• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 
33 #include <trace/events/block.h>
34 
35 #include "md.h"
36 #include "raid1.h"
37 #include "md-bitmap.h"
38 
39 #define UNSUPPORTED_MDDEV_FLAGS		\
40 	((1L << MD_HAS_JOURNAL) |	\
41 	 (1L << MD_JOURNAL_CLEAN) |	\
42 	 (1L << MD_HAS_PPL) |		\
43 	 (1L << MD_HAS_MULTIPLE_PPLS))
44 
45 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
47 
48 #define raid1_log(md, fmt, args...)				\
49 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50 
51 #include "raid1-10.c"
52 
check_and_add_wb(struct md_rdev * rdev,sector_t lo,sector_t hi)53 static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
54 {
55 	struct wb_info *wi, *temp_wi;
56 	unsigned long flags;
57 	int ret = 0;
58 	struct mddev *mddev = rdev->mddev;
59 
60 	wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
61 
62 	spin_lock_irqsave(&rdev->wb_list_lock, flags);
63 	list_for_each_entry(temp_wi, &rdev->wb_list, list) {
64 		/* collision happened */
65 		if (hi > temp_wi->lo && lo < temp_wi->hi) {
66 			ret = -EBUSY;
67 			break;
68 		}
69 	}
70 
71 	if (!ret) {
72 		wi->lo = lo;
73 		wi->hi = hi;
74 		list_add(&wi->list, &rdev->wb_list);
75 	} else
76 		mempool_free(wi, mddev->wb_info_pool);
77 	spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
78 
79 	return ret;
80 }
81 
remove_wb(struct md_rdev * rdev,sector_t lo,sector_t hi)82 static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
83 {
84 	struct wb_info *wi;
85 	unsigned long flags;
86 	int found = 0;
87 	struct mddev *mddev = rdev->mddev;
88 
89 	spin_lock_irqsave(&rdev->wb_list_lock, flags);
90 	list_for_each_entry(wi, &rdev->wb_list, list)
91 		if (hi == wi->hi && lo == wi->lo) {
92 			list_del(&wi->list);
93 			mempool_free(wi, mddev->wb_info_pool);
94 			found = 1;
95 			break;
96 		}
97 
98 	if (!found)
99 		WARN(1, "The write behind IO is not recorded\n");
100 	spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
101 	wake_up(&rdev->wb_io_wait);
102 }
103 
104 /*
105  * for resync bio, r1bio pointer can be retrieved from the per-bio
106  * 'struct resync_pages'.
107  */
get_resync_r1bio(struct bio * bio)108 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
109 {
110 	return get_resync_pages(bio)->raid_bio;
111 }
112 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)113 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
114 {
115 	struct pool_info *pi = data;
116 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
117 
118 	/* allocate a r1bio with room for raid_disks entries in the bios array */
119 	return kzalloc(size, gfp_flags);
120 }
121 
122 #define RESYNC_DEPTH 32
123 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
124 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
126 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
128 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)129 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
130 {
131 	struct pool_info *pi = data;
132 	struct r1bio *r1_bio;
133 	struct bio *bio;
134 	int need_pages;
135 	int j;
136 	struct resync_pages *rps;
137 
138 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
139 	if (!r1_bio)
140 		return NULL;
141 
142 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
143 			    gfp_flags);
144 	if (!rps)
145 		goto out_free_r1bio;
146 
147 	/*
148 	 * Allocate bios : 1 for reading, n-1 for writing
149 	 */
150 	for (j = pi->raid_disks ; j-- ; ) {
151 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 		if (!bio)
153 			goto out_free_bio;
154 		r1_bio->bios[j] = bio;
155 	}
156 	/*
157 	 * Allocate RESYNC_PAGES data pages and attach them to
158 	 * the first bio.
159 	 * If this is a user-requested check/repair, allocate
160 	 * RESYNC_PAGES for each bio.
161 	 */
162 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
163 		need_pages = pi->raid_disks;
164 	else
165 		need_pages = 1;
166 	for (j = 0; j < pi->raid_disks; j++) {
167 		struct resync_pages *rp = &rps[j];
168 
169 		bio = r1_bio->bios[j];
170 
171 		if (j < need_pages) {
172 			if (resync_alloc_pages(rp, gfp_flags))
173 				goto out_free_pages;
174 		} else {
175 			memcpy(rp, &rps[0], sizeof(*rp));
176 			resync_get_all_pages(rp);
177 		}
178 
179 		rp->raid_bio = r1_bio;
180 		bio->bi_private = rp;
181 	}
182 
183 	r1_bio->master_bio = NULL;
184 
185 	return r1_bio;
186 
187 out_free_pages:
188 	while (--j >= 0)
189 		resync_free_pages(&rps[j]);
190 
191 out_free_bio:
192 	while (++j < pi->raid_disks)
193 		bio_put(r1_bio->bios[j]);
194 	kfree(rps);
195 
196 out_free_r1bio:
197 	rbio_pool_free(r1_bio, data);
198 	return NULL;
199 }
200 
r1buf_pool_free(void * __r1_bio,void * data)201 static void r1buf_pool_free(void *__r1_bio, void *data)
202 {
203 	struct pool_info *pi = data;
204 	int i;
205 	struct r1bio *r1bio = __r1_bio;
206 	struct resync_pages *rp = NULL;
207 
208 	for (i = pi->raid_disks; i--; ) {
209 		rp = get_resync_pages(r1bio->bios[i]);
210 		resync_free_pages(rp);
211 		bio_put(r1bio->bios[i]);
212 	}
213 
214 	/* resync pages array stored in the 1st bio's .bi_private */
215 	kfree(rp);
216 
217 	rbio_pool_free(r1bio, data);
218 }
219 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)220 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
221 {
222 	int i;
223 
224 	for (i = 0; i < conf->raid_disks * 2; i++) {
225 		struct bio **bio = r1_bio->bios + i;
226 		if (!BIO_SPECIAL(*bio))
227 			bio_put(*bio);
228 		*bio = NULL;
229 	}
230 }
231 
free_r1bio(struct r1bio * r1_bio)232 static void free_r1bio(struct r1bio *r1_bio)
233 {
234 	struct r1conf *conf = r1_bio->mddev->private;
235 
236 	put_all_bios(conf, r1_bio);
237 	mempool_free(r1_bio, &conf->r1bio_pool);
238 }
239 
put_buf(struct r1bio * r1_bio)240 static void put_buf(struct r1bio *r1_bio)
241 {
242 	struct r1conf *conf = r1_bio->mddev->private;
243 	sector_t sect = r1_bio->sector;
244 	int i;
245 
246 	for (i = 0; i < conf->raid_disks * 2; i++) {
247 		struct bio *bio = r1_bio->bios[i];
248 		if (bio->bi_end_io)
249 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
250 	}
251 
252 	mempool_free(r1_bio, &conf->r1buf_pool);
253 
254 	lower_barrier(conf, sect);
255 }
256 
reschedule_retry(struct r1bio * r1_bio)257 static void reschedule_retry(struct r1bio *r1_bio)
258 {
259 	unsigned long flags;
260 	struct mddev *mddev = r1_bio->mddev;
261 	struct r1conf *conf = mddev->private;
262 	int idx;
263 
264 	idx = sector_to_idx(r1_bio->sector);
265 	spin_lock_irqsave(&conf->device_lock, flags);
266 	list_add(&r1_bio->retry_list, &conf->retry_list);
267 	atomic_inc(&conf->nr_queued[idx]);
268 	spin_unlock_irqrestore(&conf->device_lock, flags);
269 
270 	wake_up(&conf->wait_barrier);
271 	md_wakeup_thread(mddev->thread);
272 }
273 
274 /*
275  * raid_end_bio_io() is called when we have finished servicing a mirrored
276  * operation and are ready to return a success/failure code to the buffer
277  * cache layer.
278  */
call_bio_endio(struct r1bio * r1_bio)279 static void call_bio_endio(struct r1bio *r1_bio)
280 {
281 	struct bio *bio = r1_bio->master_bio;
282 	struct r1conf *conf = r1_bio->mddev->private;
283 
284 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
285 		bio->bi_status = BLK_STS_IOERR;
286 
287 	bio_endio(bio);
288 	/*
289 	 * Wake up any possible resync thread that waits for the device
290 	 * to go idle.
291 	 */
292 	allow_barrier(conf, r1_bio->sector);
293 }
294 
raid_end_bio_io(struct r1bio * r1_bio)295 static void raid_end_bio_io(struct r1bio *r1_bio)
296 {
297 	struct bio *bio = r1_bio->master_bio;
298 
299 	/* if nobody has done the final endio yet, do it now */
300 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
301 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
303 			 (unsigned long long) bio->bi_iter.bi_sector,
304 			 (unsigned long long) bio_end_sector(bio) - 1);
305 
306 		call_bio_endio(r1_bio);
307 	}
308 	free_r1bio(r1_bio);
309 }
310 
311 /*
312  * Update disk head position estimator based on IRQ completion info.
313  */
update_head_pos(int disk,struct r1bio * r1_bio)314 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
315 {
316 	struct r1conf *conf = r1_bio->mddev->private;
317 
318 	conf->mirrors[disk].head_position =
319 		r1_bio->sector + (r1_bio->sectors);
320 }
321 
322 /*
323  * Find the disk number which triggered given bio
324  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)325 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
326 {
327 	int mirror;
328 	struct r1conf *conf = r1_bio->mddev->private;
329 	int raid_disks = conf->raid_disks;
330 
331 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
332 		if (r1_bio->bios[mirror] == bio)
333 			break;
334 
335 	BUG_ON(mirror == raid_disks * 2);
336 	update_head_pos(mirror, r1_bio);
337 
338 	return mirror;
339 }
340 
raid1_end_read_request(struct bio * bio)341 static void raid1_end_read_request(struct bio *bio)
342 {
343 	int uptodate = !bio->bi_status;
344 	struct r1bio *r1_bio = bio->bi_private;
345 	struct r1conf *conf = r1_bio->mddev->private;
346 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
347 
348 	/*
349 	 * this branch is our 'one mirror IO has finished' event handler:
350 	 */
351 	update_head_pos(r1_bio->read_disk, r1_bio);
352 
353 	if (uptodate)
354 		set_bit(R1BIO_Uptodate, &r1_bio->state);
355 	else if (test_bit(FailFast, &rdev->flags) &&
356 		 test_bit(R1BIO_FailFast, &r1_bio->state))
357 		/* This was a fail-fast read so we definitely
358 		 * want to retry */
359 		;
360 	else {
361 		/* If all other devices have failed, we want to return
362 		 * the error upwards rather than fail the last device.
363 		 * Here we redefine "uptodate" to mean "Don't want to retry"
364 		 */
365 		unsigned long flags;
366 		spin_lock_irqsave(&conf->device_lock, flags);
367 		if (r1_bio->mddev->degraded == conf->raid_disks ||
368 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
369 		     test_bit(In_sync, &rdev->flags)))
370 			uptodate = 1;
371 		spin_unlock_irqrestore(&conf->device_lock, flags);
372 	}
373 
374 	if (uptodate) {
375 		raid_end_bio_io(r1_bio);
376 		rdev_dec_pending(rdev, conf->mddev);
377 	} else {
378 		/*
379 		 * oops, read error:
380 		 */
381 		char b[BDEVNAME_SIZE];
382 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
383 				   mdname(conf->mddev),
384 				   bdevname(rdev->bdev, b),
385 				   (unsigned long long)r1_bio->sector);
386 		set_bit(R1BIO_ReadError, &r1_bio->state);
387 		reschedule_retry(r1_bio);
388 		/* don't drop the reference on read_disk yet */
389 	}
390 }
391 
close_write(struct r1bio * r1_bio)392 static void close_write(struct r1bio *r1_bio)
393 {
394 	/* it really is the end of this request */
395 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
396 		bio_free_pages(r1_bio->behind_master_bio);
397 		bio_put(r1_bio->behind_master_bio);
398 		r1_bio->behind_master_bio = NULL;
399 	}
400 	/* clear the bitmap if all writes complete successfully */
401 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
402 			   r1_bio->sectors,
403 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
404 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
405 	md_write_end(r1_bio->mddev);
406 }
407 
r1_bio_write_done(struct r1bio * r1_bio)408 static void r1_bio_write_done(struct r1bio *r1_bio)
409 {
410 	if (!atomic_dec_and_test(&r1_bio->remaining))
411 		return;
412 
413 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
414 		reschedule_retry(r1_bio);
415 	else {
416 		close_write(r1_bio);
417 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
418 			reschedule_retry(r1_bio);
419 		else
420 			raid_end_bio_io(r1_bio);
421 	}
422 }
423 
raid1_end_write_request(struct bio * bio)424 static void raid1_end_write_request(struct bio *bio)
425 {
426 	struct r1bio *r1_bio = bio->bi_private;
427 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
428 	struct r1conf *conf = r1_bio->mddev->private;
429 	struct bio *to_put = NULL;
430 	int mirror = find_bio_disk(r1_bio, bio);
431 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
432 	bool discard_error;
433 
434 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
435 
436 	/*
437 	 * 'one mirror IO has finished' event handler:
438 	 */
439 	if (bio->bi_status && !discard_error) {
440 		set_bit(WriteErrorSeen,	&rdev->flags);
441 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
442 			set_bit(MD_RECOVERY_NEEDED, &
443 				conf->mddev->recovery);
444 
445 		if (test_bit(FailFast, &rdev->flags) &&
446 		    (bio->bi_opf & MD_FAILFAST) &&
447 		    /* We never try FailFast to WriteMostly devices */
448 		    !test_bit(WriteMostly, &rdev->flags)) {
449 			md_error(r1_bio->mddev, rdev);
450 		}
451 
452 		/*
453 		 * When the device is faulty, it is not necessary to
454 		 * handle write error.
455 		 * For failfast, this is the only remaining device,
456 		 * We need to retry the write without FailFast.
457 		 */
458 		if (!test_bit(Faulty, &rdev->flags))
459 			set_bit(R1BIO_WriteError, &r1_bio->state);
460 		else {
461 			/* Finished with this branch */
462 			r1_bio->bios[mirror] = NULL;
463 			to_put = bio;
464 		}
465 	} else {
466 		/*
467 		 * Set R1BIO_Uptodate in our master bio, so that we
468 		 * will return a good error code for to the higher
469 		 * levels even if IO on some other mirrored buffer
470 		 * fails.
