1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
21
22 #define OCC_STATE_SAFE 4
23 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT 0xFF
28
29 #define OCC_FRU_TYPE_VRM 3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34 u16 sensor_id;
35 u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39 u32 sensor_id;
40 u8 fru_type;
41 u8 value;
42 } __packed;
43
44 struct freq_sensor_1 {
45 u16 sensor_id;
46 u16 value;
47 } __packed;
48
49 struct freq_sensor_2 {
50 u32 sensor_id;
51 u16 value;
52 } __packed;
53
54 struct power_sensor_1 {
55 u16 sensor_id;
56 u32 update_tag;
57 u32 accumulator;
58 u16 value;
59 } __packed;
60
61 struct power_sensor_2 {
62 u32 sensor_id;
63 u8 function_id;
64 u8 apss_channel;
65 u16 reserved;
66 u32 update_tag;
67 u64 accumulator;
68 u16 value;
69 } __packed;
70
71 struct power_sensor_data {
72 u16 value;
73 u32 update_tag;
74 u64 accumulator;
75 } __packed;
76
77 struct power_sensor_data_and_time {
78 u16 update_time;
79 u16 value;
80 u32 update_tag;
81 u64 accumulator;
82 } __packed;
83
84 struct power_sensor_a0 {
85 u32 sensor_id;
86 struct power_sensor_data_and_time system;
87 u32 reserved;
88 struct power_sensor_data_and_time proc;
89 struct power_sensor_data vdd;
90 struct power_sensor_data vdn;
91 } __packed;
92
93 struct caps_sensor_2 {
94 u16 cap;
95 u16 system_power;
96 u16 n_cap;
97 u16 max;
98 u16 min;
99 u16 user;
100 u8 user_source;
101 } __packed;
102
103 struct caps_sensor_3 {
104 u16 cap;
105 u16 system_power;
106 u16 n_cap;
107 u16 max;
108 u16 hard_min;
109 u16 soft_min;
110 u16 user;
111 u8 user_source;
112 } __packed;
113
114 struct extended_sensor {
115 union {
116 u8 name[4];
117 u32 sensor_id;
118 };
119 u8 flags;
120 u8 reserved;
121 u8 data[6];
122 } __packed;
123
occ_poll(struct occ * occ)124 static int occ_poll(struct occ *occ)
125 {
126 int rc;
127 u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
128 u8 cmd[8];
129 struct occ_poll_response_header *header;
130
131 /* big endian */
132 cmd[0] = occ->seq_no++; /* sequence number */
133 cmd[1] = 0; /* cmd type */
134 cmd[2] = 0; /* data length msb */
135 cmd[3] = 1; /* data length lsb */
136 cmd[4] = occ->poll_cmd_data; /* data */
137 cmd[5] = checksum >> 8; /* checksum msb */
138 cmd[6] = checksum & 0xFF; /* checksum lsb */
139 cmd[7] = 0;
140
141 /* mutex should already be locked if necessary */
142 rc = occ->send_cmd(occ, cmd);
143 if (rc) {
144 occ->last_error = rc;
145 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
146 occ->error = rc;
147
148 goto done;
149 }
150
151 /* clear error since communication was successful */
152 occ->error_count = 0;
153 occ->last_error = 0;
154 occ->error = 0;
155
156 /* check for safe state */
157 header = (struct occ_poll_response_header *)occ->resp.data;
158 if (header->occ_state == OCC_STATE_SAFE) {
159 if (occ->last_safe) {
160 if (time_after(jiffies,
161 occ->last_safe + OCC_SAFE_TIMEOUT))
162 occ->error = -EHOSTDOWN;
163 } else {
164 occ->last_safe = jiffies;
165 }
166 } else {
167 occ->last_safe = 0;
168 }
169
170 done:
171 occ_sysfs_poll_done(occ);
172 return rc;
173 }
174
occ_set_user_power_cap(struct occ * occ,u16 user_power_cap)175 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
176 {
177 int rc;
178 u8 cmd[8];
179 u16 checksum = 0x24;
180 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
181
182 cmd[0] = 0;
183 cmd[1] = 0x22;
184 cmd[2] = 0;
185 cmd[3] = 2;
186
187 memcpy(&cmd[4], &user_power_cap_be, 2);
188
189 checksum += cmd[4] + cmd[5];
190 cmd[6] = checksum >> 8;
191 cmd[7] = checksum & 0xFF;
192
193 rc = mutex_lock_interruptible(&occ->lock);
194 if (rc)
195 return rc;
196
197 rc = occ->send_cmd(occ, cmd);
198
199 mutex_unlock(&occ->lock);
200
201 return rc;
202 }
203
occ_update_response(struct occ * occ)204 int occ_update_response(struct occ *occ)
205 {
206 int rc = mutex_lock_interruptible(&occ->lock);
207
208 if (rc)
209 return rc;
210
211 /* limit the maximum rate of polling the OCC */
212 if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
213 rc = occ_poll(occ);
214 occ->last_update = jiffies;
215 } else {
216 rc = occ->last_error;
217 }
218
219 mutex_unlock(&occ->lock);
220 return rc;
221 }
222
