ctx->stream_res.tg,
1262 				&color);
1263 	}
1264 
1265 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1266 		&pipe_ctx->plane_res.scl_data);
1267 }
1268 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1269 static enum dc_status dce110_enable_stream_timing(
1270 		struct pipe_ctx *pipe_ctx,
1271 		struct dc_state *context,
1272 		struct dc *dc)
1273 {
1274 	struct dc_stream_state *stream = pipe_ctx->stream;
1275 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1276 			pipe_ctx[pipe_ctx->pipe_idx];
1277 	struct tg_color black_color = {0};
1278 
1279 	if (!pipe_ctx_old->stream) {
1280 
1281 		/* program blank color */
1282 		color_space_to_black_color(dc,
1283 				stream->output_color_space, &black_color);
1284 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1285 				pipe_ctx->stream_res.tg,
1286 				&black_color);
1287 
1288 		/*
1289 		 * Must blank CRTC after disabling power gating and before any
1290 		 * programming, otherwise CRTC will be hung in bad state
1291 		 */
1292 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1293 
1294 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1295 				pipe_ctx->clock_source,
1296 				&pipe_ctx->stream_res.pix_clk_params,
1297 				&pipe_ctx->pll_settings)) {
1298 			BREAK_TO_DEBUGGER();
1299 			return DC_ERROR_UNEXPECTED;
1300 		}
1301 
1302 		pipe_ctx->stream_res.tg->funcs->program_timing(
1303 				pipe_ctx->stream_res.tg,
1304 				&stream->timing,
1305 				0,
1306 				0,
1307 				0,
1308 				0,
1309 				pipe_ctx->stream->signal,
1310 				true);
1311 	}
1312 
1313 	if (!pipe_ctx_old->stream) {
1314 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1315 				pipe_ctx->stream_res.tg)) {
1316 			BREAK_TO_DEBUGGER();
1317 			return DC_ERROR_UNEXPECTED;
1318 		}
1319 	}
1320 
1321 	return DC_OK;
1322 }
1323 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1324 static enum dc_status apply_single_controller_ctx_to_hw(
1325 		struct pipe_ctx *pipe_ctx,
1326 		struct dc_state *context,
1327 		struct dc *dc)
1328 {
1329 	struct dc_stream_state *stream = pipe_ctx->stream;
1330 	struct drr_params params = {0};
1331 	unsigned int event_triggers = 0;
1332 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1333 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1334 #endif
1335 
1336 	if (dc->hwss.disable_stream_gating) {
1337 		dc->hwss.disable_stream_gating(dc, pipe_ctx);
1338 	}
1339 
1340 	if (pipe_ctx->stream_res.audio != NULL) {
1341 		struct audio_output audio_output;
1342 
1343 		build_audio_output(context, pipe_ctx, &audio_output);
1344 
1345 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1346 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1347 					pipe_ctx->stream_res.stream_enc,
1348 					pipe_ctx->stream_res.audio->inst,
1349 					&pipe_ctx->stream->audio_info);
1350 		else
1351 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1352 					pipe_ctx->stream_res.stream_enc,
1353 					pipe_ctx->stream_res.audio->inst,
1354 					&pipe_ctx->stream->audio_info,
1355 					&audio_output.crtc_info);
1356 
1357 		pipe_ctx->stream_res.audio->funcs->az_configure(
1358 				pipe_ctx->stream_res.audio,
1359 				pipe_ctx->stream->signal,
1360 				&audio_output.crtc_info,
1361 				&pipe_ctx->stream->audio_info);
1362 	}
1363 
1364 	/*  */
1365 	/* Do not touch stream timing on seamless boot optimization. */
1366 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1367 		dc->hwss.enable_stream_timing(pipe_ctx, context, dc);
1368 
1369 	if (dc->hwss.setup_vupdate_interrupt)
1370 		dc->hwss.setup_vupdate_interrupt(pipe_ctx);
1371 
1372 	params.vertical_total_min = stream->adjust.v_total_min;
1373 	params.vertical_total_max = stream->adjust.v_total_max;
1374 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1375 		pipe_ctx->stream_res.tg->funcs->set_drr(
1376 			pipe_ctx->stream_res.tg, &params);
1377 
1378 	// DRR should set trigger event to monitor surface update event
1379 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1380 		event_triggers = 0x80;
1381 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1382 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1383 				pipe_ctx->stream_res.tg, event_triggers);
1384 
1385 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1386 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1387 			pipe_ctx->stream_res.stream_enc,
1388 			pipe_ctx->stream_res.tg->inst);
1389 
1390 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1391 			pipe_ctx->stream_res.opp,
1392 			COLOR_SPACE_YCBCR601,
1393 			stream->timing.display_color_depth,
1394 			stream->signal);
1395 
1396 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1397 		pipe_ctx->stream_res.opp,
1398 		&stream->bit_depth_params,
1399 		&stream->clamping);
1400 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1401 	while (odm_pipe) {
1402 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1403 				odm_pipe->stream_res.opp,
1404 				COLOR_SPACE_YCBCR601,
1405 				stream->timing.display_color_depth,
1406 				stream->signal);
1407 
1408 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1409 				odm_pipe->stream_res.opp,
1410 				&stream->bit_depth_params,
1411 				&stream->clamping);
1412 		odm_pipe = odm_pipe->next_odm_pipe;
1413 	}
1414 #endif
1415 
1416 	if (!stream->dpms_off)
1417 		core_link_enable_stream(context, pipe_ctx);
1418 
1419 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1420 
1421 	pipe_ctx->stream->link->psr_enabled = false;
1422 
1423 	return DC_OK;
1424 }
1425 
1426 /******************************************************************************/
1427 
power_down_encoders(struct dc * dc)1428 static void power_down_encoders(struct dc *dc)
1429 {
1430 	int i;
1431 	enum connector_id connector_id;
1432 	enum signal_type signal = SIGNAL_TYPE_NONE;
1433 
1434 	/* do not know BIOS back-front mapping, simply blank all. It will not
1435 	 * hurt for non-DP
1436 	 */
