1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21
22 #define DM_MSG_PREFIX "verity"
23
24 #define DM_VERITY_ENV_LENGTH 42
25 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
26
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
30
31 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
32 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
33 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
34 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
35
36 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC + \
37 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44 struct work_struct work;
45 struct dm_verity *v;
46 sector_t block;
47 unsigned n_blocks;
48 };
49
50 /*
51 * Auxiliary structure appended to each dm-bufio buffer. If the value
52 * hash_verified is nonzero, hash of the block has been verified.
53 *
54 * The variable hash_verified is set to 0 when allocating the buffer, then
55 * it can be changed to 1 and it is never reset to 0 again.
56 *
57 * There is no lock around this value, a race condition can at worst cause
58 * that multiple processes verify the hash of the same buffer simultaneously
59 * and write 1 to hash_verified simultaneously.
60 * This condition is harmless, so we don't need locking.
61 */
62 struct buffer_aux {
63 int hash_verified;
64 };
65
66 /*
67 * Initialize struct buffer_aux for a freshly created buffer.
68 */
dm_bufio_alloc_callback(struct dm_buffer * buf)69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73 aux->hash_verified = 0;
74 }
75
76 /*
77 * Translate input sector number to the sector number on the target device.
78 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85 * Return hash position of a specified block at a specified tree level
86 * (0 is the lowest level).
87 * The lowest "hash_per_block_bits"-bits of the result denote hash position
88 * inside a hash block. The remaining bits denote location of the hash block.
89 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 int level)
92 {
93 return block >> (level * v->hash_per_block_bits);
94 }
95
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97 const u8 *data, size_t len,
98 struct crypto_wait *wait)
99 {
100 struct scatterlist sg;
101
102 if (likely(!is_vmalloc_addr(data))) {
103 sg_init_one(&sg, data, len);
104 ahash_request_set_crypt(req, &sg, NULL, len);
105 return crypto_wait_req(crypto_ahash_update(req), wait);
106 } else {
107 do {
108 int r;
109 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
110 flush_kernel_vmap_range((void *)data, this_step);
111 sg_init_table(&sg, 1);
112 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
113 ahash_request_set_crypt(req, &sg, NULL, this_step);
114 r = crypto_wait_req(crypto_ahash_update(req), wait);
115 if (unlikely(r))
116 return r;
117 data += this_step;
118 len -= this_step;
119 } while (len);
120 return 0;
121 }
122 }
123
124 /*
125 * Wrapper for crypto_ahash_init, which handles verity salting.
126 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait)127 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
128 struct crypto_wait *wait)
129 {
130 int r;
131
132 ahash_request_set_tfm(req, v->tfm);
133 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
134 CRYPTO_TFM_REQ_MAY_BACKLOG,
135 crypto_req_done, (void *)wait);
136 crypto_init_wait(wait);
137
138 r = crypto_wait_req(crypto_ahash_init(req), wait);
139
140 if (unlikely(r < 0)) {
141 DMERR("crypto_ahash_init failed: %d", r);
142 return r;
143 }
144
145 if (likely(v->salt_size && (v->version >= 1)))
146 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
147
148 return r;
149 }
150
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)151 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
152 u8 *digest, struct crypto_wait *wait)
153 {
154 int r;
155
156 if (unlikely(v->salt_size && (!v->version))) {
157 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158
159 if (r < 0) {
160 DMERR("verity_hash_final failed updating salt: %d", r);
161 goto out;
162 }
163 }
164
165 ahash_request_set_crypt(req, NULL, digest, 0);
166 r = crypto_wait_req(crypto_ahash_final(req), wait);
167 out:
168 return r;
169 }
170
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)171 int verity_hash(struct dm_verity *v, struct ahash_request *req,
172 const u8 *data, size_t len, u8 *digest)
173 {
174 int r;
175 struct crypto_wait wait;
176
177 r = verity_hash_init(v, req, &wait);
178 if (unlikely(r < 0))
179 goto out;
180
181 r = verity_hash_update(v, req, data, len, &wait);
182 if (unlikely(r < 0))
183 goto out;
184
185 r = verity_hash_final(v, req, digest, &wait);
186
187 out:
188 return r;
189 }
190
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)191 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
192 sector_t *hash_block, unsigned *offset)
193 {
194 sector_t position = verity_position_at_level(v, block, level);
195 unsigned idx;
196
197 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
198
199 if (!offset)
200 return;
201
202 idx = position & ((1 << v->hash_per_block_bits) - 1);
203 if (!v->version)
204 *offset = idx * v->digest_size;
205 else
206 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
207 }
208
209 /*
210 * Handle verification errors.
