• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for IDE interfaces on PowerMacs.
4  *
5  * These IDE interfaces are memory-mapped and have a DBDMA channel
6  * for doing DMA.
7  *
8  *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9  *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10  *
11  * Some code taken from drivers/ide/ide-dma.c:
12  *
13  *  Copyright (c) 1995-1998  Mark Lord
14  *
15  * TODO: - Use pre-calculated (kauai) timing tables all the time and
16  * get rid of the "rounded" tables used previously, so we have the
17  * same table format for all controllers and can then just have one
18  * big table
19  */
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/ide.h>
25 #include <linux/notifier.h>
26 #include <linux/module.h>
27 #include <linux/reboot.h>
28 #include <linux/pci.h>
29 #include <linux/adb.h>
30 #include <linux/pmu.h>
31 #include <linux/scatterlist.h>
32 #include <linux/slab.h>
33 
34 #include <asm/prom.h>
35 #include <asm/io.h>
36 #include <asm/dbdma.h>
37 #include <asm/ide.h>
38 #include <asm/machdep.h>
39 #include <asm/pmac_feature.h>
40 #include <asm/sections.h>
41 #include <asm/irq.h>
42 #include <asm/mediabay.h>
43 
44 #define DRV_NAME "ide-pmac"
45 
46 #undef IDE_PMAC_DEBUG
47 
48 #define DMA_WAIT_TIMEOUT	50
49 
50 typedef struct pmac_ide_hwif {
51 	unsigned long			regbase;
52 	int				irq;
53 	int				kind;
54 	int				aapl_bus_id;
55 	unsigned			broken_dma : 1;
56 	unsigned			broken_dma_warn : 1;
57 	struct device_node*		node;
58 	struct macio_dev		*mdev;
59 	u32				timings[4];
60 	volatile u32 __iomem *		*kauai_fcr;
61 	ide_hwif_t			*hwif;
62 
63 	/* Those fields are duplicating what is in hwif. We currently
64 	 * can't use the hwif ones because of some assumptions that are
65 	 * beeing done by the generic code about the kind of dma controller
66 	 * and format of the dma table. This will have to be fixed though.
67 	 */
68 	volatile struct dbdma_regs __iomem *	dma_regs;
69 	struct dbdma_cmd*		dma_table_cpu;
70 } pmac_ide_hwif_t;
71 
72 enum {
73 	controller_ohare,	/* OHare based */
74 	controller_heathrow,	/* Heathrow/Paddington */
75 	controller_kl_ata3,	/* KeyLargo ATA-3 */
76 	controller_kl_ata4,	/* KeyLargo ATA-4 */
77 	controller_un_ata6,	/* UniNorth2 ATA-6 */
78 	controller_k2_ata6,	/* K2 ATA-6 */
79 	controller_sh_ata6,	/* Shasta ATA-6 */
80 };
81 
82 static const char* model_name[] = {
83 	"OHare ATA",		/* OHare based */
84 	"Heathrow ATA",		/* Heathrow/Paddington */
85 	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
86 	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
87 	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
88 	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
89 	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
90 };
91 
92 /*
93  * Extra registers, both 32-bit little-endian
94  */
95 #define IDE_TIMING_CONFIG	0x200
96 #define IDE_INTERRUPT		0x300
97 
98 /* Kauai (U2) ATA has different register setup */
99 #define IDE_KAUAI_PIO_CONFIG	0x200
100 #define IDE_KAUAI_ULTRA_CONFIG	0x210
101 #define IDE_KAUAI_POLL_CONFIG	0x220
102 
103 /*
104  * Timing configuration register definitions
105  */
106 
107 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
108 #define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
109 #define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
110 #define IDE_SYSCLK_NS		30	/* 33Mhz cell */
111 #define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
112 
113 /* 133Mhz cell, found in shasta.
114  * See comments about 100 Mhz Uninorth 2...
115  * Note that PIO_MASK and MDMA_MASK seem to overlap
116  */
117 #define TR_133_PIOREG_PIO_MASK		0xff000fff
118 #define TR_133_PIOREG_MDMA_MASK		0x00fff800
119 #define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
120 #define TR_133_UDMAREG_UDMA_EN		0x00000001
121 
122 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
123  * this one yet, it appears as a pci device (106b/0033) on uninorth
124  * internal PCI bus and it's clock is controlled like gem or fw. It
125  * appears to be an evolution of keylargo ATA4 with a timing register
126  * extended to 2 32bits registers and a similar DBDMA channel. Other
127  * registers seem to exist but I can't tell much about them.
128  *
129  * So far, I'm using pre-calculated tables for this extracted from
130  * the values used by the MacOS X driver.
131  *
132  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
133  * register controls the UDMA timings. At least, it seems bit 0
134  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
135  * cycle time in units of 10ns. Bits 8..15 are used by I don't
136  * know their meaning yet
137  */
138 #define TR_100_PIOREG_PIO_MASK		0xff000fff
139 #define TR_100_PIOREG_MDMA_MASK		0x00fff000
140 #define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
141 #define TR_100_UDMAREG_UDMA_EN		0x00000001
142 
143 
144 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
145  * 40 connector cable and to 4 on 80 connector one.
146  * Clock unit is 15ns (66Mhz)
147  *
148  * 3 Values can be programmed:
149  *  - Write data setup, which appears to match the cycle time. They
150  *    also call it DIOW setup.
151  *  - Ready to pause time (from spec)
152  *  - Address setup. That one is weird. I don't see where exactly
153  *    it fits in UDMA cycles, I got it's name from an obscure piece
154  *    of commented out code in Darwin. They leave it to 0, we do as
155  *    well, despite a comment that would lead to think it has a
156  *    min value of 45ns.
157  * Apple also add 60ns to the write data setup (or cycle time ?) on
158  * reads.
159  */
160 #define TR_66_UDMA_MASK			0xfff00000
161 #define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
162 #define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
163 #define TR_66_UDMA_ADDRSETUP_SHIFT	29
164 #define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
165 #define TR_66_UDMA_RDY2PAUS_SHIFT	25
166 #define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
167 #define TR_66_UDMA_WRDATASETUP_SHIFT	21
168 #define TR_66_MDMA_MASK			0x000ffc00
169 #define TR_66_MDMA_RECOVERY_MASK	0x000f8000
170 #define TR_66_MDMA_RECOVERY_SHIFT	15
171 #define TR_66_MDMA_ACCESS_MASK		0x00007c00
172 #define TR_66_MDMA_ACCESS_SHIFT		10
173 #define TR_66_PIO_MASK			0x000003ff
174 #define TR_66_PIO_RECOVERY_MASK		0x000003e0
175 #define TR_66_PIO_RECOVERY_SHIFT	5
176 #define TR_66_PIO_ACCESS_MASK		0x0000001f
177 #define TR_66_PIO_ACCESS_SHIFT		0
178 
179 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
180  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
181  *
182  * The access time and recovery time can be programmed. Some older
183  * Darwin code base limit OHare to 150ns cycle time. I decided to do
184  * the same here fore safety against broken old hardware ;)
185  * The HalfTick bit, when set, adds half a clock (15ns) to the access
186  * time and removes one from recovery. It's not supported on KeyLargo
187  * implementation afaik. The E bit appears to be set for PIO mode 0 and
188  * is used to reach long timings used in this mode.
