1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright (C) 2014-2017 Mentor Graphics Inc.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/clkdev.h>
10 #include <linux/ctype.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <media/v4l2-async.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-event.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-subdev.h>
27
28 /* min/typical/max system clock (xclk) frequencies */
29 #define OV5640_XCLK_MIN 6000000
30 #define OV5640_XCLK_MAX 54000000
31
32 #define OV5640_DEFAULT_SLAVE_ID 0x3c
33
34 #define OV5640_REG_SYS_RESET02 0x3002
35 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006
36 #define OV5640_REG_SYS_CTRL0 0x3008
37 #define OV5640_REG_CHIP_ID 0x300a
38 #define OV5640_REG_IO_MIPI_CTRL00 0x300e
39 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017
40 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018
41 #define OV5640_REG_PAD_OUTPUT00 0x3019
42 #define OV5640_REG_SYSTEM_CONTROL1 0x302e
43 #define OV5640_REG_SC_PLL_CTRL0 0x3034
44 #define OV5640_REG_SC_PLL_CTRL1 0x3035
45 #define OV5640_REG_SC_PLL_CTRL2 0x3036
46 #define OV5640_REG_SC_PLL_CTRL3 0x3037
47 #define OV5640_REG_SLAVE_ID 0x3100
48 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103
49 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108
50 #define OV5640_REG_AWB_R_GAIN 0x3400
51 #define OV5640_REG_AWB_G_GAIN 0x3402
52 #define OV5640_REG_AWB_B_GAIN 0x3404
53 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406
54 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500
55 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501
56 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502
57 #define OV5640_REG_AEC_PK_MANUAL 0x3503
58 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a
59 #define OV5640_REG_AEC_PK_VTS 0x350c
60 #define OV5640_REG_TIMING_DVPHO 0x3808
61 #define OV5640_REG_TIMING_DVPVO 0x380a
62 #define OV5640_REG_TIMING_HTS 0x380c
63 #define OV5640_REG_TIMING_VTS 0x380e
64 #define OV5640_REG_TIMING_TC_REG20 0x3820
65 #define OV5640_REG_TIMING_TC_REG21 0x3821
66 #define OV5640_REG_AEC_CTRL00 0x3a00
67 #define OV5640_REG_AEC_B50_STEP 0x3a08
68 #define OV5640_REG_AEC_B60_STEP 0x3a0a
69 #define OV5640_REG_AEC_CTRL0D 0x3a0d
70 #define OV5640_REG_AEC_CTRL0E 0x3a0e
71 #define OV5640_REG_AEC_CTRL0F 0x3a0f
72 #define OV5640_REG_AEC_CTRL10 0x3a10
73 #define OV5640_REG_AEC_CTRL11 0x3a11
74 #define OV5640_REG_AEC_CTRL1B 0x3a1b
75 #define OV5640_REG_AEC_CTRL1E 0x3a1e
76 #define OV5640_REG_AEC_CTRL1F 0x3a1f
77 #define OV5640_REG_HZ5060_CTRL00 0x3c00
78 #define OV5640_REG_HZ5060_CTRL01 0x3c01
79 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c
80 #define OV5640_REG_FRAME_CTRL01 0x4202
81 #define OV5640_REG_FORMAT_CONTROL00 0x4300
82 #define OV5640_REG_VFIFO_HSIZE 0x4602
83 #define OV5640_REG_VFIFO_VSIZE 0x4604
84 #define OV5640_REG_JPG_MODE_SELECT 0x4713
85 #define OV5640_REG_POLARITY_CTRL00 0x4740
86 #define OV5640_REG_MIPI_CTRL00 0x4800
87 #define OV5640_REG_DEBUG_MODE 0x4814
88 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f
89 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d
90 #define OV5640_REG_SDE_CTRL0 0x5580
91 #define OV5640_REG_SDE_CTRL1 0x5581
92 #define OV5640_REG_SDE_CTRL3 0x5583
93 #define OV5640_REG_SDE_CTRL4 0x5584
94 #define OV5640_REG_SDE_CTRL5 0x5585
95 #define OV5640_REG_AVG_READOUT 0x56a1
96
97 enum ov5640_mode_id {
98 OV5640_MODE_QCIF_176_144 = 0,
99 OV5640_MODE_QVGA_320_240,
100 OV5640_MODE_VGA_640_480,
101 OV5640_MODE_NTSC_720_480,
102 OV5640_MODE_PAL_720_576,
103 OV5640_MODE_XGA_1024_768,
104 OV5640_MODE_720P_1280_720,
105 OV5640_MODE_1080P_1920_1080,
106 OV5640_MODE_QSXGA_2592_1944,
107 OV5640_NUM_MODES,
108 };
109
110 enum ov5640_frame_rate {
111 OV5640_15_FPS = 0,
112 OV5640_30_FPS,
113 OV5640_60_FPS,
114 OV5640_NUM_FRAMERATES,
115 };
116
117 enum ov5640_format_mux {
118 OV5640_FMT_MUX_YUV422 = 0,
119 OV5640_FMT_MUX_RGB,
120 OV5640_FMT_MUX_DITHER,
121 OV5640_FMT_MUX_RAW_DPC,
122 OV5640_FMT_MUX_SNR_RAW,
123 OV5640_FMT_MUX_RAW_CIP,
124 };
125
126 struct ov5640_pixfmt {
127 u32 code;
128 u32 colorspace;
129 };
130
131 static const struct ov5640_pixfmt ov5640_formats[] = {
132 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
133 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
134 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
135 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
136 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
137 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
138 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
139 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
140 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
141 };
142
143 /*
144 * FIXME: remove this when a subdev API becomes available
145 * to set the MIPI CSI-2 virtual channel.
