1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
6 *
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
11 *
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
19 *
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
23 *
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
28 *
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
37 *
38 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
39 * MAX6692 chips made by Maxim. These are again similar to the LM86,
40 * but they use unsigned temperature values and can report temperatures
41 * from 0 to 145 degrees.
42 *
43 * This driver also supports the MAX6680 and MAX6681, two other sensor
44 * chips made by Maxim. These are quite similar to the other Maxim
45 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
46 * be treated identically.
47 *
48 * This driver also supports the MAX6695 and MAX6696, two other sensor
49 * chips made by Maxim. These are also quite similar to other Maxim
50 * chips, but support three temperature sensors instead of two. MAX6695
51 * and MAX6696 only differ in the pinout so they can be treated identically.
52 *
53 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
54 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
55 * and extended mode. They are mostly compatible with LM90 except for a data
56 * format difference for the temperature value registers.
57 *
58 * This driver also supports the SA56004 from Philips. This device is
59 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
60 *
61 * This driver also supports the G781 from GMT. This device is compatible
62 * with the ADM1032.
63 *
64 * This driver also supports TMP451 from Texas Instruments. This device is
65 * supported in both compatibility and extended mode. It's mostly compatible
66 * with ADT7461 except for local temperature low byte register and max
67 * conversion rate.
68 *
69 * Since the LM90 was the first chipset supported by this driver, most
70 * comments will refer to this chipset, but are actually general and
71 * concern all supported chipsets, unless mentioned otherwise.
72 */
73
74 #include <linux/module.h>
75 #include <linux/init.h>
76 #include <linux/slab.h>
77 #include <linux/jiffies.h>
78 #include <linux/i2c.h>
79 #include <linux/hwmon.h>
80 #include <linux/err.h>
81 #include <linux/mutex.h>
82 #include <linux/of_device.h>
83 #include <linux/sysfs.h>
84 #include <linux/interrupt.h>
85 #include <linux/regulator/consumer.h>
86
87 /*
88 * Addresses to scan
89 * Address is fully defined internally and cannot be changed except for
90 * MAX6659, MAX6680 and MAX6681.
91 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
92 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
93 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
94 * have address 0x4d.
95 * MAX6647 has address 0x4e.
96 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
97 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
98 * 0x4c, 0x4d or 0x4e.
99 * SA56004 can have address 0x48 through 0x4F.
100 */
101
102 static const unsigned short normal_i2c[] = {
103 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
104 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
105
106 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
107 max6646, w83l771, max6696, sa56004, g781, tmp451 };
108
109 /*
110 * The LM90 registers
111 */
112
113 #define LM90_REG_R_MAN_ID 0xFE
114 #define LM90_REG_R_CHIP_ID 0xFF
115 #define LM90_REG_R_CONFIG1 0x03
116 #define LM90_REG_W_CONFIG1 0x09
117 #define LM90_REG_R_CONFIG2 0xBF
118 #define LM90_REG_W_CONFIG2 0xBF
119 #define LM90_REG_R_CONVRATE 0x04
120 #define LM90_REG_W_CONVRATE 0x0A
121 #define LM90_REG_R_STATUS 0x02
122 #define LM90_REG_R_LOCAL_TEMP 0x00
123 #define LM90_REG_R_LOCAL_HIGH 0x05
124 #define LM90_REG_W_LOCAL_HIGH 0x0B
125 #define LM90_REG_R_LOCAL_LOW 0x06
126 #define LM90_REG_W_LOCAL_LOW 0x0C
127 #define LM90_REG_R_LOCAL_CRIT 0x20
128 #define LM90_REG_W_LOCAL_CRIT 0x20
129 #define LM90_REG_R_REMOTE_TEMPH 0x01
130 #define LM90_REG_R_REMOTE_TEMPL 0x10
131 #define LM90_REG_R_REMOTE_OFFSH 0x11
132 #define LM90_REG_W_REMOTE_OFFSH 0x11
133 #define LM90_REG_R_REMOTE_OFFSL 0x12
134 #define LM90_REG_W_REMOTE_OFFSL 0x12
135 #define LM90_REG_R_REMOTE_HIGHH 0x07
136 #define LM90_REG_W_REMOTE_HIGHH 0x0D
137 #define LM90_REG_R_REMOTE_HIGHL 0x13
138 #define LM90_REG_W_REMOTE_HIGHL 0x13
139 #define LM90_REG_R_REMOTE_LOWH 0x08
140 #define LM90_REG_W_REMOTE_LOWH 0x0E
141 #define LM90_REG_R_REMOTE_LOWL 0x14
142 #define LM90_REG_W_REMOTE_LOWL 0x14
143 #define LM90_REG_R_REMOTE_CRIT 0x19
144 #define LM90_REG_W_REMOTE_CRIT 0x19
145 #define LM90_REG_R_TCRIT_HYST 0x21
146 #define LM90_REG_W_TCRIT_HYST 0x21
147
148 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
149
150 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
151 #define MAX6696_REG_R_STATUS2 0x12
152 #define MAX6659_REG_R_REMOTE_EMERG 0x16
153 #define MAX6659_REG_W_REMOTE_EMERG 0x16
154 #define MAX6659_REG_R_LOCAL_EMERG 0x17
155 #define MAX6659_REG_W_LOCAL_EMERG 0x17
156
157 /* SA56004 registers */
158
159 #define SA56004_REG_R_LOCAL_TEMPL 0x22
160
161 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
162
163 /* TMP451 registers */
164 #define TMP451_REG_R_LOCAL_TEMPL 0x15
165
166 /*
167 * Device flags
168 */
169 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
170 /* Device features */
171 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
172 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
173 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
174 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
175 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
176 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
177 #define LM90_PAUSE_FOR_CONFIG (1 << 8) /* Pause conversion for config */
178
179 /* LM90 status */
180 #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */
181 #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */
182 #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */
183 #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */
184 #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */
185 #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */
186 #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */
187
188 #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */
189 #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */
190 #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */
191 #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */
192 #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */
193 #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */
194 #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */
195
196 /*
197 * Driver data (common to all clients)
198 */
199
200 static const struct i2c_device_id lm90_id[] = {
201 { "adm1032", adm1032 },
202 { "adt7461", adt7461 },
203 { "adt7461a", adt7461 },
204 { "g781", g781 },
205 { "lm90", lm90 },
206 { "lm86", lm86 },
207 { "lm89", lm86 },
208 { "lm99", lm99 },
209 { "max6646", max6646 },
210 { "max6647", max6646 },
211 { "max6649", max6646 },
212 { "max6657", max6657 },
213 { "max6658", max6657 },
214 { "max6659", max6659 },
215 { "max6680", max6680 },