occ_show_temp_1(struct device * dev,struct device_attribute * attr,char * buf)223 static ssize_t occ_show_temp_1(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 int rc;
227 u32 val = 0;
228 struct temp_sensor_1 *temp;
229 struct occ *occ = dev_get_drvdata(dev);
230 struct occ_sensors *sensors = &occ->sensors;
231 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
232
233 rc = occ_update_response(occ);
234 if (rc)
235 return rc;
236
237 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
238
239 switch (sattr->nr) {
240 case 0:
241 val = get_unaligned_be16(&temp->sensor_id);
242 break;
243 case 1:
244 /*
245 * If a sensor reading has expired and couldn't be refreshed,
246 * OCC returns 0xFFFF for that sensor.
247 */
248 if (temp->value == 0xFFFF)
249 return -EREMOTEIO;
250 val = get_unaligned_be16(&temp->value) * 1000;
251 break;
252 default:
253 return -EINVAL;
254 }
255
256 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
257 }
258
occ_show_temp_2(struct device * dev,struct device_attribute * attr,char * buf)259 static ssize_t occ_show_temp_2(struct device *dev,
260 struct device_attribute *attr, char *buf)
261 {
262 int rc;
263 u32 val = 0;
264 struct temp_sensor_2 *temp;
265 struct occ *occ = dev_get_drvdata(dev);
266 struct occ_sensors *sensors = &occ->sensors;
267 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
268
269 rc = occ_update_response(occ);
270 if (rc)
271 return rc;
272
273 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
274
275 switch (sattr->nr) {
276 case 0:
277 val = get_unaligned_be32(&temp->sensor_id);
278 break;
279 case 1:
280 val = temp->value;
281 if (val == OCC_TEMP_SENSOR_FAULT)
282 return -EREMOTEIO;
283
284 /*
285 * VRM doesn't return temperature, only alarm bit. This
286 * attribute maps to tempX_alarm instead of tempX_input for
287 * VRM
288 */
289 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
290 /* sensor not ready */
291 if (val == 0)
292 return -EAGAIN;
293
294 val *= 1000;
295 }
296 break;
297 case 2:
298 val = temp->fru_type;
299 break;
300 case 3:
301 val = temp->value == OCC_TEMP_SENSOR_FAULT;
302 break;
303 default:
304 return -EINVAL;
305 }
306
307 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
308 }
309
occ_show_freq_1(struct device * dev,struct device_attribute * attr,char * buf)310 static ssize_t occ_show_freq_1(struct device *dev,
311 struct device_attribute *attr, char *buf)
312 {
313 int rc;
314 u16 val = 0;
315 struct freq_sensor_1 *freq;
316 struct occ *occ = dev_get_drvdata(dev);
317 struct occ_sensors *sensors = &occ->sensors;
318 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
319
320 rc = occ_update_response(occ);
321 if (rc)
322 return rc;
323
324 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
325
326 switch (sattr->nr) {
327 case 0:
328 val = get_unaligned_be16(&freq->sensor_id);
329 break;
330 case 1:
331 val = get_unaligned_be16(&freq->value);
332 break;
333 default:
334 return -EINVAL;
335 }
336
337 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
338 }
339
occ_show_freq_2(struct device * dev,struct device_attribute * attr,char * buf)340 static ssize_t occ_show_freq_2(struct device *dev,
341 struct device_attribute *attr, char *buf)
342 {
343 int rc;
344 u32 val = 0;
345 struct freq_sensor_2 *freq;
346 struct occ *occ = dev_get_drvdata(dev);
347 struct occ_sensors *sensors = &occ->sensors;
348 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
349
350 rc = occ_update_response(occ);
351 if (rc)
352 return rc;
353
354 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
355
356 switch (sattr->nr) {
357 case 0:
358 val = get_unaligned_be32(&freq->sensor_id);
359 break;
360 case 1:
361 val = get_unaligned_be16(&freq->value);
362 break;
363 default:
364 return -EINVAL;
365 }
366
367 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
368 }
369
occ_show_power_1(struct device * dev,struct device_attribute * attr,char * buf)370 static ssize_t occ_show_power_1(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 int rc;
374 u64 val = 0;
375 struct power_sensor_1 *power;
376 struct occ *occ = dev_get_drvdata(dev);
377 struct occ_sensors *sensors = &occ->sensors;