1437 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1438 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1439 					dc->res_pool->stream_enc[i]);
1440 	}
1441 
1442 	for (i = 0; i < dc->link_count; i++) {
1443 		connector_id = dal_graphics_object_id_get_connector_id(dc->links[i]->link_id);
1444 		if ((connector_id == CONNECTOR_ID_DISPLAY_PORT) ||
1445 			(connector_id == CONNECTOR_ID_EDP)) {
1446 
1447 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1448 				dp_receiver_power_ctrl(dc->links[i], false);
1449 			if (connector_id == CONNECTOR_ID_EDP)
1450 				signal = SIGNAL_TYPE_EDP;
1451 		}
1452 
1453 		dc->links[i]->link_enc->funcs->disable_output(
1454 				dc->links[i]->link_enc, signal);
1455 	}
1456 }
1457 
power_down_controllers(struct dc * dc)1458 static void power_down_controllers(struct dc *dc)
1459 {
1460 	int i;
1461 
1462 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1463 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1464 				dc->res_pool->timing_generators[i]);
1465 	}
1466 }
1467 
power_down_clock_sources(struct dc * dc)1468 static void power_down_clock_sources(struct dc *dc)
1469 {
1470 	int i;
1471 
1472 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1473 		dc->res_pool->dp_clock_source) == false)
1474 		dm_error("Failed to power down pll! (dp clk src)\n");
1475 
1476 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1477 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1478 				dc->res_pool->clock_sources[i]) == false)
1479 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1480 	}
1481 }
1482 
power_down_all_hw_blocks(struct dc * dc)1483 static void power_down_all_hw_blocks(struct dc *dc)
1484 {
1485 	power_down_encoders(dc);
1486 
1487 	power_down_controllers(dc);
1488 
1489 	power_down_clock_sources(dc);
1490 
1491 	if (dc->fbc_compressor)
1492 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1493 }
1494 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1495 static void disable_vga_and_power_gate_all_controllers(
1496 		struct dc *dc)
1497 {
1498 	int i;
1499 	struct timing_generator *tg;
1500 	struct dc_context *ctx = dc->ctx;
1501 
1502 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1503 		tg = dc->res_pool->timing_generators[i];
1504 
1505 		if (tg->funcs->disable_vga)
1506 			tg->funcs->disable_vga(tg);
1507 	}
1508 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1509 		/* Enable CLOCK gating for each pipe BEFORE controller
1510 		 * powergating. */
1511 		enable_display_pipe_clock_gating(ctx,
1512 				true);
1513 
1514 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1515 		dc->hwss.disable_plane(dc,
1516 			&dc->current_state->res_ctx.pipe_ctx[i]);
1517 	}
1518 }
1519 
1520 
get_edp_stream(struct dc_state * context)1521 static struct dc_stream_state *get_edp_stream(struct dc_state *context)
1522 {
1523 	int i;
1524 
1525 	for (i = 0; i < context->stream_count; i++) {
1526 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1527 			return context->streams[i];
1528 	}
1529 	return NULL;
1530 }
1531 
get_edp_link(struct dc * dc)1532 static struct dc_link *get_edp_link(struct dc *dc)
1533 {
1534 	int i;
1535 
1536 	// report any eDP links, even unconnected DDI's
1537 	for (i = 0; i < dc->link_count; i++) {
1538 		if (dc->links[i]->connector_signal == SIGNAL_TYPE_EDP)
1539 			return dc->links[i];
1540 	}
1541 	return NULL;
1542 }
1543 
get_edp_link_with_sink(struct dc * dc,struct dc_state * context)1544 static struct dc_link *get_edp_link_with_sink(
1545 		struct dc *dc,
1546 		struct dc_state *context)
1547 {
1548 	int i;
1549 	struct dc_link *link = NULL;
1550 
1551 	/* check if there is an eDP panel not in use */
1552 	for (i = 0; i < dc->link_count; i++) {
1553 		if (dc->links[i]->local_sink &&
1554 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1555 			link = dc->links[i];
1556 			break;
1557 		}
1558 	}
1559 
1560 	return link;
1561 }
1562 
1563 /**
1564  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1565  *  1. Power down all DC HW blocks
1566  *  2. Disable VGA engine on all controllers
1567  *  3. Enable power gating for controller
1568  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1569  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1570 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1571 {
1572 	int i;
1573 	struct dc_link *edp_link_with_sink = get_edp_link_with_sink(dc, context);
1574 	struct dc_link *edp_link = get_edp_link(dc);
1575 	struct dc_stream_state *edp_stream = NULL;
1576 	bool can_apply_edp_fast_boot = false;
1577 	bool can_apply_seamless_boot = false;
1578 	bool keep_edp_vdd_on = false;
1579 
1580 	if (dc->hwss.init_pipes)
1581 		dc->hwss.init_pipes(dc, context);
1582 
1583 	edp_stream = get_edp_stream(context);
1584 
1585 	// Check fastboot support, disable on DCE8 because of blank screens
1586 	if (edp_link && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1587 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1588 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1589 
1590 		// enable fastboot if backend is enabled on eDP
1591 		if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1592 			/* Set optimization flag on eDP stream*/
1593 			if (edp_stream) {
1594 				edp_stream->apply_edp_fast_boot_optimization = true;
1595 				can_apply_edp_fast_boot = true;
1596 			}
1597 		}
1598 
1599 		// We are trying to enable eDP, don't power down VDD
1600 		if (edp_stream)
1601 			keep_edp_vdd_on = true;
1602 	}
1603 
1604 	// Check seamless boot support
1605 	for (i = 0; i < context->stream_count; i++) {
1606 		if (context->streams[i]->apply_seamless_boot_optimization) {
1607 			can_apply_seamless_boot = true;
1608 			break;
1609 		}
1610 	}
1611 
1612 	/* eDP should not have stream in resume from S4 and so even with VBios post
1613 	 * it should get turned off
1614 	 */
1615 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1616 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1617 			/*turn off backlight before DP_blank and encoder powered down*/