216 { "max6681", max6680 },
217 { "max6695", max6696 },
218 { "max6696", max6696 },
219 { "nct1008", adt7461 },
220 { "w83l771", w83l771 },
221 { "sa56004", sa56004 },
222 { "tmp451", tmp451 },
223 { }
224 };
225 MODULE_DEVICE_TABLE(i2c, lm90_id);
226
227 static const struct of_device_id __maybe_unused lm90_of_match[] = {
228 {
229 .compatible = "adi,adm1032",
230 .data = (void *)adm1032
231 },
232 {
233 .compatible = "adi,adt7461",
234 .data = (void *)adt7461
235 },
236 {
237 .compatible = "adi,adt7461a",
238 .data = (void *)adt7461
239 },
240 {
241 .compatible = "gmt,g781",
242 .data = (void *)g781
243 },
244 {
245 .compatible = "national,lm90",
246 .data = (void *)lm90
247 },
248 {
249 .compatible = "national,lm86",
250 .data = (void *)lm86
251 },
252 {
253 .compatible = "national,lm89",
254 .data = (void *)lm86
255 },
256 {
257 .compatible = "national,lm99",
258 .data = (void *)lm99
259 },
260 {
261 .compatible = "dallas,max6646",
262 .data = (void *)max6646
263 },
264 {
265 .compatible = "dallas,max6647",
266 .data = (void *)max6646
267 },
268 {
269 .compatible = "dallas,max6649",
270 .data = (void *)max6646
271 },
272 {
273 .compatible = "dallas,max6657",
274 .data = (void *)max6657
275 },
276 {
277 .compatible = "dallas,max6658",
278 .data = (void *)max6657
279 },
280 {
281 .compatible = "dallas,max6659",
282 .data = (void *)max6659
283 },
284 {
285 .compatible = "dallas,max6680",
286 .data = (void *)max6680
287 },
288 {
289 .compatible = "dallas,max6681",
290 .data = (void *)max6680
291 },
292 {
293 .compatible = "dallas,max6695",
294 .data = (void *)max6696
295 },
296 {
297 .compatible = "dallas,max6696",
298 .data = (void *)max6696
299 },
300 {
301 .compatible = "onnn,nct1008",
302 .data = (void *)adt7461
303 },
304 {
305 .compatible = "winbond,w83l771",
306 .data = (void *)w83l771
307 },
308 {
309 .compatible = "nxp,sa56004",
310 .data = (void *)sa56004
311 },
312 {
313 .compatible = "ti,tmp451",
314 .data = (void *)tmp451
315 },
316 { },
317 };
318 MODULE_DEVICE_TABLE(of, lm90_of_match);
319
320 /*
321 * chip type specific parameters
322 */
323 struct lm90_params {
324 u32 flags; /* Capabilities */
325 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
326 /* Upper 8 bits for max6695/96 */
327 u8 max_convrate; /* Maximum conversion rate register value */
328 u8 reg_local_ext; /* Extended local temp register (optional) */
329 };
330
331 static const struct lm90_params lm90_params[] = {
332 [adm1032] = {
333 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
334 | LM90_HAVE_BROKEN_ALERT,
335 .alert_alarms = 0x7c,
336 .max_convrate = 10,
337 },
338 [adt7461] = {
339 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
340 | LM90_HAVE_BROKEN_ALERT,
341 .alert_alarms = 0x7c,
342 .max_convrate = 10,
343 },
344 [g781] = {
345 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
346 | LM90_HAVE_BROKEN_ALERT,
347 .alert_alarms = 0x7c,
348 .max_convrate = 8,
349 },
350 [lm86] = {
351 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
352 .alert_alarms = 0x7b,
353 .max_convrate = 9,
354 },
355 [lm90] = {
356 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
357 .alert_alarms = 0x7b,
358 .max_convrate = 9,
359 },
360 [lm99] = {
361 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
362 .alert_alarms = 0x7b,
363 .max_convrate = 9,
364 },
365 [max6646] = {
366 .alert_alarms = 0x7c,
367 .max_convrate = 6,
368 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
369 },
370 [max6657] = {
371 .flags = LM90_PAUSE_FOR_CONFIG,
372 .alert_alarms = 0x7c,
373 .max_convrate = 8,
374 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
375 },
376 [max6659] = {
377 .flags = LM90_HAVE_EMERGENCY,
378 .alert_alarms = 0x7c,
379 .max_convrate = 8,
380 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
381 },
382 [max6680] = {
383 .flags = LM90_HAVE_OFFSET,
384 .alert_alarms = 0x7c,
385 .max_convrate = 7,
386 },
387 [max6696] = {
388 .flags = LM90_HAVE_EMERGENCY
389 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
390 .alert_alarms = 0x1c7c,
391 .max_convrate = 6,
392 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
393 },
394 [w83l771] = {
395 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
396 .alert_alarms = 0x7c,
397 .max_convrate = 8,
398 },
399 [sa56004] = {
400 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
401 .alert_alarms = 0x7b,
402 .max_convrate = 9,
403 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
404 },
405 [tmp451] = {
406 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
407 | LM90_HAVE_BROKEN_ALERT,
408 .alert_alarms = 0x7c,
409 .max_convrate = 9,
410 .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
411 },
412 };
413
414 /*
415 * TEMP8 register index
416 */
417 enum lm90_temp8_reg_index {
418 LOCAL_LOW = 0,
419 LOCAL_HIGH,
420 LOCAL_CRIT,
421 REMOTE_CRIT,
422 LOCAL_EMERG, /* max6659 and max6695/96 */
423 REMOTE_EMERG, /* max6659 and max6695/96 */
424 REMOTE2_CRIT, /* max6695/96 only */
425 REMOTE2_EMERG, /* max6695/96 only */
426 TEMP8_REG_NUM
427 };
428
429 /*
430 * TEMP11 register index
431 */
432 enum lm90_temp11_reg_index {
433 REMOTE_TEMP = 0,
434 REMOTE_LOW,
435 REMOTE_HIGH,
436 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
437 LOCAL_TEMP,
438 REMOTE2_TEMP, /* max6695/96 only */
439 REMOTE2_LOW, /* max6695/96 only */
440 REMOTE2_HIGH, /* max6695/96 only */
441 TEMP11_REG_NUM
442 };
443
444 /*
445 * Client data (each client gets its own)
446 */
447
448 struct lm90_data {
449 struct i2c_client *client;
450 u32 channel_config[4];
451 struct hwmon_channel_info temp_info;
452 const struct hwmon_channel_info *info[3];
453 struct hwmon_chip_info chip;
454 struct mutex update_lock;
455 bool valid; /* true if register values are valid */
456 unsigned long last_updated; /* in jiffies */
457 int kind;
458 u32 flags;
459
460 unsigned int update_interval; /* in milliseconds */
461
462 u8 config; /* Current configuration register value */
463 u8 config_orig; /* Original configuration register value */
464 u8 convrate_orig; /* Original conversion rate register value */
465 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
466 /* Upper 8 bits for max6695/96 */
467 u8 max_convrate; /* Maximum conversion rate */
468 u8 reg_local_ext; /* local extension register offset */
469
470 /* registers values */
471 s8 temp8[TEMP8_REG_NUM];
472 s16 temp11[TEMP11_REG_NUM];
473 u8 temp_hyst;
474 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
475 };
476
477 /*
478 * Support functions
479 */
480
481 /*
482 * The ADM1032 supports PEC but not on write byte transactions, so we need
483 * to explicitly ask for a transaction without PEC.
484 */
adm1032_write_byte(struct i2c_client * client,u8 value)485 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
486 {
487 return i2c_smbus_xfer(client->adapter, client->addr,
488 client->flags & ~I2C_CLIENT_PEC,
489 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
490 }
491
492 /*
493 * It is assumed that client->update_lock is held (unless we are in
494 * detection or initialization steps). This matters when PEC is enabled,
495 * because we don't want the address pointer to change between the write
496 * byte and the read byte transactions.