146 */
147 static unsigned int virtual_channel;
148 module_param(virtual_channel, uint, 0444);
149 MODULE_PARM_DESC(virtual_channel,
150 "MIPI CSI-2 virtual channel (0..3), default 0");
151
152 static const int ov5640_framerates[] = {
153 [OV5640_15_FPS] = 15,
154 [OV5640_30_FPS] = 30,
155 [OV5640_60_FPS] = 60,
156 };
157
158 /* regulator supplies */
159 static const char * const ov5640_supply_name[] = {
160 "DOVDD", /* Digital I/O (1.8V) supply */
161 "AVDD", /* Analog (2.8V) supply */
162 "DVDD", /* Digital Core (1.5V) supply */
163 };
164
165 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
166
167 /*
168 * Image size under 1280 * 960 are SUBSAMPLING
169 * Image size upper 1280 * 960 are SCALING
170 */
171 enum ov5640_downsize_mode {
172 SUBSAMPLING,
173 SCALING,
174 };
175
176 struct reg_value {
177 u16 reg_addr;
178 u8 val;
179 u8 mask;
180 u32 delay_ms;
181 };
182
183 struct ov5640_mode_info {
184 enum ov5640_mode_id id;
185 enum ov5640_downsize_mode dn_mode;
186 u32 hact;
187 u32 htot;
188 u32 vact;
189 u32 vtot;
190 const struct reg_value *reg_data;
191 u32 reg_data_size;
192 };
193
194 struct ov5640_ctrls {
195 struct v4l2_ctrl_handler handler;
196 struct {
197 struct v4l2_ctrl *auto_exp;
198 struct v4l2_ctrl *exposure;
199 };
200 struct {
201 struct v4l2_ctrl *auto_wb;
202 struct v4l2_ctrl *blue_balance;
203 struct v4l2_ctrl *red_balance;
204 };
205 struct {
206 struct v4l2_ctrl *auto_gain;
207 struct v4l2_ctrl *gain;
208 };
209 struct v4l2_ctrl *brightness;
210 struct v4l2_ctrl *light_freq;
211 struct v4l2_ctrl *saturation;
212 struct v4l2_ctrl *contrast;
213 struct v4l2_ctrl *hue;
214 struct v4l2_ctrl *test_pattern;
215 struct v4l2_ctrl *hflip;
216 struct v4l2_ctrl *vflip;
217 };
218
219 struct ov5640_dev {
220 struct i2c_client *i2c_client;
221 struct v4l2_subdev sd;
222 struct media_pad pad;
223 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
224 struct clk *xclk; /* system clock to OV5640 */
225 u32 xclk_freq;
226
227 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
228 struct gpio_desc *reset_gpio;
229 struct gpio_desc *pwdn_gpio;
230 bool upside_down;
231
232 /* lock to protect all members below */
233 struct mutex lock;
234
235 int power_count;
236
237 struct v4l2_mbus_framefmt fmt;
238 bool pending_fmt_change;
239
240 const struct ov5640_mode_info *current_mode;
241 const struct ov5640_mode_info *last_mode;
242 enum ov5640_frame_rate current_fr;
243 struct v4l2_fract frame_interval;
244
245 struct ov5640_ctrls ctrls;
246
247 u32 prev_sysclk, prev_hts;
248 u32 ae_low, ae_high, ae_target;
249
250 bool pending_mode_change;
251 bool streaming;
252 };
253
to_ov5640_dev(struct v4l2_subdev * sd)254 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
255 {
256 return container_of(sd, struct ov5640_dev, sd);
257 }
258
ctrl_to_sd(struct v4l2_ctrl * ctrl)259 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
260 {
261 return &container_of(ctrl->handler, struct ov5640_dev,
262 ctrls.handler)->sd;
263 }
264
265 /*
266 * FIXME: all of these register tables are likely filled with
267 * entries that set the register to their power-on default values,
268 * and which are otherwise not touched by this driver. Those entries
269 * should be identified and removed to speed register load time
270 * over i2c.