211 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)212 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
213 unsigned long long block)
214 {
215 char verity_env[DM_VERITY_ENV_LENGTH];
216 char *envp[] = { verity_env, NULL };
217 const char *type_str = "";
218 struct mapped_device *md = dm_table_get_md(v->ti->table);
219
220 /* Corruption should be visible in device status in all modes */
221 v->hash_failed = 1;
222
223 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
224 goto out;
225
226 v->corrupted_errs++;
227
228 switch (type) {
229 case DM_VERITY_BLOCK_TYPE_DATA:
230 type_str = "data";
231 break;
232 case DM_VERITY_BLOCK_TYPE_METADATA:
233 type_str = "metadata";
234 break;
235 default:
236 BUG();
237 }
238
239 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
240 type_str, block);
241
242 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
243 DMERR("%s: reached maximum errors", v->data_dev->name);
244
245 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
246 DM_VERITY_ENV_VAR_NAME, type, block);
247
248 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
249
250 out:
251 if (v->mode == DM_VERITY_MODE_LOGGING)
252 return 0;
253
254 if (v->mode == DM_VERITY_MODE_RESTART) {
255 #ifdef CONFIG_DM_VERITY_AVB
256 dm_verity_avb_error_handler();
257 #endif
258 kernel_restart("dm-verity device corrupted");
259 }
260
261 return 1;
262 }
263
264 /*
265 * Verify hash of a metadata block pertaining to the specified data block
266 * ("block" argument) at a specified level ("level" argument).
267 *
268 * On successful return, verity_io_want_digest(v, io) contains the hash value
269 * for a lower tree level or for the data block (if we're at the lowest level).
270 *
271 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
272 * If "skip_unverified" is false, unverified buffer is hashed and verified
273 * against current value of verity_io_want_digest(v, io).
274 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)275 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
276 sector_t block, int level, bool skip_unverified,
277 u8 *want_digest)
278 {
279 struct dm_buffer *buf;
280 struct buffer_aux *aux;
281 u8 *data;
282 int r;
283 sector_t hash_block;
284 unsigned offset;
285
286 verity_hash_at_level(v, block, level, &hash_block, &offset);
287
288 data = dm_bufio_read(v->bufio, hash_block, &buf);
289 if (IS_ERR(data))
290 return PTR_ERR(data);
291
292 aux = dm_bufio_get_aux_data(buf);
293
294 if (!aux->hash_verified) {
295 if (skip_unverified) {
296 r = 1;
297 goto release_ret_r;
298 }
299
300 r = verity_hash(v, verity_io_hash_req(v, io),
301 data, 1 << v->hash_dev_block_bits,
302 verity_io_real_digest(v, io));
303 if (unlikely(r < 0))
304 goto release_ret_r;
305
306 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
307 v->digest_size) == 0))
308 aux->hash_verified = 1;
309 else if (verity_fec_decode(v, io,
310 DM_VERITY_BLOCK_TYPE_METADATA,
311 hash_block, data, NULL) == 0)
312 aux->hash_verified = 1;
313 else if (verity_handle_err(v,
314 DM_VERITY_BLOCK_TYPE_METADATA,
315 hash_block)) {
316 r = -EIO;
317 goto release_ret_r;
318 }
319 }
320
321 data += offset;
322 memcpy(want_digest, data, v->digest_size);
323 r = 0;
324
325 release_ret_r:
326 dm_bufio_release(buf);
327 return r;
328 }
329
330 /*
331 * Find a hash for a given block, write it to digest and verify the integrity
332 * of the hash tree if necessary.