1618 			dc->hwss.edp_backlight_control(edp_link_with_sink, false);
1619 		}
1620 		/*resume from S3, no vbios posting, no need to power down again*/
1621 		power_down_all_hw_blocks(dc);
1622 		disable_vga_and_power_gate_all_controllers(dc);
1623 		if (edp_link_with_sink && !keep_edp_vdd_on)
1624 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1625 	}
1626 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1627 }
1628 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1629 static uint32_t compute_pstate_blackout_duration(
1630 	struct bw_fixed blackout_duration,
1631 	const struct dc_stream_state *stream)
1632 {
1633 	uint32_t total_dest_line_time_ns;
1634 	uint32_t pstate_blackout_duration_ns;
1635 
1636 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1637 
1638 	total_dest_line_time_ns = 1000000UL *
1639 		(stream->timing.h_total * 10) /
1640 		stream->timing.pix_clk_100hz +
1641 		pstate_blackout_duration_ns;
1642 
1643 	return total_dest_line_time_ns;
1644 }
1645 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1646 static void dce110_set_displaymarks(
1647 	const struct dc *dc,
1648 	struct dc_state *context)
1649 {
1650 	uint8_t i, num_pipes;
1651 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1652 
1653 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1654 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1655 		uint32_t total_dest_line_time_ns;
1656 
1657 		if (pipe_ctx->stream == NULL)
1658 			continue;
1659 
1660 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1661 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1662 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1663 			pipe_ctx->plane_res.mi,
1664 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1665 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1666 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1667 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1668 			total_dest_line_time_ns);
1669 		if (i == underlay_idx) {
1670 			num_pipes++;
1671 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1672 				pipe_ctx->plane_res.mi,
1673 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1674 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1675 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1676 				total_dest_line_time_ns);
1677 		}
1678 		num_pipes++;
1679 	}
1680 }
1681 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1682 void dce110_set_safe_displaymarks(
1683 		struct resource_context *res_ctx,
1684 		const struct resource_pool *pool)
1685 {
1686 	int i;
1687 	int underlay_idx = pool->underlay_pipe_index;
1688 	struct dce_watermarks max_marks = {
1689 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1690 	struct dce_watermarks nbp_marks = {
1691 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1692 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1693 
1694 	for (i = 0; i < MAX_PIPES; i++) {
1695 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1696 			continue;
1697 
1698 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1699 				res_ctx->pipe_ctx[i].plane_res.mi,
1700 				nbp_marks,
1701 				max_marks,
1702 				min_marks,
1703 				max_marks,
1704 				MAX_WATERMARK);
1705 
1706 		if (i == underlay_idx)
1707 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1708 				res_ctx->pipe_ctx[i].plane_res.mi,
1709 				nbp_marks,
1710 				max_marks,
1711 				max_marks,
1712 				MAX_WATERMARK);
1713 
1714 	}
1715 }
1716 
1717 /*******************************************************************************
1718  * Public functions
1719  ******************************************************************************/
1720 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,unsigned int vmin,unsigned int vmax,unsigned int vmid,unsigned int vmid_frame_number)1721 static void set_drr(struct pipe_ctx **pipe_ctx,
1722 		int num_pipes, unsigned int vmin, unsigned int vmax,
1723 		unsigned int vmid, unsigned int vmid_frame_number)
1724 {
1725 	int i = 0;
1726 	struct drr_params params = {0};
1727 	// DRR should set trigger event to monitor surface update event
1728 	unsigned int event_triggers = 0x80;
1729 
1730 	params.vertical_total_max = vmax;
1731 	params.vertical_total_min = vmin;
1732 
1733 	/* TODO: If multiple pipes are to be supported, you need
1734 	 * some GSL stuff. Static screen triggers may be programmed differently
1735 	 * as well.
1736 	 */
1737 	for (i = 0; i < num_pipes; i++) {
1738 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1739 			pipe_ctx[i]->stream_res.tg, &params);
1740 
1741 		if (vmax != 0 && vmin != 0)
1742 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1743 					pipe_ctx[i]->stream_res.tg,
1744 					event_triggers);
1745 	}
1746 }
1747 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1748 static void get_position(struct pipe_ctx **pipe_ctx,
1749 		int num_pipes,
1750 		struct crtc_position *position)
1751 {
1752 	int i = 0;
1753 
1754 	/* TODO: handle pipes > 1
1755 	 */
1756 	for (i = 0; i < num_pipes; i++)
1757 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1758 }
1759 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_events * events)1760 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1761 		int num_pipes, const struct dc_static_screen_events *events)
1762 {
1763 	unsigned int i;
1764 	unsigned int value = 0;
1765 
1766 	if (events->overlay_update)
1767 		value |= 0x100;
1768 	if (events->surface_update)
1769 		value |= 0x80;
1770 	if (events->cursor_update)
1771 		value |= 0x2;
1772 	if (events->force_trigger)
1773 		value |= 0x1;
1774 
1775 	if (num_pipes) {
1776 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1777 
1778 		if (dc->fbc_compressor)
1779 			value |= 0x84;
1780 	}
1781 
1782 	for (i = 0; i < num_pipes; i++)
1783 		pipe_ctx[i]->stream_res.tg->funcs->
1784 			set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
1785 }
1786 
1787 /*
1788  *  Check if FBC can be enabled