497 */
lm90_read_reg(struct i2c_client * client,u8 reg)498 static int lm90_read_reg(struct i2c_client *client, u8 reg)
499 {
500 int err;
501
502 if (client->flags & I2C_CLIENT_PEC) {
503 err = adm1032_write_byte(client, reg);
504 if (err >= 0)
505 err = i2c_smbus_read_byte(client);
506 } else
507 err = i2c_smbus_read_byte_data(client, reg);
508
509 return err;
510 }
511
lm90_read16(struct i2c_client * client,u8 regh,u8 regl)512 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl)
513 {
514 int oldh, newh, l;
515
516 /*
517 * There is a trick here. We have to read two registers to have the
518 * sensor temperature, but we have to beware a conversion could occur
519 * between the readings. The datasheet says we should either use
520 * the one-shot conversion register, which we don't want to do
521 * (disables hardware monitoring) or monitor the busy bit, which is
522 * impossible (we can't read the values and monitor that bit at the
523 * exact same time). So the solution used here is to read the high
524 * byte once, then the low byte, then the high byte again. If the new
525 * high byte matches the old one, then we have a valid reading. Else
526 * we have to read the low byte again, and now we believe we have a
527 * correct reading.
528 */
529 oldh = lm90_read_reg(client, regh);
530 if (oldh < 0)
531 return oldh;
532 l = lm90_read_reg(client, regl);
533 if (l < 0)
534 return l;
535 newh = lm90_read_reg(client, regh);
536 if (newh < 0)
537 return newh;
538 if (oldh != newh) {
539 l = lm90_read_reg(client, regl);
540 if (l < 0)
541 return l;
542 }
543 return (newh << 8) | l;
544 }
545
lm90_update_confreg(struct lm90_data * data,u8 config)546 static int lm90_update_confreg(struct lm90_data *data, u8 config)
547 {
548 if (data->config != config) {
549 int err;
550
551 err = i2c_smbus_write_byte_data(data->client,
552 LM90_REG_W_CONFIG1,
553 config);
554 if (err)
555 return err;
556 data->config = config;
557 }
558 return 0;
559 }
560
561 /*
562 * client->update_lock must be held when calling this function (unless we are
563 * in detection or initialization steps), and while a remote channel other
564 * than channel 0 is selected. Also, calling code must make sure to re-select
565 * external channel 0 before releasing the lock. This is necessary because
566 * various registers have different meanings as a result of selecting a
567 * non-default remote channel.
568 */
lm90_select_remote_channel(struct lm90_data * data,int channel)569 static int lm90_select_remote_channel(struct lm90_data *data, int channel)
570 {
571 int err = 0;
572
573 if (data->kind == max6696) {
574 u8 config = data->config & ~0x08;
575
576 if (channel)
577 config |= 0x08;
578 err = lm90_update_confreg(data, config);
579 }
580 return err;
581 }
582
lm90_write_convrate(struct lm90_data * data,int val)583 static int lm90_write_convrate(struct lm90_data *data, int val)
584 {
585 u8 config = data->config;
586 int err;
587
588 /* Save config and pause conversion */
589 if (data->flags & LM90_PAUSE_FOR_CONFIG) {
590 err = lm90_update_confreg(data, config | 0x40);
591 if (err < 0)
592 return err;
593 }
594
595 /* Set conv rate */
596 err = i2c_smbus_write_byte_data(data->client, LM90_REG_W_CONVRATE, val);
597
598 /* Revert change to config */
599 lm90_update_confreg(data, config);
600
601 return err;
602 }
603
604 /*
605 * Set conversion rate.
606 * client->update_lock must be held when calling this function (unless we are
607 * in detection or initialization steps).
608 */
lm90_set_convrate(struct i2c_client * client,struct lm90_data * data,unsigned int interval)609 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
610 unsigned int interval)
611 {
612 unsigned int update_interval;
613 int i, err;
614
615 /* Shift calculations to avoid rounding errors */
616 interval <<= 6;
617
618 /* find the nearest update rate */
619 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
620 i < data->max_convrate; i++, update_interval >>= 1)
621 if (interval >= update_interval * 3 / 4)
622 break;
623
624 err = lm90_write_convrate(data, i);
625 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
626 return err;
627 }
628
lm90_update_limits(struct device * dev)629 static int lm90_update_limits(struct device *dev)
630 {
631 struct lm90_data *data = dev_get_drvdata(dev);
632 struct i2c_client *client = data->client;
633 int val;
634
635 val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT);
636 if (val < 0)
637 return val;
638 data->temp8[LOCAL_CRIT] = val;
639
640 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
641 if (val < 0)
642 return val;
643 data->temp8[REMOTE_CRIT] = val;
644
645 val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST);
646 if (val < 0)
647 return val;
648 data->temp_hyst = val;
649
650 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
651 if (val < 0)
652 return val;
653 data->temp11[REMOTE_LOW] = val << 8;
654
655 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
656 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL);
657 if (val < 0)
658 return val;
659 data->temp11[REMOTE_LOW] |= val;
660 }
661
662 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
663 if (val < 0)
664 return val;
665 data->temp11[REMOTE_HIGH] = val << 8;
666
667 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
668 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL);
669 if (val < 0)
670 return val;
671 data->temp11[REMOTE_HIGH] |= val;
672 }
673
674 if (data->flags & LM90_HAVE_OFFSET) {
675 val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH,
676 LM90_REG_R_REMOTE_OFFSL);
677 if (val < 0)
678 return val;
679 data->temp11[REMOTE_OFFSET] = val;
680 }
681
682 if (data->flags & LM90_HAVE_EMERGENCY) {
683 val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG);
684 if (val < 0)
685 return val;
686 data->temp8[LOCAL_EMERG] = val;
687
688 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
689 if (val < 0)
690 return val;
691 data->temp8[REMOTE_EMERG] = val;
692 }
693
694 if (data->kind == max6696) {
695 val = lm90_select_remote_channel(data, 1);
696 if (val < 0)
697 return val;
698
699 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
700 if (val < 0)
701 return val;
702 data->temp8[REMOTE2_CRIT] = val;
703
704 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
705 if (val < 0)
706 return val;
707 data->temp8[REMOTE2_EMERG] = val;
708
709 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
710 if (val < 0)
711 return val;
712 data->temp11[REMOTE2_LOW] = val << 8;
713
714 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
715 if (val < 0)
716 return val;
717 data->temp11[REMOTE2_HIGH] = val << 8;
718
719 lm90_select_remote_channel(data, 0);
720 }
721
722 return 0;
723 }
724
lm90_update_device(struct device * dev)725 static int lm90_update_device(struct device *dev)
726 {
727 struct lm90_data *data = dev_get_drvdata(dev);
728 struct i2c_client *client = data->client;
729 unsigned long next_update;
730 int val;
731
732 if (!data->valid) {
733 val = lm90_update_limits(dev);
734 if (val < 0)
735 return val;
736 }
737
738 next_update = data->last_updated +
739 msecs_to_jiffies(data->update_interval);
740 if (time_after(jiffies, next_update) || !data->valid) {
741 dev_dbg(&client->dev, "Updating lm90 data.\n");
742
743 data->valid = false;
744
745 val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW);
746 if (val < 0)
747 return val;
748 data->temp8[LOCAL_LOW] = val;
749
750 val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH);
751 if (val < 0)
752 return val;
753 data->temp8[LOCAL_HIGH] = val;
754
755 if (data->reg_local_ext) {
756 val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
757 data->reg_local_ext);
758 if (val < 0)
759 return val;
760 data->temp11[LOCAL_TEMP] = val;
761 } else {
762 val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP);
763 if (val < 0)
764 return val;
765 data->temp11[LOCAL_TEMP] = val << 8;
766 }
767 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
768 LM90_REG_R_REMOTE_TEMPL);
769 if (val < 0)
770 return val;
771 data->temp11[REMOTE_TEMP] = val;
772
773 val = lm90_read_reg(client, LM90_REG_R_STATUS);
774 if (val < 0)
775 return val;
776 data->alarms = val; /* lower 8 bit of alarms */
777
778 if (data->kind == max6696) {
779 val = lm90_select_remote_channel(data, 1);
780 if (val < 0)
781 return val;
782
783 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
784 LM90_REG_R_REMOTE_TEMPL);
785 if (val < 0) {
786 lm90_select_remote_channel(data, 0);
787 return val;
788 }
789 data->temp11[REMOTE2_TEMP] = val;
790
791 lm90_select_remote_channel(data, 0);
792
793 val = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
794 if (val < 0)
795 return val;
796 data->alarms |= val << 8;
797 }
798
799 /*
800 * Re-enable ALERT# output if it was originally enabled and
801 * relevant alarms are all clear
802 */
803 if (!(data->config_orig & 0x80) &&
804 !(data->alarms & data->alert_alarms)) {
805 if (data->config & 0x80) {
806 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
807 lm90_update_confreg(data, data->config & ~0x80);
808 }
809 }
810
811 data->last_updated = jiffies;
812 data->valid = true;
813 }
814
815 return 0;
816 }
817
818 /*
819 * Conversions
820 * For local temperatures and limits, critical limits and the hysteresis
821 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
822 * For remote temperatures and limits, it uses signed 11-bit values with
823 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
824 * Maxim chips use unsigned values.