271 */
272 /* YUV422 UYVY VGA@30fps */
273 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
274 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
275 {0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0},
276 {0x3630, 0x36, 0, 0},
277 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
278 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
279 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
280 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
281 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
282 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
283 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
284 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
285 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
286 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
287 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
288 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
289 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
290 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
291 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
292 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
293 {0x3810, 0x00, 0, 0},
294 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
295 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
296 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
297 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
298 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
299 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
300 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
301 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
302 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
303 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
304 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
305 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
306 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
307 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
308 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
309 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
310 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
311 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
312 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
313 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
314 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
315 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
316 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
317 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
318 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
319 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
320 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
321 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
322 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
323 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
324 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
325 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
326 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
327 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
328 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
329 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
330 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
331 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
332 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
333 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
334 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
335 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
336 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
337 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
338 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
339 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
340 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
341 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
342 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
343 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
344 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
345 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
346 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
347 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
348 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
349 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
350 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
351 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
352 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
353 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
354 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
355 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
356 };
357
358 static const struct reg_value ov5640_setting_VGA_640_480[] = {
359 {0x3c07, 0x08, 0, 0},
360 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
361 {0x3814, 0x31, 0, 0},
362 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
363 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
364 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
365 {0x3810, 0x00, 0, 0},
366 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
367 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
368 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
369 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
370 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
371 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
372 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
373 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
374 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
375 };
376
377 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
378 {0x3c07, 0x08, 0, 0},
379 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
380 {0x3814, 0x31, 0, 0},
381 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
382 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
383 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
384 {0x3810, 0x00, 0, 0},
385 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
386 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
387 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
388 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
389 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
390 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
391 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
392 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
393 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
394 };
395
396 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
397 {0x3c07, 0x08, 0, 0},
398 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
399 {0x3814, 0x31, 0, 0},
400 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
401 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
402 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
403 {0x3810, 0x00, 0, 0},
404 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
405 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
406 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
407 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
408 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
409 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
410 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
411 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
412 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
413 };
414
415 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
416 {0x3c07, 0x08, 0, 0},
417 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
418 {0x3814, 0x31, 0, 0},
419 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
420 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
421 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
422 {0x3810, 0x00, 0, 0},
423 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
424 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
425 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
426 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
427 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
428 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
429 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
430 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
431 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
432 };
433
434 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
435 {0x3c07, 0x08, 0, 0},
436 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
437 {0x3814, 0x31, 0, 0},
438 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
439 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
440 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
441 {0x3810, 0x00, 0, 0},
442 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
443 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
444 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
445 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
446 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
447 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
448 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
449 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
450 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
451 };
452
453 static const struct reg_value ov5640_setting_PAL_720_576[] = {
454 {0x3c07, 0x08, 0, 0},
455 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
456 {0x3814, 0x31, 0, 0},
457 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
458 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
459 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
460 {0x3810, 0x00, 0, 0},
461 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
462 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
463 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
464 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
465 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