333 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)334 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
335 sector_t block, u8 *digest, bool *is_zero)
336 {
337 int r = 0, i;
338
339 if (likely(v->levels)) {
340 /*
341 * First, we try to get the requested hash for
342 * the current block. If the hash block itself is
343 * verified, zero is returned. If it isn't, this
344 * function returns 1 and we fall back to whole
345 * chain verification.
346 */
347 r = verity_verify_level(v, io, block, 0, true, digest);
348 if (likely(r <= 0))
349 goto out;
350 }
351
352 memcpy(digest, v->root_digest, v->digest_size);
353
354 for (i = v->levels - 1; i >= 0; i--) {
355 r = verity_verify_level(v, io, block, i, false, digest);
356 if (unlikely(r))
357 goto out;
358 }
359 out:
360 if (!r && v->zero_digest)
361 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
362 else
363 *is_zero = false;
364
365 return r;
366 }
367
368 /*
369 * Calculates the digest for the given bio
370 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)371 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
372 struct bvec_iter *iter, struct crypto_wait *wait)
373 {
374 unsigned int todo = 1 << v->data_dev_block_bits;
375 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
376 struct scatterlist sg;
377 struct ahash_request *req = verity_io_hash_req(v, io);
378
379 do {
380 int r;
381 unsigned int len;
382 struct bio_vec bv = bio_iter_iovec(bio, *iter);
383
384 sg_init_table(&sg, 1);
385
386 len = bv.bv_len;
387
388 if (likely(len >= todo))
389 len = todo;
390 /*
391 * Operating on a single page at a time looks suboptimal
392 * until you consider the typical block size is 4,096B.
393 * Going through this loops twice should be very rare.
394 */
395 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
396 ahash_request_set_crypt(req, &sg, NULL, len);
397 r = crypto_wait_req(crypto_ahash_update(req), wait);
398
399 if (unlikely(r < 0)) {
400 DMERR("verity_for_io_block crypto op failed: %d", r);
401 return r;
402 }
403
404 bio_advance_iter(bio, iter, len);
405 todo -= len;
406 } while (todo);
407
408 return 0;
409 }
410
411 /*
412 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
413 * starting from iter.
414 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))415 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
416 struct bvec_iter *iter,
417 int (*process)(struct dm_verity *v,
418 struct dm_verity_io *io, u8 *data,
419 size_t len))
420 {
421 unsigned todo = 1 << v->data_dev_block_bits;
422 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
423
424 do {
425 int r;
426 u8 *page;
427 unsigned len;
428 struct bio_vec bv = bio_iter_iovec(bio, *iter);
429
430 page = kmap_atomic(bv.bv_page);
431 len = bv.bv_len;
432
433 if (likely(len >= todo))
434 len = todo;
435
436 r = process(v, io, page + bv.bv_offset, len);
437 kunmap_atomic(page);
438
439 if (r < 0)
440 return r;
441
442 bio_advance_iter(bio, iter, len);
443 todo -= len;
444 } while (todo);
445
446 return 0;
447 }
448
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)449 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
450 u8 *data, size_t len)
451 {
452 memset(data, 0, len);
453 return 0;
454 }
455
456 /*
457 * Moves the bio iter one data block forward.
458 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)459 static inline void verity_bv_skip_block(struct dm_verity *v,
460 struct dm_verity_io *io,
461 struct bvec_iter *iter)
462 {
463 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464
465 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
466 }
467
468 /*
469 * Verify one "dm_verity_io" structure.
470 */
verity_verify_io(struct dm_verity_io * io)471 static int verity_verify_io(struct dm_verity_io *io)
472 {
473 bool is_zero;
474 struct dm_verity *v = io->v;
475 struct bvec_iter start;
476 unsigned b;
477 struct crypto_wait wait;
478
479 for (b = 0; b < io->n_blocks; b++) {
480 int r;
481 sector_t cur_block = io->block + b;
482 struct ahash_request *req = verity_io_hash_req(v, io);
483
484 if (v->validated_blocks &&
485 likely(test_bit(cur_block, v->validated_blocks))) {
486 verity_bv_skip_block(v, io, &io->iter);
487 continue;
488 }
489
490 r = verity_hash_for_block(v, io, cur_block,
491 verity_io_want_digest(v, io),
492 &is_zero);
493 if (unlikely(r < 0))
494 return r;
495
496 if (is_zero) {
497 /*
498 * If we expect a zero block, don't validate, just
499 * return zeros.
