1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Afatech AF9013 demodulator driver
4 *
5 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
6 * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
7 *
8 * Thanks to Afatech who kindly provided information.
9 */
10
11 #include "af9013_priv.h"
12
13 struct af9013_state {
14 struct i2c_client *client;
15 struct regmap *regmap;
16 struct i2c_mux_core *muxc;
17 struct dvb_frontend fe;
18 u32 clk;
19 u8 tuner;
20 u32 if_frequency;
21 u8 ts_mode;
22 u8 ts_output_pin;
23 bool spec_inv;
24 u8 api_version[4];
25 u8 gpio[4];
26
27 u32 bandwidth_hz;
28 enum fe_status fe_status;
29 /* RF and IF AGC limits used for signal strength calc */
30 u8 strength_en, rf_agc_50, rf_agc_80, if_agc_50, if_agc_80;
31 unsigned long set_frontend_jiffies;
32 unsigned long read_status_jiffies;
33 unsigned long strength_jiffies;
34 unsigned long cnr_jiffies;
35 unsigned long ber_ucb_jiffies;
36 u16 dvbv3_snr;
37 u16 dvbv3_strength;
38 u32 dvbv3_ber;
39 u32 dvbv3_ucblocks;
40 bool first_tune;
41 };
42
af9013_set_gpio(struct af9013_state * state,u8 gpio,u8 gpioval)43 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
44 {
45 struct i2c_client *client = state->client;
46 int ret;
47 u8 pos;
48 u16 addr;
49
50 dev_dbg(&client->dev, "gpio %u, gpioval %02x\n", gpio, gpioval);
51
52 /*
53 * GPIO0 & GPIO1 0xd735
54 * GPIO2 & GPIO3 0xd736
55 */
56
57 switch (gpio) {
58 case 0:
59 case 1:
60 addr = 0xd735;
61 break;
62 case 2:
63 case 3:
64 addr = 0xd736;
65 break;
66
67 default:
68 ret = -EINVAL;
69 goto err;
70 }
71
72 switch (gpio) {
73 case 0:
74 case 2:
75 pos = 0;
76 break;
77 case 1:
78 case 3:
79 default:
80 pos = 4;
81 break;
82 }
83
84 ret = regmap_update_bits(state->regmap, addr, 0x0f << pos,
85 gpioval << pos);
86 if (ret)
87 goto err;
88
89 return 0;
90 err:
91 dev_dbg(&client->dev, "failed %d\n", ret);
92 return ret;
93 }
94
af9013_get_tune_settings(struct dvb_frontend * fe,struct dvb_frontend_tune_settings * fesettings)95 static int af9013_get_tune_settings(struct dvb_frontend *fe,
96 struct dvb_frontend_tune_settings *fesettings)
97 {
98 fesettings->min_delay_ms = 800;
99 fesettings->step_size = 0;
100 fesettings->max_drift = 0;
101
102 return 0;
103 }
104
af9013_set_frontend(struct dvb_frontend * fe)105 static int af9013_set_frontend(struct dvb_frontend *fe)
106 {
107 struct af9013_state *state = fe->demodulator_priv;
108 struct i2c_client *client = state->client;
109 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
110 int ret, i, sampling_freq;
111 bool auto_mode, spec_inv;
112 u8 buf[6];
113 u32 if_frequency, freq_cw;
114
115 dev_dbg(&client->dev, "frequency %u, bandwidth_hz %u\n",
116 c->frequency, c->bandwidth_hz);
117
118 /* program tuner */
119 if (fe->ops.tuner_ops.set_params) {
120 ret = fe->ops.tuner_ops.set_params(fe);
121 if (ret)
122 goto err;
123 }
124
125 /* program CFOE coefficients */
126 if (c->bandwidth_hz != state->bandwidth_hz) {
127 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
128 if (coeff_lut[i].clock == state->clk &&
129 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
130 break;
131 }
132 }
133
134 /* Return an error if can't find bandwidth or the right clock */
135 if (i == ARRAY_SIZE(coeff_lut)) {
136 ret = -EINVAL;
137 goto err;
138 }
139
140 ret = regmap_bulk_write(state->regmap, 0xae00, coeff_lut[i].val,
141 sizeof(coeff_lut[i].val));
142 if (ret)
143 goto err;
144 }
145
146 /* program frequency control */
147 if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
148 /* get used IF frequency */
149 if (fe->ops.tuner_ops.get_if_frequency) {
150 ret = fe->ops.tuner_ops.get_if_frequency(fe,
151 &if_frequency);
152 if (ret)
153 goto err;
154 } else {
155 if_frequency = state->if_frequency;
156 }
157
158 dev_dbg(&client->dev, "if_frequency %u\n", if_frequency);
159
160 sampling_freq = if_frequency;
161
162 while (sampling_freq > (state->clk / 2))
163 sampling_freq -= state->clk;
164
165 if (sampling_freq < 0) {
166 sampling_freq *= -1;
167 spec_inv = state->spec_inv;
168 } else {
169 spec_inv = !state->spec_inv;
170 }
171
172 freq_cw = DIV_ROUND_CLOSEST_ULL((u64)sampling_freq * 0x800000,
173 state->clk);
174
175 if (spec_inv)
176 freq_cw = 0x800000 - freq_cw;
177
178 buf[0] = (freq_cw >> 0) & 0xff;
179 buf[1] = (freq_cw >> 8) & 0xff;
180 buf[2] = (freq_cw >> 16) & 0x7f;
181
182 freq_cw = 0x800000 - freq_cw;
183
184 buf[3] = (freq_cw >> 0) & 0xff;
185 buf[4] = (freq_cw >> 8) & 0xff;
186 buf[5] = (freq_cw >> 16) & 0x7f;
187
188 ret = regmap_bulk_write(state->regmap, 0xd140, buf, 3);
189 if (ret)
190 goto err;
191
192 ret = regmap_bulk_write(state->regmap, 0x9be7, buf, 6);
193 if (ret)
194 goto err;
195 }
196
197 /* clear TPS lock flag */
198 ret = regmap_update_bits(state->regmap, 0xd330, 0x08, 0x08);
199 if (ret)
200 goto err;
201
202 /* clear MPEG2 lock flag */
203 ret = regmap_update_bits(state->regmap, 0xd507, 0x40, 0x00);
204 if (ret)
205 goto err;
206
207 /* empty channel function */
208 ret = regmap_update_bits(state->regmap, 0x9bfe, 0x01, 0x00);
209 if (ret)
210 goto err;
211
212 /* empty DVB-T channel function */
213 ret = regmap_update_bits(state->regmap, 0x9bc2, 0x01, 0x00);
214 if (ret)
215 goto err;
