• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /*
24  * Secure boot is the process by which NVIDIA-signed firmware is loaded into
25  * some of the falcons of a GPU. For production devices this is the only way
26  * for the firmware to access useful (but sensitive) registers.
27  *
28  * A Falcon microprocessor supporting advanced security modes can run in one of
29  * three modes:
30  *
31  * - Non-secure (NS). In this mode, functionality is similar to Falcon
32  *   architectures before security modes were introduced (pre-Maxwell), but
33  *   capability is restricted. In particular, certain registers may be
34  *   inaccessible for reads and/or writes, and physical memory access may be
35  *   disabled (on certain Falcon instances). This is the only possible mode that
36  *   can be used if you don't have microcode cryptographically signed by NVIDIA.
37  *
38  * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
39  *   not possible to read or write any Falcon internal state or Falcon registers
40  *   from outside the Falcon (for example, from the host system). The only way
41  *   to enable this mode is by loading microcode that has been signed by NVIDIA.
42  *   (The loading process involves tagging the IMEM block as secure, writing the
43  *   signature into a Falcon register, and starting execution. The hardware will
44  *   validate the signature, and if valid, grant HS privileges.)
45  *
46  * - Light Secure (LS). In this mode, the microprocessor has more privileges
47  *   than NS but fewer than HS. Some of the microprocessor state is visible to
48  *   host software to ease debugging. The only way to enable this mode is by HS
49  *   microcode enabling LS mode. Some privileges available to HS mode are not
50  *   available here. LS mode is introduced in GM20x.
51  *
52  * Secure boot consists in temporarily switching a HS-capable falcon (typically
53  * PMU) into HS mode in order to validate the LS firmwares of managed falcons,
54  * load them, and switch managed falcons into LS mode. Once secure boot
55  * completes, no falcon remains in HS mode.
56  *
57  * Secure boot requires a write-protected memory region (WPR) which can only be
58  * written by the secure falcon. On dGPU, the driver sets up the WPR region in
59  * video memory. On Tegra, it is set up by the bootloader and its location and
60  * size written into memory controller registers.
61  *
62  * The secure boot process takes place as follows:
63  *
64  * 1) A LS blob is constructed that contains all the LS firmwares we want to
65  *    load, along with their signatures and bootloaders.
66  *
67  * 2) A HS blob (also called ACR) is created that contains the signed HS
68  *    firmware in charge of loading the LS firmwares into their respective
69  *    falcons.
70  *
71  * 3) The HS blob is loaded (via its own bootloader) and executed on the
72  *    HS-capable falcon. It authenticates itself, switches the secure falcon to
73  *    HS mode and setup the WPR region around the LS blob (dGPU) or copies the
74  *    LS blob into the WPR region (Tegra).
75  *
76  * 4) The LS blob is now secure from all external tampering. The HS falcon
77  *    checks the signatures of the LS firmwares and, if valid, switches the
78  *    managed falcons to LS mode and makes them ready to run the LS firmware.
79  *
80  * 5) The managed falcons remain in LS mode and can be started.
81  *
82  */
83 
84 #include "priv.h"
85 #include "acr.h"
86 
87 #include <subdev/mc.h>
88 #include <subdev/timer.h>
89 #include <subdev/pmu.h>
90 #include <engine/sec2.h>
91 
92 const char *
93 nvkm_secboot_falcon_name[] = {
94 	[NVKM_SECBOOT_FALCON_PMU] = "PMU",
95 	[NVKM_SECBOOT_FALCON_RESERVED] = "<reserved>",