500 */
501 r = verity_for_bv_block(v, io, &io->iter,
502 verity_bv_zero);
503 if (unlikely(r < 0))
504 return r;
505
506 continue;
507 }
508
509 r = verity_hash_init(v, req, &wait);
510 if (unlikely(r < 0))
511 return r;
512
513 start = io->iter;
514 r = verity_for_io_block(v, io, &io->iter, &wait);
515 if (unlikely(r < 0))
516 return r;
517
518 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
519 &wait);
520 if (unlikely(r < 0))
521 return r;
522
523 if (likely(memcmp(verity_io_real_digest(v, io),
524 verity_io_want_digest(v, io), v->digest_size) == 0)) {
525 if (v->validated_blocks)
526 set_bit(cur_block, v->validated_blocks);
527 continue;
528 }
529 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
530 cur_block, NULL, &start) == 0)
531 continue;
532 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
533 cur_block))
534 return -EIO;
535 }
536
537 return 0;
538 }
539
540 /*
541 * End one "io" structure with a given error.
542 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)543 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
544 {
545 struct dm_verity *v = io->v;
546 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
547
548 bio->bi_end_io = io->orig_bi_end_io;
549 bio->bi_status = status;
550
551 verity_fec_finish_io(io);
552
553 bio_endio(bio);
554 }
555
verity_work(struct work_struct * w)556 static void verity_work(struct work_struct *w)
557 {
558 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
559
560 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
561 }
562
verity_end_io(struct bio * bio)563 static void verity_end_io(struct bio *bio)
564 {
565 struct dm_verity_io *io = bio->bi_private;
566
567 if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
568 verity_finish_io(io, bio->bi_status);
569 return;
570 }
571
572 INIT_WORK(&io->work, verity_work);
573 queue_work(io->v->verify_wq, &io->work);
574 }
575
576 /*
577 * Prefetch buffers for the specified io.
578 * The root buffer is not prefetched, it is assumed that it will be cached
579 * all the time.
580 */
verity_prefetch_io(struct work_struct * work)581 static void verity_prefetch_io(struct work_struct *work)
582 {
583 struct dm_verity_prefetch_work *pw =
584 container_of(work, struct dm_verity_prefetch_work, work);
585 struct dm_verity *v = pw->v;
586 int i;
587
588 for (i = v->levels - 2; i >= 0; i--) {
589 sector_t hash_block_start;
590 sector_t hash_block_end;
591 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
592 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
593 if (!i) {
594 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
595
596 cluster >>= v->data_dev_block_bits;
597 if (unlikely(!cluster))
598 goto no_prefetch_cluster;
599
600 if (unlikely(cluster & (cluster - 1)))
601 cluster = 1 << __fls(cluster);
602
603 hash_block_start &= ~(sector_t)(cluster - 1);
604 hash_block_end |= cluster - 1;
605 if (unlikely(hash_block_end >= v->hash_blocks))
606 hash_block_end = v->hash_blocks - 1;
607 }
608 no_prefetch_cluster:
609 dm_bufio_prefetch(v->bufio, hash_block_start,
610 hash_block_end - hash_block_start + 1);
611 }
612
613 kfree(pw);
614 }
615
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)616 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
617 {
618 struct dm_verity_prefetch_work *pw;
619
620 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
621 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
622
623 if (!pw)
624 return;
625
626 INIT_WORK(&pw->work, verity_prefetch_io);
627 pw->v = v;
628 pw->block = io->block;
629 pw->n_blocks = io->n_blocks;
630 queue_work(v->verify_wq, &pw->work);
631 }
632
633 /*
634 * Bio map function. It allocates dm_verity_io structure and bio vector and
635 * fills them. Then it issues prefetches and the I/O.