471 		 *
472 		 * The 'master' represents the composite IO operation
473 		 * to user-side. So if something waits for IO, then it
474 		 * will wait for the 'master' bio.
475 		 */
476 		sector_t first_bad;
477 		int bad_sectors;
478 
479 		r1_bio->bios[mirror] = NULL;
480 		to_put = bio;
481 		/*
482 		 * Do not set R1BIO_Uptodate if the current device is
483 		 * rebuilding or Faulty. This is because we cannot use
484 		 * such device for properly reading the data back (we could
485 		 * potentially use it, if the current write would have felt
486 		 * before rdev->recovery_offset, but for simplicity we don't
487 		 * check this here.
488 		 */
489 		if (test_bit(In_sync, &rdev->flags) &&
490 		    !test_bit(Faulty, &rdev->flags))
491 			set_bit(R1BIO_Uptodate, &r1_bio->state);
492 
493 		/* Maybe we can clear some bad blocks. */
494 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
495 				&first_bad, &bad_sectors) && !discard_error) {
496 			r1_bio->bios[mirror] = IO_MADE_GOOD;
497 			set_bit(R1BIO_MadeGood, &r1_bio->state);
498 		}
499 	}
500 
501 	if (behind) {
502 		if (test_bit(WBCollisionCheck, &rdev->flags)) {
503 			sector_t lo = r1_bio->sector;
504 			sector_t hi = r1_bio->sector + r1_bio->sectors;
505 
506 			remove_wb(rdev, lo, hi);
507 		}
508 		if (test_bit(WriteMostly, &rdev->flags))
509 			atomic_dec(&r1_bio->behind_remaining);
510 
511 		/*
512 		 * In behind mode, we ACK the master bio once the I/O
513 		 * has safely reached all non-writemostly
514 		 * disks. Setting the Returned bit ensures that this
515 		 * gets done only once -- we don't ever want to return
516 		 * -EIO here, instead we'll wait
517 		 */
518 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
519 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
520 			/* Maybe we can return now */
521 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
522 				struct bio *mbio = r1_bio->master_bio;
523 				pr_debug("raid1: behind end write sectors"
524 					 " %llu-%llu\n",
525 					 (unsigned long long) mbio->bi_iter.bi_sector,
526 					 (unsigned long long) bio_end_sector(mbio) - 1);
527 				call_bio_endio(r1_bio);
528 			}
529 		}
530 	}
531 	if (r1_bio->bios[mirror] == NULL)
532 		rdev_dec_pending(rdev, conf->mddev);
533 
534 	/*
535 	 * Let's see if all mirrored write operations have finished
536 	 * already.
537 	 */
538 	r1_bio_write_done(r1_bio);
539 
540 	if (to_put)
541 		bio_put(to_put);
542 }
543 
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)544 static sector_t align_to_barrier_unit_end(sector_t start_sector,
545 					  sector_t sectors)
546 {
547 	sector_t len;
548 
549 	WARN_ON(sectors == 0);
550 	/*
551 	 * len is the number of sectors from start_sector to end of the
552 	 * barrier unit which start_sector belongs to.
553 	 */
554 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
555 	      start_sector;
556 
557 	if (len > sectors)
558 		len = sectors;
559 
560 	return len;
561 }
562 
563 /*
564  * This routine returns the disk from which the requested read should
565  * be done. There is a per-array 'next expected sequential IO' sector
566  * number - if this matches on the next IO then we use the last disk.
567  * There is also a per-disk 'last know head position' sector that is
568  * maintained from IRQ contexts, both the normal and the resync IO
569  * completion handlers update this position correctly. If there is no
570  * perfect sequential match then we pick the disk whose head is closest.
571  *
572  * If there are 2 mirrors in the same 2 devices, performance degrades
573  * because position is mirror, not device based.
574  *
575  * The rdev for the device selected will have nr_pending incremented.
576  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)577 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
578 {
579 	const sector_t this_sector = r1_bio->sector;
580 	int sectors;
581 	int best_good_sectors;
582 	int best_disk, best_dist_disk, best_pending_disk;
583 	int has_nonrot_disk;
584 	int disk;
585 	sector_t best_dist;
586 	unsigned int min_pending;
587 	struct md_rdev *rdev;
588 	int choose_first;
589 	int choose_next_idle;
590 
591 	rcu_read_lock();
592 	/*
593 	 * Check if we can balance. We can balance on the whole
594 	 * device if no resync is going on, or below the resync window.
595 	 * We take the first readable disk when above the resync window.
596 	 */
597  retry:
598 	sectors = r1_bio->sectors;
599 	best_disk = -1;
600 	best_dist_disk = -1;
601 	best_dist = MaxSector;
602 	best_pending_disk = -1;
603 	min_pending = UINT_MAX;
604 	best_good_sectors = 0;
605 	has_nonrot_disk = 0;
606 	choose_next_idle = 0;
607 	clear_bit(R1BIO_FailFast, &r1_bio->state);
608 
609 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
610 	    (mddev_is_clustered(conf->mddev) &&
611 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
612 		    this_sector + sectors)))
613 		choose_first = 1;
614 	else
615 		choose_first = 0;
616 
617 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
618 		sector_t dist;
619 		sector_t first_bad;
620 		int bad_sectors;
621 		unsigned int pending;
622 		bool nonrot;
623 
624 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
625 		if (r1_bio->bios[disk] == IO_BLOCKED
626 		    || rdev == NULL
627 		    || test_bit(Faulty, &rdev->flags))
628 			continue;
629 		if (!test_bit(In_sync, &rdev->flags) &&
630 		    rdev->recovery_offset < this_sector + sectors)
631 			continue;
632 		if (test_bit(WriteMostly, &rdev->flags)) {
633 			/* Don't balance among write-mostly, just
634 			 * use the first as a last resort */
635 			if (best_dist_disk < 0) {
636 				if (is_badblock(rdev, this_sector, sectors,
637 						&first_bad, &bad_sectors)) {
638 					if (first_bad <= this_sector)
639 						/* Cannot use this */
640 						continue;
641 					best_good_sectors = first_bad - this_sector;
642 				} else
643 					best_good_sectors = sectors;
644 				best_dist_disk = disk;
645 				best_pending_disk = disk;
646 			}
647 			continue;
648 		}
649 		/* This is a reasonable device to use.  It might
650 		 * even be best.
651 		 */
652 		if (is_badblock(rdev, this_sector, sectors,
653 				&first_bad, &bad_sectors)) {
654 			if (best_dist < MaxSector)
655 				/* already have a better device */
656 				continue;
657 			if (first_bad <= this_sector) {
658 				/* cannot read here. If this is the 'primary'
659 				 * device, then we must not read beyond
660 				 * bad_sectors from another device..
661 				 */
662 				bad_sectors -= (this_sector - first_bad);
663 				if (choose_first && sectors > bad_sectors)
664 					sectors = bad_sectors;
665 				if (best_good_sectors > sectors)
666 					best_good_sectors = sectors;
667 
668 			} else {
669 				sector_t good_sectors = first_bad - this_sector;
670 				if (good_sectors > best_good_sectors) {
671 					best_good_sectors = good_sectors;
672 					best_disk = disk;
673 				}
674 				if (choose_first)
675 					break;
676 			}
677 			continue;
678 		} else {
679 			if ((sectors > best_good_sectors) && (best_disk >= 0))
680 				best_disk = -1;
681 			best_good_sectors = sectors;
682 		}
683 
684 		if (best_disk >= 0)
685 			/* At least two disks to choose from so failfast is OK */
686 			set_bit(R1BIO_FailFast, &r1_bio->state);
687 
688 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
689 		has_nonrot_disk |= nonrot;
690 		pending = atomic_read(&rdev->nr_pending);
691 		dist = abs(this_sector - conf->mirrors[disk].head_position);
692 		if (choose_first) {
693 			best_disk = disk;
694 			break;
695 		}
696 		/* Don't change to another disk for sequential reads */
697 		if (conf->mirrors[disk].next_seq_sect == this_sector
698 		    || dist == 0) {
699 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
700 			struct raid1_info *mirror = &conf->mirrors[disk];
701 
702 			best_disk = disk;
703 			/*
704 			 * If buffered sequential IO size exceeds optimal
705 			 * iosize, check if there is idle disk. If yes, choose
706 			 * the idle disk. read_balance could already choose an
707 			 * idle disk before noticing it's a sequential IO in
708 			 * this disk. This doesn't matter because this disk
709 			 * will idle, next time it will be utilized after the
710 			 * first disk has IO size exceeds optimal iosize. In
711 			 * this way, iosize of the first disk will be optimal
712 			 * iosize at least. iosize of the second disk might be
713 			 * small, but not a big deal since when the second disk
714 			 * starts IO, the first disk is likely still busy.
715 			 */
716 			if (nonrot && opt_iosize > 0 &&
717 			    mirror->seq_start != MaxSector &&
718 			    mirror->next_seq_sect > opt_iosize &&
719 			    mirror->next_seq_sect - opt_iosize >=
720 			    mirror->seq_start) {
721 				choose_next_idle = 1;
722 				continue;
723 			}
724 			break;
725 		}
726 
727 		if (choose_next_idle)
728 			continue;
729 
730 		if (min_pending > pending) {
731 			min_pending = pending;
732 			best_pending_disk = disk;
733 		}
734 
735 		if (dist < best_dist) {
736 			best_dist = dist;
737 			best_dist_disk = disk;
738 		}
739 	}
740 
741 	/*
742 	 * If all disks are rotational, choose the closest disk. If any disk is
743 	 * non-rotational, choose the disk with less pending request even the
744 	 * disk is rotational, which might/might not be optimal for raids with
745 	 * mixed ratation/non-rotational disks depending on workload.
746 	 */
747 	if (best_disk == -1) {
748 		if (has_nonrot_disk || min_pending == 0)
749 			best_disk = best_pending_disk;
750 		else
751 			best_disk = best_dist_disk;
752 	}
753 
754 	if (best_disk >= 0) {
755 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
756 		if (!rdev)
757 			goto retry;
758 		atomic_inc(&rdev->nr_pending);
759 		sectors = best_good_sectors;
760 
761 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
762 			conf->mirrors[best_disk].seq_start = this_sector;
763 
764 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
765 	}
766 	rcu_read_unlock();
767 	*max_sectors = sectors;
768 
769 	return best_disk;
770 }
771 
raid1_congested(struct mddev * mddev,int bits)772 static int raid1_congested(struct mddev *mddev, int bits)
773 {
774 	struct r1conf *conf = mddev->private;
775 	int i, ret = 0;
776 
777 	if ((bits & (1 << WB_async_congested)) &&
778 	    conf->pending_count >= max_queued_requests)
779 		return 1;
780 
781 	rcu_read_lock();
782 	for (i = 0; i < conf->raid_disks * 2; i++) {
783 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
784 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
785 			struct request_queue *q = bdev_get_queue(rdev->bdev);
786 
787 			BUG_ON(!q);
788 
789 			/* Note the '|| 1' - when read_balance prefers
790 			 * non-congested targets, it can be removed
791 			 */
792 			if ((bits & (1 << WB_async_congested)) || 1)
793 				ret |= bdi_congested(q->backing_dev_info, bits);
794 			else
795 				ret &= bdi_congested(q->backing_dev_info, bits);
796 		}
797 	}
798 	rcu_read_unlock();
799 	return ret;
800 }
801 
flush_bio_list(struct r1conf * conf,struct bio * bio)802 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
803 {
804 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
805 	md_bitmap_unplug(conf->mddev->bitmap);
806 	wake_up(&conf->wait_barrier);
807 
808 	while (bio) { /* submit pending writes */
809 		struct bio *next = bio->bi_next;
810 		struct md_rdev *rdev = (void *)bio->bi_disk;
811 		bio->bi_next = NULL;
812 		bio_set_dev(bio, rdev->bdev);
813 		if (test_bit(Faulty, &rdev->flags)) {
814 			bio_io_error(bio);
815 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816 				    !blk_queue_discard(bio->bi_disk->queue)))
817 			/* Just ignore it */
818 			bio_endio(bio);
819 		else
820 			generic_make_request(bio);
821 		bio = next;
822 	}
823 }
824 
flush_pending_writes(struct r1conf * conf)825 static void flush_pending_writes(struct r1conf *conf)
826 {
827 	/* Any writes that have been queued but are awaiting
828 	 * bitmap updates get flushed here.
829 	 */
830 	spin_lock_irq(&conf->device_lock);
831 
832 	if (conf->pending_bio_list.head) {
833 		struct blk_plug plug;
834 		struct bio *bio;
835 
836 		bio = bio_list_get(&conf->pending_bio_list);
837 		conf->pending_count = 0;
838 		spin_unlock_irq(&conf->device_lock);
839 
840 		/*
841 		 * As this is called in a wait_event() loop (see freeze_array),
842 		 * current->state might be TASK_UNINTERRUPTIBLE which will
843 		 * cause a warning when we prepare to wait again.  As it is
844 		 * rare that this path is taken, it is perfectly safe to force
845 		 * us to go around the wait_event() loop again, so the warning
846 		 * is a false-positive.  Silence the warning by resetting
847 		 * thread state
848 		 */
849 		__set_current_state(TASK_RUNNING);
850 		blk_start_plug(&plug);
851 		flush_bio_list(conf, bio);
852 		blk_finish_plug(&plug);
853 	} else
854 		spin_unlock_irq(&conf->device_lock);
855 }
856 
857 /* Barriers....
858  * Sometimes we need to suspend IO while we do something else,
859  * either some resync/recovery, or reconfigure the array.
860  * To do this we raise a 'barrier'.
861  * The 'barrier' is a counter that can be raised multiple times
862  * to count how many activities are happening which preclude
863  * normal IO.
864  * We can only raise the barrier if there is no pending IO.
865  * i.e. if nr_pending == 0.
866  * We choose only to raise the barrier if no-one is waiting for the
867  * barrier to go down.  This means that as soon as an IO request
868  * is ready, no other operations which require a barrier will start
869  * until the IO request has had a chance.
870  *
871  * So: regular IO calls 'wait_barrier'.  When that returns there
872  *    is no backgroup IO happening,  It must arrange to call
873  *    allow_barrier when it has finished its IO.
874  * backgroup IO calls must call raise_barrier.  Once that returns
875  *    there is no normal IO happeing.  It must arrange to call
876  *    lower_barrier when the particular background IO completes.
877  *
878  * If resync/recovery is interrupted, returns -EINTR;
879  * Otherwise, returns 0.