1789  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1790 static bool should_enable_fbc(struct dc *dc,
1791 		struct dc_state *context,
1792 		uint32_t *pipe_idx)
1793 {
1794 	uint32_t i;
1795 	struct pipe_ctx *pipe_ctx = NULL;
1796 	struct resource_context *res_ctx = &context->res_ctx;
1797 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1798 
1799 
1800 	ASSERT(dc->fbc_compressor);
1801 
1802 	/* FBC memory should be allocated */
1803 	if (!dc->ctx->fbc_gpu_addr)
1804 		return false;
1805 
1806 	/* Only supports single display */
1807 	if (context->stream_count != 1)
1808 		return false;
1809 
1810 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1811 		if (res_ctx->pipe_ctx[i].stream) {
1812 
1813 			pipe_ctx = &res_ctx->pipe_ctx[i];
1814 
1815 			if (!pipe_ctx)
1816 				continue;
1817 
1818 			/* fbc not applicable on underlay pipe */
1819 			if (pipe_ctx->pipe_idx != underlay_idx) {
1820 				*pipe_idx = i;
1821 				break;
1822 			}
1823 		}
1824 	}
1825 
1826 	if (i == dc->res_pool->pipe_count)
1827 		return false;
1828 
1829 	if (!pipe_ctx->stream->link)
1830 		return false;
1831 
1832 	/* Only supports eDP */
1833 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1834 		return false;
1835 
1836 	/* PSR should not be enabled */
1837 	if (pipe_ctx->stream->link->psr_enabled)
1838 		return false;
1839 
1840 	/* Nothing to compress */
1841 	if (!pipe_ctx->plane_state)
1842 		return false;
1843 
1844 	/* Only for non-linear tiling */
1845 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1846 		return false;
1847 
1848 	return true;
1849 }
1850 
1851 /*
1852  *  Enable FBC
1853  */
enable_fbc(struct dc * dc,struct dc_state * context)1854 static void enable_fbc(
1855 		struct dc *dc,
1856 		struct dc_state *context)
1857 {
1858 	uint32_t pipe_idx = 0;
1859 
1860 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1861 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1862 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1863 		struct compressor *compr = dc->fbc_compressor;
1864 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1865 
1866 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1867 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1868 		params.inst = pipe_ctx->stream_res.tg->inst;
1869 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1870 
1871 		compr->funcs->surface_address_and_pitch(compr, &params);
1872 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1873 
1874 		compr->funcs->enable_fbc(compr, &params);
1875 	}
1876 }
1877 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)1878 static void dce110_reset_hw_ctx_wrap(
1879 		struct dc *dc,
1880 		struct dc_state *context)
1881 {
1882 	int i;
1883 
1884 	/* Reset old context */
1885 	/* look up the targets that have been removed since last commit */
1886 	for (i = 0; i < MAX_PIPES; i++) {
1887 		struct pipe_ctx *pipe_ctx_old =
1888 			&dc->current_state->res_ctx.pipe_ctx[i];
1889 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1890 
1891 		/* Note: We need to disable output if clock sources change,
1892 		 * since bios does optimization and doesn't apply if changing
1893 		 * PHY when not already disabled.
1894 		 */
1895 
1896 		/* Skip underlay pipe since it will be handled in commit surface*/
1897 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1898 			continue;
1899 
1900 		if (!pipe_ctx->stream ||
1901 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1902 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1903 
1904 			/* Disable if new stream is null. O/w, if stream is
1905 			 * disabled already, no need to disable again.
1906 			 */
1907 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
1908 				core_link_disable_stream(pipe_ctx_old);
1909 
1910 				/* free acquired resources*/
1911 				if (pipe_ctx_old->stream_res.audio) {
1912 					/*disable az_endpoint*/
1913 					pipe_ctx_old->stream_res.audio->funcs->
1914 							az_disable(pipe_ctx_old->stream_res.audio);
1915 
1916 					/*free audio*/
1917 					if (dc->caps.dynamic_audio == true) {
1918 						/*we have to dynamic arbitrate the audio endpoints*/
1919 						/*we free the resource, need reset is_audio_acquired*/
1920 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1921 								pipe_ctx_old->stream_res.audio, false);
1922 						pipe_ctx_old->stream_res.audio = NULL;
1923 					}
1924 				}
1925 			}
1926 
1927 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1928 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1929 				dm_error("DC: failed to blank crtc!\n");
1930 				BREAK_TO_DEBUGGER();
1931 			}
1932 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
1933 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
1934 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
1935 
1936 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
1937 										dc->res_pool,
1938 										old_clk))
1939 				old_clk->funcs->cs_power_down(old_clk);
1940 
1941 			dc->hwss.disable_plane(dc, pipe_ctx_old);
1942 
1943 			pipe_ctx_old->stream = NULL;
1944 		}
1945 	}
1946 }
1947 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)1948 static void dce110_setup_audio_dto(
1949 		struct dc *dc,
1950 		struct dc_state *context)
1951 {
1952 	int i;
1953 
1954 	/* program audio wall clock. use HDMI as clock source if HDMI
1955 	 * audio active. Otherwise, use DP as clock source
1956 	 * first, loop to find any HDMI audio, if not, loop find DP audio
1957 	 */
1958 	/* Setup audio rate clock source */
1959 	/* Issue:
1960 	* Audio lag happened on DP monitor when unplug a HDMI monitor
1961 	*
1962 	* Cause:
1963 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1964 	* is set to either dto0 or dto1, audio should work fine.
1965 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1966 	* set to dto0 will cause audio lag.
1967 	*
1968 	* Solution:
1969 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1970 	* find first available pipe with audio, setup audio wall DTO per topology
1971 	* instead of per pipe.