216
217 /* transmission parameters */
218 auto_mode = false;
219 memset(buf, 0, 3);
220
221 switch (c->transmission_mode) {
222 case TRANSMISSION_MODE_AUTO:
223 auto_mode = true;
224 break;
225 case TRANSMISSION_MODE_2K:
226 break;
227 case TRANSMISSION_MODE_8K:
228 buf[0] |= (1 << 0);
229 break;
230 default:
231 dev_dbg(&client->dev, "invalid transmission_mode\n");
232 auto_mode = true;
233 }
234
235 switch (c->guard_interval) {
236 case GUARD_INTERVAL_AUTO:
237 auto_mode = true;
238 break;
239 case GUARD_INTERVAL_1_32:
240 break;
241 case GUARD_INTERVAL_1_16:
242 buf[0] |= (1 << 2);
243 break;
244 case GUARD_INTERVAL_1_8:
245 buf[0] |= (2 << 2);
246 break;
247 case GUARD_INTERVAL_1_4:
248 buf[0] |= (3 << 2);
249 break;
250 default:
251 dev_dbg(&client->dev, "invalid guard_interval\n");
252 auto_mode = true;
253 }
254
255 switch (c->hierarchy) {
256 case HIERARCHY_AUTO:
257 auto_mode = true;
258 break;
259 case HIERARCHY_NONE:
260 break;
261 case HIERARCHY_1:
262 buf[0] |= (1 << 4);
263 break;
264 case HIERARCHY_2:
265 buf[0] |= (2 << 4);
266 break;
267 case HIERARCHY_4:
268 buf[0] |= (3 << 4);
269 break;
270 default:
271 dev_dbg(&client->dev, "invalid hierarchy\n");
272 auto_mode = true;
273 }
274
275 switch (c->modulation) {
276 case QAM_AUTO:
277 auto_mode = true;
278 break;
279 case QPSK:
280 break;
281 case QAM_16:
282 buf[1] |= (1 << 6);
283 break;
284 case QAM_64:
285 buf[1] |= (2 << 6);
286 break;
287 default:
288 dev_dbg(&client->dev, "invalid modulation\n");
289 auto_mode = true;
290 }
291
292 /* Use HP. How and which case we can switch to LP? */
293 buf[1] |= (1 << 4);
294
295 switch (c->code_rate_HP) {
296 case FEC_AUTO:
297 auto_mode = true;
298 break;
299 case FEC_1_2:
300 break;
301 case FEC_2_3:
302 buf[2] |= (1 << 0);
303 break;
304 case FEC_3_4:
305 buf[2] |= (2 << 0);
306 break;
307 case FEC_5_6:
308 buf[2] |= (3 << 0);
309 break;
310 case FEC_7_8:
311 buf[2] |= (4 << 0);
312 break;
313 default:
314 dev_dbg(&client->dev, "invalid code_rate_HP\n");
315 auto_mode = true;
316 }
317
318 switch (c->code_rate_LP) {
319 case FEC_AUTO:
320 auto_mode = true;
321 break;
322 case FEC_1_2:
323 break;
324 case FEC_2_3:
325 buf[2] |= (1 << 3);
326 break;
327 case FEC_3_4:
328 buf[2] |= (2 << 3);
329 break;
330 case FEC_5_6:
331 buf[2] |= (3 << 3);
332 break;
333 case FEC_7_8:
334 buf[2] |= (4 << 3);
335 break;
336 case FEC_NONE:
337 break;
338 default:
339 dev_dbg(&client->dev, "invalid code_rate_LP\n");
340 auto_mode = true;
341 }
342
343 switch (c->bandwidth_hz) {
344 case 6000000:
345 break;
346 case 7000000:
347 buf[1] |= (1 << 2);
348 break;
349 case 8000000:
350 buf[1] |= (2 << 2);
351 break;
352 default:
353 dev_dbg(&client->dev, "invalid bandwidth_hz\n");
354 ret = -EINVAL;
355 goto err;
356 }
357
358 ret = regmap_bulk_write(state->regmap, 0xd3c0, buf, 3);
359 if (ret)
360 goto err;
361
362 if (auto_mode) {
363 /* clear easy mode flag */
364 ret = regmap_write(state->regmap, 0xaefd, 0x00);
365 if (ret)
366 goto err;
367
368 dev_dbg(&client->dev, "auto params\n");
369 } else {
370 /* set easy mode flag */
371 ret = regmap_write(state->regmap, 0xaefd, 0x01);
372 if (ret)
373 goto err;
374
375 ret = regmap_write(state->regmap, 0xaefe, 0x00);
376 if (ret)
377 goto err;
378
379 dev_dbg(&client->dev, "manual params\n");
380 }
381
382 /* Reset FSM */
383 ret = regmap_write(state->regmap, 0xffff, 0x00);
384 if (ret)
385 goto err;
386
387 state->bandwidth_hz = c->bandwidth_hz;
388 state->set_frontend_jiffies = jiffies;
389 state->first_tune = false;
390
391 return 0;
392 err:
393 dev_dbg(&client->dev, "failed %d\n", ret);
394 return ret;
395 }
396
af9013_get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * c)397 static int af9013_get_frontend(struct dvb_frontend *fe,
398 struct dtv_frontend_properties *c)
399 {
400 struct af9013_state *state = fe->demodulator_priv;
401 struct i2c_client *client = state->client;
402 int ret;
403 u8 buf[3];
404
405 dev_dbg(&client->dev, "\n");
406
407 ret = regmap_bulk_read(state->regmap, 0xd3c0, buf, 3);
408 if (ret)
409 goto err;
410
411 switch ((buf[1] >> 6) & 3) {
412 case 0:
413 c->modulation = QPSK;
414 break;
415 case 1:
416 c->modulation = QAM_16;
417 break;
418 case 2:
419 c->modulation = QAM_64;
420 break;
421 }
422
423 switch ((buf[0] >> 0) & 3) {
424 case 0:
425 c->transmission_mode = TRANSMISSION_MODE_2K;
426 break;
427 case 1:
428 c->transmission_mode = TRANSMISSION_MODE_8K;
429 }
430
431 switch ((buf[0] >> 2) & 3) {
432 case 0:
433 c->guard_interval = GUARD_INTERVAL_1_32;
434 break;
435 case 1:
436 c->guard_interval = GUARD_INTERVAL_1_16;
437 break;
438 case 2:
439 c->guard_interval = GUARD_INTERVAL_1_8;
440 break;
441 case 3:
442 c->guard_interval = GUARD_INTERVAL_1_4;
443 break;
444 }
445
446 switch ((buf[0] >> 4) & 7) {
447 case 0:
448 c->hierarchy = HIERARCHY_NONE;
449 break;
450 case 1:
451 c->hierarchy = HIERARCHY_1;
452 break;
453 case 2:
454 c->hierarchy = HIERARCHY_2;
455 break;
456 case 3:
457 c->hierarchy = HIERARCHY_4;
458 break;
459 }
460
461 switch ((buf[2] >> 0) & 7) {
462 case 0:
463 c->code_rate_HP = FEC_1_2;
464 break;
465 case 1:
466 c->code_rate_HP = FEC_2_3;
467 break;
468 case 2:
469 c->code_rate_HP = FEC_3_4;