880  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)881 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
882 {
883 	int idx = sector_to_idx(sector_nr);
884 
885 	spin_lock_irq(&conf->resync_lock);
886 
887 	/* Wait until no block IO is waiting */
888 	wait_event_lock_irq(conf->wait_barrier,
889 			    !atomic_read(&conf->nr_waiting[idx]),
890 			    conf->resync_lock);
891 
892 	/* block any new IO from starting */
893 	atomic_inc(&conf->barrier[idx]);
894 	/*
895 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
896 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
897 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
898 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
899 	 * be fetched before conf->barrier[idx] is increased. Otherwise
900 	 * there will be a race between raise_barrier() and _wait_barrier().
901 	 */
902 	smp_mb__after_atomic();
903 
904 	/* For these conditions we must wait:
905 	 * A: while the array is in frozen state
906 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
907 	 *    existing in corresponding I/O barrier bucket.
908 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
909 	 *    max resync count which allowed on current I/O barrier bucket.
910 	 */
911 	wait_event_lock_irq(conf->wait_barrier,
912 			    (!conf->array_frozen &&
913 			     !atomic_read(&conf->nr_pending[idx]) &&
914 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
915 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
916 			    conf->resync_lock);
917 
918 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
919 		atomic_dec(&conf->barrier[idx]);
920 		spin_unlock_irq(&conf->resync_lock);
921 		wake_up(&conf->wait_barrier);
922 		return -EINTR;
923 	}
924 
925 	atomic_inc(&conf->nr_sync_pending);
926 	spin_unlock_irq(&conf->resync_lock);
927 
928 	return 0;
929 }
930 
lower_barrier(struct r1conf * conf,sector_t sector_nr)931 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
932 {
933 	int idx = sector_to_idx(sector_nr);
934 
935 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
936 
937 	atomic_dec(&conf->barrier[idx]);
938 	atomic_dec(&conf->nr_sync_pending);
939 	wake_up(&conf->wait_barrier);
940 }
941 
_wait_barrier(struct r1conf * conf,int idx)942 static void _wait_barrier(struct r1conf *conf, int idx)
943 {
944 	/*
945 	 * We need to increase conf->nr_pending[idx] very early here,
946 	 * then raise_barrier() can be blocked when it waits for
947 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
948 	 * conf->resync_lock when there is no barrier raised in same
949 	 * barrier unit bucket. Also if the array is frozen, I/O
950 	 * should be blocked until array is unfrozen.
951 	 */
952 	atomic_inc(&conf->nr_pending[idx]);
953 	/*
954 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
955 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
956 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
957 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
958 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
959 	 * will be a race between _wait_barrier() and raise_barrier().
960 	 */
961 	smp_mb__after_atomic();
962 
963 	/*
964 	 * Don't worry about checking two atomic_t variables at same time
965 	 * here. If during we check conf->barrier[idx], the array is
966 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
967 	 * 0, it is safe to return and make the I/O continue. Because the
968 	 * array is frozen, all I/O returned here will eventually complete
969 	 * or be queued, no race will happen. See code comment in
970 	 * frozen_array().
971 	 */
972 	if (!READ_ONCE(conf->array_frozen) &&
973 	    !atomic_read(&conf->barrier[idx]))
974 		return;
975 
976 	/*
977 	 * After holding conf->resync_lock, conf->nr_pending[idx]
978 	 * should be decreased before waiting for barrier to drop.
979 	 * Otherwise, we may encounter a race condition because
980 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
981 	 * to be 0 at same time.
982 	 */
983 	spin_lock_irq(&conf->resync_lock);
984 	atomic_inc(&conf->nr_waiting[idx]);
985 	atomic_dec(&conf->nr_pending[idx]);
986 	/*
987 	 * In case freeze_array() is waiting for
988 	 * get_unqueued_pending() == extra
989 	 */
990 	wake_up(&conf->wait_barrier);
991 	/* Wait for the barrier in same barrier unit bucket to drop. */
992 	wait_event_lock_irq(conf->wait_barrier,
993 			    !conf->array_frozen &&
994 			     !atomic_read(&conf->barrier[idx]),
995 			    conf->resync_lock);
996 	atomic_inc(&conf->nr_pending[idx]);
997 	atomic_dec(&conf->nr_waiting[idx]);
998 	spin_unlock_irq(&conf->resync_lock);
999 }
1000 
wait_read_barrier(struct r1conf * conf,sector_t sector_nr)1001 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1002 {
1003 	int idx = sector_to_idx(sector_nr);
1004 
1005 	/*
1006 	 * Very similar to _wait_barrier(). The difference is, for read
1007 	 * I/O we don't need wait for sync I/O, but if the whole array
1008 	 * is frozen, the read I/O still has to wait until the array is
1009 	 * unfrozen. Since there is no ordering requirement with
1010 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1011 	 */
1012 	atomic_inc(&conf->nr_pending[idx]);
1013 
1014 	if (!READ_ONCE(conf->array_frozen))
1015 		return;
1016 
1017 	spin_lock_irq(&conf->resync_lock);
1018 	atomic_inc(&conf->nr_waiting[idx]);
1019 	atomic_dec(&conf->nr_pending[idx]);
1020 	/*
1021 	 * In case freeze_array() is waiting for
1022 	 * get_unqueued_pending() == extra
1023 	 */
1024 	wake_up(&conf->wait_barrier);
1025 	/* Wait for array to be unfrozen */
1026 	wait_event_lock_irq(conf->wait_barrier,
1027 			    !conf->array_frozen,
1028 			    conf->resync_lock);
1029 	atomic_inc(&conf->nr_pending[idx]);
1030 	atomic_dec(&conf->nr_waiting[idx]);
1031 	spin_unlock_irq(&conf->resync_lock);
1032 }
1033 
wait_barrier(struct r1conf * conf,sector_t sector_nr)1034 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1035 {
1036 	int idx = sector_to_idx(sector_nr);
1037 
1038 	_wait_barrier(conf, idx);
1039 }
1040 
_allow_barrier(struct r1conf * conf,int idx)1041 static void _allow_barrier(struct r1conf *conf, int idx)
1042 {
1043 	atomic_dec(&conf->nr_pending[idx]);
1044 	wake_up(&conf->wait_barrier);
1045 }
1046 
allow_barrier(struct r1conf * conf,sector_t sector_nr)1047 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1048 {
1049 	int idx = sector_to_idx(sector_nr);
1050 
1051 	_allow_barrier(conf, idx);
1052 }
1053 
1054 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1055 static int get_unqueued_pending(struct r1conf *conf)
1056 {
1057 	int idx, ret;
1058 
1059 	ret = atomic_read(&conf->nr_sync_pending);
1060 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1061 		ret += atomic_read(&conf->nr_pending[idx]) -
1062 			atomic_read(&conf->nr_queued[idx]);
1063 
1064 	return ret;
1065 }
1066 
freeze_array(struct r1conf * conf,int extra)1067 static void freeze_array(struct r1conf *conf, int extra)
1068 {
1069 	/* Stop sync I/O and normal I/O and wait for everything to
1070 	 * go quiet.
1071 	 * This is called in two situations:
1072 	 * 1) management command handlers (reshape, remove disk, quiesce).
1073 	 * 2) one normal I/O request failed.
1074 
1075 	 * After array_frozen is set to 1, new sync IO will be blocked at
1076 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1077 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1078 	 * queued. When everything goes quite, there are only queued I/Os left.
1079 
1080 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1081 	 * barrier bucket index which this I/O request hits. When all sync and
1082 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1083 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1084 	 * in handle_read_error(), we may call freeze_array() before trying to
1085 	 * fix the read error. In this case, the error read I/O is not queued,
1086 	 * so get_unqueued_pending() == 1.
1087 	 *
1088 	 * Therefore before this function returns, we need to wait until
1089 	 * get_unqueued_pendings(conf) gets equal to extra. For
1090 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1091 	 */
1092 	spin_lock_irq(&conf->resync_lock);
1093 	conf->array_frozen = 1;
1094 	raid1_log(conf->mddev, "wait freeze");
1095 	wait_event_lock_irq_cmd(
1096 		conf->wait_barrier,
1097 		get_unqueued_pending(conf) == extra,
1098 		conf->resync_lock,
1099 		flush_pending_writes(conf));
1100 	spin_unlock_irq(&conf->resync_lock);
1101 }
unfreeze_array(struct r1conf * conf)1102 static void unfreeze_array(struct r1conf *conf)
1103 {
1104 	/* reverse the effect of the freeze */
1105 	spin_lock_irq(&conf->resync_lock);
1106 	conf->array_frozen = 0;
1107 	spin_unlock_irq(&conf->resync_lock);
1108 	wake_up(&conf->wait_barrier);
1109 }
1110 
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1111 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1112 					   struct bio *bio)
1113 {
1114 	int size = bio->bi_iter.bi_size;
1115 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116 	int i = 0;
1117 	struct bio *behind_bio = NULL;
1118 
1119 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1120 	if (!behind_bio)
1121 		return;
1122 
1123 	/* discard op, we don't support writezero/writesame yet */
1124 	if (!bio_has_data(bio)) {
1125 		behind_bio->bi_iter.bi_size = size;
1126 		goto skip_copy;
1127 	}
1128 
1129 	behind_bio->bi_write_hint = bio->bi_write_hint;
1130 
1131 	while (i < vcnt && size) {
1132 		struct page *page;
1133 		int len = min_t(int, PAGE_SIZE, size);
1134 
1135 		page = alloc_page(GFP_NOIO);
1136 		if (unlikely(!page))
1137 			goto free_pages;
1138 
1139 		bio_add_page(behind_bio, page, len, 0);
1140 
1141 		size -= len;
1142 		i++;
1143 	}
1144 
1145 	bio_copy_data(behind_bio, bio);
1146 skip_copy:
1147 	r1_bio->behind_master_bio = behind_bio;
1148 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1149 
1150 	return;
1151 
1152 free_pages:
1153 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1154 		 bio->bi_iter.bi_size);
1155 	bio_free_pages(behind_bio);
1156 	bio_put(behind_bio);
1157 }
1158 
1159 struct raid1_plug_cb {
1160 	struct blk_plug_cb	cb;
1161 	struct bio_list		pending;
1162 	int			pending_cnt;
1163 };
1164 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1165 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1166 {
1167 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1168 						  cb);
1169 	struct mddev *mddev = plug->cb.data;
1170 	struct r1conf *conf = mddev->private;
1171 	struct bio *bio;
1172 
1173 	if (from_schedule || current->bio_list) {
1174 		spin_lock_irq(&conf->device_lock);
1175 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1176 		conf->pending_count += plug->pending_cnt;
1177 		spin_unlock_irq(&conf->device_lock);
1178 		wake_up(&conf->wait_barrier);
1179 		md_wakeup_thread(mddev->thread);
1180 		kfree(plug);
1181 		return;
1182 	}
1183 
1184 	/* we aren't scheduling, so we can do the write-out directly. */
1185 	bio = bio_list_get(&plug->pending);
1186 	flush_bio_list(conf, bio);
1187 	kfree(plug);
1188 }
1189 
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1190 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191 {
1192 	r1_bio->master_bio = bio;
1193 	r1_bio->sectors = bio_sectors(bio);
1194 	r1_bio->state = 0;
1195 	r1_bio->mddev = mddev;
1196 	r1_bio->sector = bio->bi_iter.bi_sector;
1197 }
1198 
1199 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1200 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201 {
1202 	struct r1conf *conf = mddev->private;
1203 	struct r1bio *r1_bio;
1204 
1205 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206 	/* Ensure no bio records IO_BLOCKED */
1207 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208 	init_r1bio(r1_bio, mddev, bio);
1209 	return r1_bio;
1210 }
1211 
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1212 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213 			       int max_read_sectors, struct r1bio *r1_bio)
1214 {
1215 	struct r1conf *conf = mddev->private;
1216 	struct raid1_info *mirror;
1217 	struct bio *read_bio;
1218 	struct bitmap *bitmap = mddev->bitmap;
1219 	const int op = bio_op(bio);
1220 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1221 	int max_sectors;
1222 	int rdisk;
1223 	bool print_msg = !!r1_bio;
1224 	char b[BDEVNAME_SIZE];
1225 
1226 	/*
1227 	 * If r1_bio is set, we are blocking the raid1d thread
1228 	 * so there is a tiny risk of deadlock.  So ask for
1229 	 * emergency memory if needed.
1230 	 */
1231 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232 
1233 	if (print_msg) {
1234 		/* Need to get the block device name carefully */
1235 		struct md_rdev *rdev;
1236 		rcu_read_lock();
1237 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1238 		if (rdev)
1239 			bdevname(rdev->bdev, b);
1240 		else
1241 			strcpy(b, "???");
1242 		rcu_read_unlock();
1243 	}
1244 
1245 	/*
1246 	 * Still need barrier for READ in case that whole
1247 	 * array is frozen.
1248 	 */
1249 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1250 
1251 	if (!r1_bio)
1252 		r1_bio = alloc_r1bio(mddev, bio);
1253 	else
1254 		init_r1bio(r1_bio, mddev, bio);
1255 	r1_bio->sectors = max_read_sectors;
1256 
1257 	/*
1258 	 * make_request() can abort the operation when read-ahead is being
1259 	 * used and no empty request is available.