1972 	*/
1973 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1974 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1975 
1976 		if (pipe_ctx->stream == NULL)
1977 			continue;
1978 
1979 		if (pipe_ctx->top_pipe)
1980 			continue;
1981 
1982 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
1983 			continue;
1984 
1985 		if (pipe_ctx->stream_res.audio != NULL) {
1986 			struct audio_output audio_output;
1987 
1988 			build_audio_output(context, pipe_ctx, &audio_output);
1989 
1990 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
1991 				pipe_ctx->stream_res.audio,
1992 				pipe_ctx->stream->signal,
1993 				&audio_output.crtc_info,
1994 				&audio_output.pll_info);
1995 			break;
1996 		}
1997 	}
1998 
1999 	/* no HDMI audio is found, try DP audio */
2000 	if (i == dc->res_pool->pipe_count) {
2001 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2002 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2003 
2004 			if (pipe_ctx->stream == NULL)
2005 				continue;
2006 
2007 			if (pipe_ctx->top_pipe)
2008 				continue;
2009 
2010 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2011 				continue;
2012 
2013 			if (pipe_ctx->stream_res.audio != NULL) {
2014 				struct audio_output audio_output;
2015 
2016 				build_audio_output(context, pipe_ctx, &audio_output);
2017 
2018 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2019 					pipe_ctx->stream_res.audio,
2020 					pipe_ctx->stream->signal,
2021 					&audio_output.crtc_info,
2022 					&audio_output.pll_info);
2023 				break;
2024 			}
2025 		}
2026 	}
2027 }
2028 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2029 enum dc_status dce110_apply_ctx_to_hw(
2030 		struct dc *dc,
2031 		struct dc_state *context)
2032 {
2033 	struct dc_bios *dcb = dc->ctx->dc_bios;
2034 	enum dc_status status;
2035 	int i;
2036 
2037 	/* Reset old context */
2038 	/* look up the targets that have been removed since last commit */
2039 	dc->hwss.reset_hw_ctx_wrap(dc, context);
2040 
2041 	/* Skip applying if no targets */
2042 	if (context->stream_count <= 0)
2043 		return DC_OK;
2044 
2045 	/* Apply new context */
2046 	dcb->funcs->set_scratch_critical_state(dcb, true);
2047 
2048 	/* below is for real asic only */
2049 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2050 		struct pipe_ctx *pipe_ctx_old =
2051 					&dc->current_state->res_ctx.pipe_ctx[i];
2052 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2053 
2054 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2055 			continue;
2056 
2057 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2058 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2059 				dce_crtc_switch_to_clk_src(dc->hwseq,
2060 						pipe_ctx->clock_source, i);
2061 			continue;
2062 		}
2063 
2064 		dc->hwss.enable_display_power_gating(
2065 				dc, i, dc->ctx->dc_bios,
2066 				PIPE_GATING_CONTROL_DISABLE);
2067 	}
2068 
2069 	if (dc->fbc_compressor)
2070 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2071 
2072 	dce110_setup_audio_dto(dc, context);
2073 
2074 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2075 		struct pipe_ctx *pipe_ctx_old =
2076 					&dc->current_state->res_ctx.pipe_ctx[i];
2077 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2078 
2079 		if (pipe_ctx->stream == NULL)
2080 			continue;
2081 
2082 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2083 			pipe_ctx->stream->link->link_state_valid) {
2084 			continue;
2085 		}
2086 
2087 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2088 			continue;
2089 
2090 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2091 			continue;
2092 
2093 		status = apply_single_controller_ctx_to_hw(
2094 				pipe_ctx,
2095 				context,
2096 				dc);
2097 
2098 		if (DC_OK != status)
2099 			return status;
2100 	}
2101 
2102 	if (dc->fbc_compressor)
2103 		enable_fbc(dc, dc->current_state);
2104 
2105 	dcb->funcs->set_scratch_critical_state(dcb, false);
2106 
2107 	return DC_OK;
2108 }
2109 
2110 /*******************************************************************************
2111  * Front End programming
2112  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2113 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2114 {
2115 	struct default_adjustment default_adjust = { 0 };
2116 
2117 	default_adjust.force_hw_default = false;
2118 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2119 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2120 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2121 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2122 
2123 	/* display color depth */
2124 	default_adjust.color_depth =
2125 		pipe_ctx->stream->timing.display_color_depth;
2126 
2127 	/* Lb color depth */
2128 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2129 
2130 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2131 					pipe_ctx->plane_res.xfm, &default_adjust);
2132 }
2133 
2134 
2135 /*******************************************************************************
2136  * In order to turn on/off specific surface we will program
2137  * Blender + CRTC
2138  *
2139  * In case that we have two surfaces and they have a different visibility
2140  * we can't turn off the CRTC since it will turn off the entire display
2141  *
2142  * |----------------------------------------------- |
2143  * |bottom pipe|curr pipe  |              |         |
2144  * |Surface    |Surface    | Blender      |  CRCT   |
2145  * |visibility |visibility | Configuration|         |
2146  * |------------------------------------------------|
2147  * |   off     |    off    | CURRENT_PIPE | blank   |
2148  * |   off     |    on     | CURRENT_PIPE | unblank |
2149  * |   on      |    off    | OTHER_PIPE   | unblank |
2150  * |   on      |    on     | BLENDING     | unblank |
2151  * -------------------------------------------------|
2152  *
2153  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2154 static void program_surface_visibility(const struct dc *dc,
2155 		struct pipe_ctx *pipe_ctx)
2156 {
2157 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2158 	bool blank_target = false;
2159 
2160 	if (pipe_ctx->bottom_pipe) {
2161 
2162 		/* For now we are supporting only two pipes */
2163 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2164 
2165 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2166 			if (pipe_ctx->plane_state->visible)
2167 				blender_mode = BLND_MODE_BLENDING;
2168 			else
2169 				blender_mode = BLND_MODE_OTHER_PIPE;
2170 
2171 		} else if (!pipe_ctx->plane_state->visible)
2172 			blank_target = true;
2173 
2174 	} else if (!pipe_ctx->plane_state->visible)
2175 		blank_target = true;
2176 
2177 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2178 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2179 
2180 }
2181 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2182 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2183 {
2184 	int i = 0;
2185 	struct xfm_grph_csc_adjustment adjust;
2186 	memset(&adjust, 0, sizeof(adjust));
2187 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2188 
2189 
2190 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2191 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2192 
2193 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2194 			adjust.temperature_matrix[i] =
2195 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2196 	}
2197 