466 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
467 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
468 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
469 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
470 };
471
472 static const struct reg_value ov5640_setting_720P_1280_720[] = {
473 {0x3c07, 0x07, 0, 0},
474 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
475 {0x3814, 0x31, 0, 0},
476 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
477 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
478 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
479 {0x3810, 0x00, 0, 0},
480 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
481 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
482 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
483 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
484 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
485 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
486 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
487 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
488 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
489 };
490
491 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
492 {0x3008, 0x42, 0, 0},
493 {0x3c07, 0x08, 0, 0},
494 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
495 {0x3814, 0x11, 0, 0},
496 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
497 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
498 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
499 {0x3810, 0x00, 0, 0},
500 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
501 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
502 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
503 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
504 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
505 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
506 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
507 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
508 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
509 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
510 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
511 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
512 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
513 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
514 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
515 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
516 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
517 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
518 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
519 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
520 {0x4005, 0x1a, 0, 0}, {0x3008, 0x02, 0, 0},
521 };
522
523 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
524 {0x3c07, 0x08, 0, 0},
525 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
526 {0x3814, 0x11, 0, 0},
527 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
528 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
529 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
530 {0x3810, 0x00, 0, 0},
531 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
532 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
533 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
534 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
535 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
536 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
537 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
538 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
539 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
540 };
541
542 /* power-on sensor init reg table */
543 static const struct ov5640_mode_info ov5640_mode_init_data = {
544 0, SUBSAMPLING, 640, 1896, 480, 984,
545 ov5640_init_setting_30fps_VGA,
546 ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
547 };
548
549 static const struct ov5640_mode_info
550 ov5640_mode_data[OV5640_NUM_MODES] = {
551 {OV5640_MODE_QCIF_176_144, SUBSAMPLING,
552 176, 1896, 144, 984,
553 ov5640_setting_QCIF_176_144,
554 ARRAY_SIZE(ov5640_setting_QCIF_176_144)},
555 {OV5640_MODE_QVGA_320_240, SUBSAMPLING,
556 320, 1896, 240, 984,
557 ov5640_setting_QVGA_320_240,
558 ARRAY_SIZE(ov5640_setting_QVGA_320_240)},
559 {OV5640_MODE_VGA_640_480, SUBSAMPLING,
560 640, 1896, 480, 1080,
561 ov5640_setting_VGA_640_480,
562 ARRAY_SIZE(ov5640_setting_VGA_640_480)},
563 {OV5640_MODE_NTSC_720_480, SUBSAMPLING,
564 720, 1896, 480, 984,
565 ov5640_setting_NTSC_720_480,
566 ARRAY_SIZE(ov5640_setting_NTSC_720_480)},
567 {OV5640_MODE_PAL_720_576, SUBSAMPLING,
568 720, 1896, 576, 984,
569 ov5640_setting_PAL_720_576,
570 ARRAY_SIZE(ov5640_setting_PAL_720_576)},
571 {OV5640_MODE_XGA_1024_768, SUBSAMPLING,
572 1024, 1896, 768, 1080,
573 ov5640_setting_XGA_1024_768,
574 ARRAY_SIZE(ov5640_setting_XGA_1024_768)},
575 {OV5640_MODE_720P_1280_720, SUBSAMPLING,
576 1280, 1892, 720, 740,
577 ov5640_setting_720P_1280_720,
578 ARRAY_SIZE(ov5640_setting_720P_1280_720)},
579 {OV5640_MODE_1080P_1920_1080, SCALING,
580 1920, 2500, 1080, 1120,
581 ov5640_setting_1080P_1920_1080,
582 ARRAY_SIZE(ov5640_setting_1080P_1920_1080)},
583 {OV5640_MODE_QSXGA_2592_1944, SCALING,
584 2592, 2844, 1944, 1968,
585 ov5640_setting_QSXGA_2592_1944,
586 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944)},
587 };
588
ov5640_init_slave_id(struct ov5640_dev * sensor)589 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
590 {
591 struct i2c_client *client = sensor->i2c_client;
592 struct i2c_msg msg;
593 u8 buf[3];
594 int ret;
595
596 if (client->addr == OV5640_DEFAULT_SLAVE_ID)
597 return 0;
598
599 buf[0] = OV5640_REG_SLAVE_ID >> 8;
600 buf[1] = OV5640_REG_SLAVE_ID & 0xff;
601 buf[2] = client->addr << 1;
602
603 msg.addr = OV5640_DEFAULT_SLAVE_ID;
604 msg.flags = 0;
605 msg.buf = buf;
606 msg.len = sizeof(buf);
607
608 ret = i2c_transfer(client->adapter, &msg, 1);
609 if (ret < 0) {
610 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
611 return ret;
612 }
613
614 return 0;
615 }
616
ov5640_write_reg(struct ov5640_dev * sensor,u16 reg,u8 val)617 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
618 {
619 struct i2c_client *client = sensor->i2c_client;
620 struct i2c_msg msg;
621 u8 buf[3];
622 int ret;
623
624 buf[0] = reg >> 8;
625 buf[1] = reg & 0xff;
626 buf[2] = val;
627
628 msg.addr = client->addr;
629 msg.flags = client->flags;
630 msg.buf = buf;
631 msg.len = sizeof(buf);
632
633 ret = i2c_transfer(client->adapter, &msg, 1);
634 if (ret < 0) {
635 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
636 __func__, reg, val);
637 return ret;
638 }
639
640 return 0;
641 }
642
ov5640_read_reg(struct ov5640_dev * sensor,u16 reg,u8 * val)643 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
644 {
645 struct i2c_client *client = sensor->i2c_client;
646 struct i2c_msg msg[2];
647 u8 buf[2];
648 int ret;
649
650 buf[0] = reg >> 8;
651 buf[1] = reg & 0xff;
652
653 msg[0].addr = client->addr;
654 msg[0].flags = client->flags;
655 msg[0].buf = buf;
656 msg[0].len = sizeof(buf);
657
658 msg[1].addr = client->addr;
659 msg[1].flags = client->flags | I2C_M_RD;
660 msg[1].buf = buf;
661 msg[1].len = 1;
662
663 ret = i2c_transfer(client->adapter, msg, 2);
664 if (ret < 0) {
665 dev_err(&client->dev, "%s: error: reg=%x\n",
666 __func__, reg);
667 return ret;
668 }
669
670 *val = buf[0];
671 return 0;
672 }
673
ov5640_read_reg16(struct ov5640_dev * sensor,u16 reg,u16 * val)674 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
675 {
676 u8 hi, lo;
677 int ret;
678
679 ret = ov5640_read_reg(sensor, reg, &hi);
680 if (ret)
681 return ret;
682 ret = ov5640_read_reg(sensor, reg + 1, &lo);
683 if (ret)
684 return ret;
685
686 *val = ((u16)hi << 8) | (u16)lo;
687 return 0;
688 }
689
ov5640_write_reg16(struct ov5640_dev * sensor,u16 reg,u16 val)690 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
691 {
692 int ret;
693
694 ret = ov5640_write_reg(sensor, reg, val >> 8);
695 if (ret)
696 return ret;
697
698 return ov5640_write_reg(sensor, reg + 1, val & 0xff);
699 }
700
ov5640_mod_reg(struct ov5640_dev * sensor,u16 reg,u8 mask,u8 val)701 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
702 u8 mask, u8 val)
703 {
704 u8 readval;
705 int ret;
706
707 ret = ov5640_read_reg(sensor, reg, &readval);
708 if (ret)
709 return ret;
710
711 readval &= ~mask;
712 val &= mask;
713 val |= readval;
714
715 return ov5640_write_reg(sensor, reg, val);
716 }
717
718 /*
719 * After trying the various combinations, reading various
720 * documentations spread around the net, and from the various
721 * feedback, the clock tree is probably as follows:
722 *
723 * +--------------+
724 * | Ext. Clock |
725 * +-+------------+
726 * | +----------+
727 * +->| PLL1 | - reg 0x3036, for the multiplier
728 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
729 * | +--------------+
730 * +->| System Clock | - reg 0x3035, bits 4-7
731 * +-+------------+
732 * | +--------------+
733 * +->| MIPI Divider | - reg 0x3035, bits 0-3
734 * | +-+------------+
735 * | +----------------> MIPI SCLK
736 * | + +-----+
737 * | +->| / 2 |-------> MIPI BIT CLK
738 * | +-----+
739 * | +--------------+
740 * +->| PLL Root Div | - reg 0x3037, bit 4
741 * +-+------------+
742 * | +---------+
743 * +->| Bit Div | - reg 0x3035, bits 0-3
744 * +-+-------+
745 * | +-------------+
746 * +->| SCLK Div | - reg 0x3108, bits 0-1
747 * | +-+-----------+
748 * | +---------------> SCLK
749 * | +-------------+
750 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3
751 * | +-+-----------+
752 * | +---------------> SCLK 2X
753 * | +-------------+
754 * +->| PCLK Div | - reg 0x3108, bits 4-5
755 * ++------------+
756 * + +-----------+
757 * +->| P_DIV | - reg 0x3035, bits 0-3
758 * +-----+-----+
759 * +------------> PCLK
760 *
761 * This is deviating from the datasheet at least for the register
762 * 0x3108, since it's said here that the PCLK would be clocked from
763 * the PLL.