825 */
826
temp_from_s8(s8 val)827 static inline int temp_from_s8(s8 val)
828 {
829 return val * 1000;
830 }
831
temp_from_u8(u8 val)832 static inline int temp_from_u8(u8 val)
833 {
834 return val * 1000;
835 }
836
temp_from_s16(s16 val)837 static inline int temp_from_s16(s16 val)
838 {
839 return val / 32 * 125;
840 }
841
temp_from_u16(u16 val)842 static inline int temp_from_u16(u16 val)
843 {
844 return val / 32 * 125;
845 }
846
temp_to_s8(long val)847 static s8 temp_to_s8(long val)
848 {
849 if (val <= -128000)
850 return -128;
851 if (val >= 127000)
852 return 127;
853 if (val < 0)
854 return (val - 500) / 1000;
855 return (val + 500) / 1000;
856 }
857
temp_to_u8(long val)858 static u8 temp_to_u8(long val)
859 {
860 if (val <= 0)
861 return 0;
862 if (val >= 255000)
863 return 255;
864 return (val + 500) / 1000;
865 }
866
temp_to_s16(long val)867 static s16 temp_to_s16(long val)
868 {
869 if (val <= -128000)
870 return 0x8000;
871 if (val >= 127875)
872 return 0x7FE0;
873 if (val < 0)
874 return (val - 62) / 125 * 32;
875 return (val + 62) / 125 * 32;
876 }
877
hyst_to_reg(long val)878 static u8 hyst_to_reg(long val)
879 {
880 if (val <= 0)
881 return 0;
882 if (val >= 30500)
883 return 31;
884 return (val + 500) / 1000;
885 }
886
887 /*
888 * ADT7461 in compatibility mode is almost identical to LM90 except that
889 * attempts to write values that are outside the range 0 < temp < 127 are
890 * treated as the boundary value.
891 *
892 * ADT7461 in "extended mode" operation uses unsigned integers offset by
893 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
894 */
temp_from_u8_adt7461(struct lm90_data * data,u8 val)895 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
896 {
897 if (data->flags & LM90_FLAG_ADT7461_EXT)
898 return (val - 64) * 1000;
899 return temp_from_s8(val);
900 }
901
temp_from_u16_adt7461(struct lm90_data * data,u16 val)902 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
903 {
904 if (data->flags & LM90_FLAG_ADT7461_EXT)
905 return (val - 0x4000) / 64 * 250;
906 return temp_from_s16(val);
907 }
908
temp_to_u8_adt7461(struct lm90_data * data,long val)909 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
910 {
911 if (data->flags & LM90_FLAG_ADT7461_EXT) {
912 if (val <= -64000)
913 return 0;
914 if (val >= 191000)
915 return 0xFF;
916 return (val + 500 + 64000) / 1000;
917 }
918 if (val <= 0)
919 return 0;
920 if (val >= 127000)
921 return 127;
922 return (val + 500) / 1000;
923 }
924
temp_to_u16_adt7461(struct lm90_data * data,long val)925 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
926 {
927 if (data->flags & LM90_FLAG_ADT7461_EXT) {
928 if (val <= -64000)
929 return 0;
930 if (val >= 191750)
931 return 0xFFC0;
932 return (val + 64000 + 125) / 250 * 64;
933 }
934 if (val <= 0)
935 return 0;
936 if (val >= 127750)
937 return 0x7FC0;
938 return (val + 125) / 250 * 64;
939 }
940
941 /* pec used for ADM1032 only */
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)942 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
943 char *buf)
944 {
945 struct i2c_client *client = to_i2c_client(dev);
946
947 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
948 }
949
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)950 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
951 const char *buf, size_t count)
952 {
953 struct i2c_client *client = to_i2c_client(dev);
954 long val;
955 int err;
956
957 err = kstrtol(buf, 10, &val);
958 if (err < 0)
959 return err;
960
961 switch (val) {
962 case 0:
963 client->flags &= ~I2C_CLIENT_PEC;
964 break;
965 case 1:
966 client->flags |= I2C_CLIENT_PEC;
967 break;
968 default:
969 return -EINVAL;
970 }
971
972 return count;
973 }
974
975 static DEVICE_ATTR_RW(pec);
976
lm90_get_temp11(struct lm90_data * data,int index)977 static int lm90_get_temp11(struct lm90_data *data, int index)
978 {
979 s16 temp11 = data->temp11[index];
980 int temp;
981
982 if (data->kind == adt7461 || data->kind == tmp451)
983 temp = temp_from_u16_adt7461(data, temp11);
984 else if (data->kind == max6646)
985 temp = temp_from_u16(temp11);
986 else
987 temp = temp_from_s16(temp11);
988
989 /* +16 degrees offset for temp2 for the LM99 */
990 if (data->kind == lm99 && index <= 2)
991 temp += 16000;
992
993 return temp;
994 }
995
lm90_set_temp11(struct lm90_data * data,int index,long val)996 static int lm90_set_temp11(struct lm90_data *data, int index, long val)
997 {
998 static struct reg {
999 u8 high;
1000 u8 low;
1001 } reg[] = {
1002 [REMOTE_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL },
1003 [REMOTE_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL },
1004 [REMOTE_OFFSET] = { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL },
1005 [REMOTE2_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL },
1006 [REMOTE2_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL }
1007 };
1008 struct i2c_client *client = data->client;
1009 struct reg *regp = ®[index];
1010 int err;
1011
1012 /* +16 degrees offset for temp2 for the LM99 */
1013 if (data->kind == lm99 && index <= 2)
1014 val -= 16000;
1015
1016 if (data->kind == adt7461 || data->kind == tmp451)
1017 data->temp11[index] = temp_to_u16_adt7461(data, val);
1018 else if (data->kind == max6646)
1019 data->temp11[index] = temp_to_u8(val) << 8;
1020 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1021 data->temp11[index] = temp_to_s16(val);
1022 else
1023 data->temp11[index] = temp_to_s8(val) << 8;
1024
1025 lm90_select_remote_channel(data, index >= 3);
1026 err = i2c_smbus_write_byte_data(client, regp->high,
1027 data->temp11[index] >> 8);
1028 if (err < 0)
1029 return err;
1030 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1031 err = i2c_smbus_write_byte_data(client, regp->low,
1032 data->temp11[index] & 0xff);
1033
1034 lm90_select_remote_channel(data, 0);
1035 return err;
1036 }
1037
lm90_get_temp8(struct lm90_data * data,int index)1038 static int lm90_get_temp8(struct lm90_data *data, int index)
1039 {
1040 s8 temp8 = data->temp8[index];
1041 int temp;
1042
1043 if (data->kind == adt7461 || data->kind == tmp451)
1044 temp = temp_from_u8_adt7461(data, temp8);
1045 else if (data->kind == max6646)
1046 temp = temp_from_u8(temp8);