2198 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2199 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2200 static void update_plane_addr(const struct dc *dc,
2201 		struct pipe_ctx *pipe_ctx)
2202 {
2203 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2204 
2205 	if (plane_state == NULL)
2206 		return;
2207 
2208 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2209 			pipe_ctx->plane_res.mi,
2210 			&plane_state->address,
2211 			plane_state->flip_immediate);
2212 
2213 	plane_state->status.requested_address = plane_state->address;
2214 }
2215 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2216 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2217 {
2218 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2219 
2220 	if (plane_state == NULL)
2221 		return;
2222 
2223 	plane_state->status.is_flip_pending =
2224 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2225 					pipe_ctx->plane_res.mi);
2226 
2227 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2228 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2229 
2230 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2231 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2232 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2233 		plane_state->status.is_right_eye =\
2234 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2235 	}
2236 }
2237 
dce110_power_down(struct dc * dc)2238 void dce110_power_down(struct dc *dc)
2239 {
2240 	power_down_all_hw_blocks(dc);
2241 	disable_vga_and_power_gate_all_controllers(dc);
2242 }
2243 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2244 static bool wait_for_reset_trigger_to_occur(
2245 	struct dc_context *dc_ctx,
2246 	struct timing_generator *tg)
2247 {
2248 	bool rc = false;
2249 
2250 	/* To avoid endless loop we wait at most
2251 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2252 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2253 	uint32_t i;
2254 
2255 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2256 
2257 		if (!tg->funcs->is_counter_moving(tg)) {
2258 			DC_ERROR("TG counter is not moving!\n");
2259 			break;
2260 		}
2261 
2262 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2263 			rc = true;
2264 			/* usually occurs at i=1 */
2265 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2266 					i);
2267 			break;
2268 		}
2269 
2270 		/* Wait for one frame. */
2271 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2272 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2273 	}
2274 
2275 	if (false == rc)
2276 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2277 
2278 	return rc;
2279 }
2280 
2281 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2282 static void dce110_enable_timing_synchronization(
2283 		struct dc *dc,
2284 		int group_index,
2285 		int group_size,
2286 		struct pipe_ctx *grouped_pipes[])
2287 {
2288 	struct dc_context *dc_ctx = dc->ctx;
2289 	struct dcp_gsl_params gsl_params = { 0 };
2290 	int i;
2291 
2292 	DC_SYNC_INFO("GSL: Setting-up...\n");
2293 
2294 	/* Designate a single TG in the group as a master.
2295 	 * Since HW doesn't care which one, we always assign
2296 	 * the 1st one in the group. */
2297 	gsl_params.gsl_group = 0;
2298 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2299 
2300 	for (i = 0; i < group_size; i++)
2301 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2302 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2303 
2304 	/* Reset slave controllers on master VSync */
2305 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2306 
2307 	for (i = 1 /* skip the master */; i < group_size; i++)
2308 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2309 				grouped_pipes[i]->stream_res.tg,
2310 				gsl_params.gsl_group);
2311 
2312 	for (i = 1 /* skip the master */; i < group_size; i++) {
2313 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2314 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2315 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2316 				grouped_pipes[i]->stream_res.tg);
2317 	}
2318 
2319 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2320 	 * is that the sync'ed displays will not drift out of sync over time*/
2321 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2322 	for (i = 0; i < group_size; i++)
2323 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2324 
2325 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2326 }
2327 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2328 static void dce110_enable_per_frame_crtc_position_reset(
2329 		struct dc *dc,
2330 		int group_size,
2331 		struct pipe_ctx *grouped_pipes[])
2332 {
2333 	struct dc_context *dc_ctx = dc->ctx;
2334 	struct dcp_gsl_params gsl_params = { 0 };
2335 	int i;
2336 
2337 	gsl_params.gsl_group = 0;
2338 	gsl_params.gsl_master = 0;
2339 
2340 	for (i = 0; i < group_size; i++)
2341 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2342 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2343 
2344 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2345 
2346 	for (i = 1; i < group_size; i++)
2347 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2348 				grouped_pipes[i]->stream_res.tg,
2349 				gsl_params.gsl_master,
2350 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2351 
2352 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2353 	for (i = 1; i < group_size; i++)
2354 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2355 
2356 	for (i = 0; i < group_size; i++)
2357 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2358 
2359 }
2360 
init_pipes(struct dc * dc,struct dc_state * context)2361 static void init_pipes(struct dc *dc, struct dc_state *context)
2362 {
2363 	// Do nothing
2364 }
2365 
init_hw(struct dc * dc)2366 static void init_hw(struct dc *dc)
2367 {
2368 	int i;
2369 	struct dc_bios *bp;
2370 	struct transform *xfm;
2371 	struct abm *abm;
2372 	struct dmcu *dmcu;
2373 
2374 	bp = dc->ctx->dc_bios;
2375 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2376 		xfm = dc->res_pool->transforms[i];
2377 		xfm->funcs->transform_reset(xfm);
2378 
2379 		dc->hwss.enable_display_power_gating(
2380 				dc, i, bp,
2381 				PIPE_GATING_CONTROL_INIT);
2382 		dc->hwss.enable_display_power_gating(
2383 				dc, i, bp,
2384 				PIPE_GATING_CONTROL_DISABLE);
2385 		dc->hwss.enable_display_pipe_clock_gating(
2386 			dc->ctx,
2387 			true);
2388 	}
2389 
2390 	dce_clock_gating_power_up(dc->hwseq, false);
2391 	/***************************************/
2392 
2393 	for (i = 0; i < dc->link_count; i++) {
2394 		/****************************************/
2395 		/* Power up AND update implementation according to the
2396 		 * required signal (which may be different from the
2397 		 * default signal on connector). */
2398 		struct dc_link *link = dc->links[i];
2399 
2400 		link->link_enc->funcs->hw_init(link->link_enc);
2401 	}
2402 
2403 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2404 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2405 
2406 		tg->funcs->disable_vga(tg);
2407 
2408 		/* Blank controller using driver code instead of
2409 		 * command table. */
2410 		tg->funcs->set_blank(tg, true);
2411 		hwss_wait_for_blank_complete(tg);
2412 	}
2413 
2414 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2415 		struct audio *audio = dc->res_pool->audios[i];
2416 		audio->funcs->hw_init(audio);
2417 	}
2418 
2419 	abm = dc->res_pool->abm;