764 *
765 * There seems to be also (unverified) constraints:
766 * - the PLL pre-divider output rate should be in the 4-27MHz range
767 * - the PLL multiplier output rate should be in the 500-1000MHz range
768 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
769 *
770 * In the two latter cases, these constraints are met since our
771 * factors are hardcoded. If we were to change that, we would need to
772 * take this into account. The only varying parts are the PLL
773 * multiplier and the system clock divider, which are shared between
774 * all these clocks so won't cause any issue.
775 */
776
777 /*
778 * This is supposed to be ranging from 1 to 8, but the value is always
779 * set to 3 in the vendor kernels.
780 */
781 #define OV5640_PLL_PREDIV 3
782
783 #define OV5640_PLL_MULT_MIN 4
784 #define OV5640_PLL_MULT_MAX 252
785
786 /*
787 * This is supposed to be ranging from 1 to 16, but the value is
788 * always set to either 1 or 2 in the vendor kernels.
789 */
790 #define OV5640_SYSDIV_MIN 1
791 #define OV5640_SYSDIV_MAX 16
792
793 /*
794 * Hardcode these values for scaler and non-scaler modes.
795 * FIXME: to be re-calcualted for 1 data lanes setups
796 */
797 #define OV5640_MIPI_DIV_PCLK 2
798 #define OV5640_MIPI_DIV_SCLK 1
799
800 /*
801 * This is supposed to be ranging from 1 to 2, but the value is always
802 * set to 2 in the vendor kernels.
803 */
804 #define OV5640_PLL_ROOT_DIV 2
805 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4)
806
807 /*
808 * We only supports 8-bit formats at the moment
809 */
810 #define OV5640_BIT_DIV 2
811 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08
812
813 /*
814 * This is supposed to be ranging from 1 to 8, but the value is always
815 * set to 2 in the vendor kernels.
816 */
817 #define OV5640_SCLK_ROOT_DIV 2
818
819 /*
820 * This is hardcoded so that the consistency is maintained between SCLK and
821 * SCLK 2x.
822 */
823 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
824
825 /*
826 * This is supposed to be ranging from 1 to 8, but the value is always
827 * set to 1 in the vendor kernels.
828 */
829 #define OV5640_PCLK_ROOT_DIV 1
830 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00
831
ov5640_compute_sys_clk(struct ov5640_dev * sensor,u8 pll_prediv,u8 pll_mult,u8 sysdiv)832 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
833 u8 pll_prediv, u8 pll_mult,
834 u8 sysdiv)
835 {
836 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
837
838 /* PLL1 output cannot exceed 1GHz. */
839 if (sysclk / 1000000 > 1000)
840 return 0;
841
842 return sysclk / sysdiv;
843 }
844
ov5640_calc_sys_clk(struct ov5640_dev * sensor,unsigned long rate,u8 * pll_prediv,u8 * pll_mult,u8 * sysdiv)845 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
846 unsigned long rate,
847 u8 *pll_prediv, u8 *pll_mult,
848 u8 *sysdiv)
849 {
850 unsigned long best = ~0;
851 u8 best_sysdiv = 1, best_mult = 1;
852 u8 _sysdiv, _pll_mult;
853
854 for (_sysdiv = OV5640_SYSDIV_MIN;
855 _sysdiv <= OV5640_SYSDIV_MAX;
856 _sysdiv++) {
857 for (_pll_mult = OV5640_PLL_MULT_MIN;
858 _pll_mult <= OV5640_PLL_MULT_MAX;
859 _pll_mult++) {
860 unsigned long _rate;
861
862 /*
863 * The PLL multiplier cannot be odd if above
864 * 127.
865 */
866 if (_pll_mult > 127 && (_pll_mult % 2))
867 continue;
868
869 _rate = ov5640_compute_sys_clk(sensor,
870 OV5640_PLL_PREDIV,
871 _pll_mult, _sysdiv);
872
873 /*
874 * We have reached the maximum allowed PLL1 output,
875 * increase sysdiv.
876 */
877 if (!rate)
878 break;
879
880 /*
881 * Prefer rates above the expected clock rate than
882 * below, even if that means being less precise.
883 */
884 if (_rate < rate)
885 continue;
886
887 if (abs(rate - _rate) < abs(rate - best)) {
888 best = _rate;
889 best_sysdiv = _sysdiv;
890 best_mult = _pll_mult;
891 }
892
893 if (_rate == rate)
894 goto out;
895 }
896 }
897
898 out:
899 *sysdiv = best_sysdiv;
900 *pll_prediv = OV5640_PLL_PREDIV;
901 *pll_mult = best_mult;
902
903 return best;
904 }
905
906 /*
907 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
908 * for the MIPI CSI-2 output.