636 */
verity_map(struct dm_target * ti,struct bio * bio)637 static int verity_map(struct dm_target *ti, struct bio *bio)
638 {
639 struct dm_verity *v = ti->private;
640 struct dm_verity_io *io;
641
642 bio_set_dev(bio, v->data_dev->bdev);
643 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
644
645 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
646 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
647 DMERR_LIMIT("unaligned io");
648 return DM_MAPIO_KILL;
649 }
650
651 if (bio_end_sector(bio) >>
652 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
653 DMERR_LIMIT("io out of range");
654 return DM_MAPIO_KILL;
655 }
656
657 if (bio_data_dir(bio) == WRITE)
658 return DM_MAPIO_KILL;
659
660 io = dm_per_bio_data(bio, ti->per_io_data_size);
661 io->v = v;
662 io->orig_bi_end_io = bio->bi_end_io;
663 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
664 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
665
666 bio->bi_end_io = verity_end_io;
667 bio->bi_private = io;
668 io->iter = bio->bi_iter;
669
670 verity_fec_init_io(io);
671
672 verity_submit_prefetch(v, io);
673
674 generic_make_request(bio);
675
676 return DM_MAPIO_SUBMITTED;
677 }
678
679 /*
680 * Status: V (valid) or C (corruption found)
681 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)682 static void verity_status(struct dm_target *ti, status_type_t type,
683 unsigned status_flags, char *result, unsigned maxlen)
684 {
685 struct dm_verity *v = ti->private;
686 unsigned args = 0;
687 unsigned sz = 0;
688 unsigned x;
689
690 switch (type) {
691 case STATUSTYPE_INFO:
692 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
693 break;
694 case STATUSTYPE_TABLE:
695 DMEMIT("%u %s %s %u %u %llu %llu %s ",
696 v->version,
697 v->data_dev->name,
698 v->hash_dev->name,
699 1 << v->data_dev_block_bits,
700 1 << v->hash_dev_block_bits,
701 (unsigned long long)v->data_blocks,
702 (unsigned long long)v->hash_start,
703 v->alg_name
704 );
705 for (x = 0; x < v->digest_size; x++)
706 DMEMIT("%02x", v->root_digest[x]);
707 DMEMIT(" ");
708 if (!v->salt_size)
709 DMEMIT("-");
710 else
711 for (x = 0; x < v->salt_size; x++)
712 DMEMIT("%02x", v->salt[x]);
713 if (v->mode != DM_VERITY_MODE_EIO)
714 args++;
715 if (verity_fec_is_enabled(v))
716 args += DM_VERITY_OPTS_FEC;
717 if (v->zero_digest)
718 args++;
719 if (v->validated_blocks)
720 args++;
721 if (v->signature_key_desc)
722 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
723 if (!args)
724 return;
725 DMEMIT(" %u", args);
726 if (v->mode != DM_VERITY_MODE_EIO) {
727 DMEMIT(" ");
728 switch (v->mode) {
729 case DM_VERITY_MODE_LOGGING:
730 DMEMIT(DM_VERITY_OPT_LOGGING);
731 break;
732 case DM_VERITY_MODE_RESTART:
733 DMEMIT(DM_VERITY_OPT_RESTART);
734 break;
735 default:
736 BUG();
737 }
738 }
739 if (v->zero_digest)
740 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
741 if (v->validated_blocks)
742 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
743 sz = verity_fec_status_table(v, sz, result, maxlen);
744 if (v->signature_key_desc)
745 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
746 " %s", v->signature_key_desc);
747 break;
748 }
749 }
750
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)751 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
752 {
753 struct dm_verity *v = ti->private;
754
755 *bdev = v->data_dev->bdev;
756
757 if (v->data_start ||
758 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
759 return 1;
760 return 0;
761 }
762
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)763 static int verity_iterate_devices(struct dm_target *ti,
764 iterate_devices_callout_fn fn, void *data)
765 {
766 struct dm_verity *v = ti->private;
767
768 return fn(ti, v->data_dev, v->data_start, ti->len, data);
769 }
770
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)771 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
772 {
773 struct dm_verity *v = ti->private;
774
775 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
776 limits->logical_block_size = 1 << v->data_dev_block_bits;
777