2420 	if (abm != NULL) {
2421 		abm->funcs->init_backlight(abm);
2422 		abm->funcs->abm_init(abm);
2423 	}
2424 
2425 	dmcu = dc->res_pool->dmcu;
2426 	if (dmcu != NULL && abm != NULL)
2427 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2428 
2429 	if (dc->fbc_compressor)
2430 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2431 
2432 }
2433 
2434 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2435 void dce110_prepare_bandwidth(
2436 		struct dc *dc,
2437 		struct dc_state *context)
2438 {
2439 	struct clk_mgr *dccg = dc->clk_mgr;
2440 
2441 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2442 
2443 	dccg->funcs->update_clocks(
2444 			dccg,
2445 			context,
2446 			false);
2447 }
2448 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2449 void dce110_optimize_bandwidth(
2450 		struct dc *dc,
2451 		struct dc_state *context)
2452 {
2453 	struct clk_mgr *dccg = dc->clk_mgr;
2454 
2455 	dce110_set_displaymarks(dc, context);
2456 
2457 	dccg->funcs->update_clocks(
2458 			dccg,
2459 			context,
2460 			true);
2461 }
2462 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2463 static void dce110_program_front_end_for_pipe(
2464 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2465 {
2466 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2467 	struct pipe_ctx *old_pipe = NULL;
2468 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2469 	struct xfm_grph_csc_adjustment adjust;
2470 	struct out_csc_color_matrix tbl_entry;
2471 	unsigned int i;
2472 	DC_LOGGER_INIT();
2473 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2474 
2475 	if (dc->current_state)
2476 		old_pipe = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
2477 
2478 	memset(&adjust, 0, sizeof(adjust));
2479 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2480 
2481 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2482 
2483 	set_default_colors(pipe_ctx);
2484 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2485 			== true) {
2486 		tbl_entry.color_space =
2487 			pipe_ctx->stream->output_color_space;
2488 
2489 		for (i = 0; i < 12; i++)
2490 			tbl_entry.regval[i] =
2491 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2492 
2493 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2494 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2495 	}
2496 
2497 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2498 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2499 
2500 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2501 			adjust.temperature_matrix[i] =
2502 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2503 	}
2504 
2505 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2506 
2507 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2508 
2509 	program_scaler(dc, pipe_ctx);
2510 
2511 	mi->funcs->mem_input_program_surface_config(
2512 			mi,
2513 			plane_state->format,
2514 			&plane_state->tiling_info,
2515 			&plane_state->plane_size,
2516 			plane_state->rotation,
2517 			NULL,
2518 			false);
2519 	if (mi->funcs->set_blank)
2520 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2521 
2522 	if (dc->config.gpu_vm_support)
2523 		mi->funcs->mem_input_program_pte_vm(
2524 				pipe_ctx->plane_res.mi,
2525 				plane_state->format,
2526 				&plane_state->tiling_info,
2527 				plane_state->rotation);
2528 
2529 	/* Moved programming gamma from dc to hwss */
2530 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2531 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2532 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2533 		dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
2534 
2535 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2536 		dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
2537 
2538 	DC_LOG_SURFACE(
2539 			"Pipe:%d %p: addr hi:0x%x, "
2540 			"addr low:0x%x, "
2541 			"src: %d, %d, %d,"
2542 			" %d; dst: %d, %d, %d, %d;"
2543 			"clip: %d, %d, %d, %d\n",
2544 			pipe_ctx->pipe_idx,
2545 			(void *) pipe_ctx->plane_state,
2546 			pipe_ctx->plane_state->address.grph.addr.high_part,
2547 			pipe_ctx->plane_state->address.grph.addr.low_part,
2548 			pipe_ctx->plane_state->src_rect.x,
2549 			pipe_ctx->plane_state->src_rect.y,
2550 			pipe_ctx->plane_state->src_rect.width,
2551 			pipe_ctx->plane_state->src_rect.height,
2552 			pipe_ctx->plane_state->dst_rect.x,
2553 			pipe_ctx->plane_state->dst_rect.y,
2554 			pipe_ctx->plane_state->dst_rect.width,
2555 			pipe_ctx->plane_state->dst_rect.height,
2556 			pipe_ctx->plane_state->clip_rect.x,
2557 			pipe_ctx->plane_state->clip_rect.y,
2558 			pipe_ctx->plane_state->clip_rect.width,
2559 			pipe_ctx->plane_state->clip_rect.height);
2560 
2561 	DC_LOG_SURFACE(
2562 			"Pipe %d: width, height, x, y\n"
2563 			"viewport:%d, %d, %d, %d\n"
2564 			"recout:  %d, %d, %d, %d\n",
2565 			pipe_ctx->pipe_idx,
2566 			pipe_ctx->plane_res.scl_data.viewport.width,
2567 			pipe_ctx->plane_res.scl_data.viewport.height,
2568 			pipe_ctx->plane_res.scl_data.viewport.x,
2569 			pipe_ctx->plane_res.scl_data.viewport.y,
2570 			pipe_ctx->plane_res.scl_data.recout.width,
2571 			pipe_ctx->plane_res.scl_data.recout.height,
2572 			pipe_ctx->plane_res.scl_data.recout.x,
2573 			pipe_ctx->plane_res.scl_data.recout.y);
2574 }
2575 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2576 static void dce110_apply_ctx_for_surface(
2577 		struct dc *dc,
2578 		const struct dc_stream_state *stream,
2579 		int num_planes,
2580 		struct dc_state *context)
2581 {
2582 	int i;
2583 
2584 	if (num_planes == 0)
2585 		return;
2586 
2587 	if (dc->fbc_compressor)
2588 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2589 
2590 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2591 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2592 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2593 
2594 		if (stream == pipe_ctx->stream) {
2595 			if (!pipe_ctx->top_pipe &&
2596 				(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2597 				dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
2598 		}
2599 	}
2600 
2601 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2602 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2603 
2604 		if (pipe_ctx->stream != stream)
2605 			continue;
2606 
2607 		/* Need to allocate mem before program front end for Fiji */
2608 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2609 				pipe_ctx->plane_res.mi,
2610 				pipe_ctx->stream->timing.h_total,
2611 				pipe_ctx->stream->timing.v_total,
2612 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2613 				context->stream_count);
2614 
2615 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2616 
2617 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2618 
2619 		program_surface_visibility(dc, pipe_ctx);
2620 
2621 	}
2622 
2623 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2624 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2625 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2626 
2627 		if ((stream == pipe_ctx->stream) &&
2628 			(!pipe_ctx->top_pipe) &&
2629 			(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2630 			dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
2631 	}
2632 
2633 	if (dc->fbc_compressor)
2634 		enable_fbc(dc, context);
2635 }
2636 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2637 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2638 {
2639 	int fe_idx = pipe_ctx->plane_res.mi ?