1260 	 */
1261 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1262 
1263 	if (rdisk < 0) {
1264 		/* couldn't find anywhere to read from */
1265 		if (print_msg) {
1266 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1267 					    mdname(mddev),
1268 					    b,
1269 					    (unsigned long long)r1_bio->sector);
1270 		}
1271 		raid_end_bio_io(r1_bio);
1272 		return;
1273 	}
1274 	mirror = conf->mirrors + rdisk;
1275 
1276 	if (print_msg)
1277 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1278 				    mdname(mddev),
1279 				    (unsigned long long)r1_bio->sector,
1280 				    bdevname(mirror->rdev->bdev, b));
1281 
1282 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1283 	    bitmap) {
1284 		/*
1285 		 * Reading from a write-mostly device must take care not to
1286 		 * over-take any writes that are 'behind'
1287 		 */
1288 		raid1_log(mddev, "wait behind writes");
1289 		wait_event(bitmap->behind_wait,
1290 			   atomic_read(&bitmap->behind_writes) == 0);
1291 	}
1292 
1293 	if (max_sectors < bio_sectors(bio)) {
1294 		struct bio *split = bio_split(bio, max_sectors,
1295 					      gfp, &conf->bio_split);
1296 		bio_chain(split, bio);
1297 		generic_make_request(bio);
1298 		bio = split;
1299 		r1_bio->master_bio = bio;
1300 		r1_bio->sectors = max_sectors;
1301 	}
1302 
1303 	r1_bio->read_disk = rdisk;
1304 
1305 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1306 
1307 	r1_bio->bios[rdisk] = read_bio;
1308 
1309 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1310 		mirror->rdev->data_offset;
1311 	bio_set_dev(read_bio, mirror->rdev->bdev);
1312 	read_bio->bi_end_io = raid1_end_read_request;
1313 	bio_set_op_attrs(read_bio, op, do_sync);
1314 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1315 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1316 	        read_bio->bi_opf |= MD_FAILFAST;
1317 	read_bio->bi_private = r1_bio;
1318 
1319 	if (mddev->gendisk)
1320 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1321 				disk_devt(mddev->gendisk), r1_bio->sector);
1322 
1323 	generic_make_request(read_bio);
1324 }
1325 
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1326 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1327 				int max_write_sectors)
1328 {
1329 	struct r1conf *conf = mddev->private;
1330 	struct r1bio *r1_bio;
1331 	int i, disks;
1332 	struct bitmap *bitmap = mddev->bitmap;
1333 	unsigned long flags;
1334 	struct md_rdev *blocked_rdev;
1335 	struct blk_plug_cb *cb;
1336 	struct raid1_plug_cb *plug = NULL;
1337 	int first_clone;
1338 	int max_sectors;
1339 
1340 	if (mddev_is_clustered(mddev) &&
1341 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1342 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1343 
1344 		DEFINE_WAIT(w);
1345 		for (;;) {
1346 			prepare_to_wait(&conf->wait_barrier,
1347 					&w, TASK_IDLE);
1348 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1349 							bio->bi_iter.bi_sector,
1350 							bio_end_sector(bio)))
1351 				break;
1352 			schedule();
1353 		}
1354 		finish_wait(&conf->wait_barrier, &w);
1355 	}
1356 
1357 	/*
1358 	 * Register the new request and wait if the reconstruction
1359 	 * thread has put up a bar for new requests.
1360 	 * Continue immediately if no resync is active currently.
1361 	 */
1362 	wait_barrier(conf, bio->bi_iter.bi_sector);
1363 
1364 	r1_bio = alloc_r1bio(mddev, bio);
1365 	r1_bio->sectors = max_write_sectors;
1366 
1367 	if (conf->pending_count >= max_queued_requests) {
1368 		md_wakeup_thread(mddev->thread);
1369 		raid1_log(mddev, "wait queued");
1370 		wait_event(conf->wait_barrier,
1371 			   conf->pending_count < max_queued_requests);
1372 	}
1373 	/* first select target devices under rcu_lock and
1374 	 * inc refcount on their rdev.  Record them by setting
1375 	 * bios[x] to bio
1376 	 * If there are known/acknowledged bad blocks on any device on
1377 	 * which we have seen a write error, we want to avoid writing those
1378 	 * blocks.
1379 	 * This potentially requires several writes to write around
1380 	 * the bad blocks.  Each set of writes gets it's own r1bio
1381 	 * with a set of bios attached.
1382 	 */
1383 
1384 	disks = conf->raid_disks * 2;
1385  retry_write:
1386 	blocked_rdev = NULL;
1387 	rcu_read_lock();
1388 	max_sectors = r1_bio->sectors;
1389 	for (i = 0;  i < disks; i++) {
1390 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1391 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1392 			atomic_inc(&rdev->nr_pending);
1393 			blocked_rdev = rdev;
1394 			break;
1395 		}
1396 		r1_bio->bios[i] = NULL;
1397 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1398 			if (i < conf->raid_disks)
1399 				set_bit(R1BIO_Degraded, &r1_bio->state);
1400 			continue;
1401 		}
1402 
1403 		atomic_inc(&rdev->nr_pending);
1404 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1405 			sector_t first_bad;
1406 			int bad_sectors;
1407 			int is_bad;
1408 
1409 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1410 					     &first_bad, &bad_sectors);
1411 			if (is_bad < 0) {
1412 				/* mustn't write here until the bad block is
1413 				 * acknowledged*/
1414 				set_bit(BlockedBadBlocks, &rdev->flags);
1415 				blocked_rdev = rdev;
1416 				break;
1417 			}
1418 			if (is_bad && first_bad <= r1_bio->sector) {
1419 				/* Cannot write here at all */
1420 				bad_sectors -= (r1_bio->sector - first_bad);
1421 				if (bad_sectors < max_sectors)
1422 					/* mustn't write more than bad_sectors
1423 					 * to other devices yet
1424 					 */
1425 					max_sectors = bad_sectors;
1426 				rdev_dec_pending(rdev, mddev);
1427 				/* We don't set R1BIO_Degraded as that
1428 				 * only applies if the disk is
1429 				 * missing, so it might be re-added,
1430 				 * and we want to know to recover this
1431 				 * chunk.
1432 				 * In this case the device is here,
1433 				 * and the fact that this chunk is not
1434 				 * in-sync is recorded in the bad
1435 				 * block log
1436 				 */
1437 				continue;
1438 			}
1439 			if (is_bad) {
1440 				int good_sectors = first_bad - r1_bio->sector;
1441 				if (good_sectors < max_sectors)
1442 					max_sectors = good_sectors;
1443 			}
1444 		}
1445 		r1_bio->bios[i] = bio;
1446 	}
1447 	rcu_read_unlock();
1448 
1449 	if (unlikely(blocked_rdev)) {
1450 		/* Wait for this device to become unblocked */
1451 		int j;
1452 
1453 		for (j = 0; j < i; j++)
1454 			if (r1_bio->bios[j])
1455 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1456 		r1_bio->state = 0;
1457 		allow_barrier(conf, bio->bi_iter.bi_sector);
1458 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1459 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1460 		wait_barrier(conf, bio->bi_iter.bi_sector);
1461 		goto retry_write;
1462 	}
1463 
1464 	if (max_sectors < bio_sectors(bio)) {
1465 		struct bio *split = bio_split(bio, max_sectors,
1466 					      GFP_NOIO, &conf->bio_split);
1467 		bio_chain(split, bio);
1468 		generic_make_request(bio);
1469 		bio = split;
1470 		r1_bio->master_bio = bio;
1471 		r1_bio->sectors = max_sectors;
1472 	}
1473 
1474 	atomic_set(&r1_bio->remaining, 1);
1475 	atomic_set(&r1_bio->behind_remaining, 0);
1476 
1477 	first_clone = 1;
1478 
1479 	for (i = 0; i < disks; i++) {
1480 		struct bio *mbio = NULL;
1481 		if (!r1_bio->bios[i])
1482 			continue;
1483 
1484 		if (first_clone) {
1485 			/* do behind I/O ?
1486 			 * Not if there are too many, or cannot
1487 			 * allocate memory, or a reader on WriteMostly
1488 			 * is waiting for behind writes to flush */
1489 			if (bitmap &&
1490 			    (atomic_read(&bitmap->behind_writes)
1491 			     < mddev->bitmap_info.max_write_behind) &&
1492 			    !waitqueue_active(&bitmap->behind_wait)) {
1493 				alloc_behind_master_bio(r1_bio, bio);
1494 			}
1495 
1496 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1497 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1498 			first_clone = 0;
1499 		}
1500 
1501 		if (r1_bio->behind_master_bio)
1502 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1503 					      GFP_NOIO, &mddev->bio_set);
1504 		else
1505 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1506 
1507 		if (r1_bio->behind_master_bio) {
1508 			struct md_rdev *rdev = conf->mirrors[i].rdev;
1509 
1510 			if (test_bit(WBCollisionCheck, &rdev->flags)) {
1511 				sector_t lo = r1_bio->sector;
1512 				sector_t hi = r1_bio->sector + r1_bio->sectors;
1513 
1514 				wait_event(rdev->wb_io_wait,
1515 					   check_and_add_wb(rdev, lo, hi) == 0);
1516 			}
1517 			if (test_bit(WriteMostly, &rdev->flags))
1518 				atomic_inc(&r1_bio->behind_remaining);
1519 		}
1520 
1521 		r1_bio->bios[i] = mbio;
1522 
1523 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1524 				   conf->mirrors[i].rdev->data_offset);
1525 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1526 		mbio->bi_end_io	= raid1_end_write_request;
1527 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1528 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1529 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1530 		    conf->raid_disks - mddev->degraded > 1)
1531 			mbio->bi_opf |= MD_FAILFAST;
1532 		mbio->bi_private = r1_bio;
1533 
1534 		atomic_inc(&r1_bio->remaining);
1535 
1536 		if (mddev->gendisk)
1537 			trace_block_bio_remap(mbio->bi_disk->queue,
1538 					      mbio, disk_devt(mddev->gendisk),
1539 					      r1_bio->sector);
1540 		/* flush_pending_writes() needs access to the rdev so...*/
1541 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1542 
1543 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1544 		if (cb)
1545 			plug = container_of(cb, struct raid1_plug_cb, cb);
1546 		else
1547 			plug = NULL;
1548 		if (plug) {
1549 			bio_list_add(&plug->pending, mbio);
1550 			plug->pending_cnt++;
1551 		} else {
1552 			spin_lock_irqsave(&conf->device_lock, flags);
1553 			bio_list_add(&conf->pending_bio_list, mbio);
1554 			conf->pending_count++;
1555 			spin_unlock_irqrestore(&conf->device_lock, flags);
1556 			md_wakeup_thread(mddev->thread);
1557 		}
1558 	}
1559 
1560 	r1_bio_write_done(r1_bio);
1561 
1562 	/* In case raid1d snuck in to freeze_array */
1563 	wake_up(&conf->wait_barrier);
1564 }
1565 
raid1_make_request(struct mddev * mddev,struct bio * bio)1566 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1567 {
1568 	sector_t sectors;
1569 
1570 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1571 	    && md_flush_request(mddev, bio))
1572 		return true;
1573 
1574 	/*
1575 	 * There is a limit to the maximum size, but
1576 	 * the read/write handler might find a lower limit
1577 	 * due to bad blocks.  To avoid multiple splits,
1578 	 * we pass the maximum number of sectors down
1579 	 * and let the lower level perform the split.
1580 	 */
1581 	sectors = align_to_barrier_unit_end(
1582 		bio->bi_iter.bi_sector, bio_sectors(bio));
1583 
1584 	if (bio_data_dir(bio) == READ)
1585 		raid1_read_request(mddev, bio, sectors, NULL);
1586 	else {
1587 		if (!md_write_start(mddev,bio))
1588 			return false;
1589 		raid1_write_request(mddev, bio, sectors);
1590 	}
1591 	return true;
1592 }
1593 
raid1_status(struct seq_file * seq,struct mddev * mddev)1594 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1595 {
1596 	struct r1conf *conf = mddev->private;
1597 	int i;
1598 
1599 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1600 		   conf->raid_disks - mddev->degraded);
1601 	rcu_read_lock();
1602 	for (i = 0; i < conf->raid_disks; i++) {
1603 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1604 		seq_printf(seq, "%s",
1605 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1606 	}
1607 	rcu_read_unlock();
1608 	seq_printf(seq, "]");
1609 }
1610 
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1611 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1612 {
1613 	char b[BDEVNAME_SIZE];
1614 	struct r1conf *conf = mddev->private;
1615 	unsigned long flags;
1616 
1617 	/*
1618 	 * If it is not operational, then we have already marked it as dead
1619 	 * else if it is the last working disks with "fail_last_dev == false",
1620 	 * ignore the error, let the next level up know.
1621 	 * else mark the drive as failed
1622 	 */
1623 	spin_lock_irqsave(&conf->device_lock, flags);
1624 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1625 	    && (conf->raid_disks - mddev->degraded) == 1) {
1626 		/*
1627 		 * Don't fail the drive, act as though we were just a
1628 		 * normal single drive.
1629 		 * However don't try a recovery from this drive as
1630 		 * it is very likely to fail.
1631 		 */
1632 		conf->recovery_disabled = mddev->recovery_disabled;
1633 		spin_unlock_irqrestore(&conf->device_lock, flags);
1634 		return;
1635 	}
1636 	set_bit(Blocked, &rdev->flags);
1637 	if (test_and_clear_bit(In_sync, &rdev->flags))
1638 		mddev->degraded++;
1639 	set_bit(Faulty, &rdev->flags);
1640 	spin_unlock_irqrestore(&conf->device_lock, flags);
1641 	/*
1642 	 * if recovery is running, make sure it aborts.
1643 	 */
1644 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1645 	set_mask_bits(&mddev->sb_flags, 0,
1646 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1647 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1648 		"md/raid1:%s: Operation continuing on %d devices.\n",
1649 		mdname(mddev), bdevname(rdev->bdev, b),
1650 		mdname(mddev), conf->raid_disks - mddev->degraded);
1651 }
1652 
print_conf(struct r1conf * conf)1653 static void print_conf(struct r1conf *conf)
1654 {
1655 	int i;
1656 
1657 	pr_debug("RAID1 conf printout:\n");
1658 	if (!conf) {
1659 		pr_debug("(!conf)\n");
1660 		return;
1661 	}
1662 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1663 		 conf->raid_disks);
1664 
1665 	rcu_read_lock();
1666 	for (i = 0; i < conf->raid_disks; i++) {
1667 		char b[BDEVNAME_SIZE];
1668 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1669 		if (rdev)
1670 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1671 				 i, !test_bit(In_sync, &rdev->flags),
1672 				 !test_bit(Faulty, &rdev->flags),
1673 				 bdevname(rdev->bdev,b));
1674 	}
1675 	rcu_read_unlock();
1676 }
1677 
close_sync(struct r1conf * conf)1678 static void close_sync(struct r1conf *conf)
1679 {
1680 	int idx;
1681 
1682 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1683 		_wait_barrier(conf, idx);
1684 		_allow_barrier(conf, idx);
1685 	}
1686 
1687 	mempool_exit(&conf->r1buf_pool);
1688 }
1689 
raid1_spare_active(struct mddev * mddev)1690 static int raid1_spare_active(struct mddev *mddev)
1691 {
1692 	int i;
1693 	struct r1conf *conf = mddev->private;
1694 	int count = 0;
1695 	unsigned long flags;
1696 
1697 	/*
1698 	 * Find all failed disks within the RAID1 configuration
1699 	 * and mark them readable.
1700 	 * Called under mddev lock, so rcu protection not needed.