1047 else
1048 temp = temp_from_s8(temp8);
1049
1050 /* +16 degrees offset for temp2 for the LM99 */
1051 if (data->kind == lm99 && index == 3)
1052 temp += 16000;
1053
1054 return temp;
1055 }
1056
lm90_set_temp8(struct lm90_data * data,int index,long val)1057 static int lm90_set_temp8(struct lm90_data *data, int index, long val)
1058 {
1059 static const u8 reg[TEMP8_REG_NUM] = {
1060 LM90_REG_W_LOCAL_LOW,
1061 LM90_REG_W_LOCAL_HIGH,
1062 LM90_REG_W_LOCAL_CRIT,
1063 LM90_REG_W_REMOTE_CRIT,
1064 MAX6659_REG_W_LOCAL_EMERG,
1065 MAX6659_REG_W_REMOTE_EMERG,
1066 LM90_REG_W_REMOTE_CRIT,
1067 MAX6659_REG_W_REMOTE_EMERG,
1068 };
1069 struct i2c_client *client = data->client;
1070 int err;
1071
1072 /* +16 degrees offset for temp2 for the LM99 */
1073 if (data->kind == lm99 && index == 3)
1074 val -= 16000;
1075
1076 if (data->kind == adt7461 || data->kind == tmp451)
1077 data->temp8[index] = temp_to_u8_adt7461(data, val);
1078 else if (data->kind == max6646)
1079 data->temp8[index] = temp_to_u8(val);
1080 else
1081 data->temp8[index] = temp_to_s8(val);
1082
1083 lm90_select_remote_channel(data, index >= 6);
1084 err = i2c_smbus_write_byte_data(client, reg[index], data->temp8[index]);
1085 lm90_select_remote_channel(data, 0);
1086
1087 return err;
1088 }
1089
lm90_get_temphyst(struct lm90_data * data,int index)1090 static int lm90_get_temphyst(struct lm90_data *data, int index)
1091 {
1092 int temp;
1093
1094 if (data->kind == adt7461 || data->kind == tmp451)
1095 temp = temp_from_u8_adt7461(data, data->temp8[index]);
1096 else if (data->kind == max6646)
1097 temp = temp_from_u8(data->temp8[index]);
1098 else
1099 temp = temp_from_s8(data->temp8[index]);
1100
1101 /* +16 degrees offset for temp2 for the LM99 */
1102 if (data->kind == lm99 && index == 3)
1103 temp += 16000;
1104
1105 return temp - temp_from_s8(data->temp_hyst);
1106 }
1107
lm90_set_temphyst(struct lm90_data * data,long val)1108 static int lm90_set_temphyst(struct lm90_data *data, long val)
1109 {
1110 struct i2c_client *client = data->client;
1111 int temp;
1112 int err;
1113
1114 if (data->kind == adt7461 || data->kind == tmp451)
1115 temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
1116 else if (data->kind == max6646)
1117 temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
1118 else
1119 temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
1120
1121 data->temp_hyst = hyst_to_reg(temp - val);
1122 err = i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
1123 data->temp_hyst);
1124 return err;
1125 }
1126
1127 static const u8 lm90_temp_index[3] = {
1128 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1129 };
1130
1131 static const u8 lm90_temp_min_index[3] = {
1132 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1133 };
1134
1135 static const u8 lm90_temp_max_index[3] = {
1136 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1137 };
1138
1139 static const u8 lm90_temp_crit_index[3] = {
1140 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1141 };
1142
1143 static const u8 lm90_temp_emerg_index[3] = {
1144 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1145 };
1146
1147 static const u8 lm90_min_alarm_bits[3] = { 5, 3, 11 };
1148 static const u8 lm90_max_alarm_bits[3] = { 6, 4, 12 };
1149 static const u8 lm90_crit_alarm_bits[3] = { 0, 1, 9 };
1150 static const u8 lm90_emergency_alarm_bits[3] = { 15, 13, 14 };
1151 static const u8 lm90_fault_bits[3] = { 0, 2, 10 };
1152
lm90_temp_read(struct device * dev,u32 attr,int channel,long * val)1153 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1154 {
1155 struct lm90_data *data = dev_get_drvdata(dev);
1156 int err;
1157
1158 mutex_lock(&data->update_lock);
1159 err = lm90_update_device(dev);
1160 mutex_unlock(&data->update_lock);
1161 if (err)
1162 return err;
1163
1164 switch (attr) {
1165 case hwmon_temp_input:
1166 *val = lm90_get_temp11(data, lm90_temp_index[channel]);
1167 break;
1168 case hwmon_temp_min_alarm:
1169 *val = (data->alarms >> lm90_min_alarm_bits[channel]) & 1;
1170 break;
1171 case hwmon_temp_max_alarm:
1172 *val = (data->alarms >> lm90_max_alarm_bits[channel]) & 1;
1173 break;
1174 case hwmon_temp_crit_alarm:
1175 *val = (data->alarms >> lm90_crit_alarm_bits[channel]) & 1;
1176 break;
1177 case hwmon_temp_emergency_alarm:
1178 *val = (data->alarms >> lm90_emergency_alarm_bits[channel]) & 1;
1179 break;
1180 case hwmon_temp_fault:
1181 *val = (data->alarms >> lm90_fault_bits[channel]) & 1;
1182 break;
1183 case hwmon_temp_min:
1184 if (channel == 0)
1185 *val = lm90_get_temp8(data,
1186 lm90_temp_min_index[channel]);
1187 else
1188 *val = lm90_get_temp11(data,
1189 lm90_temp_min_index[channel]);
1190 break;
1191 case hwmon_temp_max:
1192 if (channel == 0)
1193 *val = lm90_get_temp8(data,
1194 lm90_temp_max_index[channel]);
1195 else
1196 *val = lm90_get_temp11(data,
1197 lm90_temp_max_index[channel]);
1198 break;
1199 case hwmon_temp_crit:
1200 *val = lm90_get_temp8(data, lm90_temp_crit_index[channel]);
1201 break;
1202 case hwmon_temp_crit_hyst:
1203 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel]);
1204 break;
1205 case hwmon_temp_emergency:
1206 *val = lm90_get_temp8(data, lm90_temp_emerg_index[channel]);
1207 break;
1208 case hwmon_temp_emergency_hyst:
1209 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel]);
1210 break;
1211 case hwmon_temp_offset:
1212 *val = lm90_get_temp11(data, REMOTE_OFFSET);
1213 break;
1214 default:
1215 return -EOPNOTSUPP;
1216 }
1217 return 0;
1218 }
1219
lm90_temp_write(struct device * dev,u32 attr,int channel,long val)1220 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1221 {
1222 struct lm90_data *data = dev_get_drvdata(dev);
1223 int err;
1224
1225 mutex_lock(&data->update_lock);
1226
1227 err = lm90_update_device(dev);
1228 if (err)
1229 goto error;
1230
1231 switch (attr) {
1232 case hwmon_temp_min:
1233 if (channel == 0)
1234 err = lm90_set_temp8(data,
1235 lm90_temp_min_index[channel],
1236 val);
1237 else
1238 err = lm90_set_temp11(data,
1239 lm90_temp_min_index[channel],
1240 val);
1241 break;
1242 case hwmon_temp_max:
1243 if (channel == 0)
1244 err = lm90_set_temp8(data,
1245 lm90_temp_max_index[channel],
1246 val);