470 break;
471 case 3:
472 c->code_rate_HP = FEC_5_6;
473 break;
474 case 4:
475 c->code_rate_HP = FEC_7_8;
476 break;
477 }
478
479 switch ((buf[2] >> 3) & 7) {
480 case 0:
481 c->code_rate_LP = FEC_1_2;
482 break;
483 case 1:
484 c->code_rate_LP = FEC_2_3;
485 break;
486 case 2:
487 c->code_rate_LP = FEC_3_4;
488 break;
489 case 3:
490 c->code_rate_LP = FEC_5_6;
491 break;
492 case 4:
493 c->code_rate_LP = FEC_7_8;
494 break;
495 }
496
497 switch ((buf[1] >> 2) & 3) {
498 case 0:
499 c->bandwidth_hz = 6000000;
500 break;
501 case 1:
502 c->bandwidth_hz = 7000000;
503 break;
504 case 2:
505 c->bandwidth_hz = 8000000;
506 break;
507 }
508
509 return 0;
510 err:
511 dev_dbg(&client->dev, "failed %d\n", ret);
512 return ret;
513 }
514
af9013_read_status(struct dvb_frontend * fe,enum fe_status * status)515 static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status)
516 {
517 struct af9013_state *state = fe->demodulator_priv;
518 struct i2c_client *client = state->client;
519 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
520 int ret, stmp1;
521 unsigned int utmp, utmp1, utmp2, utmp3, utmp4;
522 u8 buf[7];
523
524 dev_dbg(&client->dev, "\n");
525
526 /*
527 * Return status from the cache if it is younger than 2000ms with the
528 * exception of last tune is done during 4000ms.
529 */
530 if (time_is_after_jiffies(state->read_status_jiffies + msecs_to_jiffies(2000)) &&
531 time_is_before_jiffies(state->set_frontend_jiffies + msecs_to_jiffies(4000))) {
532 *status = state->fe_status;
533 } else {
534 /* MPEG2 lock */
535 ret = regmap_read(state->regmap, 0xd507, &utmp);
536 if (ret)
537 goto err;
538
539 if ((utmp >> 6) & 0x01) {
540 utmp1 = FE_HAS_SIGNAL | FE_HAS_CARRIER |
541 FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
542 } else {
543 /* TPS lock */
544 ret = regmap_read(state->regmap, 0xd330, &utmp);
545 if (ret)
546 goto err;
547
548 if ((utmp >> 3) & 0x01)
549 utmp1 = FE_HAS_SIGNAL | FE_HAS_CARRIER |
550 FE_HAS_VITERBI;
551 else
552 utmp1 = 0;
553 }
554
555 dev_dbg(&client->dev, "fe_status %02x\n", utmp1);
556
557 state->read_status_jiffies = jiffies;
558
559 state->fe_status = utmp1;
560 *status = utmp1;
561 }
562
563 /* Signal strength */
564 switch (state->strength_en) {
565 case 0:
566 /* Check if we support signal strength */
567 ret = regmap_read(state->regmap, 0x9bee, &utmp);
568 if (ret)
569 goto err;
570
571 if ((utmp >> 0) & 0x01) {
572 /* Read agc values for signal strength estimation */
573 ret = regmap_read(state->regmap, 0x9bbd, &utmp1);
574 if (ret)
575 goto err;
576 ret = regmap_read(state->regmap, 0x9bd0, &utmp2);
577 if (ret)
578 goto err;
579 ret = regmap_read(state->regmap, 0x9be2, &utmp3);
580 if (ret)
581 goto err;
582 ret = regmap_read(state->regmap, 0x9be4, &utmp4);
583 if (ret)
584 goto err;
585
586 state->rf_agc_50 = utmp1;
587 state->rf_agc_80 = utmp2;
588 state->if_agc_50 = utmp3;
589 state->if_agc_80 = utmp4;
590 dev_dbg(&client->dev,
591 "rf_agc_50 %u, rf_agc_80 %u, if_agc_50 %u, if_agc_80 %u\n",
592 utmp1, utmp2, utmp3, utmp4);
593
594 state->strength_en = 1;
595 } else {
596 /* Signal strength is not supported */
597 state->strength_en = 2;
598 break;
599 }
600 /* Fall through */
601 case 1:
602 if (time_is_after_jiffies(state->strength_jiffies + msecs_to_jiffies(2000)))
603 break;
604
605 /* Read value */
606 ret = regmap_bulk_read(state->regmap, 0xd07c, buf, 2);
607 if (ret)
608 goto err;
609
610 /*
611 * Construct line equation from tuner dependent -80/-50 dBm agc
612 * limits and use it to map current agc value to dBm estimate
613 */
614 #define agc_gain (buf[0] + buf[1])
615 #define agc_gain_50dbm (state->rf_agc_50 + state->if_agc_50)
616 #define agc_gain_80dbm (state->rf_agc_80 + state->if_agc_80)
617 stmp1 = 30000 * (agc_gain - agc_gain_80dbm) /
618 (agc_gain_50dbm - agc_gain_80dbm) - 80000;
619
620 dev_dbg(&client->dev,
621 "strength %d, agc_gain %d, agc_gain_50dbm %d, agc_gain_80dbm %d\n",
622 stmp1, agc_gain, agc_gain_50dbm, agc_gain_80dbm);
623
624 state->strength_jiffies = jiffies;
625 /* Convert [-90, -30] dBm to [0x0000, 0xffff] for dvbv3 */
626 utmp1 = clamp(stmp1 + 90000, 0, 60000);
627 state->dvbv3_strength = div_u64((u64)utmp1 * 0xffff, 60000);
628
629 c->strength.stat[0].scale = FE_SCALE_DECIBEL;
630 c->strength.stat[0].svalue = stmp1;
631 break;
632 default:
633 c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
634 break;
635 }
636
637 /* CNR */
638 switch (state->fe_status & FE_HAS_VITERBI) {
639 case FE_HAS_VITERBI:
640 if (time_is_after_jiffies(state->cnr_jiffies + msecs_to_jiffies(2000)))
641 break;
642
643 /* Check if cnr ready */
644 ret = regmap_read(state->regmap, 0xd2e1, &utmp);
645 if (ret)
646 goto err;
647
648 if (!((utmp >> 3) & 0x01)) {
649 dev_dbg(&client->dev, "cnr not ready\n");
650 break;
651 }
652
653 /* Read value */
654 ret = regmap_bulk_read(state->regmap, 0xd2e3, buf, 3);
655 if (ret)
656 goto err;
657
658 utmp1 = buf[2] << 16 | buf[1] << 8 | buf[0] << 0;
659
660 /* Read current modulation */
661 ret = regmap_read(state->regmap, 0xd3c1, &utmp);
662 if (ret)
663 goto err;
664
665 switch ((utmp >> 6) & 3) {
666 case 0:
667 /*
668 * QPSK
669 * CNR[dB] 13 * -log10((1690000 - value) / value) + 2.6