378 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
379
380 rc = occ_update_response(occ);
381 if (rc)
382 return rc;
383
384 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
385
386 switch (sattr->nr) {
387 case 0:
388 val = get_unaligned_be16(&power->sensor_id);
389 break;
390 case 1:
391 val = get_unaligned_be32(&power->accumulator) /
392 get_unaligned_be32(&power->update_tag);
393 val *= 1000000ULL;
394 break;
395 case 2:
396 val = (u64)get_unaligned_be32(&power->update_tag) *
397 occ->powr_sample_time_us;
398 break;
399 case 3:
400 val = get_unaligned_be16(&power->value) * 1000000ULL;
401 break;
402 default:
403 return -EINVAL;
404 }
405
406 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
407 }
408
occ_get_powr_avg(u64 * accum,u32 * samples)409 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
410 {
411 u64 divisor = get_unaligned_be32(samples);
412
413 return (divisor == 0) ? 0 :
414 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
415 }
416
occ_show_power_2(struct device * dev,struct device_attribute * attr,char * buf)417 static ssize_t occ_show_power_2(struct device *dev,
418 struct device_attribute *attr, char *buf)
419 {
420 int rc;
421 u64 val = 0;
422 struct power_sensor_2 *power;
423 struct occ *occ = dev_get_drvdata(dev);
424 struct occ_sensors *sensors = &occ->sensors;
425 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
426
427 rc = occ_update_response(occ);
428 if (rc)
429 return rc;
430
431 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
432
433 switch (sattr->nr) {
434 case 0:
435 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
436 get_unaligned_be32(&power->sensor_id),
437 power->function_id, power->apss_channel);
438 case 1:
439 val = occ_get_powr_avg(&power->accumulator,
440 &power->update_tag);
441 break;
442 case 2:
443 val = (u64)get_unaligned_be32(&power->update_tag) *
444 occ->powr_sample_time_us;
445 break;
446 case 3:
447 val = get_unaligned_be16(&power->value) * 1000000ULL;
448 break;
449 default:
450 return -EINVAL;
451 }
452
453 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
454 }
455
occ_show_power_a0(struct device * dev,struct device_attribute * attr,char * buf)456 static ssize_t occ_show_power_a0(struct device *dev,
457 struct device_attribute *attr, char *buf)
458 {
459 int rc;
460 u64 val = 0;
461 struct power_sensor_a0 *power;
462 struct occ *occ = dev_get_drvdata(dev);
463 struct occ_sensors *sensors = &occ->sensors;
464 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
465
466 rc = occ_update_response(occ);
467 if (rc)
468 return rc;
469
470 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
471
472 switch (sattr->nr) {
473 case 0:
474 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
475 get_unaligned_be32(&power->sensor_id));
476 case 1:
477 val = occ_get_powr_avg(&power->system.accumulator,
478 &power->system.update_tag);
479 break;
480 case 2:
481 val = (u64)get_unaligned_be32(&power->system.update_tag) *
482 occ->powr_sample_time_us;
483 break;
484 case 3:
485 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
486 break;
487 case 4:
488 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
489 get_unaligned_be32(&power->sensor_id));
490 case 5:
491 val = occ_get_powr_avg(&power->proc.accumulator,
492 &power->proc.update_tag);
493 break;
494 case 6:
495 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
496 occ->powr_sample_time_us;
497 break;
498 case 7:
499 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
500 break;
501 case 8:
502 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
503 get_unaligned_be32(&power->sensor_id));
504 case 9:
505 val = occ_get_powr_avg(&power->vdd.accumulator,
506 &power->vdd.update_tag);
507 break;
508 case 10:
509 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
510 occ->powr_sample_time_us;
511 break;
512 case 11:
513 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
514 break;
515 case 12:
516 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
517 get_unaligned_be32(&power->sensor_id));
518 case 13:
519 val = occ_get_powr_avg(&power->vdn.accumulator,
520 &power->vdn.update_tag);
521 break;
522 case 14:
523 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