909 *
910 * @rate: The requested bandwidth per lane in bytes per second.
911 * 'Bandwidth Per Lane' is calculated as:
912 * bpl = HTOT * VTOT * FPS * bpp / num_lanes;
913 *
914 * This function use the requested bandwidth to calculate:
915 * - sample_rate = bpl / (bpp / num_lanes);
916 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
917 *
918 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
919 *
920 * with these fixed parameters:
921 * PLL_RDIV = 2;
922 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
923 * PCLK_DIV = 1;
924 *
925 * The MIPI clock generation differs for modes that use the scaler and modes
926 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
927 * BIT CLk, and thus:
928 *
929 * - mipi_sclk = bpl / MIPI_DIV / 2;
930 * MIPI_DIV = 1;
931 *
932 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
933 * from the pixel clock, and thus:
934 *
935 * - sample_rate = bpl / (bpp / num_lanes);
936 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
937 * = bpl / (4 * MIPI_DIV / num_lanes);
938 * - MIPI_DIV = bpp / (4 * num_lanes);
939 *
940 * FIXME: this have been tested with 16bpp and 2 lanes setup only.
941 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
942 * above formula for setups with 1 lane or image formats with different bpp.
943 *
944 * FIXME: this deviates from the sensor manual documentation which is quite
945 * thin on the MIPI clock tree generation part.
946 */
ov5640_set_mipi_pclk(struct ov5640_dev * sensor,unsigned long rate)947 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
948 unsigned long rate)
949 {
950 const struct ov5640_mode_info *mode = sensor->current_mode;
951 u8 prediv, mult, sysdiv;
952 u8 mipi_div;
953 int ret;
954
955 /*
956 * 1280x720 is reported to use 'SUBSAMPLING' only,
957 * but according to the sensor manual it goes through the
958 * scaler before subsampling.
959 */
960 if (mode->dn_mode == SCALING ||
961 (mode->id == OV5640_MODE_720P_1280_720))
962 mipi_div = OV5640_MIPI_DIV_SCLK;
963 else
964 mipi_div = OV5640_MIPI_DIV_PCLK;
965
966 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
967
968 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
969 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
970
971 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
972 0xff, sysdiv << 4 | mipi_div);
973 if (ret)
974 return ret;
975
976 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
977 if (ret)
978 return ret;
979
980 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
981 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
982 if (ret)
983 return ret;
984
985 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
986 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
987 }
988
ov5640_calc_pclk(struct ov5640_dev * sensor,unsigned long rate,u8 * pll_prediv,u8 * pll_mult,u8 * sysdiv,u8 * pll_rdiv,u8 * bit_div,u8 * pclk_div)989 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
990 unsigned long rate,
991 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
992 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
993 {
994 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
995 OV5640_PCLK_ROOT_DIV;
996
997 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
998 sysdiv);
999 *pll_rdiv = OV5640_PLL_ROOT_DIV;
1000 *bit_div = OV5640_BIT_DIV;
1001 *pclk_div = OV5640_PCLK_ROOT_DIV;
1002
1003 return _rate / *pll_rdiv / *bit_div / *pclk_div;
1004 }
1005
ov5640_set_dvp_pclk(struct ov5640_dev * sensor,unsigned long rate)1006 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1007 {
1008 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1009 int ret;
1010
1011 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1012 &bit_div, &pclk_div);
1013
1014 if (bit_div == 2)
1015 bit_div = 8;
1016
1017 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1018 0x0f, bit_div);
1019 if (ret)
1020 return ret;
1021
1022 /*
1023 * We need to set sysdiv according to the clock, and to clear
1024 * the MIPI divider.
1025 */
1026 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1027 0xff, sysdiv << 4);
1028 if (ret)
1029 return ret;
1030
1031 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1032 0xff, mult);
1033 if (ret)
1034 return ret;
1035
1036 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1037 0x1f, prediv | ((pll_rdiv - 1) << 4));
1038 if (ret)
1039 return ret;
1040
1041 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1042 (ilog2(pclk_div) << 4));
1043 }
1044
1045 /* set JPEG framing sizes */
ov5640_set_jpeg_timings(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1046 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1047 const struct ov5640_mode_info *mode)
1048 {
1049 int ret;
1050
1051 /*
1052 * compression mode 3 timing
1053 *
1054 * Data is transmitted with programmable width (VFIFO_HSIZE).
1055 * No padding done. Last line may have less data. Varying
1056 * number of lines per frame, depending on amount of data.