189  */
190 #define TR_33_MDMA_MASK			0x003ff800
191 #define TR_33_MDMA_RECOVERY_MASK	0x001f0000
192 #define TR_33_MDMA_RECOVERY_SHIFT	16
193 #define TR_33_MDMA_ACCESS_MASK		0x0000f800
194 #define TR_33_MDMA_ACCESS_SHIFT		11
195 #define TR_33_MDMA_HALFTICK		0x00200000
196 #define TR_33_PIO_MASK			0x000007ff
197 #define TR_33_PIO_E			0x00000400
198 #define TR_33_PIO_RECOVERY_MASK		0x000003e0
199 #define TR_33_PIO_RECOVERY_SHIFT	5
200 #define TR_33_PIO_ACCESS_MASK		0x0000001f
201 #define TR_33_PIO_ACCESS_SHIFT		0
202 
203 /*
204  * Interrupt register definitions
205  */
206 #define IDE_INTR_DMA			0x80000000
207 #define IDE_INTR_DEVICE			0x40000000
208 
209 /*
210  * FCR Register on Kauai. Not sure what bit 0x4 is  ...
211  */
212 #define KAUAI_FCR_UATA_MAGIC		0x00000004
213 #define KAUAI_FCR_UATA_RESET_N		0x00000002
214 #define KAUAI_FCR_UATA_ENABLE		0x00000001
215 
216 /* Rounded Multiword DMA timings
217  *
218  * I gave up finding a generic formula for all controller
219  * types and instead, built tables based on timing values
220  * used by Apple in Darwin's implementation.
221  */
222 struct mdma_timings_t {
223 	int	accessTime;
224 	int	recoveryTime;
225 	int	cycleTime;
226 };
227 
228 struct mdma_timings_t mdma_timings_33[] =
229 {
230     { 240, 240, 480 },
231     { 180, 180, 360 },
232     { 135, 135, 270 },
233     { 120, 120, 240 },
234     { 105, 105, 210 },
235     {  90,  90, 180 },
236     {  75,  75, 150 },
237     {  75,  45, 120 },
238     {   0,   0,   0 }
239 };
240 
241 struct mdma_timings_t mdma_timings_33k[] =
242 {
243     { 240, 240, 480 },
244     { 180, 180, 360 },
245     { 150, 150, 300 },
246     { 120, 120, 240 },
247     {  90, 120, 210 },
248     {  90,  90, 180 },
249     {  90,  60, 150 },
250     {  90,  30, 120 },
251     {   0,   0,   0 }
252 };
253 
254 struct mdma_timings_t mdma_timings_66[] =
255 {
256     { 240, 240, 480 },
257     { 180, 180, 360 },
258     { 135, 135, 270 },
259     { 120, 120, 240 },
260     { 105, 105, 210 },
261     {  90,  90, 180 },
262     {  90,  75, 165 },
263     {  75,  45, 120 },
264     {   0,   0,   0 }
265 };
266 
267 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
268 struct {
269 	int	addrSetup; /* ??? */
270 	int	rdy2pause;
271 	int	wrDataSetup;
272 } kl66_udma_timings[] =
273 {
274     {   0, 180,  120 },	/* Mode 0 */
275     {   0, 150,  90 },	/*      1 */
276     {   0, 120,  60 },	/*      2 */
277     {   0, 90,   45 },	/*      3 */
278     {   0, 90,   30 }	/*      4 */
279 };
280 
281 /* UniNorth 2 ATA/100 timings */
282 struct kauai_timing {
283 	int	cycle_time;
284 	u32	timing_reg;
285 };
286 
287 static struct kauai_timing	kauai_pio_timings[] =
288 {
289 	{ 930	, 0x08000fff },
290 	{ 600	, 0x08000a92 },
291 	{ 383	, 0x0800060f },
292 	{ 360	, 0x08000492 },
293 	{ 330	, 0x0800048f },
294 	{ 300	, 0x080003cf },
295 	{ 270	, 0x080003cc },
296 	{ 240	, 0x0800038b },
297 	{ 239	, 0x0800030c },
298 	{ 180	, 0x05000249 },
299 	{ 120	, 0x04000148 },
300 	{ 0	, 0 },
301 };
302 
303 static struct kauai_timing	kauai_mdma_timings[] =
304 {
305 	{ 1260	, 0x00fff000 },
306 	{ 480	, 0x00618000 },
307 	{ 360	, 0x00492000 },
308 	{ 270	, 0x0038e000 },
309 	{ 240	, 0x0030c000 },
310 	{ 210	, 0x002cb000 },
311 	{ 180	, 0x00249000 },
312 	{ 150	, 0x00209000 },
313 	{ 120	, 0x00148000 },
314 	{ 0	, 0 },
315 };
316 
317 static struct kauai_timing	kauai_udma_timings[] =
318 {
319 	{ 120	, 0x000070c0 },
320 	{ 90	, 0x00005d80 },
321 	{ 60	, 0x00004a60 },
322 	{ 45	, 0x00003a50 },
323 	{ 30	, 0x00002a30 },
324 	{ 20	, 0x00002921 },
325 	{ 0	, 0 },
326 };
327 
328 static struct kauai_timing	shasta_pio_timings[] =
329 {
330 	{ 930	, 0x08000fff },
331 	{ 600	, 0x0A000c97 },
332 	{ 383	, 0x07000712 },
333 	{ 360	, 0x040003cd },
334 	{ 330	, 0x040003cd },
335 	{ 300	, 0x040003cd },
336 	{ 270	, 0x040003cd },
337 	{ 240	, 0x040003cd },
338 	{ 239	, 0x040003cd },
339 	{ 180	, 0x0400028b },
340 	{ 120	, 0x0400010a },
341 	{ 0	, 0 },
342 };
343 
344 static struct kauai_timing	shasta_mdma_timings[] =
345 {
346 	{ 1260	, 0x00fff000 },
347 	{ 480	, 0x00820800 },
348 	{ 360	, 0x00820800 },
349 	{ 270	, 0x00820800 },
350 	{ 240	, 0x00820800 },
351 	{ 210	, 0x00820800 },
352 	{ 180	, 0x00820800 },
353 	{ 150	, 0x0028b000 },
354 	{ 120	, 0x001ca000 },
355 	{ 0	, 0 },
356 };
357 
358 static struct kauai_timing	shasta_udma133_timings[] =
359 {
360 	{ 120   , 0x00035901, },
361 	{ 90    , 0x000348b1, },
362 	{ 60    , 0x00033881, },
363 	{ 45    , 0x00033861, },
364 	{ 30    , 0x00033841, },
365 	{ 20    , 0x00033031, },
366 	{ 15    , 0x00033021, },
367 	{ 0	, 0 },
368 };
369 
370 
371 static inline u32
kauai_lookup_timing(struct kauai_timing * table,int cycle_time)372 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
373 {
374 	int i;
375 
376 	for (i=0; table[i].cycle_time; i++)
377 		if (cycle_time > table[i+1].cycle_time)
378 			return table[i].timing_reg;
379 	BUG();
380 	return 0;
381 }
382 
383 /* allow up to 256 DBDMA commands per xfer */
384 #define MAX_DCMDS		256
385 
386 /*
387  * Wait 1s for disk to answer on IDE bus after a hard reset
388  * of the device (via GPIO/FCR).