1701 	 * device_lock used to avoid races with raid1_end_read_request
1702 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1703 	 */
1704 	spin_lock_irqsave(&conf->device_lock, flags);
1705 	for (i = 0; i < conf->raid_disks; i++) {
1706 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1707 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1708 		if (repl
1709 		    && !test_bit(Candidate, &repl->flags)
1710 		    && repl->recovery_offset == MaxSector
1711 		    && !test_bit(Faulty, &repl->flags)
1712 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1713 			/* replacement has just become active */
1714 			if (!rdev ||
1715 			    !test_and_clear_bit(In_sync, &rdev->flags))
1716 				count++;
1717 			if (rdev) {
1718 				/* Replaced device not technically
1719 				 * faulty, but we need to be sure
1720 				 * it gets removed and never re-added
1721 				 */
1722 				set_bit(Faulty, &rdev->flags);
1723 				sysfs_notify_dirent_safe(
1724 					rdev->sysfs_state);
1725 			}
1726 		}
1727 		if (rdev
1728 		    && rdev->recovery_offset == MaxSector
1729 		    && !test_bit(Faulty, &rdev->flags)
1730 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1731 			count++;
1732 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1733 		}
1734 	}
1735 	mddev->degraded -= count;
1736 	spin_unlock_irqrestore(&conf->device_lock, flags);
1737 
1738 	print_conf(conf);
1739 	return count;
1740 }
1741 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1742 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1743 {
1744 	struct r1conf *conf = mddev->private;
1745 	int err = -EEXIST;
1746 	int mirror = 0;
1747 	struct raid1_info *p;
1748 	int first = 0;
1749 	int last = conf->raid_disks - 1;
1750 
1751 	if (mddev->recovery_disabled == conf->recovery_disabled)
1752 		return -EBUSY;
1753 
1754 	if (md_integrity_add_rdev(rdev, mddev))
1755 		return -ENXIO;
1756 
1757 	if (rdev->raid_disk >= 0)
1758 		first = last = rdev->raid_disk;
1759 
1760 	/*
1761 	 * find the disk ... but prefer rdev->saved_raid_disk
1762 	 * if possible.
1763 	 */
1764 	if (rdev->saved_raid_disk >= 0 &&
1765 	    rdev->saved_raid_disk >= first &&
1766 	    rdev->saved_raid_disk < conf->raid_disks &&
1767 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1768 		first = last = rdev->saved_raid_disk;
1769 
1770 	for (mirror = first; mirror <= last; mirror++) {
1771 		p = conf->mirrors + mirror;
1772 		if (!p->rdev) {
1773 			if (mddev->gendisk)
1774 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1775 						  rdev->data_offset << 9);
1776 
1777 			p->head_position = 0;
1778 			rdev->raid_disk = mirror;
1779 			err = 0;
1780 			/* As all devices are equivalent, we don't need a full recovery
1781 			 * if this was recently any drive of the array
1782 			 */
1783 			if (rdev->saved_raid_disk < 0)
1784 				conf->fullsync = 1;
1785 			rcu_assign_pointer(p->rdev, rdev);
1786 			break;
1787 		}
1788 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1789 		    p[conf->raid_disks].rdev == NULL) {
1790 			/* Add this device as a replacement */
1791 			clear_bit(In_sync, &rdev->flags);
1792 			set_bit(Replacement, &rdev->flags);
1793 			rdev->raid_disk = mirror;
1794 			err = 0;
1795 			conf->fullsync = 1;
1796 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1797 			break;
1798 		}
1799 	}
1800 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1801 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1802 	print_conf(conf);
1803 	return err;
1804 }
1805 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1806 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1807 {
1808 	struct r1conf *conf = mddev->private;
1809 	int err = 0;
1810 	int number = rdev->raid_disk;
1811 	struct raid1_info *p = conf->mirrors + number;
1812 
1813 	if (rdev != p->rdev)
1814 		p = conf->mirrors + conf->raid_disks + number;
1815 
1816 	print_conf(conf);
1817 	if (rdev == p->rdev) {
1818 		if (test_bit(In_sync, &rdev->flags) ||
1819 		    atomic_read(&rdev->nr_pending)) {
1820 			err = -EBUSY;
1821 			goto abort;
1822 		}
1823 		/* Only remove non-faulty devices if recovery
1824 		 * is not possible.
1825 		 */
1826 		if (!test_bit(Faulty, &rdev->flags) &&
1827 		    mddev->recovery_disabled != conf->recovery_disabled &&
1828 		    mddev->degraded < conf->raid_disks) {
1829 			err = -EBUSY;
1830 			goto abort;
1831 		}
1832 		p->rdev = NULL;
1833 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1834 			synchronize_rcu();
1835 			if (atomic_read(&rdev->nr_pending)) {
1836 				/* lost the race, try later */
1837 				err = -EBUSY;
1838 				p->rdev = rdev;
1839 				goto abort;
1840 			}
1841 		}
1842 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1843 			/* We just removed a device that is being replaced.
1844 			 * Move down the replacement.  We drain all IO before
1845 			 * doing this to avoid confusion.
1846 			 */
1847 			struct md_rdev *repl =
1848 				conf->mirrors[conf->raid_disks + number].rdev;
1849 			freeze_array(conf, 0);
1850 			if (atomic_read(&repl->nr_pending)) {
1851 				/* It means that some queued IO of retry_list
1852 				 * hold repl. Thus, we cannot set replacement
1853 				 * as NULL, avoiding rdev NULL pointer
1854 				 * dereference in sync_request_write and
1855 				 * handle_write_finished.
1856 				 */
1857 				err = -EBUSY;
1858 				unfreeze_array(conf);
1859 				goto abort;
1860 			}
1861 			clear_bit(Replacement, &repl->flags);
1862 			p->rdev = repl;
1863 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1864 			unfreeze_array(conf);
1865 		}
1866 
1867 		clear_bit(WantReplacement, &rdev->flags);
1868 		err = md_integrity_register(mddev);
1869 	}
1870 abort:
1871 
1872 	print_conf(conf);
1873 	return err;
1874 }
1875 
end_sync_read(struct bio * bio)1876 static void end_sync_read(struct bio *bio)
1877 {
1878 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1879 
1880 	update_head_pos(r1_bio->read_disk, r1_bio);
1881 
1882 	/*
1883 	 * we have read a block, now it needs to be re-written,
1884 	 * or re-read if the read failed.
1885 	 * We don't do much here, just schedule handling by raid1d
1886 	 */
1887 	if (!bio->bi_status)
1888 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1889 
1890 	if (atomic_dec_and_test(&r1_bio->remaining))
1891 		reschedule_retry(r1_bio);
1892 }
1893 
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)1894 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1895 {
1896 	sector_t sync_blocks = 0;
1897 	sector_t s = r1_bio->sector;
1898 	long sectors_to_go = r1_bio->sectors;
1899 
1900 	/* make sure these bits don't get cleared. */
1901 	do {
1902 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1903 		s += sync_blocks;
1904 		sectors_to_go -= sync_blocks;
1905 	} while (sectors_to_go > 0);
1906 }
1907 
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)1908 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1909 {
1910 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1911 		struct mddev *mddev = r1_bio->mddev;
1912 		int s = r1_bio->sectors;
1913 
1914 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1915 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1916 			reschedule_retry(r1_bio);
1917 		else {
1918 			put_buf(r1_bio);
1919 			md_done_sync(mddev, s, uptodate);
1920 		}
1921 	}
1922 }
1923 
end_sync_write(struct bio * bio)1924 static void end_sync_write(struct bio *bio)
1925 {
1926 	int uptodate = !bio->bi_status;
1927 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1928 	struct mddev *mddev = r1_bio->mddev;
1929 	struct r1conf *conf = mddev->private;
1930 	sector_t first_bad;
1931 	int bad_sectors;
1932 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1933 
1934 	if (!uptodate) {
1935 		abort_sync_write(mddev, r1_bio);
1936 		set_bit(WriteErrorSeen, &rdev->flags);
1937 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1938 			set_bit(MD_RECOVERY_NEEDED, &
1939 				mddev->recovery);
1940 		set_bit(R1BIO_WriteError, &r1_bio->state);
1941 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1942 			       &first_bad, &bad_sectors) &&
1943 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1944 				r1_bio->sector,
1945 				r1_bio->sectors,
1946 				&first_bad, &bad_sectors)
1947 		)
1948 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1949 
1950 	put_sync_write_buf(r1_bio, uptodate);
1951 }
1952 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)1953 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1954 			    int sectors, struct page *page, int rw)
1955 {
1956 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1957 		/* success */
1958 		return 1;
1959 	if (rw == WRITE) {
1960 		set_bit(WriteErrorSeen, &rdev->flags);
1961 		if (!test_and_set_bit(WantReplacement,
1962 				      &rdev->flags))
1963 			set_bit(MD_RECOVERY_NEEDED, &
1964 				rdev->mddev->recovery);
1965 	}
1966 	/* need to record an error - either for the block or the device */
1967 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1968 		md_error(rdev->mddev, rdev);
1969 	return 0;
1970 }
1971 
fix_sync_read_error(struct r1bio * r1_bio)1972 static int fix_sync_read_error(struct r1bio *r1_bio)
1973 {
1974 	/* Try some synchronous reads of other devices to get
1975 	 * good data, much like with normal read errors.  Only
1976 	 * read into the pages we already have so we don't
1977 	 * need to re-issue the read request.
1978 	 * We don't need to freeze the array, because being in an
1979 	 * active sync request, there is no normal IO, and
1980 	 * no overlapping syncs.
1981 	 * We don't need to check is_badblock() again as we
1982 	 * made sure that anything with a bad block in range
1983 	 * will have bi_end_io clear.
1984 	 */
1985 	struct mddev *mddev = r1_bio->mddev;
1986 	struct r1conf *conf = mddev->private;
1987 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1988 	struct page **pages = get_resync_pages(bio)->pages;
1989 	sector_t sect = r1_bio->sector;
1990 	int sectors = r1_bio->sectors;
1991 	int idx = 0;
1992 	struct md_rdev *rdev;
1993 
1994 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1995 	if (test_bit(FailFast, &rdev->flags)) {
1996 		/* Don't try recovering from here - just fail it
1997 		 * ... unless it is the last working device of course */
1998 		md_error(mddev, rdev);
1999 		if (test_bit(Faulty, &rdev->flags))
2000 			/* Don't try to read from here, but make sure
2001 			 * put_buf does it's thing
2002 			 */
2003 			bio->bi_end_io = end_sync_write;
2004 	}
2005 
2006 	while(sectors) {
2007 		int s = sectors;
2008 		int d = r1_bio->read_disk;
2009 		int success = 0;
2010 		int start;
2011 
2012 		if (s > (PAGE_SIZE>>9))
2013 			s = PAGE_SIZE >> 9;
2014 		do {
2015 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2016 				/* No rcu protection needed here devices
2017 				 * can only be removed when no resync is
2018 				 * active, and resync is currently active
2019 				 */
2020 				rdev = conf->mirrors[d].rdev;
2021 				if (sync_page_io(rdev, sect, s<<9,
2022 						 pages[idx],
2023 						 REQ_OP_READ, 0, false)) {
2024 					success = 1;
2025 					break;
2026 				}
2027 			}
2028 			d++;
2029 			if (d == conf->raid_disks * 2)
2030 				d = 0;
2031 		} while (!success && d != r1_bio->read_disk);
2032 
2033 		if (!success) {
2034 			char b[BDEVNAME_SIZE];
2035 			int abort = 0;
2036 			/* Cannot read from anywhere, this block is lost.
2037 			 * Record a bad block on each device.  If that doesn't
2038 			 * work just disable and interrupt the recovery.
2039 			 * Don't fail devices as that won't really help.
2040 			 */
2041 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2042 					    mdname(mddev), bio_devname(bio, b),
2043 					    (unsigned long long)r1_bio->sector);
2044 			for (d = 0; d < conf->raid_disks * 2; d++) {
2045 				rdev = conf->mirrors[d].rdev;
2046 				if (!rdev || test_bit(Faulty, &rdev->flags))
2047 					continue;
2048 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2049 					abort = 1;
2050 			}
2051 			if (abort) {
2052 				conf->recovery_disabled =
2053 					mddev->recovery_disabled;
2054 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055 				md_done_sync(mddev, r1_bio->sectors, 0);
2056 				put_buf(r1_bio);
2057 				return 0;
2058 			}
2059 			/* Try next page */
2060 			sectors -= s;
2061 			sect += s;
2062 			idx++;
2063 			continue;
2064 		}
2065 
2066 		start = d;
2067 		/* write it back and re-read */
2068 		while (d != r1_bio->read_disk) {
2069 			if (d == 0)
2070 				d = conf->raid_disks * 2;
2071 			d--;
2072 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2073 				continue;
2074 			rdev = conf->mirrors[d].rdev;
2075 			if (r1_sync_page_io(rdev, sect, s,
2076 					    pages[idx],
2077 					    WRITE) == 0) {
2078 				r1_bio->bios[d]->bi_end_io = NULL;
2079 				rdev_dec_pending(rdev, mddev);
2080 			}
2081 		}
2082 		d = start;
2083 		while (d != r1_bio->read_disk) {
2084 			if (d == 0)
2085 				d = conf->raid_disks * 2;
2086 			d--;
2087 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088 				continue;
2089 			rdev = conf->mirrors[d].rdev;
2090 			if (r1_sync_page_io(rdev, sect, s,
2091 					    pages[idx],
2092 					    READ) != 0)
2093 				atomic_add(s, &rdev->corrected_errors);
2094 		}
2095 		sectors -= s;
2096 		sect += s;
2097 		idx ++;
2098 	}
2099 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2100 	bio->bi_status = 0;
2101 	return 1;
2102 }
2103 
process_checks(struct r1bio * r1_bio)2104 static void process_checks(struct r1bio *r1_bio)
2105 {
2106 	/* We have read all readable devices.  If we haven't
2107 	 * got the block, then there is no hope left.
2108 	 * If we have, then we want to do a comparison
2109 	 * and skip the write if everything is the same.