1057 */
1058 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1059 if (ret < 0)
1060 return ret;
1061
1062 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1063 if (ret < 0)
1064 return ret;
1065
1066 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1067 }
1068
1069 /* download ov5640 settings to sensor through i2c */
ov5640_set_timings(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1070 static int ov5640_set_timings(struct ov5640_dev *sensor,
1071 const struct ov5640_mode_info *mode)
1072 {
1073 int ret;
1074
1075 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1076 ret = ov5640_set_jpeg_timings(sensor, mode);
1077 if (ret < 0)
1078 return ret;
1079 }
1080
1081 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1082 if (ret < 0)
1083 return ret;
1084
1085 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1086 if (ret < 0)
1087 return ret;
1088
1089 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1090 if (ret < 0)
1091 return ret;
1092
1093 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1094 }
1095
ov5640_load_regs(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1096 static int ov5640_load_regs(struct ov5640_dev *sensor,
1097 const struct ov5640_mode_info *mode)
1098 {
1099 const struct reg_value *regs = mode->reg_data;
1100 unsigned int i;
1101 u32 delay_ms;
1102 u16 reg_addr;
1103 u8 mask, val;
1104 int ret = 0;
1105
1106 for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1107 delay_ms = regs->delay_ms;
1108 reg_addr = regs->reg_addr;
1109 val = regs->val;
1110 mask = regs->mask;
1111
1112 if (mask)
1113 ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1114 else
1115 ret = ov5640_write_reg(sensor, reg_addr, val);
1116 if (ret)
1117 break;
1118
1119 if (delay_ms)
1120 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1121 }
1122
1123 return ov5640_set_timings(sensor, mode);
1124 }
1125
ov5640_set_autoexposure(struct ov5640_dev * sensor,bool on)1126 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1127 {
1128 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1129 BIT(0), on ? 0 : BIT(0));
1130 }
1131
1132 /* read exposure, in number of line periods */
ov5640_get_exposure(struct ov5640_dev * sensor)1133 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1134 {
1135 int exp, ret;
1136 u8 temp;
1137
1138 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1139 if (ret)
1140 return ret;
1141 exp = ((int)temp & 0x0f) << 16;
1142 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1143 if (ret)
1144 return ret;
1145 exp |= ((int)temp << 8);
1146 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1147 if (ret)
1148 return ret;
1149 exp |= (int)temp;
1150
1151 return exp >> 4;
1152 }
1153
1154 /* write exposure, given number of line periods */
ov5640_set_exposure(struct ov5640_dev * sensor,u32 exposure)1155 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1156 {
1157 int ret;
1158
1159 exposure <<= 4;
1160
1161 ret = ov5640_write_reg(sensor,
1162 OV5640_REG_AEC_PK_EXPOSURE_LO,
1163 exposure & 0xff);
1164 if (ret)
1165 return ret;
1166 ret = ov5640_write_reg(sensor,
1167 OV5640_REG_AEC_PK_EXPOSURE_MED,
1168 (exposure >> 8) & 0xff);
1169 if (ret)
1170 return ret;
1171 return ov5640_write_reg(sensor,
1172 OV5640_REG_AEC_PK_EXPOSURE_HI,
1173 (exposure >> 16) & 0x0f);
1174 }
1175
ov5640_get_gain(struct ov5640_dev * sensor)1176 static int ov5640_get_gain(struct ov5640_dev *sensor)
1177 {
1178 u16 gain;
1179 int ret;
1180
1181 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1182 if (ret)
1183 return ret;
1184
1185 return gain & 0x3ff;
1186 }
1187
ov5640_set_gain(struct ov5640_dev * sensor,int gain)1188 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1189 {
1190 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1191 (u16)gain & 0x3ff);
1192 }
1193
ov5640_set_autogain(struct ov5640_dev * sensor,bool on)1194 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1195 {
1196 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1197 BIT(1), on ? 0 : BIT(1));
1198 }
1199
ov5640_set_stream_dvp(struct ov5640_dev * sensor,bool on)1200 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1201 {
1202 int ret;
1203 unsigned int flags = sensor->ep.bus.parallel.flags;
1204 u8 pclk_pol = 0;
1205 u8 hsync_pol = 0;
1206 u8 vsync_pol = 0;
1207
1208 /*
1209 * Note about parallel port configuration.
1210 *
1211 * When configured in parallel mode, the OV5640 will
1212 * output 10 bits data on DVP data lines [9:0].
1213 * If only 8 bits data are wanted, the 8 bits data lines
1214 * of the camera interface must be physically connected
1215 * on the DVP data lines [9:2].
1216 *
1217 * Control lines polarity can be configured through
1218 * devicetree endpoint control lines properties.
1219 * If no endpoint control lines properties are set,
1220 * polarity will be as below:
1221 * - VSYNC: active high
1222 * - HREF: active low
1223 * - PCLK: active low
1224 */
1225
1226 if (on) {
1227 /*
1228 * configure parallel port control lines polarity
1229 *
1230 * POLARITY CTRL0
1231 * - [5]: PCLK polarity (0: active low, 1: active high)
1232 * - [1]: HREF polarity (0: active low, 1: active high)
1233 * - [0]: VSYNC polarity (mismatch here between
1234 * datasheet and hardware, 0 is active high
1235 * and 1 is active low...)