389  *
390  * Some devices seem to "pollute" the bus even after dropping
391  * the BSY bit (typically some combo drives slave on the UDMA
392  * bus) after a hard reset. Since we hard reset all drives on
393  * KeyLargo ATA66, we have to keep that delay around. I may end
394  * up not hard resetting anymore on these and keep the delay only
395  * for older interfaces instead (we have to reset when coming
396  * from MacOS...) --BenH.
397  */
398 #define IDE_WAKEUP_DELAY	(1*HZ)
399 
400 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
401 
402 #define PMAC_IDE_REG(x) \
403 	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
404 
405 /*
406  * Apply the timings of the proper unit (master/slave) to the shared
407  * timing register when selecting that unit. This version is for
408  * ASICs with a single timing register
409  */
pmac_ide_apply_timings(ide_drive_t * drive)410 static void pmac_ide_apply_timings(ide_drive_t *drive)
411 {
412 	ide_hwif_t *hwif = drive->hwif;
413 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
414 
415 	if (drive->dn & 1)
416 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
417 	else
418 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
419 	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
420 }
421 
422 /*
423  * Apply the timings of the proper unit (master/slave) to the shared
424  * timing register when selecting that unit. This version is for
425  * ASICs with a dual timing register (Kauai)
426  */
pmac_ide_kauai_apply_timings(ide_drive_t * drive)427 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
428 {
429 	ide_hwif_t *hwif = drive->hwif;
430 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
431 
432 	if (drive->dn & 1) {
433 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
434 		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
435 	} else {
436 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
437 		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
438 	}
439 	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
440 }
441 
442 /*
443  * Force an update of controller timing values for a given drive
444  */
445 static void
pmac_ide_do_update_timings(ide_drive_t * drive)446 pmac_ide_do_update_timings(ide_drive_t *drive)
447 {
448 	ide_hwif_t *hwif = drive->hwif;
449 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
450 
451 	if (pmif->kind == controller_sh_ata6 ||
452 	    pmif->kind == controller_un_ata6 ||
453 	    pmif->kind == controller_k2_ata6)
454 		pmac_ide_kauai_apply_timings(drive);
455 	else
456 		pmac_ide_apply_timings(drive);
457 }
458 
pmac_dev_select(ide_drive_t * drive)459 static void pmac_dev_select(ide_drive_t *drive)
460 {
461 	pmac_ide_apply_timings(drive);
462 
463 	writeb(drive->select | ATA_DEVICE_OBS,
464 	       (void __iomem *)drive->hwif->io_ports.device_addr);
465 }
466 
pmac_kauai_dev_select(ide_drive_t * drive)467 static void pmac_kauai_dev_select(ide_drive_t *drive)
468 {
469 	pmac_ide_kauai_apply_timings(drive);
470 
471 	writeb(drive->select | ATA_DEVICE_OBS,
472 	       (void __iomem *)drive->hwif->io_ports.device_addr);
473 }
474 
pmac_exec_command(ide_hwif_t * hwif,u8 cmd)475 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
476 {
477 	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
478 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
479 				     + IDE_TIMING_CONFIG));
480 }
481 
pmac_write_devctl(ide_hwif_t * hwif,u8 ctl)482 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
483 {
484 	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
485 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
486 				     + IDE_TIMING_CONFIG));
487 }
488 
489 /*
490  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
491  */
pmac_ide_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)492 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
493 {
494 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
495 	const u8 pio = drive->pio_mode - XFER_PIO_0;
496 	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
497 	u32 *timings, t;
498 	unsigned accessTicks, recTicks;
499 	unsigned accessTime, recTime;
500 	unsigned int cycle_time;
501 
502 	/* which drive is it ? */
503 	timings = &pmif->timings[drive->dn & 1];
504 	t = *timings;
505 
506 	cycle_time = ide_pio_cycle_time(drive, pio);
507 
508 	switch (pmif->kind) {
509 	case controller_sh_ata6: {
510 		/* 133Mhz cell */
511 		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
512 		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
513 		break;
514 		}
515 	case controller_un_ata6:
516 	case controller_k2_ata6: {
517 		/* 100Mhz cell */
518 		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
519 		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
520 		break;
521 		}
522 	case controller_kl_ata4:
523 		/* 66Mhz cell */
524 		recTime = cycle_time - tim->active - tim->setup;
525 		recTime = max(recTime, 150U);
526 		accessTime = tim->active;
527 		accessTime = max(accessTime, 150U);
528 		accessTicks = SYSCLK_TICKS_66(accessTime);
529 		accessTicks = min(accessTicks, 0x1fU);
530 		recTicks = SYSCLK_TICKS_66(recTime);
531 		recTicks = min(recTicks, 0x1fU);
532 		t = (t & ~TR_66_PIO_MASK) |
533 			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
534 			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
535 		break;
536 	default: {
537 		/* 33Mhz cell */
538 		int ebit = 0;
539 		recTime = cycle_time - tim->active - tim->setup;
540 		recTime = max(recTime, 150U);
541 		accessTime = tim->active;
542 		accessTime = max(accessTime, 150U);
543 		accessTicks = SYSCLK_TICKS(accessTime);
544 		accessTicks = min(accessTicks, 0x1fU);
545 		accessTicks = max(accessTicks, 4U);
546 		recTicks = SYSCLK_TICKS(recTime);
547 		recTicks = min(recTicks, 0x1fU);
548 		recTicks = max(recTicks, 5U) - 4;
549 		if (recTicks > 9) {
550 			recTicks--; /* guess, but it's only for PIO0, so... */
551 			ebit = 1;
552 		}
553 		t = (t & ~TR_33_PIO_MASK) |
554 				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
555 				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
556 		if (ebit)
557 			t |= TR_33_PIO_E;
558 		break;
559 		}
560 	}
561 
562 #ifdef IDE_PMAC_DEBUG
563 	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
564 		drive->name, pio,  *timings);
565 #endif
566 
567 	*timings = t;
568 	pmac_ide_do_update_timings(drive);
569 }
570 
571 /*
572  * Calculate KeyLargo ATA/66 UDMA timings
573  */
574 static int
set_timings_udma_ata4(u32 * timings,u8 speed)575 set_timings_udma_ata4(u32 *timings, u8 speed)
576 {
577 	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
578 
579 	if (speed > XFER_UDMA_4)
580 		return 1;
581 
582 	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
583 	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
584 	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
585 