778 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
779 limits->physical_block_size = 1 << v->data_dev_block_bits;
780
781 blk_limits_io_min(limits, limits->logical_block_size);
782 }
783
verity_dtr(struct dm_target * ti)784 static void verity_dtr(struct dm_target *ti)
785 {
786 struct dm_verity *v = ti->private;
787
788 if (v->verify_wq)
789 destroy_workqueue(v->verify_wq);
790
791 if (v->bufio)
792 dm_bufio_client_destroy(v->bufio);
793
794 kvfree(v->validated_blocks);
795 kfree(v->salt);
796 kfree(v->root_digest);
797 kfree(v->zero_digest);
798
799 if (v->tfm)
800 crypto_free_ahash(v->tfm);
801
802 kfree(v->alg_name);
803
804 if (v->hash_dev)
805 dm_put_device(ti, v->hash_dev);
806
807 if (v->data_dev)
808 dm_put_device(ti, v->data_dev);
809
810 verity_fec_dtr(v);
811
812 kfree(v->signature_key_desc);
813
814 kfree(v);
815 }
816
verity_alloc_most_once(struct dm_verity * v)817 static int verity_alloc_most_once(struct dm_verity *v)
818 {
819 struct dm_target *ti = v->ti;
820
821 /* the bitset can only handle INT_MAX blocks */
822 if (v->data_blocks > INT_MAX) {
823 ti->error = "device too large to use check_at_most_once";
824 return -E2BIG;
825 }
826
827 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
828 sizeof(unsigned long),
829 GFP_KERNEL);
830 if (!v->validated_blocks) {
831 ti->error = "failed to allocate bitset for check_at_most_once";
832 return -ENOMEM;
833 }
834
835 return 0;
836 }
837
verity_alloc_zero_digest(struct dm_verity * v)838 static int verity_alloc_zero_digest(struct dm_verity *v)
839 {
840 int r = -ENOMEM;
841 struct ahash_request *req;
842 u8 *zero_data;
843
844 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
845
846 if (!v->zero_digest)
847 return r;
848
849 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
850
851 if (!req)
852 return r; /* verity_dtr will free zero_digest */
853
854 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
855
856 if (!zero_data)
857 goto out;
858
859 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
860 v->zero_digest);
861
862 out:
863 kfree(req);
864 kfree(zero_data);
865
866 return r;
867 }
868
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args)869 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
870 struct dm_verity_sig_opts *verify_args)
871 {
872 int r;
873 unsigned argc;
874 struct dm_target *ti = v->ti;
875 const char *arg_name;
876
877 static const struct dm_arg _args[] = {
878 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
879 };
880
881 r = dm_read_arg_group(_args, as, &argc, &ti->error);
882 if (r)
883 return -EINVAL;
884
885 if (!argc)
886 return 0;
887
888 do {
889 arg_name = dm_shift_arg(as);
890 argc--;
891
892 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
893 v->mode = DM_VERITY_MODE_LOGGING;
894 continue;
895
896 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
897 v->mode = DM_VERITY_MODE_RESTART;
898 continue;
899
900 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
901 r = verity_alloc_zero_digest(v);
902 if (r) {
903 ti->error = "Cannot allocate zero digest";
904 return r;
905 }
906 continue;
907
908 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
909 r = verity_alloc_most_once(v);
910 if (r)
911 return r;
912 continue;
913
914 } else if (verity_is_fec_opt_arg(arg_name)) {
915 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
916 if (r)
917 return r;
918 continue;
919 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
920 r = verity_verify_sig_parse_opt_args(as, v,
921 verify_args,
922 &argc, arg_name);
923 if (r)
924 return r;
925 continue;
926
927 }
928
929 ti->error = "Unrecognized verity feature request";
930 return -EINVAL;
931 } while (argc && !r);
932
933 return r;
934 }
935
936 /*
937 * Target parameters:
938 * <version> The current format is version 1.
939 * Vsn 0 is compatible with original Chromium OS releases.
940 * <data device>
941 * <hash device>
942 * <data block size>
943 * <hash block size>
944 * <the number of data blocks>
945 * <hash start block>
946 * <algorithm>
947 * <digest>
948 * <salt> Hex string or "-" if no salt.