1247 else
1248 err = lm90_set_temp11(data,
1249 lm90_temp_max_index[channel],
1250 val);
1251 break;
1252 case hwmon_temp_crit:
1253 err = lm90_set_temp8(data, lm90_temp_crit_index[channel], val);
1254 break;
1255 case hwmon_temp_crit_hyst:
1256 err = lm90_set_temphyst(data, val);
1257 break;
1258 case hwmon_temp_emergency:
1259 err = lm90_set_temp8(data, lm90_temp_emerg_index[channel], val);
1260 break;
1261 case hwmon_temp_offset:
1262 err = lm90_set_temp11(data, REMOTE_OFFSET, val);
1263 break;
1264 default:
1265 err = -EOPNOTSUPP;
1266 break;
1267 }
1268 error:
1269 mutex_unlock(&data->update_lock);
1270
1271 return err;
1272 }
1273
lm90_temp_is_visible(const void * data,u32 attr,int channel)1274 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1275 {
1276 switch (attr) {
1277 case hwmon_temp_input:
1278 case hwmon_temp_min_alarm:
1279 case hwmon_temp_max_alarm:
1280 case hwmon_temp_crit_alarm:
1281 case hwmon_temp_emergency_alarm:
1282 case hwmon_temp_emergency_hyst:
1283 case hwmon_temp_fault:
1284 return 0444;
1285 case hwmon_temp_min:
1286 case hwmon_temp_max:
1287 case hwmon_temp_crit:
1288 case hwmon_temp_emergency:
1289 case hwmon_temp_offset:
1290 return 0644;
1291 case hwmon_temp_crit_hyst:
1292 if (channel == 0)
1293 return 0644;
1294 return 0444;
1295 default:
1296 return 0;
1297 }
1298 }
1299
lm90_chip_read(struct device * dev,u32 attr,int channel,long * val)1300 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1301 {
1302 struct lm90_data *data = dev_get_drvdata(dev);
1303 int err;
1304
1305 mutex_lock(&data->update_lock);
1306 err = lm90_update_device(dev);
1307 mutex_unlock(&data->update_lock);
1308 if (err)
1309 return err;
1310
1311 switch (attr) {
1312 case hwmon_chip_update_interval:
1313 *val = data->update_interval;
1314 break;
1315 case hwmon_chip_alarms:
1316 *val = data->alarms;
1317 break;
1318 default:
1319 return -EOPNOTSUPP;
1320 }
1321
1322 return 0;
1323 }
1324
lm90_chip_write(struct device * dev,u32 attr,int channel,long val)1325 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1326 {
1327 struct lm90_data *data = dev_get_drvdata(dev);
1328 struct i2c_client *client = data->client;
1329 int err;
1330
1331 mutex_lock(&data->update_lock);
1332
1333 err = lm90_update_device(dev);
1334 if (err)
1335 goto error;
1336
1337 switch (attr) {
1338 case hwmon_chip_update_interval:
1339 err = lm90_set_convrate(client, data,
1340 clamp_val(val, 0, 100000));
1341 break;
1342 default:
1343 err = -EOPNOTSUPP;
1344 break;
1345 }
1346 error:
1347 mutex_unlock(&data->update_lock);
1348
1349 return err;
1350 }
1351
lm90_chip_is_visible(const void * data,u32 attr,int channel)1352 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1353 {
1354 switch (attr) {
1355 case hwmon_chip_update_interval:
1356 return 0644;
1357 case hwmon_chip_alarms:
1358 return 0444;
1359 default:
1360 return 0;
1361 }
1362 }
1363
lm90_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1364 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1365 u32 attr, int channel, long *val)
1366 {
1367 switch (type) {
1368 case hwmon_chip:
1369 return lm90_chip_read(dev, attr, channel, val);
1370 case hwmon_temp:
1371 return lm90_temp_read(dev, attr, channel, val);
1372 default:
1373 return -EOPNOTSUPP;
1374 }
1375 }
1376
lm90_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1377 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1378 u32 attr, int channel, long val)
1379 {
1380 switch (type) {
1381 case hwmon_chip:
1382 return lm90_chip_write(dev, attr, channel, val);
1383 case hwmon_temp:
1384 return lm90_temp_write(dev, attr, channel, val);
1385 default:
1386 return -EOPNOTSUPP;
1387 }
1388 }
1389
lm90_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)1390 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1391 u32 attr, int channel)
1392 {
1393 switch (type) {
1394 case hwmon_chip:
1395 return lm90_chip_is_visible(data, attr, channel);
1396 case hwmon_temp:
1397 return lm90_temp_is_visible(data, attr, channel);
1398 default:
1399 return 0;
1400 }
1401 }
1402
1403 /* Return 0 if detection is successful, -ENODEV otherwise */
lm90_detect(struct i2c_client * client,struct i2c_board_info * info)1404 static int lm90_detect(struct i2c_client *client,
1405 struct i2c_board_info *info)
1406 {
1407 struct i2c_adapter *adapter = client->adapter;
1408 int address = client->addr;
1409 const char *name = NULL;
1410 int man_id, chip_id, config1, config2, convrate;
1411
1412 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1413 return -ENODEV;
1414
1415 /* detection and identification */
1416 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1417 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1418 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1419 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1420 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1421 return -ENODEV;
1422
1423 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1424 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1425 if (config2 < 0)
1426 return -ENODEV;
1427 } else
1428 config2 = 0; /* Make compiler happy */
1429
1430 if ((address == 0x4C || address == 0x4D)
1431 && man_id == 0x01) { /* National Semiconductor */
1432 if ((config1 & 0x2A) == 0x00
1433 && (config2 & 0xF8) == 0x00
1434 && convrate <= 0x09) {
1435 if (address == 0x4C
1436 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1437 name = "lm90";
1438 } else
1439 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1440 name = "lm99";
1441 dev_info(&adapter->dev,
1442 "Assuming LM99 chip at 0x%02x\n",
1443 address);
1444 dev_info(&adapter->dev,
1445 "If it is an LM89, instantiate it "
1446 "with the new_device sysfs "
1447 "interface\n");
1448 } else
1449 if (address == 0x4C
1450 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1451 name = "lm86";
1452 }
1453 }
1454 } else
1455 if ((address == 0x4C || address == 0x4D)
1456 && man_id == 0x41) { /* Analog Devices */
1457 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1458 && (config1 & 0x3F) == 0x00
1459 && convrate <= 0x0A) {
1460 name = "adm1032";
1461 /*
1462 * The ADM1032 supports PEC, but only if combined
1463 * transactions are not used.