524 occ->powr_sample_time_us;
525 break;
526 case 15:
527 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
528 break;
529 default:
530 return -EINVAL;
531 }
532
533 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
534 }
535
occ_show_caps_1_2(struct device * dev,struct device_attribute * attr,char * buf)536 static ssize_t occ_show_caps_1_2(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 int rc;
540 u64 val = 0;
541 struct caps_sensor_2 *caps;
542 struct occ *occ = dev_get_drvdata(dev);
543 struct occ_sensors *sensors = &occ->sensors;
544 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
545
546 rc = occ_update_response(occ);
547 if (rc)
548 return rc;
549
550 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
551
552 switch (sattr->nr) {
553 case 0:
554 return snprintf(buf, PAGE_SIZE - 1, "system\n");
555 case 1:
556 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
557 break;
558 case 2:
559 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
560 break;
561 case 3:
562 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
563 break;
564 case 4:
565 val = get_unaligned_be16(&caps->max) * 1000000ULL;
566 break;
567 case 5:
568 val = get_unaligned_be16(&caps->min) * 1000000ULL;
569 break;
570 case 6:
571 val = get_unaligned_be16(&caps->user) * 1000000ULL;
572 break;
573 case 7:
574 if (occ->sensors.caps.version == 1)
575 return -EINVAL;
576
577 val = caps->user_source;
578 break;
579 default:
580 return -EINVAL;
581 }
582
583 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
584 }
585
occ_show_caps_3(struct device * dev,struct device_attribute * attr,char * buf)586 static ssize_t occ_show_caps_3(struct device *dev,
587 struct device_attribute *attr, char *buf)
588 {
589 int rc;
590 u64 val = 0;
591 struct caps_sensor_3 *caps;
592 struct occ *occ = dev_get_drvdata(dev);
593 struct occ_sensors *sensors = &occ->sensors;
594 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
595
596 rc = occ_update_response(occ);
597 if (rc)
598 return rc;
599
600 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
601
602 switch (sattr->nr) {
603 case 0:
604 return snprintf(buf, PAGE_SIZE - 1, "system\n");
605 case 1:
606 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
607 break;
608 case 2:
609 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
610 break;
611 case 3:
612 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
613 break;
614 case 4:
615 val = get_unaligned_be16(&caps->max) * 1000000ULL;
616 break;
617 case 5:
618 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
619 break;
620 case 6:
621 val = get_unaligned_be16(&caps->user) * 1000000ULL;
622 break;
623 case 7:
624 val = caps->user_source;
625 break;
626 default:
627 return -EINVAL;
628 }
629
630 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
631 }
632
occ_store_caps_user(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)633 static ssize_t occ_store_caps_user(struct device *dev,
634 struct device_attribute *attr,
635 const char *buf, size_t count)
636 {
637 int rc;
638 u16 user_power_cap;
639 unsigned long long value;
640 struct occ *occ = dev_get_drvdata(dev);
641
642 rc = kstrtoull(buf, 0, &value);
643 if (rc)
644 return rc;
645
646 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
647
648 rc = occ_set_user_power_cap(occ, user_power_cap);
649 if (rc)
650 return rc;
651
652 return count;
653 }
654
occ_show_extended(struct device * dev,struct device_attribute * attr,char * buf)655 static ssize_t occ_show_extended(struct device *dev,
656 struct device_attribute *attr, char *buf)
657 {
658 int rc;
659 struct extended_sensor *extn;
660 struct occ *occ = dev_get_drvdata(dev);
661 struct occ_sensors *sensors = &occ->sensors;
662 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
663
664 rc = occ_update_response(occ);
665 if (rc)
666 return rc;
667
668 extn = ((struct extended_sensor *)sensors->extended.data) +
669 sattr->index;
670
671 switch (sattr->nr) {
672 case 0:
673 if (extn->flags & EXTN_FLAG_SENSOR_ID)
674 rc = snprintf(buf, PAGE_SIZE - 1, "%u",
675 get_unaligned_be32(&extn->sensor_id));
676 else
677 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
678 extn->name[0], extn->name[1],