2110 	 * If any blocks failed to read, then we need to
2111 	 * attempt an over-write
2112 	 */
2113 	struct mddev *mddev = r1_bio->mddev;
2114 	struct r1conf *conf = mddev->private;
2115 	int primary;
2116 	int i;
2117 	int vcnt;
2118 
2119 	/* Fix variable parts of all bios */
2120 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2121 	for (i = 0; i < conf->raid_disks * 2; i++) {
2122 		blk_status_t status;
2123 		struct bio *b = r1_bio->bios[i];
2124 		struct resync_pages *rp = get_resync_pages(b);
2125 		if (b->bi_end_io != end_sync_read)
2126 			continue;
2127 		/* fixup the bio for reuse, but preserve errno */
2128 		status = b->bi_status;
2129 		bio_reset(b);
2130 		b->bi_status = status;
2131 		b->bi_iter.bi_sector = r1_bio->sector +
2132 			conf->mirrors[i].rdev->data_offset;
2133 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2134 		b->bi_end_io = end_sync_read;
2135 		rp->raid_bio = r1_bio;
2136 		b->bi_private = rp;
2137 
2138 		/* initialize bvec table again */
2139 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2140 	}
2141 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2142 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2143 		    !r1_bio->bios[primary]->bi_status) {
2144 			r1_bio->bios[primary]->bi_end_io = NULL;
2145 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2146 			break;
2147 		}
2148 	r1_bio->read_disk = primary;
2149 	for (i = 0; i < conf->raid_disks * 2; i++) {
2150 		int j = 0;
2151 		struct bio *pbio = r1_bio->bios[primary];
2152 		struct bio *sbio = r1_bio->bios[i];
2153 		blk_status_t status = sbio->bi_status;
2154 		struct page **ppages = get_resync_pages(pbio)->pages;
2155 		struct page **spages = get_resync_pages(sbio)->pages;
2156 		struct bio_vec *bi;
2157 		int page_len[RESYNC_PAGES] = { 0 };
2158 		struct bvec_iter_all iter_all;
2159 
2160 		if (sbio->bi_end_io != end_sync_read)
2161 			continue;
2162 		/* Now we can 'fixup' the error value */
2163 		sbio->bi_status = 0;
2164 
2165 		bio_for_each_segment_all(bi, sbio, iter_all)
2166 			page_len[j++] = bi->bv_len;
2167 
2168 		if (!status) {
2169 			for (j = vcnt; j-- ; ) {
2170 				if (memcmp(page_address(ppages[j]),
2171 					   page_address(spages[j]),
2172 					   page_len[j]))
2173 					break;
2174 			}
2175 		} else
2176 			j = 0;
2177 		if (j >= 0)
2178 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2179 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2180 			      && !status)) {
2181 			/* No need to write to this device. */
2182 			sbio->bi_end_io = NULL;
2183 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2184 			continue;
2185 		}
2186 
2187 		bio_copy_data(sbio, pbio);
2188 	}
2189 }
2190 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2191 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2192 {
2193 	struct r1conf *conf = mddev->private;
2194 	int i;
2195 	int disks = conf->raid_disks * 2;
2196 	struct bio *wbio;
2197 
2198 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2199 		/* ouch - failed to read all of that. */
2200 		if (!fix_sync_read_error(r1_bio))
2201 			return;
2202 
2203 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2204 		process_checks(r1_bio);
2205 
2206 	/*
2207 	 * schedule writes
2208 	 */
2209 	atomic_set(&r1_bio->remaining, 1);
2210 	for (i = 0; i < disks ; i++) {
2211 		wbio = r1_bio->bios[i];
2212 		if (wbio->bi_end_io == NULL ||
2213 		    (wbio->bi_end_io == end_sync_read &&
2214 		     (i == r1_bio->read_disk ||
2215 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2216 			continue;
2217 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2218 			abort_sync_write(mddev, r1_bio);
2219 			continue;
2220 		}
2221 
2222 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2223 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2224 			wbio->bi_opf |= MD_FAILFAST;
2225 
2226 		wbio->bi_end_io = end_sync_write;
2227 		atomic_inc(&r1_bio->remaining);
2228 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2229 
2230 		generic_make_request(wbio);
2231 	}
2232 
2233 	put_sync_write_buf(r1_bio, 1);
2234 }
2235 
2236 /*
2237  * This is a kernel thread which:
2238  *
2239  *	1.	Retries failed read operations on working mirrors.
2240  *	2.	Updates the raid superblock when problems encounter.
2241  *	3.	Performs writes following reads for array synchronising.
2242  */
2243 
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2244 static void fix_read_error(struct r1conf *conf, int read_disk,
2245 			   sector_t sect, int sectors)
2246 {
2247 	struct mddev *mddev = conf->mddev;
2248 	while(sectors) {
2249 		int s = sectors;
2250 		int d = read_disk;
2251 		int success = 0;
2252 		int start;
2253 		struct md_rdev *rdev;
2254 
2255 		if (s > (PAGE_SIZE>>9))
2256 			s = PAGE_SIZE >> 9;
2257 
2258 		do {
2259 			sector_t first_bad;
2260 			int bad_sectors;
2261 
2262 			rcu_read_lock();
2263 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2264 			if (rdev &&
2265 			    (test_bit(In_sync, &rdev->flags) ||
2266 			     (!test_bit(Faulty, &rdev->flags) &&
2267 			      rdev->recovery_offset >= sect + s)) &&
2268 			    is_badblock(rdev, sect, s,
2269 					&first_bad, &bad_sectors) == 0) {
2270 				atomic_inc(&rdev->nr_pending);
2271 				rcu_read_unlock();
2272 				if (sync_page_io(rdev, sect, s<<9,
2273 					 conf->tmppage, REQ_OP_READ, 0, false))
2274 					success = 1;
2275 				rdev_dec_pending(rdev, mddev);
2276 				if (success)
2277 					break;
2278 			} else
2279 				rcu_read_unlock();
2280 			d++;
2281 			if (d == conf->raid_disks * 2)
2282 				d = 0;
2283 		} while (!success && d != read_disk);
2284 
2285 		if (!success) {
2286 			/* Cannot read from anywhere - mark it bad */
2287 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2288 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2289 				md_error(mddev, rdev);
2290 			break;
2291 		}
2292 		/* write it back and re-read */
2293 		start = d;
2294 		while (d != read_disk) {
2295 			if (d==0)
2296 				d = conf->raid_disks * 2;
2297 			d--;
2298 			rcu_read_lock();
2299 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2300 			if (rdev &&
2301 			    !test_bit(Faulty, &rdev->flags)) {
2302 				atomic_inc(&rdev->nr_pending);
2303 				rcu_read_unlock();
2304 				r1_sync_page_io(rdev, sect, s,
2305 						conf->tmppage, WRITE);
2306 				rdev_dec_pending(rdev, mddev);
2307 			} else
2308 				rcu_read_unlock();
2309 		}
2310 		d = start;
2311 		while (d != read_disk) {
2312 			char b[BDEVNAME_SIZE];
2313 			if (d==0)
2314 				d = conf->raid_disks * 2;
2315 			d--;
2316 			rcu_read_lock();
2317 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2318 			if (rdev &&
2319 			    !test_bit(Faulty, &rdev->flags)) {
2320 				atomic_inc(&rdev->nr_pending);
2321 				rcu_read_unlock();
2322 				if (r1_sync_page_io(rdev, sect, s,
2323 						    conf->tmppage, READ)) {
2324 					atomic_add(s, &rdev->corrected_errors);
2325 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2326 						mdname(mddev), s,
2327 						(unsigned long long)(sect +
2328 								     rdev->data_offset),
2329 						bdevname(rdev->bdev, b));
2330 				}
2331 				rdev_dec_pending(rdev, mddev);
2332 			} else
2333 				rcu_read_unlock();
2334 		}
2335 		sectors -= s;
2336 		sect += s;
2337 	}
2338 }
2339 
narrow_write_error(struct r1bio * r1_bio,int i)2340 static int narrow_write_error(struct r1bio *r1_bio, int i)
2341 {
2342 	struct mddev *mddev = r1_bio->mddev;
2343 	struct r1conf *conf = mddev->private;
2344 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2345 
2346 	/* bio has the data to be written to device 'i' where
2347 	 * we just recently had a write error.
2348 	 * We repeatedly clone the bio and trim down to one block,
2349 	 * then try the write.  Where the write fails we record
2350 	 * a bad block.
2351 	 * It is conceivable that the bio doesn't exactly align with
2352 	 * blocks.  We must handle this somehow.
2353 	 *
2354 	 * We currently own a reference on the rdev.
2355 	 */
2356 
2357 	int block_sectors;
2358 	sector_t sector;
2359 	int sectors;
2360 	int sect_to_write = r1_bio->sectors;
2361 	int ok = 1;
2362 
2363 	if (rdev->badblocks.shift < 0)
2364 		return 0;
2365 
2366 	block_sectors = roundup(1 << rdev->badblocks.shift,
2367 				bdev_logical_block_size(rdev->bdev) >> 9);
2368 	sector = r1_bio->sector;
2369 	sectors = ((sector + block_sectors)
2370 		   & ~(sector_t)(block_sectors - 1))
2371 		- sector;
2372 
2373 	while (sect_to_write) {
2374 		struct bio *wbio;
2375 		if (sectors > sect_to_write)
2376 			sectors = sect_to_write;
2377 		/* Write at 'sector' for 'sectors'*/
2378 
2379 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2380 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2381 					      GFP_NOIO,
2382 					      &mddev->bio_set);
2383 		} else {
2384 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2385 					      &mddev->bio_set);
2386 		}
2387 
2388 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2389 		wbio->bi_iter.bi_sector = r1_bio->sector;
2390 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2391 
2392 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2393 		wbio->bi_iter.bi_sector += rdev->data_offset;
2394 		bio_set_dev(wbio, rdev->bdev);
2395 
2396 		if (submit_bio_wait(wbio) < 0)
2397 			/* failure! */
2398 			ok = rdev_set_badblocks(rdev, sector,
2399 						sectors, 0)
2400 				&& ok;
2401 
2402 		bio_put(wbio);
2403 		sect_to_write -= sectors;
2404 		sector += sectors;
2405 		sectors = block_sectors;
2406 	}
2407 	return ok;
2408 }
2409 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2410 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2411 {
2412 	int m;
2413 	int s = r1_bio->sectors;
2414 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2415 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2416 		struct bio *bio = r1_bio->bios[m];
2417 		if (bio->bi_end_io == NULL)
2418 			continue;
2419 		if (!bio->bi_status &&
2420 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2421 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2422 		}
2423 		if (bio->bi_status &&
2424 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2425 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2426 				md_error(conf->mddev, rdev);
2427 		}
2428 	}
2429 	put_buf(r1_bio);
2430 	md_done_sync(conf->mddev, s, 1);
2431 }
2432 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2433 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2434 {
2435 	int m, idx;
2436 	bool fail = false;
2437 
2438 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2439 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2440 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2441 			rdev_clear_badblocks(rdev,
2442 					     r1_bio->sector,
2443 					     r1_bio->sectors, 0);
2444 			rdev_dec_pending(rdev, conf->mddev);
2445 		} else if (r1_bio->bios[m] != NULL) {
2446 			/* This drive got a write error.  We need to
2447 			 * narrow down and record precise write
2448 			 * errors.
2449 			 */
2450 			fail = true;
2451 			if (!narrow_write_error(r1_bio, m)) {
2452 				md_error(conf->mddev,
2453 					 conf->mirrors[m].rdev);
2454 				/* an I/O failed, we can't clear the bitmap */
2455 				set_bit(R1BIO_Degraded, &r1_bio->state);
2456 			}
2457 			rdev_dec_pending(conf->mirrors[m].rdev,
2458 					 conf->mddev);
2459 		}
2460 	if (fail) {
2461 		spin_lock_irq(&conf->device_lock);
2462 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2463 		idx = sector_to_idx(r1_bio->sector);
2464 		atomic_inc(&conf->nr_queued[idx]);
2465 		spin_unlock_irq(&conf->device_lock);
2466 		/*
2467 		 * In case freeze_array() is waiting for condition
2468 		 * get_unqueued_pending() == extra to be true.
2469 		 */
2470 		wake_up(&conf->wait_barrier);
2471 		md_wakeup_thread(conf->mddev->thread);
2472 	} else {
2473 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2474 			close_write(r1_bio);
2475 		raid_end_bio_io(r1_bio);
2476 	}
2477 }
2478 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2479 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2480 {
2481 	struct mddev *mddev = conf->mddev;
2482 	struct bio *bio;
2483 	struct md_rdev *rdev;
2484 
2485 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2486 	/* we got a read error. Maybe the drive is bad.  Maybe just
2487 	 * the block and we can fix it.
2488 	 * We freeze all other IO, and try reading the block from
2489 	 * other devices.  When we find one, we re-write
2490 	 * and check it that fixes the read error.