949 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)950 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
951 {
952 struct dm_verity *v;
953 struct dm_verity_sig_opts verify_args = {0};
954 struct dm_arg_set as;
955 unsigned int num;
956 unsigned long long num_ll;
957 int r;
958 int i;
959 sector_t hash_position;
960 char dummy;
961 char *root_hash_digest_to_validate;
962
963 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
964 if (!v) {
965 ti->error = "Cannot allocate verity structure";
966 return -ENOMEM;
967 }
968 ti->private = v;
969 v->ti = ti;
970
971 r = verity_fec_ctr_alloc(v);
972 if (r)
973 goto bad;
974
975 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
976 ti->error = "Device must be readonly";
977 r = -EINVAL;
978 goto bad;
979 }
980
981 if (argc < 10) {
982 ti->error = "Not enough arguments";
983 r = -EINVAL;
984 goto bad;
985 }
986
987 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
988 num > 1) {
989 ti->error = "Invalid version";
990 r = -EINVAL;
991 goto bad;
992 }
993 v->version = num;
994
995 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
996 if (r) {
997 ti->error = "Data device lookup failed";
998 goto bad;
999 }
1000
1001 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1002 if (r) {
1003 ti->error = "Hash device lookup failed";
1004 goto bad;
1005 }
1006
1007 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1008 !num || (num & (num - 1)) ||
1009 num < bdev_logical_block_size(v->data_dev->bdev) ||
1010 num > PAGE_SIZE) {
1011 ti->error = "Invalid data device block size";
1012 r = -EINVAL;
1013 goto bad;
1014 }
1015 v->data_dev_block_bits = __ffs(num);
1016
1017 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1018 !num || (num & (num - 1)) ||
1019 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1020 num > INT_MAX) {
1021 ti->error = "Invalid hash device block size";
1022 r = -EINVAL;
1023 goto bad;
1024 }
1025 v->hash_dev_block_bits = __ffs(num);
1026
1027 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1028 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1029 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1030 ti->error = "Invalid data blocks";
1031 r = -EINVAL;
1032 goto bad;
1033 }
1034 v->data_blocks = num_ll;
1035
1036 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1037 ti->error = "Data device is too small";
1038 r = -EINVAL;
1039 goto bad;
1040 }
1041
1042 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1043 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1044 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1045 ti->error = "Invalid hash start";
1046 r = -EINVAL;
1047 goto bad;
1048 }
1049 v->hash_start = num_ll;
1050
1051 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1052 if (!v->alg_name) {
1053 ti->error = "Cannot allocate algorithm name";
1054 r = -ENOMEM;
1055 goto bad;
1056 }
1057
1058 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1059 if (IS_ERR(v->tfm)) {
1060 ti->error = "Cannot initialize hash function";
1061 r = PTR_ERR(v->tfm);
1062 v->tfm = NULL;
1063 goto bad;
1064 }
1065
1066 /*
1067 * dm-verity performance can vary greatly depending on which hash
1068 * algorithm implementation is used. Help people debug performance
1069 * problems by logging the ->cra_driver_name.
1070 */
1071 DMINFO("%s using implementation \"%s\"", v->alg_name,
1072 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1073
1074 v->digest_size = crypto_ahash_digestsize(v->tfm);
1075 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1076 ti->error = "Digest size too big";
1077 r = -EINVAL;
1078 goto bad;
1079 }
1080 v->ahash_reqsize = sizeof(struct ahash_request) +
1081 crypto_ahash_reqsize(v->tfm);
1082
1083 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1084 if (!v->root_digest) {
1085 ti->error = "Cannot allocate root digest";
1086 r = -ENOMEM;
1087 goto bad;
1088 }
1089 if (strlen(argv[8]) != v->digest_size * 2 ||
1090 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1091 ti->error = "Invalid root digest";
1092 r = -EINVAL;
1093 goto bad;
1094 }