679 extn->name[2], extn->name[3]);
680 break;
681 case 1:
682 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
683 break;
684 case 2:
685 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
686 extn->data[0], extn->data[1], extn->data[2],
687 extn->data[3], extn->data[4], extn->data[5]);
688 break;
689 default:
690 return -EINVAL;
691 }
692
693 return rc;
694 }
695
696 /*
697 * Some helper macros to make it easier to define an occ_attribute. Since these
698 * are dynamically allocated, we shouldn't use the existing kernel macros which
699 * stringify the name argument.
700 */
701 #define ATTR_OCC(_name, _mode, _show, _store) { \
702 .attr = { \
703 .name = _name, \
704 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
705 }, \
706 .show = _show, \
707 .store = _store, \
708 }
709
710 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
711 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
712 .index = _index, \
713 .nr = _nr, \
714 }
715
716 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
717 ((struct sensor_device_attribute_2) \
718 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
719
720 /*
721 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
722 * use our own instead of the built-in hwmon attribute types.
723 */
occ_setup_sensor_attrs(struct occ * occ)724 static int occ_setup_sensor_attrs(struct occ *occ)
725 {
726 unsigned int i, s, num_attrs = 0;
727 struct device *dev = occ->bus_dev;
728 struct occ_sensors *sensors = &occ->sensors;
729 struct occ_attribute *attr;
730 struct temp_sensor_2 *temp;
731 ssize_t (*show_temp)(struct device *, struct device_attribute *,
732 char *) = occ_show_temp_1;
733 ssize_t (*show_freq)(struct device *, struct device_attribute *,
734 char *) = occ_show_freq_1;
735 ssize_t (*show_power)(struct device *, struct device_attribute *,
736 char *) = occ_show_power_1;
737 ssize_t (*show_caps)(struct device *, struct device_attribute *,
738 char *) = occ_show_caps_1_2;
739
740 switch (sensors->temp.version) {
741 case 1:
742 num_attrs += (sensors->temp.num_sensors * 2);
743 break;
744 case 2:
745 num_attrs += (sensors->temp.num_sensors * 4);
746 show_temp = occ_show_temp_2;
747 break;
748 default:
749 sensors->temp.num_sensors = 0;
750 }
751
752 switch (sensors->freq.version) {
753 case 2:
754 show_freq = occ_show_freq_2;
755 /* fall through */
756 case 1:
757 num_attrs += (sensors->freq.num_sensors * 2);
758 break;
759 default:
760 sensors->freq.num_sensors = 0;
761 }
762
763 switch (sensors->power.version) {
764 case 2:
765 show_power = occ_show_power_2;
766 /* fall through */
767 case 1:
768 num_attrs += (sensors->power.num_sensors * 4);
769 break;
770 case 0xA0:
771 num_attrs += (sensors->power.num_sensors * 16);
772 show_power = occ_show_power_a0;
773 break;
774 default:
775 sensors->power.num_sensors = 0;
776 }
777
778 switch (sensors->caps.version) {
779 case 1:
780 num_attrs += (sensors->caps.num_sensors * 7);
781 break;
782 case 3:
783 show_caps = occ_show_caps_3;
784 /* fall through */
785 case 2:
786 num_attrs += (sensors->caps.num_sensors * 8);
787 break;
788 default:
789 sensors->caps.num_sensors = 0;
790 }
791
792 switch (sensors->extended.version) {
793 case 1:
794 num_attrs += (sensors->extended.num_sensors * 3);
795 break;
796 default:
797 sensors->extended.num_sensors = 0;
798 }
799
800 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
801 GFP_KERNEL);
802 if (!occ->attrs)
803 return -ENOMEM;
804
805 /* null-terminated list */
806 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
807 num_attrs + 1, GFP_KERNEL);
808 if (!occ->group.attrs)
809 return -ENOMEM;
810
811 attr = occ->attrs;
812
813 for (i = 0; i < sensors->temp.num_sensors; ++i) {
814 s = i + 1;
815 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
816
817 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
818 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
819 0, i);
820 attr++;
821
822 if (sensors->temp.version > 1 &&
823 temp->fru_type == OCC_FRU_TYPE_VRM) {
824 snprintf(attr->name, sizeof(attr->name),
825 "temp%d_alarm", s);
826 } else {
827 snprintf(attr->name, sizeof(attr->name),
828 "temp%d_input", s);
829 }
830