96 	[NVKM_SECBOOT_FALCON_FECS] = "FECS",
97 	[NVKM_SECBOOT_FALCON_GPCCS] = "GPCCS",
98 	[NVKM_SECBOOT_FALCON_SEC2] = "SEC2",
99 	[NVKM_SECBOOT_FALCON_END] = "<invalid>",
100 };
101 /**
102  * nvkm_secboot_reset() - reset specified falcon
103  */
104 int
nvkm_secboot_reset(struct nvkm_secboot * sb,unsigned long falcon_mask)105 nvkm_secboot_reset(struct nvkm_secboot *sb, unsigned long falcon_mask)
106 {
107 	/* Unmanaged falcon? */
108 	if ((falcon_mask | sb->acr->managed_falcons) != sb->acr->managed_falcons) {
109 		nvkm_error(&sb->subdev, "cannot reset unmanaged falcon!\n");
110 		return -EINVAL;
111 	}
112 
113 	return sb->acr->func->reset(sb->acr, sb, falcon_mask);
114 }
115 
116 /**
117  * nvkm_secboot_is_managed() - check whether a given falcon is securely-managed
118  */
119 bool
nvkm_secboot_is_managed(struct nvkm_secboot * sb,enum nvkm_secboot_falcon fid)120 nvkm_secboot_is_managed(struct nvkm_secboot *sb, enum nvkm_secboot_falcon fid)
121 {
122 	if (!sb)
123 		return false;
124 
125 	return sb->acr->managed_falcons & BIT(fid);
126 }
127 
128 static int
nvkm_secboot_oneinit(struct nvkm_subdev * subdev)129 nvkm_secboot_oneinit(struct nvkm_subdev *subdev)
130 {
131 	struct nvkm_secboot *sb = nvkm_secboot(subdev);
132 	int ret = 0;
133 
134 	switch (sb->acr->boot_falcon) {
135 	case NVKM_SECBOOT_FALCON_PMU:
136 		sb->halt_falcon = sb->boot_falcon = subdev->device->pmu->falcon;
137 		break;
138 	case NVKM_SECBOOT_FALCON_SEC2:
139 		/* we must keep SEC2 alive forever since ACR will run on it */
140 		nvkm_engine_ref(&subdev->device->sec2->engine);
141 		sb->boot_falcon = subdev->device->sec2->falcon;
142 		sb->halt_falcon = subdev->device->pmu->falcon;
143 		break;
144 	default:
145 		nvkm_error(subdev, "Unmanaged boot falcon %s!\n",
146 			                nvkm_secboot_falcon_name[sb->acr->boot_falcon]);
147 		return -EINVAL;
148 	}
149 	nvkm_debug(subdev, "using %s falcon for ACR\n", sb->boot_falcon->name);
150 
151 	/* Call chip-specific init function */
152 	if (sb->func->oneinit)
153 		ret = sb->func->oneinit(sb);
154 	if (ret) {
155 		nvkm_error(subdev, "Secure Boot initialization failed: %d\n",
156 			   ret);
157 		return ret;
158 	}
159 
160 	return 0;
161 }
162 
163 static int
nvkm_secboot_fini(struct nvkm_subdev * subdev,bool suspend)164 nvkm_secboot_fini(struct nvkm_subdev *subdev, bool suspend)
165 {
166 	struct nvkm_secboot *sb = nvkm_secboot(subdev);
167 	int ret = 0;
168 
169 	if (sb->func->fini)
170 		ret = sb->func->fini(sb, suspend);
171 
172 	return ret;
173 }
174 
175 static void *
nvkm_secboot_dtor(struct nvkm_subdev * subdev)176 nvkm_secboot_dtor(struct nvkm_subdev *subdev)
177 {
178 	struct nvkm_secboot *sb = nvkm_secboot(subdev);
179 	void *ret = NULL;
180 
181 	if (sb->func->dtor)
182 		ret = sb->func->dtor(sb);
183 
184 	return ret;
185 }
186 
187 static const struct nvkm_subdev_func
188 nvkm_secboot = {
189 	.oneinit = nvkm_secboot_oneinit,
190 	.fini = nvkm_secboot_fini,
191 	.dtor = nvkm_secboot_dtor,
192 };
193 
194 int
nvkm_secboot_ctor(const struct nvkm_secboot_func * func,struct nvkm_acr * acr,struct nvkm_device * device,int index,struct nvkm_secboot * sb)195 nvkm_secboot_ctor(const struct nvkm_secboot_func *func, struct nvkm_acr *acr,
196 		  struct nvkm_device *device, int index,
197 		  struct nvkm_secboot *sb)
198 {
199 	unsigned long fid;
200 
201 	nvkm_subdev_ctor(&nvkm_secboot, device, index, &sb->subdev);
202 	sb->func = func;
203 	sb->acr = acr;
204 	acr->subdev = &sb->subdev;
205 
206 	nvkm_debug(&sb->subdev, "securely managed falcons:\n");
207 	for_each_set_bit(fid, &sb->acr->managed_falcons,
208 			 NVKM_SECBOOT_FALCON_END)
209 		nvkm_debug(&sb->subdev, "- %s\n",
210 			   nvkm_secboot_falcon_name[fid]);
211 
212 	return 0;
213 }
214