2640 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2641 
2642 	/* Do not power down fe when stream is active on dce*/
2643 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2644 		return;
2645 
2646 	dc->hwss.enable_display_power_gating(
2647 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2648 
2649 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2650 				dc->res_pool->transforms[fe_idx]);
2651 }
2652 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2653 static void dce110_wait_for_mpcc_disconnect(
2654 		struct dc *dc,
2655 		struct resource_pool *res_pool,
2656 		struct pipe_ctx *pipe_ctx)
2657 {
2658 	/* do nothing*/
2659 }
2660 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2661 static void program_output_csc(struct dc *dc,
2662 		struct pipe_ctx *pipe_ctx,
2663 		enum dc_color_space colorspace,
2664 		uint16_t *matrix,
2665 		int opp_id)
2666 {
2667 	int i;
2668 	struct out_csc_color_matrix tbl_entry;
2669 
2670 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2671 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2672 
2673 		for (i = 0; i < 12; i++)
2674 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2675 
2676 		tbl_entry.color_space = color_space;
2677 
2678 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2679 				pipe_ctx->plane_res.xfm, &tbl_entry);
2680 	}
2681 }
2682 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2683 void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2684 {
2685 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2686 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2687 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2688 	struct dc_cursor_mi_param param = {
2689 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2690 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2691 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2692 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2693 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2694 		.rotation = pipe_ctx->plane_state->rotation,
2695 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2696 	};
2697 
2698 	if (pipe_ctx->plane_state->address.type
2699 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2700 		pos_cpy.enable = false;
2701 
2702 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2703 		pos_cpy.enable = false;
2704 
2705 	if (ipp->funcs->ipp_cursor_set_position)
2706 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2707 	if (mi->funcs->set_cursor_position)
2708 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2709 }
2710 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2711 void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2712 {
2713 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2714 
2715 	if (pipe_ctx->plane_res.ipp &&
2716 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2717 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2718 				pipe_ctx->plane_res.ipp, attributes);
2719 
2720 	if (pipe_ctx->plane_res.mi &&
2721 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2722 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2723 				pipe_ctx->plane_res.mi, attributes);
2724 
2725 	if (pipe_ctx->plane_res.xfm &&
2726 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2727 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2728 				pipe_ctx->plane_res.xfm, attributes);
2729 }
2730 
2731 static const struct hw_sequencer_funcs dce110_funcs = {
2732 	.program_gamut_remap = program_gamut_remap,
2733 	.program_output_csc = program_output_csc,
2734 	.init_hw = init_hw,
2735 	.init_pipes = init_pipes,
2736 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2737 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2738 	.update_plane_addr = update_plane_addr,
2739 	.update_pending_status = dce110_update_pending_status,
2740 	.set_input_transfer_func = dce110_set_input_transfer_func,
2741 	.set_output_transfer_func = dce110_set_output_transfer_func,
2742 	.power_down = dce110_power_down,
2743 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2744 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2745 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2746 	.update_info_frame = dce110_update_info_frame,
2747 	.enable_stream = dce110_enable_stream,
2748 	.disable_stream = dce110_disable_stream,
2749 	.unblank_stream = dce110_unblank_stream,
2750 	.blank_stream = dce110_blank_stream,
2751 	.enable_audio_stream = dce110_enable_audio_stream,
2752 	.disable_audio_stream = dce110_disable_audio_stream,
2753 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2754 	.enable_display_power_gating = dce110_enable_display_power_gating,
2755 	.disable_plane = dce110_power_down_fe,
2756 	.pipe_control_lock = dce_pipe_control_lock,
2757 	.prepare_bandwidth = dce110_prepare_bandwidth,
2758 	.optimize_bandwidth = dce110_optimize_bandwidth,
2759 	.set_drr = set_drr,
2760 	.get_position = get_position,
2761 	.set_static_screen_control = set_static_screen_control,
2762 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2763 	.enable_stream_timing = dce110_enable_stream_timing,
2764 	.disable_stream_gating = NULL,
2765 	.enable_stream_gating = NULL,
2766 	.setup_stereo = NULL,
2767 	.set_avmute = dce110_set_avmute,
2768 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2769 	.edp_backlight_control = dce110_edp_backlight_control,
2770 	.edp_power_control = dce110_edp_power_control,
2771 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2772 	.set_cursor_position = dce110_set_cursor_position,
2773 	.set_cursor_attribute = dce110_set_cursor_attribute
2774 };
2775 
dce110_hw_sequencer_construct(struct dc * dc)2776 void dce110_hw_sequencer_construct(struct dc *dc)
2777 {
2778 	dc->hwss = dce110_funcs;
2779 }
2780 
2781