1464 */
1465 if (i2c_check_functionality(adapter,
1466 I2C_FUNC_SMBUS_BYTE))
1467 info->flags |= I2C_CLIENT_PEC;
1468 } else
1469 if (chip_id == 0x51 /* ADT7461 */
1470 && (config1 & 0x1B) == 0x00
1471 && convrate <= 0x0A) {
1472 name = "adt7461";
1473 } else
1474 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1475 && (config1 & 0x1B) == 0x00
1476 && convrate <= 0x0A) {
1477 name = "adt7461a";
1478 }
1479 } else
1480 if (man_id == 0x4D) { /* Maxim */
1481 int emerg, emerg2, status2;
1482
1483 /*
1484 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1485 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1486 * exists, both readings will reflect the same value. Otherwise,
1487 * the readings will be different.
1488 */
1489 emerg = i2c_smbus_read_byte_data(client,
1490 MAX6659_REG_R_REMOTE_EMERG);
1491 man_id = i2c_smbus_read_byte_data(client,
1492 LM90_REG_R_MAN_ID);
1493 emerg2 = i2c_smbus_read_byte_data(client,
1494 MAX6659_REG_R_REMOTE_EMERG);
1495 status2 = i2c_smbus_read_byte_data(client,
1496 MAX6696_REG_R_STATUS2);
1497 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1498 return -ENODEV;
1499
1500 /*
1501 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1502 * register. Reading from that address will return the last
1503 * read value, which in our case is those of the man_id
1504 * register. Likewise, the config1 register seems to lack a
1505 * low nibble, so the value will be those of the previous
1506 * read, so in our case those of the man_id register.
1507 * MAX6659 has a third set of upper temperature limit registers.
1508 * Those registers also return values on MAX6657 and MAX6658,
1509 * thus the only way to detect MAX6659 is by its address.
1510 * For this reason it will be mis-detected as MAX6657 if its
1511 * address is 0x4C.
1512 */
1513 if (chip_id == man_id
1514 && (address == 0x4C || address == 0x4D || address == 0x4E)
1515 && (config1 & 0x1F) == (man_id & 0x0F)
1516 && convrate <= 0x09) {
1517 if (address == 0x4C)
1518 name = "max6657";
1519 else
1520 name = "max6659";
1521 } else
1522 /*
1523 * Even though MAX6695 and MAX6696 do not have a chip ID
1524 * register, reading it returns 0x01. Bit 4 of the config1
1525 * register is unused and should return zero when read. Bit 0 of
1526 * the status2 register is unused and should return zero when
1527 * read.
1528 *
1529 * MAX6695 and MAX6696 have an additional set of temperature
1530 * limit registers. We can detect those chips by checking if
1531 * one of those registers exists.
1532 */
1533 if (chip_id == 0x01
1534 && (config1 & 0x10) == 0x00
1535 && (status2 & 0x01) == 0x00
1536 && emerg == emerg2
1537 && convrate <= 0x07) {
1538 name = "max6696";
1539 } else
1540 /*
1541 * The chip_id register of the MAX6680 and MAX6681 holds the
1542 * revision of the chip. The lowest bit of the config1 register
1543 * is unused and should return zero when read, so should the
1544 * second to last bit of config1 (software reset).
1545 */
1546 if (chip_id == 0x01
1547 && (config1 & 0x03) == 0x00
1548 && convrate <= 0x07) {
1549 name = "max6680";
1550 } else
1551 /*
1552 * The chip_id register of the MAX6646/6647/6649 holds the
1553 * revision of the chip. The lowest 6 bits of the config1
1554 * register are unused and should return zero when read.
1555 */
1556 if (chip_id == 0x59
1557 && (config1 & 0x3f) == 0x00
1558 && convrate <= 0x07) {
1559 name = "max6646";
1560 }
1561 } else
1562 if (address == 0x4C
1563 && man_id == 0x5C) { /* Winbond/Nuvoton */
1564 if ((config1 & 0x2A) == 0x00
1565 && (config2 & 0xF8) == 0x00) {
1566 if (chip_id == 0x01 /* W83L771W/G */
1567 && convrate <= 0x09) {
1568 name = "w83l771";
1569 } else
1570 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1571 && convrate <= 0x08) {
1572 name = "w83l771";
1573 }
1574 }
1575 } else
1576 if (address >= 0x48 && address <= 0x4F
1577 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1578 if (chip_id == 0x00
1579 && (config1 & 0x2A) == 0x00
1580 && (config2 & 0xFE) == 0x00
1581 && convrate <= 0x09) {
1582 name = "sa56004";
1583 }
1584 } else
1585 if ((address == 0x4C || address == 0x4D)
1586 && man_id == 0x47) { /* GMT */
1587 if (chip_id == 0x01 /* G781 */
1588 && (config1 & 0x3F) == 0x00
1589 && convrate <= 0x08)
1590 name = "g781";
1591 } else
1592 if (address == 0x4C
1593 && man_id == 0x55) { /* Texas Instruments */
1594 int local_ext;
1595
1596 local_ext = i2c_smbus_read_byte_data(client,
1597 TMP451_REG_R_LOCAL_TEMPL);
1598
1599 if (chip_id == 0x00 /* TMP451 */
1600 && (config1 & 0x1B) == 0x00
1601 && convrate <= 0x09
1602 && (local_ext & 0x0F) == 0x00)
1603 name = "tmp451";
1604 }
1605
1606 if (!name) { /* identification failed */
1607 dev_dbg(&adapter->dev,
1608 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1609 "chip_id=0x%02X)\n", address, man_id, chip_id);
1610 return -ENODEV;
1611 }
1612
1613 strlcpy(info->type, name, I2C_NAME_SIZE);
1614
1615 return 0;
1616 }
1617
lm90_restore_conf(void * _data)1618 static void lm90_restore_conf(void *_data)
1619 {
1620 struct lm90_data *data = _data;
1621 struct i2c_client *client = data->client;
1622
1623 /* Restore initial configuration */
1624 lm90_write_convrate(data, data->convrate_orig);
1625 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1626 data->config_orig);
1627 }
1628
lm90_init_client(struct i2c_client * client,struct lm90_data * data)1629 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1630 {
1631 int config, convrate;
1632
1633 convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE);
1634 if (convrate < 0)
1635 return convrate;
1636 data->convrate_orig = convrate;
1637
1638 /*
1639 * Start the conversions.
1640 */
1641 config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1642 if (config < 0)
1643 return config;
1644 data->config_orig = config;
1645 data->config = config;
1646
1647 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1648
1649 /* Check Temperature Range Select */
1650 if (data->kind == adt7461 || data->kind == tmp451) {
1651 if (config & 0x04)
1652 data->flags |= LM90_FLAG_ADT7461_EXT;
1653 }
1654
1655 /*
1656 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1657 * 0.125 degree resolution) and range (0x08, extend range
1658 * to -64 degree) mode for the remote temperature sensor.