670 * value [653799, 1689999], 2.6 / 13 = 3355443
671 */
672 utmp1 = clamp(utmp1, 653799U, 1689999U);
673 utmp1 = ((u64)(intlog10(utmp1)
674 - intlog10(1690000 - utmp1)
675 + 3355443) * 13 * 1000) >> 24;
676 break;
677 case 1:
678 /*
679 * QAM-16
680 * CNR[dB] 6 * log10((value - 370000) / (828000 - value)) + 15.7
681 * value [371105, 827999], 15.7 / 6 = 43900382
682 */
683 utmp1 = clamp(utmp1, 371105U, 827999U);
684 utmp1 = ((u64)(intlog10(utmp1 - 370000)
685 - intlog10(828000 - utmp1)
686 + 43900382) * 6 * 1000) >> 24;
687 break;
688 case 2:
689 /*
690 * QAM-64
691 * CNR[dB] 8 * log10((value - 193000) / (425000 - value)) + 23.8
692 * value [193246, 424999], 23.8 / 8 = 49912218
693 */
694 utmp1 = clamp(utmp1, 193246U, 424999U);
695 utmp1 = ((u64)(intlog10(utmp1 - 193000)
696 - intlog10(425000 - utmp1)
697 + 49912218) * 8 * 1000) >> 24;
698 break;
699 default:
700 dev_dbg(&client->dev, "invalid modulation %u\n",
701 (utmp >> 6) & 3);
702 utmp1 = 0;
703 break;
704 }
705
706 dev_dbg(&client->dev, "cnr %u\n", utmp1);
707
708 state->cnr_jiffies = jiffies;
709 state->dvbv3_snr = utmp1 / 100;
710
711 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
712 c->cnr.stat[0].svalue = utmp1;
713 break;
714 default:
715 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
716 break;
717 }
718
719 /* BER / PER */
720 switch (state->fe_status & FE_HAS_SYNC) {
721 case FE_HAS_SYNC:
722 if (time_is_after_jiffies(state->ber_ucb_jiffies + msecs_to_jiffies(2000)))
723 break;
724
725 /* Check if ber / ucb is ready */
726 ret = regmap_read(state->regmap, 0xd391, &utmp);
727 if (ret)
728 goto err;
729
730 if (!((utmp >> 4) & 0x01)) {
731 dev_dbg(&client->dev, "ber not ready\n");
732 break;
733 }
734
735 /* Read value */
736 ret = regmap_bulk_read(state->regmap, 0xd385, buf, 7);
737 if (ret)
738 goto err;
739
740 utmp1 = buf[4] << 16 | buf[3] << 8 | buf[2] << 0;
741 utmp2 = (buf[1] << 8 | buf[0] << 0) * 204 * 8;
742 utmp3 = buf[6] << 8 | buf[5] << 0;
743 utmp4 = buf[1] << 8 | buf[0] << 0;
744
745 /* Use 10000 TS packets for measure */
746 if (utmp4 != 10000) {
747 buf[0] = (10000 >> 0) & 0xff;
748 buf[1] = (10000 >> 8) & 0xff;
749 ret = regmap_bulk_write(state->regmap, 0xd385, buf, 2);
750 if (ret)
751 goto err;
752 }
753
754 /* Reset ber / ucb counter */
755 ret = regmap_update_bits(state->regmap, 0xd391, 0x20, 0x20);
756 if (ret)
757 goto err;
758
759 dev_dbg(&client->dev, "post_bit_error %u, post_bit_count %u\n",
760 utmp1, utmp2);
761 dev_dbg(&client->dev, "block_error %u, block_count %u\n",
762 utmp3, utmp4);
763
764 state->ber_ucb_jiffies = jiffies;
765 state->dvbv3_ber = utmp1;
766 state->dvbv3_ucblocks += utmp3;
767
768 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
769 c->post_bit_error.stat[0].uvalue += utmp1;
770 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
771 c->post_bit_count.stat[0].uvalue += utmp2;
772
773 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
774 c->block_error.stat[0].uvalue += utmp3;
775 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
776 c->block_count.stat[0].uvalue += utmp4;
777 break;
778 default:
779 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
780 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
781
782 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
783 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
784 break;
785 }
786
787 return 0;
788 err:
789 dev_dbg(&client->dev, "failed %d\n", ret);
790 return ret;
791 }
792
af9013_read_snr(struct dvb_frontend * fe,u16 * snr)793 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
794 {
795 struct af9013_state *state = fe->demodulator_priv;
796
797 *snr = state->dvbv3_snr;
798
799 return 0;
800 }
801
af9013_read_signal_strength(struct dvb_frontend * fe,u16 * strength)802 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
803 {
804 struct af9013_state *state = fe->demodulator_priv;
805
806 *strength = state->dvbv3_strength;
807
808 return 0;
809 }
810
af9013_read_ber(struct dvb_frontend * fe,u32 * ber)811 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
812 {
813 struct af9013_state *state = fe->demodulator_priv;
814
815 *ber = state->dvbv3_ber;
816
817 return 0;
818 }
819
af9013_read_ucblocks(struct dvb_frontend * fe,u32 * ucblocks)820 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
821 {
822 struct af9013_state *state = fe->demodulator_priv;
823
824 *ucblocks = state->dvbv3_ucblocks;
825
826 return 0;
827 }
828
af9013_init(struct dvb_frontend * fe)829 static int af9013_init(struct dvb_frontend *fe)
830 {
831 struct af9013_state *state = fe->demodulator_priv;
832 struct i2c_client *client = state->client;
833 int ret, i, len;
834 unsigned int utmp;
835 u8 buf[3];
836 const struct af9013_reg_mask_val *tab;
837
838 dev_dbg(&client->dev, "\n");
839
840 /* ADC on */
841 ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x00);
842 if (ret)
843 goto err;
844
845 /* Clear reset */
846 ret = regmap_update_bits(state->regmap, 0xd417, 0x02, 0x00);
847 if (ret)
848 goto err;
849
850 /* Disable reset */
851 ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x00);
852 if (ret)
853 goto err;
854
855 /* write API version to firmware */