586 	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
587 			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
588 			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
589 			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
590 			TR_66_UDMA_EN;
591 #ifdef IDE_PMAC_DEBUG
592 	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
593 		speed & 0xf,  *timings);
594 #endif
595 
596 	return 0;
597 }
598 
599 /*
600  * Calculate Kauai ATA/100 UDMA timings
601  */
602 static int
set_timings_udma_ata6(u32 * pio_timings,u32 * ultra_timings,u8 speed)603 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
604 {
605 	struct ide_timing *t = ide_timing_find_mode(speed);
606 	u32 tr;
607 
608 	if (speed > XFER_UDMA_5 || t == NULL)
609 		return 1;
610 	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
611 	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
612 	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
613 
614 	return 0;
615 }
616 
617 /*
618  * Calculate Shasta ATA/133 UDMA timings
619  */
620 static int
set_timings_udma_shasta(u32 * pio_timings,u32 * ultra_timings,u8 speed)621 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
622 {
623 	struct ide_timing *t = ide_timing_find_mode(speed);
624 	u32 tr;
625 
626 	if (speed > XFER_UDMA_6 || t == NULL)
627 		return 1;
628 	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
629 	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
630 	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
631 
632 	return 0;
633 }
634 
635 /*
636  * Calculate MDMA timings for all cells
637  */
638 static void
set_timings_mdma(ide_drive_t * drive,int intf_type,u32 * timings,u32 * timings2,u8 speed)639 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
640 		 	u8 speed)
641 {
642 	u16 *id = drive->id;
643 	int cycleTime, accessTime = 0, recTime = 0;
644 	unsigned accessTicks, recTicks;
645 	struct mdma_timings_t* tm = NULL;
646 	int i;
647 
648 	/* Get default cycle time for mode */
649 	switch(speed & 0xf) {
650 		case 0: cycleTime = 480; break;
651 		case 1: cycleTime = 150; break;
652 		case 2: cycleTime = 120; break;
653 		default:
654 			BUG();
655 			break;
656 	}
657 
658 	/* Check if drive provides explicit DMA cycle time */
659 	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
660 		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
661 
662 	/* OHare limits according to some old Apple sources */
663 	if ((intf_type == controller_ohare) && (cycleTime < 150))
664 		cycleTime = 150;
665 	/* Get the proper timing array for this controller */
666 	switch(intf_type) {
667 	        case controller_sh_ata6:
668 		case controller_un_ata6:
669 		case controller_k2_ata6:
670 			break;
671 		case controller_kl_ata4:
672 			tm = mdma_timings_66;
673 			break;
674 		case controller_kl_ata3:
675 			tm = mdma_timings_33k;
676 			break;
677 		default:
678 			tm = mdma_timings_33;
679 			break;
680 	}
681 	if (tm != NULL) {
682 		/* Lookup matching access & recovery times */
683 		i = -1;
684 		for (;;) {
685 			if (tm[i+1].cycleTime < cycleTime)
686 				break;
687 			i++;
688 		}
689 		cycleTime = tm[i].cycleTime;
690 		accessTime = tm[i].accessTime;
691 		recTime = tm[i].recoveryTime;
692 
693 #ifdef IDE_PMAC_DEBUG
694 		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
695 			drive->name, cycleTime, accessTime, recTime);
696 #endif
697 	}
698 	switch(intf_type) {
699 	case controller_sh_ata6: {
700 		/* 133Mhz cell */
701 		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
702 		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
703 		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
704 		}
705 		break;
706 	case controller_un_ata6:
707 	case controller_k2_ata6: {
708 		/* 100Mhz cell */
709 		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
710 		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
711 		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
712 		}
713 		break;
714 	case controller_kl_ata4:
715 		/* 66Mhz cell */
716 		accessTicks = SYSCLK_TICKS_66(accessTime);
717 		accessTicks = min(accessTicks, 0x1fU);
718 		accessTicks = max(accessTicks, 0x1U);
719 		recTicks = SYSCLK_TICKS_66(recTime);
720 		recTicks = min(recTicks, 0x1fU);
721 		recTicks = max(recTicks, 0x3U);
722 		/* Clear out mdma bits and disable udma */
723 		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
724 			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
725 			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
726 		break;
727 	case controller_kl_ata3:
728 		/* 33Mhz cell on KeyLargo */
729 		accessTicks = SYSCLK_TICKS(accessTime);
730 		accessTicks = max(accessTicks, 1U);
731 		accessTicks = min(accessTicks, 0x1fU);
732 		accessTime = accessTicks * IDE_SYSCLK_NS;
733 		recTicks = SYSCLK_TICKS(recTime);
734 		recTicks = max(recTicks, 1U);
735 		recTicks = min(recTicks, 0x1fU);
736 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
737 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
738 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
739 		break;
740 	default: {
741 		/* 33Mhz cell on others */
742 		int halfTick = 0;
743 		int origAccessTime = accessTime;
744 		int origRecTime = recTime;
745 
746 		accessTicks = SYSCLK_TICKS(accessTime);
747 		accessTicks = max(accessTicks, 1U);
748 		accessTicks = min(accessTicks, 0x1fU);
749 		accessTime = accessTicks * IDE_SYSCLK_NS;
750 		recTicks = SYSCLK_TICKS(recTime);
751 		recTicks = max(recTicks, 2U) - 1;
752 		recTicks = min(recTicks, 0x1fU);
753 		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
754 		if ((accessTicks > 1) &&
755 		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
756 		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
757             		halfTick = 1;
758 			accessTicks--;
759 		}
760 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
761 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
762 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
763 		if (halfTick)
764 			*timings |= TR_33_MDMA_HALFTICK;
765 		}
766 	}
767 #ifdef IDE_PMAC_DEBUG
768 	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
769 		drive->name, speed & 0xf,  *timings);
770 #endif
771 }
772 
pmac_ide_set_dma_mode(ide_hwif_t * hwif,ide_drive_t * drive)773 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
774 {
775 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
776 	int ret = 0;
777 	u32 *timings, *timings2, tl[2];
778 	u8 unit = drive->dn & 1;
779 	const u8 speed = drive->dma_mode;
780 
781 	timings = &pmif->timings[unit];
782 	timings2 = &pmif->timings[unit+2];
783 
784 	/* Copy timings to local image */
785 	tl[0] = *timings;
786 	tl[1] = *timings2;
787 
788 	if (speed >= XFER_UDMA_0) {
789 		if (pmif->kind == controller_kl_ata4)
790 			ret = set_timings_udma_ata4(&tl[0], speed);
791 		else if (pmif->kind == controller_un_ata6
792 			 || pmif->kind == controller_k2_ata6)