2491 	 * This is all done synchronously while the array is
2492 	 * frozen
2493 	 */
2494 
2495 	bio = r1_bio->bios[r1_bio->read_disk];
2496 	bio_put(bio);
2497 	r1_bio->bios[r1_bio->read_disk] = NULL;
2498 
2499 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2500 	if (mddev->ro == 0
2501 	    && !test_bit(FailFast, &rdev->flags)) {
2502 		freeze_array(conf, 1);
2503 		fix_read_error(conf, r1_bio->read_disk,
2504 			       r1_bio->sector, r1_bio->sectors);
2505 		unfreeze_array(conf);
2506 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2507 		md_error(mddev, rdev);
2508 	} else {
2509 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2510 	}
2511 
2512 	rdev_dec_pending(rdev, conf->mddev);
2513 	allow_barrier(conf, r1_bio->sector);
2514 	bio = r1_bio->master_bio;
2515 
2516 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2517 	r1_bio->state = 0;
2518 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2519 }
2520 
raid1d(struct md_thread * thread)2521 static void raid1d(struct md_thread *thread)
2522 {
2523 	struct mddev *mddev = thread->mddev;
2524 	struct r1bio *r1_bio;
2525 	unsigned long flags;
2526 	struct r1conf *conf = mddev->private;
2527 	struct list_head *head = &conf->retry_list;
2528 	struct blk_plug plug;
2529 	int idx;
2530 
2531 	md_check_recovery(mddev);
2532 
2533 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2534 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2535 		LIST_HEAD(tmp);
2536 		spin_lock_irqsave(&conf->device_lock, flags);
2537 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2538 			list_splice_init(&conf->bio_end_io_list, &tmp);
2539 		spin_unlock_irqrestore(&conf->device_lock, flags);
2540 		while (!list_empty(&tmp)) {
2541 			r1_bio = list_first_entry(&tmp, struct r1bio,
2542 						  retry_list);
2543 			list_del(&r1_bio->retry_list);
2544 			idx = sector_to_idx(r1_bio->sector);
2545 			atomic_dec(&conf->nr_queued[idx]);
2546 			if (mddev->degraded)
2547 				set_bit(R1BIO_Degraded, &r1_bio->state);
2548 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2549 				close_write(r1_bio);
2550 			raid_end_bio_io(r1_bio);
2551 		}
2552 	}
2553 
2554 	blk_start_plug(&plug);
2555 	for (;;) {
2556 
2557 		flush_pending_writes(conf);
2558 
2559 		spin_lock_irqsave(&conf->device_lock, flags);
2560 		if (list_empty(head)) {
2561 			spin_unlock_irqrestore(&conf->device_lock, flags);
2562 			break;
2563 		}
2564 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2565 		list_del(head->prev);
2566 		idx = sector_to_idx(r1_bio->sector);
2567 		atomic_dec(&conf->nr_queued[idx]);
2568 		spin_unlock_irqrestore(&conf->device_lock, flags);
2569 
2570 		mddev = r1_bio->mddev;
2571 		conf = mddev->private;
2572 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2573 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2574 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2575 				handle_sync_write_finished(conf, r1_bio);
2576 			else
2577 				sync_request_write(mddev, r1_bio);
2578 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2579 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2580 			handle_write_finished(conf, r1_bio);
2581 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2582 			handle_read_error(conf, r1_bio);
2583 		else
2584 			WARN_ON_ONCE(1);
2585 
2586 		cond_resched();
2587 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2588 			md_check_recovery(mddev);
2589 	}
2590 	blk_finish_plug(&plug);
2591 }
2592 
init_resync(struct r1conf * conf)2593 static int init_resync(struct r1conf *conf)
2594 {
2595 	int buffs;
2596 
2597 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2598 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2599 
2600 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2601 			    r1buf_pool_free, conf->poolinfo);
2602 }
2603 
raid1_alloc_init_r1buf(struct r1conf * conf)2604 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2605 {
2606 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2607 	struct resync_pages *rps;
2608 	struct bio *bio;
2609 	int i;
2610 
2611 	for (i = conf->poolinfo->raid_disks; i--; ) {
2612 		bio = r1bio->bios[i];
2613 		rps = bio->bi_private;
2614 		bio_reset(bio);
2615 		bio->bi_private = rps;
2616 	}
2617 	r1bio->master_bio = NULL;
2618 	return r1bio;
2619 }
2620 
2621 /*
2622  * perform a "sync" on one "block"
2623  *
2624  * We need to make sure that no normal I/O request - particularly write
2625  * requests - conflict with active sync requests.
2626  *
2627  * This is achieved by tracking pending requests and a 'barrier' concept
2628  * that can be installed to exclude normal IO requests.
2629  */
2630 
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2631 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2632 				   int *skipped)
2633 {
2634 	struct r1conf *conf = mddev->private;
2635 	struct r1bio *r1_bio;
2636 	struct bio *bio;
2637 	sector_t max_sector, nr_sectors;
2638 	int disk = -1;
2639 	int i;
2640 	int wonly = -1;
2641 	int write_targets = 0, read_targets = 0;
2642 	sector_t sync_blocks;
2643 	int still_degraded = 0;
2644 	int good_sectors = RESYNC_SECTORS;
2645 	int min_bad = 0; /* number of sectors that are bad in all devices */
2646 	int idx = sector_to_idx(sector_nr);
2647 	int page_idx = 0;
2648 
2649 	if (!mempool_initialized(&conf->r1buf_pool))
2650 		if (init_resync(conf))
2651 			return 0;
2652 
2653 	max_sector = mddev->dev_sectors;
2654 	if (sector_nr >= max_sector) {
2655 		/* If we aborted, we need to abort the
2656 		 * sync on the 'current' bitmap chunk (there will
2657 		 * only be one in raid1 resync.
2658 		 * We can find the current addess in mddev->curr_resync
2659 		 */
2660 		if (mddev->curr_resync < max_sector) /* aborted */
2661 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2662 					   &sync_blocks, 1);
2663 		else /* completed sync */
2664 			conf->fullsync = 0;
2665 
2666 		md_bitmap_close_sync(mddev->bitmap);
2667 		close_sync(conf);
2668 
2669 		if (mddev_is_clustered(mddev)) {
2670 			conf->cluster_sync_low = 0;
2671 			conf->cluster_sync_high = 0;
2672 		}
2673 		return 0;
2674 	}
2675 
2676 	if (mddev->bitmap == NULL &&
2677 	    mddev->recovery_cp == MaxSector &&
2678 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2679 	    conf->fullsync == 0) {
2680 		*skipped = 1;
2681 		return max_sector - sector_nr;
2682 	}
2683 	/* before building a request, check if we can skip these blocks..
2684 	 * This call the bitmap_start_sync doesn't actually record anything
2685 	 */
2686 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2687 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2688 		/* We can skip this block, and probably several more */
2689 		*skipped = 1;
2690 		return sync_blocks;
2691 	}
2692 
2693 	/*
2694 	 * If there is non-resync activity waiting for a turn, then let it
2695 	 * though before starting on this new sync request.
2696 	 */
2697 	if (atomic_read(&conf->nr_waiting[idx]))
2698 		schedule_timeout_uninterruptible(1);
2699 
2700 	/* we are incrementing sector_nr below. To be safe, we check against
2701 	 * sector_nr + two times RESYNC_SECTORS
2702 	 */
2703 
2704 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2705 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2706 
2707 
2708 	if (raise_barrier(conf, sector_nr))
2709 		return 0;
2710 
2711 	r1_bio = raid1_alloc_init_r1buf(conf);
2712 
2713 	rcu_read_lock();
2714 	/*
2715 	 * If we get a correctably read error during resync or recovery,
2716 	 * we might want to read from a different device.  So we
2717 	 * flag all drives that could conceivably be read from for READ,
2718 	 * and any others (which will be non-In_sync devices) for WRITE.
2719 	 * If a read fails, we try reading from something else for which READ
2720 	 * is OK.
2721 	 */
2722 
2723 	r1_bio->mddev = mddev;
2724 	r1_bio->sector = sector_nr;
2725 	r1_bio->state = 0;
2726 	set_bit(R1BIO_IsSync, &r1_bio->state);
2727 	/* make sure good_sectors won't go across barrier unit boundary */
2728 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2729 
2730 	for (i = 0; i < conf->raid_disks * 2; i++) {
2731 		struct md_rdev *rdev;
2732 		bio = r1_bio->bios[i];
2733 
2734 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2735 		if (rdev == NULL ||
2736 		    test_bit(Faulty, &rdev->flags)) {
2737 			if (i < conf->raid_disks)
2738 				still_degraded = 1;
2739 		} else if (!test_bit(In_sync, &rdev->flags)) {
2740 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2741 			bio->bi_end_io = end_sync_write;
2742 			write_targets ++;
2743 		} else {
2744 			/* may need to read from here */
2745 			sector_t first_bad = MaxSector;
2746 			int bad_sectors;
2747 
2748 			if (is_badblock(rdev, sector_nr, good_sectors,
2749 					&first_bad, &bad_sectors)) {
2750 				if (first_bad > sector_nr)
2751 					good_sectors = first_bad - sector_nr;
2752 				else {
2753 					bad_sectors -= (sector_nr - first_bad);
2754 					if (min_bad == 0 ||
2755 					    min_bad > bad_sectors)
2756 						min_bad = bad_sectors;
2757 				}
2758 			}
2759 			if (sector_nr < first_bad) {
2760 				if (test_bit(WriteMostly, &rdev->flags)) {
2761 					if (wonly < 0)
2762 						wonly = i;
2763 				} else {
2764 					if (disk < 0)
2765 						disk = i;
2766 				}
2767 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2768 				bio->bi_end_io = end_sync_read;
2769 				read_targets++;
2770 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2771 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2772 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2773 				/*
2774 				 * The device is suitable for reading (InSync),
2775 				 * but has bad block(s) here. Let's try to correct them,
2776 				 * if we are doing resync or repair. Otherwise, leave
2777 				 * this device alone for this sync request.
2778 				 */
2779 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2780 				bio->bi_end_io = end_sync_write;
2781 				write_targets++;
2782 			}
2783 		}
2784 		if (rdev && bio->bi_end_io) {
2785 			atomic_inc(&rdev->nr_pending);
2786 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2787 			bio_set_dev(bio, rdev->bdev);
2788 			if (test_bit(FailFast, &rdev->flags))
2789 				bio->bi_opf |= MD_FAILFAST;
2790 		}
2791 	}
2792 	rcu_read_unlock();
2793 	if (disk < 0)
2794 		disk = wonly;
2795 	r1_bio->read_disk = disk;
2796 
2797 	if (read_targets == 0 && min_bad > 0) {
2798 		/* These sectors are bad on all InSync devices, so we
2799 		 * need to mark them bad on all write targets
2800 		 */
2801 		int ok = 1;
2802 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2803 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2804 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2805 				ok = rdev_set_badblocks(rdev, sector_nr,
2806 							min_bad, 0
2807 					) && ok;
2808 			}
2809 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2810 		*skipped = 1;
2811 		put_buf(r1_bio);
2812 
2813 		if (!ok) {
2814 			/* Cannot record the badblocks, so need to
2815 			 * abort the resync.
2816 			 * If there are multiple read targets, could just
2817 			 * fail the really bad ones ???
2818 			 */
2819 			conf->recovery_disabled = mddev->recovery_disabled;
2820 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2821 			return 0;
2822 		} else
2823 			return min_bad;
2824 
2825 	}
2826 	if (min_bad > 0 && min_bad < good_sectors) {
2827 		/* only resync enough to reach the next bad->good
2828 		 * transition */
2829 		good_sectors = min_bad;
2830 	}
2831 
2832 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2833 		/* extra read targets are also write targets */
2834 		write_targets += read_targets-1;
2835 
2836 	if (write_targets == 0 || read_targets == 0) {
2837 		/* There is nowhere to write, so all non-sync
2838 		 * drives must be failed - so we are finished
2839 		 */
2840 		sector_t rv;
2841 		if (min_bad > 0)
2842 			max_sector = sector_nr + min_bad;
2843 		rv = max_sector - sector_nr;
2844 		*skipped = 1;
2845 		put_buf(r1_bio);
2846 		return rv;
2847 	}
2848 
2849 	if (max_sector > mddev->resync_max)
2850 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2851 	if (max_sector > sector_nr + good_sectors)
2852 		max_sector = sector_nr + good_sectors;
2853 	nr_sectors = 0;
2854 	sync_blocks = 0;
2855 	do {
2856 		struct page *page;
2857 		int len = PAGE_SIZE;
2858 		if (sector_nr + (len>>9) > max_sector)
2859 			len = (max_sector - sector_nr) << 9;
2860 		if (len == 0)
2861 			break;
2862 		if (sync_blocks == 0) {
2863 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2864 						  &sync_blocks, still_degraded) &&
2865 			    !conf->fullsync &&
2866 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2867 				break;
2868 			if ((len >> 9) > sync_blocks)
2869 				len = sync_blocks<<9;
2870 		}
2871 
2872 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2873 			struct resync_pages *rp;
2874 
2875 			bio = r1_bio->bios[i];
2876 			rp = get_resync_pages(bio);
2877 			if (bio->bi_end_io) {
2878 				page = resync_fetch_page(rp, page_idx);
2879 
2880 				/*
2881 				 * won't fail because the vec table is big
2882 				 * enough to hold all these pages
2883 				 */
2884 				bio_add_page(bio, page, len, 0);
2885 			}
2886 		}
2887 		nr_sectors += len>>9;
2888 		sector_nr += len>>9;
2889 		sync_blocks -= (len>>9);
2890 	} while (++page_idx < RESYNC_PAGES);
2891 
2892 	r1_bio->sectors = nr_sectors;
2893 
2894 	if (mddev_is_clustered(mddev) &&
2895 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2896 		conf->cluster_sync_low = mddev->curr_resync_completed;
2897 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2898 		/* Send resync message */
2899 		md_cluster_ops->resync_info_update(mddev,
2900 				conf->cluster_sync_low,
2901 				conf->cluster_sync_high);
2902 	}
2903 
2904 	/* For a user-requested sync, we read all readable devices and do a
2905 	 * compare
2906 	 */
2907 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2908 		atomic_set(&r1_bio->remaining, read_targets);
2909 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2910 			bio = r1_bio->bios[i];
2911 			if (bio->bi_end_io == end_sync_read) {
2912 				read_targets--;
2913 				md_sync_acct_bio(bio, nr_sectors);
2914 				if (read_targets == 1)
2915 					bio->bi_opf &= ~MD_FAILFAST;
2916 				generic_make_request(bio);
2917 			}
2918 		}
2919 	} else {
2920 		atomic_set(&r1_bio->remaining, 1);
2921 		bio = r1_bio->bios[r1_bio->read_disk];
2922 		md_sync_acct_bio(bio, nr_sectors);
2923 		if (read_targets == 1)
2924 			bio->bi_opf &= ~MD_FAILFAST;