856 ret = regmap_bulk_write(state->regmap, 0x9bf2, state->api_version, 4);
857 if (ret)
858 goto err;
859
860 /* program ADC control */
861 switch (state->clk) {
862 case 28800000: /* 28.800 MHz */
863 utmp = 0;
864 break;
865 case 20480000: /* 20.480 MHz */
866 utmp = 1;
867 break;
868 case 28000000: /* 28.000 MHz */
869 utmp = 2;
870 break;
871 case 25000000: /* 25.000 MHz */
872 utmp = 3;
873 break;
874 default:
875 ret = -EINVAL;
876 goto err;
877 }
878
879 ret = regmap_update_bits(state->regmap, 0x9bd2, 0x0f, utmp);
880 if (ret)
881 goto err;
882
883 utmp = div_u64((u64)state->clk * 0x80000, 1000000);
884 buf[0] = (utmp >> 0) & 0xff;
885 buf[1] = (utmp >> 8) & 0xff;
886 buf[2] = (utmp >> 16) & 0xff;
887 ret = regmap_bulk_write(state->regmap, 0xd180, buf, 3);
888 if (ret)
889 goto err;
890
891 /* Demod core settings */
892 dev_dbg(&client->dev, "load demod core settings\n");
893 len = ARRAY_SIZE(demod_init_tab);
894 tab = demod_init_tab;
895 for (i = 0; i < len; i++) {
896 ret = regmap_update_bits(state->regmap, tab[i].reg, tab[i].mask,
897 tab[i].val);
898 if (ret)
899 goto err;
900 }
901
902 /* Demod tuner specific settings */
903 dev_dbg(&client->dev, "load tuner specific settings\n");
904 switch (state->tuner) {
905 case AF9013_TUNER_MXL5003D:
906 len = ARRAY_SIZE(tuner_init_tab_mxl5003d);
907 tab = tuner_init_tab_mxl5003d;
908 break;
909 case AF9013_TUNER_MXL5005D:
910 case AF9013_TUNER_MXL5005R:
911 case AF9013_TUNER_MXL5007T:
912 len = ARRAY_SIZE(tuner_init_tab_mxl5005);
913 tab = tuner_init_tab_mxl5005;
914 break;
915 case AF9013_TUNER_ENV77H11D5:
916 len = ARRAY_SIZE(tuner_init_tab_env77h11d5);
917 tab = tuner_init_tab_env77h11d5;
918 break;
919 case AF9013_TUNER_MT2060:
920 len = ARRAY_SIZE(tuner_init_tab_mt2060);
921 tab = tuner_init_tab_mt2060;
922 break;
923 case AF9013_TUNER_MC44S803:
924 len = ARRAY_SIZE(tuner_init_tab_mc44s803);
925 tab = tuner_init_tab_mc44s803;
926 break;
927 case AF9013_TUNER_QT1010:
928 case AF9013_TUNER_QT1010A:
929 len = ARRAY_SIZE(tuner_init_tab_qt1010);
930 tab = tuner_init_tab_qt1010;
931 break;
932 case AF9013_TUNER_MT2060_2:
933 len = ARRAY_SIZE(tuner_init_tab_mt2060_2);
934 tab = tuner_init_tab_mt2060_2;
935 break;
936 case AF9013_TUNER_TDA18271:
937 case AF9013_TUNER_TDA18218:
938 len = ARRAY_SIZE(tuner_init_tab_tda18271);
939 tab = tuner_init_tab_tda18271;
940 break;
941 case AF9013_TUNER_UNKNOWN:
942 default:
943 len = ARRAY_SIZE(tuner_init_tab_unknown);
944 tab = tuner_init_tab_unknown;
945 break;
946 }
947
948 for (i = 0; i < len; i++) {
949 ret = regmap_update_bits(state->regmap, tab[i].reg, tab[i].mask,
950 tab[i].val);
951 if (ret)
952 goto err;
953 }
954
955 /* TS interface */
956 if (state->ts_output_pin == 7)
957 utmp = 1 << 3 | state->ts_mode << 1;
958 else
959 utmp = 0 << 3 | state->ts_mode << 1;
960 ret = regmap_update_bits(state->regmap, 0xd500, 0x0e, utmp);
961 if (ret)
962 goto err;
963
964 /* enable lock led */
965 ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x01);
966 if (ret)
967 goto err;
968
969 state->first_tune = true;
970
971 return 0;
972 err:
973 dev_dbg(&client->dev, "failed %d\n", ret);
974 return ret;
975 }
976
af9013_sleep(struct dvb_frontend * fe)977 static int af9013_sleep(struct dvb_frontend *fe)
978 {
979 struct af9013_state *state = fe->demodulator_priv;
980 struct i2c_client *client = state->client;
981 int ret;
982 unsigned int utmp;
983
984 dev_dbg(&client->dev, "\n");
985
986 /* disable lock led */
987 ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x00);
988 if (ret)
989 goto err;
990
991 /* Enable reset */
992 ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x10);
993 if (ret)
994 goto err;
995
996 /* Start reset execution */
997 ret = regmap_write(state->regmap, 0xaeff, 0x01);
998 if (ret)
999 goto err;
1000
1001 /* Wait reset performs */
1002 ret = regmap_read_poll_timeout(state->regmap, 0xd417, utmp,
1003 (utmp >> 1) & 0x01, 5000, 1000000);
1004 if (ret)
1005 goto err;
1006
1007 if (!((utmp >> 1) & 0x01)) {
1008 ret = -ETIMEDOUT;
1009 goto err;
1010 }
1011
1012 /* ADC off */
1013 ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x08);
1014 if (ret)
1015 goto err;
1016
1017 return 0;
1018 err:
1019 dev_dbg(&client->dev, "failed %d\n", ret);
1020 return ret;
1021 }
1022
1023 static const struct dvb_frontend_ops af9013_ops;
1024
af9013_download_firmware(struct af9013_state * state)1025 static int af9013_download_firmware(struct af9013_state *state)
1026 {
1027 struct i2c_client *client = state->client;
1028 int ret, i, len, rem;
1029 unsigned int utmp;
1030 u8 buf[4];
1031 u16 checksum = 0;
1032 const struct firmware *firmware;
1033 const char *name = AF9013_FIRMWARE;
1034
1035 dev_dbg(&client->dev, "\n");
1036
1037 /* Check whether firmware is already running */
1038 ret = regmap_read(state->regmap, 0x98be, &utmp);
1039 if (ret)
1040 goto err;
1041
1042 dev_dbg(&client->dev, "firmware status %02x\n", utmp);
1043
1044 if (utmp == 0x0c)
1045 return 0;
1046
1047 dev_info(&client->dev, "found a '%s' in cold state, will try to load a firmware\n",
1048 af9013_ops.info.name);
1049
1050 /* Request the firmware, will block and timeout */
1051 ret = request_firmware(&firmware, name, &client->dev);
1052 if (ret) {