793 			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
794 		else if (pmif->kind == controller_sh_ata6)
795 			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
796 		else
797 			ret = -1;
798 	} else
799 		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
800 
801 	if (ret)
802 		return;
803 
804 	/* Apply timings to controller */
805 	*timings = tl[0];
806 	*timings2 = tl[1];
807 
808 	pmac_ide_do_update_timings(drive);
809 }
810 
811 /*
812  * Blast some well known "safe" values to the timing registers at init or
813  * wakeup from sleep time, before we do real calculation
814  */
815 static void
sanitize_timings(pmac_ide_hwif_t * pmif)816 sanitize_timings(pmac_ide_hwif_t *pmif)
817 {
818 	unsigned int value, value2 = 0;
819 
820 	switch(pmif->kind) {
821 		case controller_sh_ata6:
822 			value = 0x0a820c97;
823 			value2 = 0x00033031;
824 			break;
825 		case controller_un_ata6:
826 		case controller_k2_ata6:
827 			value = 0x08618a92;
828 			value2 = 0x00002921;
829 			break;
830 		case controller_kl_ata4:
831 			value = 0x0008438c;
832 			break;
833 		case controller_kl_ata3:
834 			value = 0x00084526;
835 			break;
836 		case controller_heathrow:
837 		case controller_ohare:
838 		default:
839 			value = 0x00074526;
840 			break;
841 	}
842 	pmif->timings[0] = pmif->timings[1] = value;
843 	pmif->timings[2] = pmif->timings[3] = value2;
844 }
845 
on_media_bay(pmac_ide_hwif_t * pmif)846 static int on_media_bay(pmac_ide_hwif_t *pmif)
847 {
848 	return pmif->mdev && pmif->mdev->media_bay != NULL;
849 }
850 
851 /* Suspend call back, should be called after the child devices
852  * have actually been suspended
853  */
pmac_ide_do_suspend(pmac_ide_hwif_t * pmif)854 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
855 {
856 	/* We clear the timings */
857 	pmif->timings[0] = 0;
858 	pmif->timings[1] = 0;
859 
860 	disable_irq(pmif->irq);
861 
862 	/* The media bay will handle itself just fine */
863 	if (on_media_bay(pmif))
864 		return 0;
865 
866 	/* Kauai has bus control FCRs directly here */
867 	if (pmif->kauai_fcr) {
868 		u32 fcr = readl(pmif->kauai_fcr);
869 		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
870 		writel(fcr, pmif->kauai_fcr);
871 	}
872 
873 	/* Disable the bus on older machines and the cell on kauai */
874 	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
875 			    0);
876 
877 	return 0;
878 }
879 
880 /* Resume call back, should be called before the child devices
881  * are resumed
882  */
pmac_ide_do_resume(pmac_ide_hwif_t * pmif)883 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
884 {
885 	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
886 	if (!on_media_bay(pmif)) {
887 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
888 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
889 		msleep(10);
890 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
891 
892 		/* Kauai has it different */
893 		if (pmif->kauai_fcr) {
894 			u32 fcr = readl(pmif->kauai_fcr);
895 			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
896 			writel(fcr, pmif->kauai_fcr);
897 		}
898 
899 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
900 	}
901 
902 	/* Sanitize drive timings */
903 	sanitize_timings(pmif);
904 
905 	enable_irq(pmif->irq);
906 
907 	return 0;
908 }
909 
pmac_ide_cable_detect(ide_hwif_t * hwif)910 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
911 {
912 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
913 	struct device_node *np = pmif->node;
914 	const char *cable = of_get_property(np, "cable-type", NULL);
915 	struct device_node *root = of_find_node_by_path("/");
916 	const char *model = of_get_property(root, "model", NULL);
917 
918 	of_node_put(root);
919 	/* Get cable type from device-tree. */
920 	if (cable && !strncmp(cable, "80-", 3)) {
921 		/* Some drives fail to detect 80c cable in PowerBook */
922 		/* These machine use proprietary short IDE cable anyway */
923 		if (!strncmp(model, "PowerBook", 9))
924 			return ATA_CBL_PATA40_SHORT;
925 		else
926 			return ATA_CBL_PATA80;
927 	}
928 
929 	/*
930 	 * G5's seem to have incorrect cable type in device-tree.
931 	 * Let's assume they have a 80 conductor cable, this seem
932 	 * to be always the case unless the user mucked around.
933 	 */
934 	if (of_device_is_compatible(np, "K2-UATA") ||
935 	    of_device_is_compatible(np, "shasta-ata"))
936 		return ATA_CBL_PATA80;
937 
938 	return ATA_CBL_PATA40;
939 }
940 
pmac_ide_init_dev(ide_drive_t * drive)941 static void pmac_ide_init_dev(ide_drive_t *drive)
942 {
943 	ide_hwif_t *hwif = drive->hwif;
944 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
945 
946 	if (on_media_bay(pmif)) {
947 		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
948 			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
949 			return;
950 		}
951 		drive->dev_flags |= IDE_DFLAG_NOPROBE;
952 	}
953 }
954 
955 static const struct ide_tp_ops pmac_tp_ops = {
956 	.exec_command		= pmac_exec_command,
957 	.read_status		= ide_read_status,
958 	.read_altstatus		= ide_read_altstatus,
959 	.write_devctl		= pmac_write_devctl,
960 
961 	.dev_select		= pmac_dev_select,
962 	.tf_load		= ide_tf_load,
963 	.tf_read		= ide_tf_read,
964 
965 	.input_data		= ide_input_data,
966 	.output_data		= ide_output_data,
967 };
968 
969 static const struct ide_tp_ops pmac_ata6_tp_ops = {
970 	.exec_command		= pmac_exec_command,
971 	.read_status		= ide_read_status,
972 	.read_altstatus		= ide_read_altstatus,
973 	.write_devctl		= pmac_write_devctl,
974 
975 	.dev_select		= pmac_kauai_dev_select,
976 	.tf_load		= ide_tf_load,
977 	.tf_read		= ide_tf_read,
978 
979 	.input_data		= ide_input_data,
980 	.output_data		= ide_output_data,
981 };
982 
983 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
984 	.init_dev		= pmac_ide_init_dev,
985 	.set_pio_mode		= pmac_ide_set_pio_mode,
986 	.set_dma_mode		= pmac_ide_set_dma_mode,
987 	.cable_detect		= pmac_ide_cable_detect,
988 };
989 
990 static const struct ide_port_ops pmac_ide_port_ops = {
991 	.init_dev		= pmac_ide_init_dev,
992 	.set_pio_mode		= pmac_ide_set_pio_mode,
993 	.set_dma_mode		= pmac_ide_set_dma_mode,
994 };
995 
996 static const struct ide_dma_ops pmac_dma_ops;
997 
998 static const struct ide_port_info pmac_port_info = {
999 	.name			= DRV_NAME,
1000 	.init_dma		= pmac_ide_init_dma,
1001 	.chipset		= ide_pmac,
1002 	.tp_ops			= &pmac_tp_ops,
1003 	.port_ops		= &pmac_ide_port_ops,
1004 	.dma_ops		= &pmac_dma_ops,
1005 	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1006 				  IDE_HFLAG_POST_SET_MODE |
1007 				  IDE_HFLAG_MMIO |
1008 				  IDE_HFLAG_UNMASK_IRQS,
1009 	.pio_mask		= ATA_PIO4,
1010 	.mwdma_mask		= ATA_MWDMA2,
1011 };
1012 
1013 /*
1014  * Setup, register & probe an IDE channel driven by this driver, this is
1015  * called by one of the 2 probe functions (macio or PCI).