1659 */
1660 if (data->kind == max6680)
1661 config |= 0x18;
1662
1663 /*
1664 * Select external channel 0 for max6695/96
1665 */
1666 if (data->kind == max6696)
1667 config &= ~0x08;
1668
1669 config &= 0xBF; /* run */
1670 lm90_update_confreg(data, config);
1671
1672 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
1673 }
1674
lm90_is_tripped(struct i2c_client * client,u16 * status)1675 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1676 {
1677 struct lm90_data *data = i2c_get_clientdata(client);
1678 int st, st2 = 0;
1679
1680 st = lm90_read_reg(client, LM90_REG_R_STATUS);
1681 if (st < 0)
1682 return false;
1683
1684 if (data->kind == max6696) {
1685 st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
1686 if (st2 < 0)
1687 return false;
1688 }
1689
1690 *status = st | (st2 << 8);
1691
1692 if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1693 return false;
1694
1695 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1696 (st2 & MAX6696_STATUS2_LOT2))
1697 dev_warn(&client->dev,
1698 "temp%d out of range, please check!\n", 1);
1699 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1700 (st2 & MAX6696_STATUS2_ROT2))
1701 dev_warn(&client->dev,
1702 "temp%d out of range, please check!\n", 2);
1703 if (st & LM90_STATUS_ROPEN)
1704 dev_warn(&client->dev,
1705 "temp%d diode open, please check!\n", 2);
1706 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1707 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1708 dev_warn(&client->dev,
1709 "temp%d out of range, please check!\n", 3);
1710 if (st2 & MAX6696_STATUS2_R2OPEN)
1711 dev_warn(&client->dev,
1712 "temp%d diode open, please check!\n", 3);
1713
1714 return true;
1715 }
1716
lm90_irq_thread(int irq,void * dev_id)1717 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1718 {
1719 struct i2c_client *client = dev_id;
1720 u16 status;
1721
1722 if (lm90_is_tripped(client, &status))
1723 return IRQ_HANDLED;
1724 else
1725 return IRQ_NONE;
1726 }
1727
lm90_remove_pec(void * dev)1728 static void lm90_remove_pec(void *dev)
1729 {
1730 device_remove_file(dev, &dev_attr_pec);
1731 }
1732
lm90_regulator_disable(void * regulator)1733 static void lm90_regulator_disable(void *regulator)
1734 {
1735 regulator_disable(regulator);
1736 }
1737
1738
1739 static const struct hwmon_ops lm90_ops = {
1740 .is_visible = lm90_is_visible,
1741 .read = lm90_read,
1742 .write = lm90_write,
1743 };
1744
lm90_probe(struct i2c_client * client,const struct i2c_device_id * id)1745 static int lm90_probe(struct i2c_client *client,
1746 const struct i2c_device_id *id)
1747 {
1748 struct device *dev = &client->dev;
1749 struct i2c_adapter *adapter = client->adapter;
1750 struct hwmon_channel_info *info;
1751 struct regulator *regulator;
1752 struct device *hwmon_dev;
1753 struct lm90_data *data;
1754 int err;
1755
1756 regulator = devm_regulator_get(dev, "vcc");
1757 if (IS_ERR(regulator))
1758 return PTR_ERR(regulator);
1759
1760 err = regulator_enable(regulator);
1761 if (err < 0) {
1762 dev_err(dev, "Failed to enable regulator: %d\n", err);
1763 return err;
1764 }
1765
1766 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
1767 if (err)
1768 return err;
1769
1770 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1771 if (!data)
1772 return -ENOMEM;
1773
1774 data->client = client;
1775 i2c_set_clientdata(client, data);
1776 mutex_init(&data->update_lock);
1777
1778 /* Set the device type */
1779 if (client->dev.of_node)
1780 data->kind = (enum chips)of_device_get_match_data(&client->dev);
1781 else
1782 data->kind = id->driver_data;
1783 if (data->kind == adm1032) {
1784 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1785 client->flags &= ~I2C_CLIENT_PEC;
1786 }
1787
1788 /*
1789 * Different devices have different alarm bits triggering the
1790 * ALERT# output
1791 */
1792 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1793
1794 /* Set chip capabilities */
1795 data->flags = lm90_params[data->kind].flags;
1796
1797 data->chip.ops = &lm90_ops;
1798 data->chip.info = data->info;
1799
1800 data->info[0] = HWMON_CHANNEL_INFO(chip,
1801 HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL | HWMON_C_ALARMS);
1802 data->info[1] = &data->temp_info;
1803
1804 info = &data->temp_info;
1805 info->type = hwmon_temp;
1806 info->config = data->channel_config;
1807
1808 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
1809 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM |
1810 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM;
1811 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
1812 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM |
1813 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
1814
1815 if (data->flags & LM90_HAVE_OFFSET)
1816 data->channel_config[1] |= HWMON_T_OFFSET;
1817
1818 if (data->flags & LM90_HAVE_EMERGENCY) {
1819 data->channel_config[0] |= HWMON_T_EMERGENCY |
1820 HWMON_T_EMERGENCY_HYST;
1821 data->channel_config[1] |= HWMON_T_EMERGENCY |
1822 HWMON_T_EMERGENCY_HYST;
1823 }
1824
1825 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1826 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
1827 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
1828 }
1829
1830 if (data->flags & LM90_HAVE_TEMP3) {
1831 data->channel_config[2] = HWMON_T_INPUT |
1832 HWMON_T_MIN | HWMON_T_MAX |
1833 HWMON_T_CRIT | HWMON_T_CRIT_HYST |
1834 HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST |
1835 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
1836 HWMON_T_CRIT_ALARM | HWMON_T_EMERGENCY_ALARM |
1837 HWMON_T_FAULT;
1838 }
1839
1840 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1841
1842 /* Set maximum conversion rate */
1843 data->max_convrate = lm90_params[data->kind].max_convrate;
1844
1845 /* Initialize the LM90 chip */
1846 err = lm90_init_client(client, data);
1847 if (err < 0) {
1848 dev_err(dev, "Failed to initialize device\n");
1849 return err;
1850 }
1851
1852 /*
1853 * The 'pec' attribute is attached to the i2c device and thus created
1854 * separately.
1855 */
1856 if (client->flags & I2C_CLIENT_PEC) {
1857 err = device_create_file(dev, &dev_attr_pec);
1858 if (err)
1859 return err;
1860 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
1861 if (err)
1862 return err;
1863 }
1864
1865 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
1866 data, &data->chip,
1867 NULL);
1868 if (IS_ERR(hwmon_dev))
1869 return PTR_ERR(hwmon_dev);
1870
1871 if (client->irq) {
1872 dev_dbg(dev, "IRQ: %d\n", client->irq);
1873 err = devm_request_threaded_irq(dev, client->irq,
1874 NULL, lm90_irq_thread,
1875 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1876 "lm90", client);
1877 if (err < 0) {
1878 dev_err(dev, "cannot request IRQ %d\n", client->irq);
1879 return err;
1880 }
1881 }
1882
1883 return 0;
1884 }
1885
lm90_alert(struct i2c_client * client,enum i2c_alert_protocol type,unsigned int flag)1886 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
1887 unsigned int flag)
1888 {
1889 u16 alarms;
1890
1891 if (type != I2C_PROTOCOL_SMBUS_ALERT)
1892 return;
1893
1894 if (lm90_is_tripped(client, &alarms)) {
1895 /*
1896 * Disable ALERT# output, because these chips don't implement
1897 * SMBus alert correctly; they should only hold the alert line
1898 * low briefly.
1899 */
1900 struct lm90_data *data = i2c_get_clientdata(client);
1901
1902 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
1903 (alarms & data->alert_alarms)) {
1904 dev_dbg(&client->dev, "Disabling ALERT#\n");
1905 lm90_update_confreg(data, data->config | 0x80);
1906 }
1907 } else {
1908 dev_info(&client->dev, "Everything OK\n");
1909 }
1910 }
1911
1912 static struct i2c_driver lm90_driver = {
1913 .class = I2C_CLASS_HWMON,
1914 .driver = {
1915 .name = "lm90",
1916 .of_match_table = of_match_ptr(lm90_of_match),
1917 },
1918 .probe = lm90_probe,
1919 .alert = lm90_alert,
1920 .id_table = lm90_id,
1921 .detect = lm90_detect,
1922 .address_list = normal_i2c,
1923 };
1924
1925 module_i2c_driver(lm90_driver);
1926
1927 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1928 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1929 MODULE_LICENSE("GPL");
1930