1053 dev_info(&client->dev, "firmware file '%s' not found %d\n",
1054 name, ret);
1055 goto err;
1056 }
1057
1058 dev_info(&client->dev, "downloading firmware from file '%s'\n",
1059 name);
1060
1061 /* Write firmware checksum & size */
1062 for (i = 0; i < firmware->size; i++)
1063 checksum += firmware->data[i];
1064
1065 buf[0] = (checksum >> 8) & 0xff;
1066 buf[1] = (checksum >> 0) & 0xff;
1067 buf[2] = (firmware->size >> 8) & 0xff;
1068 buf[3] = (firmware->size >> 0) & 0xff;
1069 ret = regmap_bulk_write(state->regmap, 0x50fc, buf, 4);
1070 if (ret)
1071 goto err_release_firmware;
1072
1073 /* Download firmware */
1074 #define LEN_MAX 16
1075 for (rem = firmware->size; rem > 0; rem -= LEN_MAX) {
1076 len = min(LEN_MAX, rem);
1077 ret = regmap_bulk_write(state->regmap,
1078 0x5100 + firmware->size - rem,
1079 &firmware->data[firmware->size - rem],
1080 len);
1081 if (ret) {
1082 dev_err(&client->dev, "firmware download failed %d\n",
1083 ret);
1084 goto err_release_firmware;
1085 }
1086 }
1087
1088 release_firmware(firmware);
1089
1090 /* Boot firmware */
1091 ret = regmap_write(state->regmap, 0xe205, 0x01);
1092 if (ret)
1093 goto err;
1094
1095 /* Check firmware status. 0c=OK, 04=fail */
1096 ret = regmap_read_poll_timeout(state->regmap, 0x98be, utmp,
1097 (utmp == 0x0c || utmp == 0x04),
1098 5000, 1000000);
1099 if (ret)
1100 goto err;
1101
1102 dev_dbg(&client->dev, "firmware status %02x\n", utmp);
1103
1104 if (utmp == 0x04) {
1105 ret = -ENODEV;
1106 dev_err(&client->dev, "firmware did not run\n");
1107 goto err;
1108 } else if (utmp != 0x0c) {
1109 ret = -ENODEV;
1110 dev_err(&client->dev, "firmware boot timeout\n");
1111 goto err;
1112 }
1113
1114 dev_info(&client->dev, "found a '%s' in warm state\n",
1115 af9013_ops.info.name);
1116
1117 return 0;
1118 err_release_firmware:
1119 release_firmware(firmware);
1120 err:
1121 dev_dbg(&client->dev, "failed %d\n", ret);
1122 return ret;
1123 }
1124
1125 static const struct dvb_frontend_ops af9013_ops = {
1126 .delsys = { SYS_DVBT },
1127 .info = {
1128 .name = "Afatech AF9013",
1129 .frequency_min_hz = 174 * MHz,
1130 .frequency_max_hz = 862 * MHz,
1131 .frequency_stepsize_hz = 250 * kHz,
1132 .caps = FE_CAN_FEC_1_2 |
1133 FE_CAN_FEC_2_3 |
1134 FE_CAN_FEC_3_4 |
1135 FE_CAN_FEC_5_6 |
1136 FE_CAN_FEC_7_8 |
1137 FE_CAN_FEC_AUTO |
1138 FE_CAN_QPSK |
1139 FE_CAN_QAM_16 |
1140 FE_CAN_QAM_64 |
1141 FE_CAN_QAM_AUTO |
1142 FE_CAN_TRANSMISSION_MODE_AUTO |
1143 FE_CAN_GUARD_INTERVAL_AUTO |
1144 FE_CAN_HIERARCHY_AUTO |
1145 FE_CAN_RECOVER |
1146 FE_CAN_MUTE_TS
1147 },
1148
1149 .init = af9013_init,
1150 .sleep = af9013_sleep,
1151
1152 .get_tune_settings = af9013_get_tune_settings,
1153 .set_frontend = af9013_set_frontend,
1154 .get_frontend = af9013_get_frontend,
1155
1156 .read_status = af9013_read_status,
1157 .read_snr = af9013_read_snr,
1158 .read_signal_strength = af9013_read_signal_strength,
1159 .read_ber = af9013_read_ber,
1160 .read_ucblocks = af9013_read_ucblocks,
1161 };
1162
af9013_pid_filter_ctrl(struct dvb_frontend * fe,int onoff)1163 static int af9013_pid_filter_ctrl(struct dvb_frontend *fe, int onoff)
1164 {
1165 struct af9013_state *state = fe->demodulator_priv;
1166 struct i2c_client *client = state->client;
1167 int ret;
1168
1169 dev_dbg(&client->dev, "onoff %d\n", onoff);
1170
1171 ret = regmap_update_bits(state->regmap, 0xd503, 0x01, onoff);
1172 if (ret)
1173 goto err;
1174
1175 return 0;
1176 err:
1177 dev_dbg(&client->dev, "failed %d\n", ret);
1178 return ret;
1179 }
1180
af9013_pid_filter(struct dvb_frontend * fe,u8 index,u16 pid,int onoff)1181 static int af9013_pid_filter(struct dvb_frontend *fe, u8 index, u16 pid,
1182 int onoff)
1183 {
1184 struct af9013_state *state = fe->demodulator_priv;
1185 struct i2c_client *client = state->client;
1186 int ret;
1187 u8 buf[2];
1188
1189 dev_dbg(&client->dev, "index %d, pid %04x, onoff %d\n",
1190 index, pid, onoff);
1191
1192 if (pid > 0x1fff) {
1193 /* 0x2000 is kernel virtual pid for whole ts (all pids) */
1194 ret = 0;
1195 goto err;
1196 }
1197
1198 buf[0] = (pid >> 0) & 0xff;
1199 buf[1] = (pid >> 8) & 0xff;
1200 ret = regmap_bulk_write(state->regmap, 0xd505, buf, 2);
1201 if (ret)
1202 goto err;
1203 ret = regmap_write(state->regmap, 0xd504, onoff << 5 | index << 0);
1204 if (ret)
1205 goto err;
1206
1207 return 0;
1208 err:
1209 dev_dbg(&client->dev, "failed %d\n", ret);
1210 return ret;
1211 }
1212
af9013_get_dvb_frontend(struct i2c_client * client)1213 static struct dvb_frontend *af9013_get_dvb_frontend(struct i2c_client *client)
1214 {
1215 struct af9013_state *state = i2c_get_clientdata(client);
1216
1217 dev_dbg(&client->dev, "\n");
1218
1219 return &state->fe;
1220 }
1221
af9013_get_i2c_adapter(struct i2c_client * client)1222 static struct i2c_adapter *af9013_get_i2c_adapter(struct i2c_client *client)
1223 {
1224 struct af9013_state *state = i2c_get_clientdata(client);
1225
1226 dev_dbg(&client->dev, "\n");
1227
1228 return state->muxc->adapter[0];
1229 }
1230
1231 /*
1232 * XXX: Hackish solution. We use virtual register, reg bit 16, to carry info
1233 * about i2c adapter locking. Own locking is needed because i2c mux call has
1234 * already locked i2c adapter.