1016  */
pmac_ide_setup_device(pmac_ide_hwif_t * pmif,struct ide_hw * hw)1017 static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw)
1018 {
1019 	struct device_node *np = pmif->node;
1020 	const int *bidp;
1021 	struct ide_host *host;
1022 	ide_hwif_t *hwif;
1023 	struct ide_hw *hws[] = { hw };
1024 	struct ide_port_info d = pmac_port_info;
1025 	int rc;
1026 
1027 	pmif->broken_dma = pmif->broken_dma_warn = 0;
1028 	if (of_device_is_compatible(np, "shasta-ata")) {
1029 		pmif->kind = controller_sh_ata6;
1030 		d.tp_ops = &pmac_ata6_tp_ops;
1031 		d.port_ops = &pmac_ide_ata4_port_ops;
1032 		d.udma_mask = ATA_UDMA6;
1033 	} else if (of_device_is_compatible(np, "kauai-ata")) {
1034 		pmif->kind = controller_un_ata6;
1035 		d.tp_ops = &pmac_ata6_tp_ops;
1036 		d.port_ops = &pmac_ide_ata4_port_ops;
1037 		d.udma_mask = ATA_UDMA5;
1038 	} else if (of_device_is_compatible(np, "K2-UATA")) {
1039 		pmif->kind = controller_k2_ata6;
1040 		d.tp_ops = &pmac_ata6_tp_ops;
1041 		d.port_ops = &pmac_ide_ata4_port_ops;
1042 		d.udma_mask = ATA_UDMA5;
1043 	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1044 		if (of_node_name_eq(np, "ata-4")) {
1045 			pmif->kind = controller_kl_ata4;
1046 			d.port_ops = &pmac_ide_ata4_port_ops;
1047 			d.udma_mask = ATA_UDMA4;
1048 		} else
1049 			pmif->kind = controller_kl_ata3;
1050 	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1051 		pmif->kind = controller_heathrow;
1052 	} else {
1053 		pmif->kind = controller_ohare;
1054 		pmif->broken_dma = 1;
1055 	}
1056 
1057 	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1058 	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1059 
1060 	/* On Kauai-type controllers, we make sure the FCR is correct */
1061 	if (pmif->kauai_fcr)
1062 		writel(KAUAI_FCR_UATA_MAGIC |
1063 		       KAUAI_FCR_UATA_RESET_N |
1064 		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1065 
1066 	/* Make sure we have sane timings */
1067 	sanitize_timings(pmif);
1068 
1069 	/* If we are on a media bay, wait for it to settle and lock it */
1070 	if (pmif->mdev)
1071 		lock_media_bay(pmif->mdev->media_bay);
1072 
1073 	host = ide_host_alloc(&d, hws, 1);
1074 	if (host == NULL) {
1075 		rc = -ENOMEM;
1076 		goto bail;
1077 	}
1078 	hwif = pmif->hwif = host->ports[0];
1079 
1080 	if (on_media_bay(pmif)) {
1081 		/* Fixup bus ID for media bay */
1082 		if (!bidp)
1083 			pmif->aapl_bus_id = 1;
1084 	} else if (pmif->kind == controller_ohare) {
1085 		/* The code below is having trouble on some ohare machines
1086 		 * (timing related ?). Until I can put my hand on one of these
1087 		 * units, I keep the old way
1088 		 */
1089 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1090 	} else {
1091  		/* This is necessary to enable IDE when net-booting */
1092 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1093 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1094 		msleep(10);
1095 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1096 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1097 	}
1098 
1099 	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1100 	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1101 	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1102 	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1103 
1104 	rc = ide_host_register(host, &d, hws);
1105 	if (rc)
1106 		pmif->hwif = NULL;
1107 
1108 	if (pmif->mdev)
1109 		unlock_media_bay(pmif->mdev->media_bay);
1110 
1111  bail:
1112 	if (rc && host)
1113 		ide_host_free(host);
1114 	return rc;
1115 }
1116 
pmac_ide_init_ports(struct ide_hw * hw,unsigned long base)1117 static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1118 {
1119 	int i;
1120 
1121 	for (i = 0; i < 8; ++i)
1122 		hw->io_ports_array[i] = base + i * 0x10;
1123 
1124 	hw->io_ports.ctl_addr = base + 0x160;
1125 }
1126 
1127 /*
1128  * Attach to a macio probed interface
1129  */
pmac_ide_macio_attach(struct macio_dev * mdev,const struct of_device_id * match)1130 static int pmac_ide_macio_attach(struct macio_dev *mdev,
1131 				 const struct of_device_id *match)
1132 {
1133 	void __iomem *base;
1134 	unsigned long regbase;
1135 	pmac_ide_hwif_t *pmif;
1136 	int irq, rc;
1137 	struct ide_hw hw;
1138 
1139 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1140 	if (pmif == NULL)
1141 		return -ENOMEM;
1142 
1143 	if (macio_resource_count(mdev) == 0) {
1144 		printk(KERN_WARNING "ide-pmac: no address for %pOF\n",
1145 				    mdev->ofdev.dev.of_node);
1146 		rc = -ENXIO;
1147 		goto out_free_pmif;
1148 	}
1149 
1150 	/* Request memory resource for IO ports */
1151 	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1152 		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1153 				"%pOF!\n", mdev->ofdev.dev.of_node);
1154 		rc = -EBUSY;
1155 		goto out_free_pmif;
1156 	}
1157 
1158 	/* XXX This is bogus. Should be fixed in the registry by checking
1159 	 * the kind of host interrupt controller, a bit like gatwick
1160 	 * fixes in irq.c. That works well enough for the single case
1161 	 * where that happens though...
1162 	 */
1163 	if (macio_irq_count(mdev) == 0) {
1164 		printk(KERN_WARNING "ide-pmac: no intrs for device %pOF, using "
1165 				    "13\n", mdev->ofdev.dev.of_node);
1166 		irq = irq_create_mapping(NULL, 13);
1167 	} else
1168 		irq = macio_irq(mdev, 0);
1169 
1170 	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1171 	regbase = (unsigned long) base;
1172 
1173 	pmif->mdev = mdev;
1174 	pmif->node = mdev->ofdev.dev.of_node;
1175 	pmif->regbase = regbase;
1176 	pmif->irq = irq;
1177 	pmif->kauai_fcr = NULL;
1178 
1179 	if (macio_resource_count(mdev) >= 2) {
1180 		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1181 			printk(KERN_WARNING "ide-pmac: can't request DMA "
1182 					    "resource for %pOF!\n",
1183 					    mdev->ofdev.dev.of_node);
1184 		else
1185 			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1186 	} else
1187 		pmif->dma_regs = NULL;
1188 
1189 	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1190 
1191 	memset(&hw, 0, sizeof(hw));
1192 	pmac_ide_init_ports(&hw, pmif->regbase);
1193 	hw.irq = irq;
1194 	hw.dev = &mdev->bus->pdev->dev;
1195 	hw.parent = &mdev->ofdev.dev;
1196 
1197 	rc = pmac_ide_setup_device(pmif, &hw);
1198 	if (rc != 0) {
1199 		/* The inteface is released to the common IDE layer */
1200 		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1201 		iounmap(base);
1202 		if (pmif->dma_regs) {
1203 			iounmap(pmif->dma_regs);
1204 			macio_release_resource(mdev, 1);
1205 		}
1206 		macio_release_resource(mdev, 0);
1207 		kfree(pmif);