831 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
832 1, i);
833 attr++;
834
835 if (sensors->temp.version > 1) {
836 snprintf(attr->name, sizeof(attr->name),
837 "temp%d_fru_type", s);
838 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
839 show_temp, NULL, 2, i);
840 attr++;
841
842 snprintf(attr->name, sizeof(attr->name),
843 "temp%d_fault", s);
844 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
845 show_temp, NULL, 3, i);
846 attr++;
847 }
848 }
849
850 for (i = 0; i < sensors->freq.num_sensors; ++i) {
851 s = i + 1;
852
853 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
854 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
855 0, i);
856 attr++;
857
858 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
859 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
860 1, i);
861 attr++;
862 }
863
864 if (sensors->power.version == 0xA0) {
865 /*
866 * Special case for many-attribute power sensor. Split it into
867 * a sensor number per power type, emulating several sensors.
868 */
869 for (i = 0; i < sensors->power.num_sensors; ++i) {
870 unsigned int j;
871 unsigned int nr = 0;
872
873 s = (i * 4) + 1;
874
875 for (j = 0; j < 4; ++j) {
876 snprintf(attr->name, sizeof(attr->name),
877 "power%d_label", s);
878 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
879 show_power, NULL,
880 nr++, i);
881 attr++;
882
883 snprintf(attr->name, sizeof(attr->name),
884 "power%d_average", s);
885 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
886 show_power, NULL,
887 nr++, i);
888 attr++;
889
890 snprintf(attr->name, sizeof(attr->name),
891 "power%d_average_interval", s);
892 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
893 show_power, NULL,
894 nr++, i);
895 attr++;
896
897 snprintf(attr->name, sizeof(attr->name),
898 "power%d_input", s);
899 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
900 show_power, NULL,
901 nr++, i);
902 attr++;
903
904 s++;
905 }
906 }
907
908 s = (sensors->power.num_sensors * 4) + 1;
909 } else {
910 for (i = 0; i < sensors->power.num_sensors; ++i) {
911 s = i + 1;
912
913 snprintf(attr->name, sizeof(attr->name),
914 "power%d_label", s);
915 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
916 show_power, NULL, 0, i);
917 attr++;
918
919 snprintf(attr->name, sizeof(attr->name),
920 "power%d_average", s);
921 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
922 show_power, NULL, 1, i);
923 attr++;
924
925 snprintf(attr->name, sizeof(attr->name),
926 "power%d_average_interval", s);
927 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
928 show_power, NULL, 2, i);
929 attr++;
930
931 snprintf(attr->name, sizeof(attr->name),
932 "power%d_input", s);
933 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
934 show_power, NULL, 3, i);
935 attr++;
936 }
937
938 s = sensors->power.num_sensors + 1;
939 }
940
941 if (sensors->caps.num_sensors >= 1) {
942 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
943 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
944 0, 0);
945 attr++;
946
947 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
948 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
949 1, 0);
950 attr++;
951
952 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
953 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
954 2, 0);
955 attr++;
956
957 snprintf(attr->name, sizeof(attr->name),
958 "power%d_cap_not_redundant", s);
959 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
960 3, 0);
961 attr++;
962
963 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
964 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
965 4, 0);
966 attr++;
967
968 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
969 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
970 5, 0);
971 attr++;
972
973 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
974 s);
975 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
976 occ_store_caps_user, 6, 0);
977 attr++;
978
979 if (sensors->caps.version > 1) {
980 snprintf(attr->name, sizeof(attr->name),
981 "power%d_cap_user_source", s);
982 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983 show_caps, NULL, 7, 0);
984 attr++;
985 }
986 }
987