1235 */
af9013_select(struct i2c_mux_core * muxc,u32 chan)1236 static int af9013_select(struct i2c_mux_core *muxc, u32 chan)
1237 {
1238 struct af9013_state *state = i2c_mux_priv(muxc);
1239 struct i2c_client *client = state->client;
1240 int ret;
1241
1242 dev_dbg(&client->dev, "\n");
1243
1244 if (state->ts_mode == AF9013_TS_MODE_USB)
1245 ret = regmap_update_bits(state->regmap, 0x1d417, 0x08, 0x08);
1246 else
1247 ret = regmap_update_bits(state->regmap, 0x1d607, 0x04, 0x04);
1248 if (ret)
1249 goto err;
1250
1251 return 0;
1252 err:
1253 dev_dbg(&client->dev, "failed %d\n", ret);
1254 return ret;
1255 }
1256
af9013_deselect(struct i2c_mux_core * muxc,u32 chan)1257 static int af9013_deselect(struct i2c_mux_core *muxc, u32 chan)
1258 {
1259 struct af9013_state *state = i2c_mux_priv(muxc);
1260 struct i2c_client *client = state->client;
1261 int ret;
1262
1263 dev_dbg(&client->dev, "\n");
1264
1265 if (state->ts_mode == AF9013_TS_MODE_USB)
1266 ret = regmap_update_bits(state->regmap, 0x1d417, 0x08, 0x00);
1267 else
1268 ret = regmap_update_bits(state->regmap, 0x1d607, 0x04, 0x00);
1269 if (ret)
1270 goto err;
1271
1272 return 0;
1273 err:
1274 dev_dbg(&client->dev, "failed %d\n", ret);
1275 return ret;
1276 }
1277
1278 /* Own I2C access routines needed for regmap as chip uses extra command byte */
af9013_wregs(struct i2c_client * client,u8 cmd,u16 reg,const u8 * val,int len,u8 lock)1279 static int af9013_wregs(struct i2c_client *client, u8 cmd, u16 reg,
1280 const u8 *val, int len, u8 lock)
1281 {
1282 int ret;
1283 u8 buf[21];
1284 struct i2c_msg msg[1] = {
1285 {
1286 .addr = client->addr,
1287 .flags = 0,
1288 .len = 3 + len,
1289 .buf = buf,
1290 }
1291 };
1292
1293 if (3 + len > sizeof(buf)) {
1294 ret = -EINVAL;
1295 goto err;
1296 }
1297
1298 buf[0] = (reg >> 8) & 0xff;
1299 buf[1] = (reg >> 0) & 0xff;
1300 buf[2] = cmd;
1301 memcpy(&buf[3], val, len);
1302
1303 if (lock)
1304 i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT);
1305 ret = __i2c_transfer(client->adapter, msg, 1);
1306 if (lock)
1307 i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT);
1308 if (ret < 0) {
1309 goto err;
1310 } else if (ret != 1) {
1311 ret = -EREMOTEIO;
1312 goto err;
1313 }
1314
1315 return 0;
1316 err:
1317 dev_dbg(&client->dev, "failed %d\n", ret);
1318 return ret;
1319 }
1320
af9013_rregs(struct i2c_client * client,u8 cmd,u16 reg,u8 * val,int len,u8 lock)1321 static int af9013_rregs(struct i2c_client *client, u8 cmd, u16 reg,
1322 u8 *val, int len, u8 lock)
1323 {
1324 int ret;
1325 u8 buf[3];
1326 struct i2c_msg msg[2] = {
1327 {
1328 .addr = client->addr,
1329 .flags = 0,
1330 .len = 3,
1331 .buf = buf,
1332 }, {
1333 .addr = client->addr,
1334 .flags = I2C_M_RD,
1335 .len = len,
1336 .buf = val,
1337 }
1338 };
1339
1340 buf[0] = (reg >> 8) & 0xff;
1341 buf[1] = (reg >> 0) & 0xff;
1342 buf[2] = cmd;
1343
1344 if (lock)
1345 i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT);
1346 ret = __i2c_transfer(client->adapter, msg, 2);
1347 if (lock)
1348 i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT);
1349 if (ret < 0) {
1350 goto err;
1351 } else if (ret != 2) {
1352 ret = -EREMOTEIO;
1353 goto err;
1354 }
1355
1356 return 0;
1357 err:
1358 dev_dbg(&client->dev, "failed %d\n", ret);
1359 return ret;
1360 }
1361
af9013_regmap_write(void * context,const void * data,size_t count)1362 static int af9013_regmap_write(void *context, const void *data, size_t count)
1363 {
1364 struct i2c_client *client = context;
1365 struct af9013_state *state = i2c_get_clientdata(client);
1366 int ret, i;
1367 u8 cmd;
1368 u8 lock = !((u8 *)data)[0];
1369 u16 reg = ((u8 *)data)[1] << 8 | ((u8 *)data)[2] << 0;
1370 u8 *val = &((u8 *)data)[3];
1371 const unsigned int len = count - 3;
1372
1373 if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) {
1374 cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|1 << 0;
1375 ret = af9013_wregs(client, cmd, reg, val, len, lock);
1376 if (ret)
1377 goto err;
1378 } else if (reg >= 0x5100 && reg < 0x8fff) {
1379 /* Firmware download */
1380 cmd = 1 << 7|1 << 6|(len - 1) << 2|1 << 1|1 << 0;
1381 ret = af9013_wregs(client, cmd, reg, val, len, lock);
1382 if (ret)
1383 goto err;
1384 } else {
1385 cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|1 << 0;
1386 for (i = 0; i < len; i++) {
1387 ret = af9013_wregs(client, cmd, reg + i, val + i, 1,
1388 lock);
1389 if (ret)
1390 goto err;
1391 }
1392 }
1393
1394 return 0;
1395 err:
1396 dev_dbg(&client->dev, "failed %d\n", ret);
1397 return ret;
1398 }
1399
af9013_regmap_read(void * context,const void * reg_buf,size_t reg_size,void * val_buf,size_t val_size)1400 static int af9013_regmap_read(void *context, const void *reg_buf,
1401 size_t reg_size, void *val_buf, size_t val_size)
1402 {
1403 struct i2c_client *client = context;
1404 struct af9013_state *state = i2c_get_clientdata(client);
1405 int ret, i;
1406 u8 cmd;
1407 u8 lock = !((u8 *)reg_buf)[0];
1408 u16 reg = ((u8 *)reg_buf)[1] << 8 | ((u8 *)reg_buf)[2] << 0;
1409 u8 *val = &((u8 *)val_buf)[0];
1410 const unsigned int len = val_size;