1208 	}
1209 
1210 	return rc;
1211 
1212 out_free_pmif:
1213 	kfree(pmif);
1214 	return rc;
1215 }
1216 
1217 static int
pmac_ide_macio_suspend(struct macio_dev * mdev,pm_message_t mesg)1218 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1219 {
1220 	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1221 	int rc = 0;
1222 
1223 	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1224 			&& (mesg.event & PM_EVENT_SLEEP)) {
1225 		rc = pmac_ide_do_suspend(pmif);
1226 		if (rc == 0)
1227 			mdev->ofdev.dev.power.power_state = mesg;
1228 	}
1229 
1230 	return rc;
1231 }
1232 
1233 static int
pmac_ide_macio_resume(struct macio_dev * mdev)1234 pmac_ide_macio_resume(struct macio_dev *mdev)
1235 {
1236 	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1237 	int rc = 0;
1238 
1239 	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1240 		rc = pmac_ide_do_resume(pmif);
1241 		if (rc == 0)
1242 			mdev->ofdev.dev.power.power_state = PMSG_ON;
1243 	}
1244 
1245 	return rc;
1246 }
1247 
1248 /*
1249  * Attach to a PCI probed interface
1250  */
pmac_ide_pci_attach(struct pci_dev * pdev,const struct pci_device_id * id)1251 static int pmac_ide_pci_attach(struct pci_dev *pdev,
1252 			       const struct pci_device_id *id)
1253 {
1254 	struct device_node *np;
1255 	pmac_ide_hwif_t *pmif;
1256 	void __iomem *base;
1257 	unsigned long rbase, rlen;
1258 	int rc;
1259 	struct ide_hw hw;
1260 
1261 	np = pci_device_to_OF_node(pdev);
1262 	if (np == NULL) {
1263 		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1264 		return -ENODEV;
1265 	}
1266 
1267 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1268 	if (pmif == NULL)
1269 		return -ENOMEM;
1270 
1271 	if (pci_enable_device(pdev)) {
1272 		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1273 				    "%pOF\n", np);
1274 		rc = -ENXIO;
1275 		goto out_free_pmif;
1276 	}
1277 	pci_set_master(pdev);
1278 
1279 	if (pci_request_regions(pdev, "Kauai ATA")) {
1280 		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1281 				"%pOF\n", np);
1282 		rc = -ENXIO;
1283 		goto out_free_pmif;
1284 	}
1285 
1286 	pmif->mdev = NULL;
1287 	pmif->node = np;
1288 
1289 	rbase = pci_resource_start(pdev, 0);
1290 	rlen = pci_resource_len(pdev, 0);
1291 
1292 	base = ioremap(rbase, rlen);
1293 	pmif->regbase = (unsigned long) base + 0x2000;
1294 	pmif->dma_regs = base + 0x1000;
1295 	pmif->kauai_fcr = base;
1296 	pmif->irq = pdev->irq;
1297 
1298 	pci_set_drvdata(pdev, pmif);
1299 
1300 	memset(&hw, 0, sizeof(hw));
1301 	pmac_ide_init_ports(&hw, pmif->regbase);
1302 	hw.irq = pdev->irq;
1303 	hw.dev = &pdev->dev;
1304 
1305 	rc = pmac_ide_setup_device(pmif, &hw);
1306 	if (rc != 0) {
1307 		/* The inteface is released to the common IDE layer */
1308 		iounmap(base);
1309 		pci_release_regions(pdev);
1310 		kfree(pmif);
1311 	}
1312 
1313 	return rc;
1314 
1315 out_free_pmif:
1316 	kfree(pmif);
1317 	return rc;
1318 }
1319 
1320 static int
pmac_ide_pci_suspend(struct pci_dev * pdev,pm_message_t mesg)1321 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1322 {
1323 	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1324 	int rc = 0;
1325 
1326 	if (mesg.event != pdev->dev.power.power_state.event
1327 			&& (mesg.event & PM_EVENT_SLEEP)) {
1328 		rc = pmac_ide_do_suspend(pmif);
1329 		if (rc == 0)
1330 			pdev->dev.power.power_state = mesg;
1331 	}
1332 
1333 	return rc;
1334 }
1335 
1336 static int
pmac_ide_pci_resume(struct pci_dev * pdev)1337 pmac_ide_pci_resume(struct pci_dev *pdev)
1338 {
1339 	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1340 	int rc = 0;
1341 
1342 	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1343 		rc = pmac_ide_do_resume(pmif);
1344 		if (rc == 0)
1345 			pdev->dev.power.power_state = PMSG_ON;
1346 	}
1347 
1348 	return rc;
1349 }
1350 
1351 #ifdef CONFIG_PMAC_MEDIABAY
pmac_ide_macio_mb_event(struct macio_dev * mdev,int mb_state)1352 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1353 {
1354 	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1355 
1356 	switch(mb_state) {
1357 	case MB_CD:
1358 		if (!pmif->hwif->present)
1359 			ide_port_scan(pmif->hwif);
1360 		break;
1361 	default:
1362 		if (pmif->hwif->present)
1363 			ide_port_unregister_devices(pmif->hwif);
1364 	}
1365 }
1366 #endif /* CONFIG_PMAC_MEDIABAY */
1367 
1368 
1369 static struct of_device_id pmac_ide_macio_match[] =
1370 {
1371 	{
1372 	.name 		= "IDE",
1373 	},
1374 	{
1375 	.name 		= "ATA",
1376 	},
1377 	{
1378 	.type		= "ide",
1379 	},
1380 	{
1381 	.type		= "ata",
1382 	},
1383 	{},
1384 };
1385 
1386 static struct macio_driver pmac_ide_macio_driver =
1387 {
1388 	.driver = {
1389 		.name 		= "ide-pmac",
1390 		.owner		= THIS_MODULE,
1391 		.of_match_table	= pmac_ide_macio_match,
1392 	},
1393 	.probe		= pmac_ide_macio_attach,
1394 	.suspend	= pmac_ide_macio_suspend,
1395 	.resume		= pmac_ide_macio_resume,
1396 #ifdef CONFIG_PMAC_MEDIABAY
1397 	.mediabay_event	= pmac_ide_macio_mb_event,
1398 #endif
1399 };
1400 
1401 static const struct pci_device_id pmac_ide_pci_match[] = {
1402 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1403 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1404 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1405 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1406 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1407 	{},
1408 };
1409 
1410 static struct pci_driver pmac_ide_pci_driver = {
1411 	.name		= "ide-pmac",
1412 	.id_table	= pmac_ide_pci_match,
1413 	.probe		= pmac_ide_pci_attach,
1414 	.suspend	= pmac_ide_pci_suspend,
1415 	.resume		= pmac_ide_pci_resume,
1416 };
1417 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1418 
pmac_ide_probe(void)1419 int __init pmac_ide_probe(void)
1420 {
1421 	int error;
1422 
1423 	if (!machine_is(powermac))
1424 		return -ENODEV;
1425 
1426 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1427 	error = pci_register_driver(&pmac_ide_pci_driver);
1428 	if (error)
1429 		goto out;
1430 	error = macio_register_driver(&pmac_ide_macio_driver);
1431 	if (error) {
1432 		pci_unregister_driver(&pmac_ide_pci_driver);
1433 		goto out;
1434 	}
1435 #else
1436 	error = macio_register_driver(&pmac_ide_macio_driver);
1437 	if (error)
1438 		goto out;
1439 	error = pci_register_driver(&pmac_ide_pci_driver);
1440 	if (error) {
1441 		macio_unregister_driver(&pmac_ide_macio_driver);
1442 		goto out;
1443 	}
1444 #endif
1445 out:
1446 	return error;
1447 }
1448 
1449 /*
1450  * pmac_ide_build_dmatable builds the DBDMA command list
1451  * for a transfer and sets the DBDMA channel to point to it.