988 for (i = 0; i < sensors->extended.num_sensors; ++i) {
989 s = i + 1;
990
991 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
992 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
993 occ_show_extended, NULL, 0, i);
994 attr++;
995
996 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
997 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
998 occ_show_extended, NULL, 1, i);
999 attr++;
1000
1001 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1002 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003 occ_show_extended, NULL, 2, i);
1004 attr++;
1005 }
1006
1007 /* put the sensors in the group */
1008 for (i = 0; i < num_attrs; ++i) {
1009 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1010 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1011 }
1012
1013 return 0;
1014 }
1015
1016 /* only need to do this once at startup, as OCC won't change sensors on us */
occ_parse_poll_response(struct occ * occ)1017 static void occ_parse_poll_response(struct occ *occ)
1018 {
1019 unsigned int i, old_offset, offset = 0, size = 0;
1020 struct occ_sensor *sensor;
1021 struct occ_sensors *sensors = &occ->sensors;
1022 struct occ_response *resp = &occ->resp;
1023 struct occ_poll_response *poll =
1024 (struct occ_poll_response *)&resp->data[0];
1025 struct occ_poll_response_header *header = &poll->header;
1026 struct occ_sensor_data_block *block = &poll->block;
1027
1028 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1029 header->occ_code_level);
1030
1031 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1032 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1033 old_offset = offset;
1034 offset = (block->header.num_sensors *
1035 block->header.sensor_length) + sizeof(block->header);
1036 size += offset;
1037
1038 /* validate all the length/size fields */
1039 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1040 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1041 return;
1042 }
1043
1044 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1045 old_offset, offset - 1, block->header.eye_catcher,
1046 block->header.num_sensors);
1047
1048 /* match sensor block type */
1049 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1050 sensor = &sensors->temp;
1051 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1052 sensor = &sensors->freq;
1053 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1054 sensor = &sensors->power;
1055 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1056 sensor = &sensors->caps;
1057 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1058 sensor = &sensors->extended;
1059 else {
1060 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1061 block->header.eye_catcher);
1062 continue;
1063 }
1064
1065 sensor->num_sensors = block->header.num_sensors;
1066 sensor->version = block->header.sensor_format;
1067 sensor->data = &block->data;
1068 }
1069
1070 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1071 sizeof(*header), size + sizeof(*header));
1072 }
1073
occ_setup(struct occ * occ,const char * name)1074 int occ_setup(struct occ *occ, const char *name)
1075 {
1076 int rc;
1077
1078 mutex_init(&occ->lock);
1079 occ->groups[0] = &occ->group;
1080
1081 /* no need to lock */
1082 rc = occ_poll(occ);
1083 if (rc == -ESHUTDOWN) {
1084 dev_info(occ->bus_dev, "host is not ready\n");
1085 return rc;
1086 } else if (rc < 0) {
1087 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1088 rc);
1089 return rc;
1090 }
1091
1092 occ_parse_poll_response(occ);
1093
1094 rc = occ_setup_sensor_attrs(occ);
1095 if (rc) {
1096 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1097 rc);
1098 return rc;
1099 }
1100
1101 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1102 occ, occ->groups);
1103 if (IS_ERR(occ->hwmon)) {
1104 rc = PTR_ERR(occ->hwmon);
1105 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1106 rc);
1107 return rc;
1108 }
1109
1110 rc = occ_setup_sysfs(occ);
1111 if (rc)
1112 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1113
1114 return rc;
1115 }
1116 EXPORT_SYMBOL_GPL(occ_setup);
1117
1118 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1119 MODULE_DESCRIPTION("Common OCC hwmon code");
1120 MODULE_LICENSE("GPL");
1121