1411
1412 if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) {
1413 cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|0 << 0;
1414 ret = af9013_rregs(client, cmd, reg, val_buf, len, lock);
1415 if (ret)
1416 goto err;
1417 } else {
1418 cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|0 << 0;
1419 for (i = 0; i < len; i++) {
1420 ret = af9013_rregs(client, cmd, reg + i, val + i, 1,
1421 lock);
1422 if (ret)
1423 goto err;
1424 }
1425 }
1426
1427 return 0;
1428 err:
1429 dev_dbg(&client->dev, "failed %d\n", ret);
1430 return ret;
1431 }
1432
af9013_probe(struct i2c_client * client,const struct i2c_device_id * id)1433 static int af9013_probe(struct i2c_client *client,
1434 const struct i2c_device_id *id)
1435 {
1436 struct af9013_state *state;
1437 struct af9013_platform_data *pdata = client->dev.platform_data;
1438 struct dtv_frontend_properties *c;
1439 int ret, i;
1440 u8 firmware_version[4];
1441 static const struct regmap_bus regmap_bus = {
1442 .read = af9013_regmap_read,
1443 .write = af9013_regmap_write,
1444 };
1445 static const struct regmap_config regmap_config = {
1446 /* Actual reg is 16 bits, see i2c adapter lock */
1447 .reg_bits = 24,
1448 .val_bits = 8,
1449 };
1450
1451 state = kzalloc(sizeof(*state), GFP_KERNEL);
1452 if (!state) {
1453 ret = -ENOMEM;
1454 goto err;
1455 }
1456
1457 dev_dbg(&client->dev, "\n");
1458
1459 /* Setup the state */
1460 state->client = client;
1461 i2c_set_clientdata(client, state);
1462 state->clk = pdata->clk;
1463 state->tuner = pdata->tuner;
1464 state->if_frequency = pdata->if_frequency;
1465 state->ts_mode = pdata->ts_mode;
1466 state->ts_output_pin = pdata->ts_output_pin;
1467 state->spec_inv = pdata->spec_inv;
1468 memcpy(&state->api_version, pdata->api_version, sizeof(state->api_version));
1469 memcpy(&state->gpio, pdata->gpio, sizeof(state->gpio));
1470 state->regmap = regmap_init(&client->dev, ®map_bus, client,
1471 ®map_config);
1472 if (IS_ERR(state->regmap)) {
1473 ret = PTR_ERR(state->regmap);
1474 goto err_kfree;
1475 }
1476 /* Create mux i2c adapter */
1477 state->muxc = i2c_mux_alloc(client->adapter, &client->dev, 1, 0, 0,
1478 af9013_select, af9013_deselect);
1479 if (!state->muxc) {
1480 ret = -ENOMEM;
1481 goto err_regmap_exit;
1482 }
1483 state->muxc->priv = state;
1484 ret = i2c_mux_add_adapter(state->muxc, 0, 0, 0);
1485 if (ret)
1486 goto err_regmap_exit;
1487
1488 /* Download firmware */
1489 if (state->ts_mode != AF9013_TS_MODE_USB) {
1490 ret = af9013_download_firmware(state);
1491 if (ret)
1492 goto err_i2c_mux_del_adapters;
1493 }
1494
1495 /* Firmware version */
1496 ret = regmap_bulk_read(state->regmap, 0x5103, firmware_version,
1497 sizeof(firmware_version));
1498 if (ret)
1499 goto err_i2c_mux_del_adapters;
1500
1501 /* Set GPIOs */
1502 for (i = 0; i < sizeof(state->gpio); i++) {
1503 ret = af9013_set_gpio(state, i, state->gpio[i]);
1504 if (ret)
1505 goto err_i2c_mux_del_adapters;
1506 }
1507
1508 /* Create dvb frontend */
1509 memcpy(&state->fe.ops, &af9013_ops, sizeof(state->fe.ops));
1510 state->fe.demodulator_priv = state;
1511
1512 /* Setup callbacks */
1513 pdata->get_dvb_frontend = af9013_get_dvb_frontend;
1514 pdata->get_i2c_adapter = af9013_get_i2c_adapter;
1515 pdata->pid_filter = af9013_pid_filter;
1516 pdata->pid_filter_ctrl = af9013_pid_filter_ctrl;
1517
1518 /* Init stats to indicate which stats are supported */
1519 c = &state->fe.dtv_property_cache;
1520 c->strength.len = 1;
1521 c->cnr.len = 1;
1522 c->post_bit_error.len = 1;
1523 c->post_bit_count.len = 1;
1524 c->block_error.len = 1;
1525 c->block_count.len = 1;
1526
1527 dev_info(&client->dev, "Afatech AF9013 successfully attached\n");
1528 dev_info(&client->dev, "firmware version: %d.%d.%d.%d\n",
1529 firmware_version[0], firmware_version[1],
1530 firmware_version[2], firmware_version[3]);
1531 return 0;
1532 err_i2c_mux_del_adapters:
1533 i2c_mux_del_adapters(state->muxc);
1534 err_regmap_exit:
1535 regmap_exit(state->regmap);
1536 err_kfree:
1537 kfree(state);
1538 err:
1539 dev_dbg(&client->dev, "failed %d\n", ret);
1540 return ret;
1541 }
1542
af9013_remove(struct i2c_client * client)1543 static int af9013_remove(struct i2c_client *client)
1544 {
1545 struct af9013_state *state = i2c_get_clientdata(client);
1546
1547 dev_dbg(&client->dev, "\n");
1548
1549 i2c_mux_del_adapters(state->muxc);
1550
1551 regmap_exit(state->regmap);
1552
1553 kfree(state);
1554
1555 return 0;
1556 }
1557
1558 static const struct i2c_device_id af9013_id_table[] = {
1559 {"af9013", 0},
1560 {}
1561 };
1562 MODULE_DEVICE_TABLE(i2c, af9013_id_table);
1563
1564 static struct i2c_driver af9013_driver = {
1565 .driver = {
1566 .name = "af9013",
1567 .suppress_bind_attrs = true,
1568 },
1569 .probe = af9013_probe,
1570 .remove = af9013_remove,
1571 .id_table = af9013_id_table,
1572 };
1573
1574 module_i2c_driver(af9013_driver);
1575
1576 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1577 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1578 MODULE_LICENSE("GPL");
1579 MODULE_FIRMWARE(AF9013_FIRMWARE);
1580