2925 		generic_make_request(bio);
2926 	}
2927 	return nr_sectors;
2928 }
2929 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2930 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2931 {
2932 	if (sectors)
2933 		return sectors;
2934 
2935 	return mddev->dev_sectors;
2936 }
2937 
setup_conf(struct mddev * mddev)2938 static struct r1conf *setup_conf(struct mddev *mddev)
2939 {
2940 	struct r1conf *conf;
2941 	int i;
2942 	struct raid1_info *disk;
2943 	struct md_rdev *rdev;
2944 	int err = -ENOMEM;
2945 
2946 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2947 	if (!conf)
2948 		goto abort;
2949 
2950 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2951 				   sizeof(atomic_t), GFP_KERNEL);
2952 	if (!conf->nr_pending)
2953 		goto abort;
2954 
2955 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2956 				   sizeof(atomic_t), GFP_KERNEL);
2957 	if (!conf->nr_waiting)
2958 		goto abort;
2959 
2960 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2961 				  sizeof(atomic_t), GFP_KERNEL);
2962 	if (!conf->nr_queued)
2963 		goto abort;
2964 
2965 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2966 				sizeof(atomic_t), GFP_KERNEL);
2967 	if (!conf->barrier)
2968 		goto abort;
2969 
2970 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2971 					    mddev->raid_disks, 2),
2972 				GFP_KERNEL);
2973 	if (!conf->mirrors)
2974 		goto abort;
2975 
2976 	conf->tmppage = alloc_page(GFP_KERNEL);
2977 	if (!conf->tmppage)
2978 		goto abort;
2979 
2980 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2981 	if (!conf->poolinfo)
2982 		goto abort;
2983 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2984 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2985 			   rbio_pool_free, conf->poolinfo);
2986 	if (err)
2987 		goto abort;
2988 
2989 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2990 	if (err)
2991 		goto abort;
2992 
2993 	conf->poolinfo->mddev = mddev;
2994 
2995 	err = -EINVAL;
2996 	spin_lock_init(&conf->device_lock);
2997 	rdev_for_each(rdev, mddev) {
2998 		int disk_idx = rdev->raid_disk;
2999 		if (disk_idx >= mddev->raid_disks
3000 		    || disk_idx < 0)
3001 			continue;
3002 		if (test_bit(Replacement, &rdev->flags))
3003 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3004 		else
3005 			disk = conf->mirrors + disk_idx;
3006 
3007 		if (disk->rdev)
3008 			goto abort;
3009 		disk->rdev = rdev;
3010 		disk->head_position = 0;
3011 		disk->seq_start = MaxSector;
3012 	}
3013 	conf->raid_disks = mddev->raid_disks;
3014 	conf->mddev = mddev;
3015 	INIT_LIST_HEAD(&conf->retry_list);
3016 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3017 
3018 	spin_lock_init(&conf->resync_lock);
3019 	init_waitqueue_head(&conf->wait_barrier);
3020 
3021 	bio_list_init(&conf->pending_bio_list);
3022 	conf->pending_count = 0;
3023 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3024 
3025 	err = -EIO;
3026 	for (i = 0; i < conf->raid_disks * 2; i++) {
3027 
3028 		disk = conf->mirrors + i;
3029 
3030 		if (i < conf->raid_disks &&
3031 		    disk[conf->raid_disks].rdev) {
3032 			/* This slot has a replacement. */
3033 			if (!disk->rdev) {
3034 				/* No original, just make the replacement
3035 				 * a recovering spare
3036 				 */
3037 				disk->rdev =
3038 					disk[conf->raid_disks].rdev;
3039 				disk[conf->raid_disks].rdev = NULL;
3040 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3041 				/* Original is not in_sync - bad */
3042 				goto abort;
3043 		}
3044 
3045 		if (!disk->rdev ||
3046 		    !test_bit(In_sync, &disk->rdev->flags)) {
3047 			disk->head_position = 0;
3048 			if (disk->rdev &&
3049 			    (disk->rdev->saved_raid_disk < 0))
3050 				conf->fullsync = 1;
3051 		}
3052 	}
3053 
3054 	err = -ENOMEM;
3055 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3056 	if (!conf->thread)
3057 		goto abort;
3058 
3059 	return conf;
3060 
3061  abort:
3062 	if (conf) {
3063 		mempool_exit(&conf->r1bio_pool);
3064 		kfree(conf->mirrors);
3065 		safe_put_page(conf->tmppage);
3066 		kfree(conf->poolinfo);
3067 		kfree(conf->nr_pending);
3068 		kfree(conf->nr_waiting);
3069 		kfree(conf->nr_queued);
3070 		kfree(conf->barrier);
3071 		bioset_exit(&conf->bio_split);
3072 		kfree(conf);
3073 	}
3074 	return ERR_PTR(err);
3075 }
3076 
3077 static void raid1_free(struct mddev *mddev, void *priv);
raid1_run(struct mddev * mddev)3078 static int raid1_run(struct mddev *mddev)
3079 {
3080 	struct r1conf *conf;
3081 	int i;
3082 	struct md_rdev *rdev;
3083 	int ret;
3084 	bool discard_supported = false;
3085 
3086 	if (mddev->level != 1) {
3087 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3088 			mdname(mddev), mddev->level);
3089 		return -EIO;
3090 	}
3091 	if (mddev->reshape_position != MaxSector) {
3092 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3093 			mdname(mddev));
3094 		return -EIO;
3095 	}
3096 	if (mddev_init_writes_pending(mddev) < 0)
3097 		return -ENOMEM;
3098 	/*
3099 	 * copy the already verified devices into our private RAID1
3100 	 * bookkeeping area. [whatever we allocate in run(),
3101 	 * should be freed in raid1_free()]
3102 	 */
3103 	if (mddev->private == NULL)
3104 		conf = setup_conf(mddev);
3105 	else
3106 		conf = mddev->private;
3107 
3108 	if (IS_ERR(conf))
3109 		return PTR_ERR(conf);
3110 
3111 	if (mddev->queue) {
3112 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3113 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3114 	}
3115 
3116 	rdev_for_each(rdev, mddev) {
3117 		if (!mddev->gendisk)
3118 			continue;
3119 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3120 				  rdev->data_offset << 9);
3121 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3122 			discard_supported = true;
3123 	}
3124 
3125 	mddev->degraded = 0;
3126 	for (i = 0; i < conf->raid_disks; i++)
3127 		if (conf->mirrors[i].rdev == NULL ||
3128 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3129 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3130 			mddev->degraded++;
3131 	/*
3132 	 * RAID1 needs at least one disk in active
3133 	 */
3134 	if (conf->raid_disks - mddev->degraded < 1) {
3135 		ret = -EINVAL;
3136 		goto abort;
3137 	}
3138 
3139 	if (conf->raid_disks - mddev->degraded == 1)
3140 		mddev->recovery_cp = MaxSector;
3141 
3142 	if (mddev->recovery_cp != MaxSector)
3143 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3144 			mdname(mddev));
3145 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3146 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3147 		mddev->raid_disks);
3148 
3149 	/*
3150 	 * Ok, everything is just fine now
3151 	 */
3152 	mddev->thread = conf->thread;
3153 	conf->thread = NULL;
3154 	mddev->private = conf;
3155 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3156 
3157 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3158 
3159 	if (mddev->queue) {
3160 		if (discard_supported)
3161 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3162 						mddev->queue);
3163 		else
3164 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3165 						  mddev->queue);
3166 	}
3167 
3168 	ret = md_integrity_register(mddev);
3169 	if (ret) {
3170 		md_unregister_thread(&mddev->thread);
3171 		goto abort;
3172 	}
3173 	return 0;
3174 
3175 abort:
3176 	raid1_free(mddev, conf);
3177 	return ret;
3178 }
3179 
raid1_free(struct mddev * mddev,void * priv)3180 static void raid1_free(struct mddev *mddev, void *priv)
3181 {
3182 	struct r1conf *conf = priv;
3183 
3184 	mempool_exit(&conf->r1bio_pool);
3185 	kfree(conf->mirrors);
3186 	safe_put_page(conf->tmppage);
3187 	kfree(conf->poolinfo);
3188 	kfree(conf->nr_pending);
3189 	kfree(conf->nr_waiting);
3190 	kfree(conf->nr_queued);
3191 	kfree(conf->barrier);
3192 	bioset_exit(&conf->bio_split);
3193 	kfree(conf);
3194 }
3195 
raid1_resize(struct mddev * mddev,sector_t sectors)3196 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3197 {
3198 	/* no resync is happening, and there is enough space
3199 	 * on all devices, so we can resize.
3200 	 * We need to make sure resync covers any new space.
3201 	 * If the array is shrinking we should possibly wait until
3202 	 * any io in the removed space completes, but it hardly seems
3203 	 * worth it.
3204 	 */
3205 	sector_t newsize = raid1_size(mddev, sectors, 0);
3206 	if (mddev->external_size &&
3207 	    mddev->array_sectors > newsize)
3208 		return -EINVAL;
3209 	if (mddev->bitmap) {
3210 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3211 		if (ret)
3212 			return ret;
3213 	}
3214 	md_set_array_sectors(mddev, newsize);
3215 	if (sectors > mddev->dev_sectors &&
3216 	    mddev->recovery_cp > mddev->dev_sectors) {
3217 		mddev->recovery_cp = mddev->dev_sectors;
3218 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3219 	}
3220 	mddev->dev_sectors = sectors;
3221 	mddev->resync_max_sectors = sectors;
3222 	return 0;
3223 }
3224 
raid1_reshape(struct mddev * mddev)3225 static int raid1_reshape(struct mddev *mddev)
3226 {
3227 	/* We need to:
3228 	 * 1/ resize the r1bio_pool
3229 	 * 2/ resize conf->mirrors
3230 	 *
3231 	 * We allocate a new r1bio_pool if we can.
3232 	 * Then raise a device barrier and wait until all IO stops.
3233 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3234 	 *
3235 	 * At the same time, we "pack" the devices so that all the missing
3236 	 * devices have the higher raid_disk numbers.
3237 	 */
3238 	mempool_t newpool, oldpool;
3239 	struct pool_info *newpoolinfo;
3240 	struct raid1_info *newmirrors;
3241 	struct r1conf *conf = mddev->private;
3242 	int cnt, raid_disks;
3243 	unsigned long flags;
3244 	int d, d2;
3245 	int ret;
3246 
3247 	memset(&newpool, 0, sizeof(newpool));
3248 	memset(&oldpool, 0, sizeof(oldpool));
3249 
3250 	/* Cannot change chunk_size, layout, or level */
3251 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3252 	    mddev->layout != mddev->new_layout ||
3253 	    mddev->level != mddev->new_level) {
3254 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3255 		mddev->new_layout = mddev->layout;
3256 		mddev->new_level = mddev->level;
3257 		return -EINVAL;
3258 	}
3259 
3260 	if (!mddev_is_clustered(mddev))
3261 		md_allow_write(mddev);
3262 
3263 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3264 
3265 	if (raid_disks < conf->raid_disks) {
3266 		cnt=0;
3267 		for (d= 0; d < conf->raid_disks; d++)
3268 			if (conf->mirrors[d].rdev)
3269 				cnt++;
3270 		if (cnt > raid_disks)
3271 			return -EBUSY;
3272 	}
3273 
3274 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3275 	if (!newpoolinfo)
3276 		return -ENOMEM;
3277 	newpoolinfo->mddev = mddev;
3278 	newpoolinfo->raid_disks = raid_disks * 2;
3279 
3280 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3281 			   rbio_pool_free, newpoolinfo);
3282 	if (ret) {
3283 		kfree(newpoolinfo);
3284 		return ret;
3285 	}
3286 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3287 					 raid_disks, 2),
3288 			     GFP_KERNEL);
3289 	if (!newmirrors) {
3290 		kfree(newpoolinfo);
3291 		mempool_exit(&newpool);
3292 		return -ENOMEM;
3293 	}
3294 
3295 	freeze_array(conf, 0);
3296 
3297 	/* ok, everything is stopped */
3298 	oldpool = conf->r1bio_pool;
3299 	conf->r1bio_pool = newpool;
3300 
3301 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3302 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3303 		if (rdev && rdev->raid_disk != d2) {
3304 			sysfs_unlink_rdev(mddev, rdev);
3305 			rdev->raid_disk = d2;
3306 			sysfs_unlink_rdev(mddev, rdev);
3307 			if (sysfs_link_rdev(mddev, rdev))
3308 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3309 					mdname(mddev), rdev->raid_disk);
3310 		}
3311 		if (rdev)
3312 			newmirrors[d2++].rdev = rdev;
3313 	}
3314 	kfree(conf->mirrors);
3315 	conf->mirrors = newmirrors;
3316 	kfree(conf->poolinfo);
3317 	conf->poolinfo = newpoolinfo;
3318 
3319 	spin_lock_irqsave(&conf->device_lock, flags);
3320 	mddev->degraded += (raid_disks - conf->raid_disks);
3321 	spin_unlock_irqrestore(&conf->device_lock, flags);
3322 	conf->raid_disks = mddev->raid_disks = raid_disks;
3323 	mddev->delta_disks = 0;
3324 
3325 	unfreeze_array(conf);
3326 
3327 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3328 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3329 	md_wakeup_thread(mddev->thread);
3330 
3331 	mempool_exit(&oldpool);
3332 	return 0;
3333 }
3334 
raid1_quiesce(struct mddev * mddev,int quiesce)3335 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3336 {
3337 	struct r1conf *conf = mddev->private;
3338 
3339 	if (quiesce)
3340 		freeze_array(conf, 0);
3341 	else
3342 		unfreeze_array(conf);
3343 }
3344 
raid1_takeover(struct mddev * mddev)3345 static void *raid1_takeover(struct mddev *mddev)
3346 {
3347 	/* raid1 can take over:
3348 	 *  raid5 with 2 devices, any layout or chunk size
3349 	 */
3350 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3351 		struct r1conf *conf;
3352 		mddev->new_level = 1;
3353 		mddev->new_layout = 0;
3354 		mddev->new_chunk_sectors = 0;
3355 		conf = setup_conf(mddev);
3356 		if (!IS_ERR(conf)) {
3357 			/* Array must appear to be quiesced */
3358 			conf->array_frozen = 1;
3359 			mddev_clear_unsupported_flags(mddev,
3360 				UNSUPPORTED_MDDEV_FLAGS);
3361 		}
3362 		return conf;
3363 	}
3364 	return ERR_PTR(-EINVAL);
3365 }
3366 
3367 static struct md_personality raid1_personality =
3368 {
3369 	.name		= "raid1",
3370 	.level		= 1,
3371 	.owner		= THIS_MODULE,
3372 	.make_request	= raid1_make_request,
3373 	.run		= raid1_run,
3374 	.free		= raid1_free,
3375 	.status		= raid1_status,
3376 	.error_handler	= raid1_error,
3377 	.hot_add_disk	= raid1_add_disk,
3378 	.hot_remove_disk= raid1_remove_disk,
3379 	.spare_active	= raid1_spare_active,
3380 	.sync_request	= raid1_sync_request,
3381 	.resize		= raid1_resize,
3382 	.size		= raid1_size,
3383 	.check_reshape	= raid1_reshape,
3384 	.quiesce	= raid1_quiesce,
3385 	.takeover	= raid1_takeover,
3386 	.congested	= raid1_congested,
3387 };
3388 
raid_init(void)3389 static int __init raid_init(void)
3390 {
3391 	return register_md_personality(&raid1_personality);
3392 }
3393 
raid_exit(void)3394 static void raid_exit(void)
3395 {
3396 	unregister_md_personality(&raid1_personality);
3397 }
3398 
3399 module_init(raid_init);
3400 module_exit(raid_exit);
3401 MODULE_LICENSE("GPL");
3402 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3403 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3404 MODULE_ALIAS("md-raid1");
3405 MODULE_ALIAS("md-level-1");
3406 
3407 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3408