1095 root_hash_digest_to_validate = argv[8];
1096
1097 if (strcmp(argv[9], "-")) {
1098 v->salt_size = strlen(argv[9]) / 2;
1099 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1100 if (!v->salt) {
1101 ti->error = "Cannot allocate salt";
1102 r = -ENOMEM;
1103 goto bad;
1104 }
1105 if (strlen(argv[9]) != v->salt_size * 2 ||
1106 hex2bin(v->salt, argv[9], v->salt_size)) {
1107 ti->error = "Invalid salt";
1108 r = -EINVAL;
1109 goto bad;
1110 }
1111 }
1112
1113 argv += 10;
1114 argc -= 10;
1115
1116 /* Optional parameters */
1117 if (argc) {
1118 as.argc = argc;
1119 as.argv = argv;
1120
1121 r = verity_parse_opt_args(&as, v, &verify_args);
1122 if (r < 0)
1123 goto bad;
1124 }
1125
1126 /* Root hash signature is a optional parameter*/
1127 r = verity_verify_root_hash(root_hash_digest_to_validate,
1128 strlen(root_hash_digest_to_validate),
1129 verify_args.sig,
1130 verify_args.sig_size);
1131 if (r < 0) {
1132 ti->error = "Root hash verification failed";
1133 goto bad;
1134 }
1135 v->hash_per_block_bits =
1136 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1137
1138 v->levels = 0;
1139 if (v->data_blocks)
1140 while (v->hash_per_block_bits * v->levels < 64 &&
1141 (unsigned long long)(v->data_blocks - 1) >>
1142 (v->hash_per_block_bits * v->levels))
1143 v->levels++;
1144
1145 if (v->levels > DM_VERITY_MAX_LEVELS) {
1146 ti->error = "Too many tree levels";
1147 r = -E2BIG;
1148 goto bad;
1149 }
1150
1151 hash_position = v->hash_start;
1152 for (i = v->levels - 1; i >= 0; i--) {
1153 sector_t s;
1154 v->hash_level_block[i] = hash_position;
1155 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1156 >> ((i + 1) * v->hash_per_block_bits);
1157 if (hash_position + s < hash_position) {
1158 ti->error = "Hash device offset overflow";
1159 r = -E2BIG;
1160 goto bad;
1161 }
1162 hash_position += s;
1163 }
1164 v->hash_blocks = hash_position;
1165
1166 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1167 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1168 dm_bufio_alloc_callback, NULL);
1169 if (IS_ERR(v->bufio)) {
1170 ti->error = "Cannot initialize dm-bufio";
1171 r = PTR_ERR(v->bufio);
1172 v->bufio = NULL;
1173 goto bad;
1174 }
1175
1176 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1177 ti->error = "Hash device is too small";
1178 r = -E2BIG;
1179 goto bad;
1180 }
1181
1182 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1183 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1184 if (!v->verify_wq) {
1185 ti->error = "Cannot allocate workqueue";
1186 r = -ENOMEM;
1187 goto bad;
1188 }
1189
1190 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1191 v->ahash_reqsize + v->digest_size * 2;
1192
1193 r = verity_fec_ctr(v);
1194 if (r)
1195 goto bad;
1196
1197 ti->per_io_data_size = roundup(ti->per_io_data_size,
1198 __alignof__(struct dm_verity_io));
1199
1200 verity_verify_sig_opts_cleanup(&verify_args);
1201
1202 return 0;
1203
1204 bad:
1205
1206 verity_verify_sig_opts_cleanup(&verify_args);
1207 verity_dtr(ti);
1208
1209 return r;
1210 }
1211
1212 static struct target_type verity_target = {
1213 .name = "verity",
1214 .version = {1, 5, 0},
1215 .module = THIS_MODULE,
1216 .ctr = verity_ctr,
1217 .dtr = verity_dtr,
1218 .map = verity_map,
1219 .status = verity_status,
1220 .prepare_ioctl = verity_prepare_ioctl,
1221 .iterate_devices = verity_iterate_devices,
1222 .io_hints = verity_io_hints,
1223 };
1224
dm_verity_init(void)1225 static int __init dm_verity_init(void)
1226 {
1227 int r;
1228
1229 r = dm_register_target(&verity_target);
1230 if (r < 0)
1231 DMERR("register failed %d", r);
1232
1233 return r;
1234 }
1235
dm_verity_exit(void)1236 static void __exit dm_verity_exit(void)
1237 {
1238 dm_unregister_target(&verity_target);
1239 }
1240
1241 module_init(dm_verity_init);
1242 module_exit(dm_verity_exit);
1243
1244 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1245 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1246 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1247 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1248 MODULE_LICENSE("GPL");
1249