1452  */
pmac_ide_build_dmatable(ide_drive_t * drive,struct ide_cmd * cmd)1453 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1454 {
1455 	ide_hwif_t *hwif = drive->hwif;
1456 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1457 	struct dbdma_cmd *table;
1458 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1459 	struct scatterlist *sg;
1460 	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1461 	int i = cmd->sg_nents, count = 0;
1462 
1463 	/* DMA table is already aligned */
1464 	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1465 
1466 	/* Make sure DMA controller is stopped (necessary ?) */
1467 	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1468 	while (readl(&dma->status) & RUN)
1469 		udelay(1);
1470 
1471 	/* Build DBDMA commands list */
1472 	sg = hwif->sg_table;
1473 	while (i && sg_dma_len(sg)) {
1474 		u32 cur_addr;
1475 		u32 cur_len;
1476 
1477 		cur_addr = sg_dma_address(sg);
1478 		cur_len = sg_dma_len(sg);
1479 
1480 		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1481 			if (pmif->broken_dma_warn == 0) {
1482 				printk(KERN_WARNING "%s: DMA on non aligned address, "
1483 				       "switching to PIO on Ohare chipset\n", drive->name);
1484 				pmif->broken_dma_warn = 1;
1485 			}
1486 			return 0;
1487 		}
1488 		while (cur_len) {
1489 			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1490 
1491 			if (count++ >= MAX_DCMDS) {
1492 				printk(KERN_WARNING "%s: DMA table too small\n",
1493 				       drive->name);
1494 				return 0;
1495 			}
1496 			table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE);
1497 			table->req_count = cpu_to_le16(tc);
1498 			table->phy_addr = cpu_to_le32(cur_addr);
1499 			table->cmd_dep = 0;
1500 			table->xfer_status = 0;
1501 			table->res_count = 0;
1502 			cur_addr += tc;
1503 			cur_len -= tc;
1504 			++table;
1505 		}
1506 		sg = sg_next(sg);
1507 		i--;
1508 	}
1509 
1510 	/* convert the last command to an input/output last command */
1511 	if (count) {
1512 		table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST);
1513 		/* add the stop command to the end of the list */
1514 		memset(table, 0, sizeof(struct dbdma_cmd));
1515 		table->command = cpu_to_le16(DBDMA_STOP);
1516 		mb();
1517 		writel(hwif->dmatable_dma, &dma->cmdptr);
1518 		return 1;
1519 	}
1520 
1521 	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1522 
1523 	return 0; /* revert to PIO for this request */
1524 }
1525 
1526 /*
1527  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1528  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1529  */
pmac_ide_dma_setup(ide_drive_t * drive,struct ide_cmd * cmd)1530 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1531 {
1532 	ide_hwif_t *hwif = drive->hwif;
1533 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1534 	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1535 	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1536 
1537 	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1538 		return 1;
1539 
1540 	/* Apple adds 60ns to wrDataSetup on reads */
1541 	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1542 		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1543 			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1544 		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Kick the DMA controller into life after the DMA command has been issued
1552  * to the drive.
1553  */
1554 static void
pmac_ide_dma_start(ide_drive_t * drive)1555 pmac_ide_dma_start(ide_drive_t *drive)
1556 {
1557 	ide_hwif_t *hwif = drive->hwif;
1558 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1559 	volatile struct dbdma_regs __iomem *dma;
1560 
1561 	dma = pmif->dma_regs;
1562 
1563 	writel((RUN << 16) | RUN, &dma->control);
1564 	/* Make sure it gets to the controller right now */
1565 	(void)readl(&dma->control);
1566 }
1567 
1568 /*
1569  * After a DMA transfer, make sure the controller is stopped
1570  */
1571 static int
pmac_ide_dma_end(ide_drive_t * drive)1572 pmac_ide_dma_end (ide_drive_t *drive)
1573 {
1574 	ide_hwif_t *hwif = drive->hwif;
1575 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1576 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1577 	u32 dstat;
1578 
1579 	dstat = readl(&dma->status);
1580 	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1581 
1582 	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1583 	 * in theory, but with ATAPI decices doing buffer underruns, that would
1584 	 * cause us to disable DMA, which isn't what we want
1585 	 */
1586 	return (dstat & (RUN|DEAD)) != RUN;
1587 }
1588 
1589 /*
1590  * Check out that the interrupt we got was for us. We can't always know this
1591  * for sure with those Apple interfaces (well, we could on the recent ones but
1592  * that's not implemented yet), on the other hand, we don't have shared interrupts
1593  * so it's not really a problem
1594  */
1595 static int
pmac_ide_dma_test_irq(ide_drive_t * drive)1596 pmac_ide_dma_test_irq (ide_drive_t *drive)
1597 {
1598 	ide_hwif_t *hwif = drive->hwif;
1599 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1600 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1601 	unsigned long status, timeout;
1602 
1603 	/* We have to things to deal with here:
1604 	 *
1605 	 * - The dbdma won't stop if the command was started
1606 	 * but completed with an error without transferring all
1607 	 * datas. This happens when bad blocks are met during
1608 	 * a multi-block transfer.
1609 	 *
1610 	 * - The dbdma fifo hasn't yet finished flushing to
1611 	 * to system memory when the disk interrupt occurs.
1612 	 *
1613 	 */
1614 
1615 	/* If ACTIVE is cleared, the STOP command have passed and
1616 	 * transfer is complete.
1617 	 */
1618 	status = readl(&dma->status);
1619 	if (!(status & ACTIVE))
1620 		return 1;
1621 
1622 	/* If dbdma didn't execute the STOP command yet, the
1623 	 * active bit is still set. We consider that we aren't
1624 	 * sharing interrupts (which is hopefully the case with
1625 	 * those controllers) and so we just try to flush the
1626 	 * channel for pending data in the fifo
1627 	 */
1628 	udelay(1);
1629 	writel((FLUSH << 16) | FLUSH, &dma->control);
1630 	timeout = 0;
1631 	for (;;) {
1632 		udelay(1);
1633 		status = readl(&dma->status);
1634 		if ((status & FLUSH) == 0)
1635 			break;
1636 		if (++timeout > 100) {
1637 			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1638 			       hwif->index);
1639 			break;
1640 		}
1641 	}
1642 	return 1;
1643 }
1644 
pmac_ide_dma_host_set(ide_drive_t * drive,int on)1645 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1646 {
1647 }
1648 
1649 static void
pmac_ide_dma_lost_irq(ide_drive_t * drive)1650 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1651 {
1652 	ide_hwif_t *hwif = drive->hwif;
1653 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1654 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1655 	unsigned long status = readl(&dma->status);
1656 
1657 	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1658 }
1659 
1660 static const struct ide_dma_ops pmac_dma_ops = {
1661 	.dma_host_set		= pmac_ide_dma_host_set,
1662 	.dma_setup		= pmac_ide_dma_setup,
1663 	.dma_start		= pmac_ide_dma_start,
1664 	.dma_end		= pmac_ide_dma_end,
1665 	.dma_test_irq		= pmac_ide_dma_test_irq,
1666 	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1667 };
1668 
1669 /*
1670  * Allocate the data structures needed for using DMA with an interface
1671  * and fill the proper list of functions pointers
1672  */
pmac_ide_init_dma(ide_hwif_t * hwif,const struct ide_port_info * d)1673 static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d)
1674 {
1675 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1676 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1677 
1678 	/* We won't need pci_dev if we switch to generic consistent
1679 	 * DMA routines ...
1680 	 */
1681 	if (dev == NULL || pmif->dma_regs == 0)
1682 		return -ENODEV;
1683 	/*
1684 	 * Allocate space for the DBDMA commands.
1685 	 * The +2 is +1 for the stop command and +1 to allow for
1686 	 * aligning the start address to a multiple of 16 bytes.
1687 	 */
1688 	pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev,
1689 		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1690 		&hwif->dmatable_dma, GFP_KERNEL);
1691 	if (pmif->dma_table_cpu == NULL) {
1692 		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1693 		       hwif->name);
1694 		return -ENOMEM;
1695 	}
1696 
1697 	hwif->sg_max_nents = MAX_DCMDS;
1698 
1699 	return 0;
1700 }
1701 
1702 module_init(pmac_ide_probe);
1703 
1704 MODULE_LICENSE("GPL");
1705