1236 */
1237 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
1238 pclk_pol = 1;
1239 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
1240 hsync_pol = 1;
1241 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
1242 vsync_pol = 1;
1243
1244 ret = ov5640_write_reg(sensor,
1245 OV5640_REG_POLARITY_CTRL00,
1246 (pclk_pol << 5) |
1247 (hsync_pol << 1) |
1248 vsync_pol);
1249
1250 if (ret)
1251 return ret;
1252 }
1253
1254 /*
1255 * powerdown MIPI TX/RX PHY & disable MIPI
1256 *
1257 * MIPI CONTROL 00
1258 * 4: PWDN PHY TX
1259 * 3: PWDN PHY RX
1260 * 2: MIPI enable
1261 */
1262 ret = ov5640_write_reg(sensor,
1263 OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0);
1264 if (ret)
1265 return ret;
1266
1267 /*
1268 * enable VSYNC/HREF/PCLK DVP control lines
1269 * & D[9:6] DVP data lines
1270 *
1271 * PAD OUTPUT ENABLE 01
1272 * - 6: VSYNC output enable
1273 * - 5: HREF output enable
1274 * - 4: PCLK output enable
1275 * - [3:0]: D[9:6] output enable
1276 */
1277 ret = ov5640_write_reg(sensor,
1278 OV5640_REG_PAD_OUTPUT_ENABLE01,
1279 on ? 0x7f : 0);
1280 if (ret)
1281 return ret;
1282
1283 /*
1284 * enable D[5:0] DVP data lines
1285 *
1286 * PAD OUTPUT ENABLE 02
1287 * - [7:2]: D[5:0] output enable
1288 */
1289 return ov5640_write_reg(sensor,
1290 OV5640_REG_PAD_OUTPUT_ENABLE02,
1291 on ? 0xfc : 0);
1292 }
1293
ov5640_set_stream_mipi(struct ov5640_dev * sensor,bool on)1294 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1295 {
1296 int ret;
1297
1298 /*
1299 * Enable/disable the MIPI interface
1300 *
1301 * 0x300e = on ? 0x45 : 0x40
1302 *
1303 * FIXME: the sensor manual (version 2.03) reports
1304 * [7:5] = 000 : 1 data lane mode
1305 * [7:5] = 001 : 2 data lanes mode
1306 * But this settings do not work, while the following ones
1307 * have been validated for 2 data lanes mode.
1308 *
1309 * [7:5] = 010 : 2 data lanes mode
1310 * [4] = 0 : Power up MIPI HS Tx
1311 * [3] = 0 : Power up MIPI LS Rx
1312 * [2] = 1/0 : MIPI interface enable/disable
1313 * [1:0] = 01/00: FIXME: 'debug'
1314 */
1315 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1316 on ? 0x45 : 0x40);
1317 if (ret)
1318 return ret;
1319
1320 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1321 on ? 0x00 : 0x0f);
1322 }
1323
ov5640_get_sysclk(struct ov5640_dev * sensor)1324 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1325 {
1326 /* calculate sysclk */
1327 u32 xvclk = sensor->xclk_freq / 10000;
1328 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1329 u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1330 u32 bit_div2x = 1, sclk_rdiv, sysclk;
1331 u8 temp1, temp2;
1332 int ret;
1333
1334 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1335 if (ret)
1336 return ret;
1337 temp2 = temp1 & 0x0f;
1338 if (temp2 == 8 || temp2 == 10)
1339 bit_div2x = temp2 / 2;
1340
1341 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1342 if (ret)
1343 return ret;
1344 sysdiv = temp1 >> 4;
1345 if (sysdiv == 0)
1346 sysdiv = 16;
1347
1348 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1349 if (ret)
1350 return ret;
1351 multiplier = temp1;
1352
1353 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1354 if (ret)
1355 return ret;
1356 prediv = temp1 & 0x0f;
1357 pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1358
1359 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1360 if (ret)
1361 return ret;
1362 temp2 = temp1 & 0x03;
1363 sclk_rdiv = sclk_rdiv_map[temp2];
1364
1365 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1366 return -EINVAL;
1367
1368 VCO = xvclk * multiplier / prediv;
1369
1370 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1371
1372 return sysclk;
1373 }
1374
ov5640_set_night_mode(struct ov5640_dev * sensor)1375 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1376 {
1377 /* read HTS from register settings */
1378 u8 mode;
1379 int ret;
1380
1381 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1382 if (ret)
1383 return ret;
1384 mode &= 0xfb;
1385 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1386 }
1387
ov5640_get_hts(struct ov5640_dev * sensor)1388 static int ov5640_get_hts(struct ov5640_dev *sensor)
1389 {
1390 /* read HTS from register settings */
1391 u16 hts;
1392 int ret;
1393
1394 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1395 if (ret)
1396 return ret;
1397 return hts;
1398 }
1399
ov5640_get_vts(struct ov5640_dev * sensor)1400 static int ov5640_get_vts(struct ov5640_dev *sensor)
1401 {
1402 u16 vts;
1403 int ret;
1404
1405 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1406 if (ret)
1407 return ret;
1408 return vts;
1409 }
1410
ov5640_set_vts(struct ov5640_dev * sensor,int vts)1411 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1412 {
1413 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1414 }
1415
ov5640_get_light_freq(struct ov5640_dev * sensor)1416 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1417 {
1418 /* get banding filter value */
1419 int ret, light_freq = 0;
1420 u8 temp, temp1;
1421
1422 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1423 if (ret)
1424 return ret;
1425
1426 if (temp & 0x80) {
1427 /* manual */
1428 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1429 &temp1);
1430 if (ret)
1431 return ret;
1432 if (temp1 & 0x04) {
1433 /* 50Hz */
1434 light_freq = 50;
1435 } else {
1436 /* 60Hz */
1437 light_freq = 60;
1438 }
1439 } else {
1440 /* auto */
1441 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1442 &temp1);
1443 if (ret)
1444 return ret;
1445
1446 if (temp1 & 0x01) {
1447 /* 50Hz */
1448 light_freq = 50;
1449 } else {
1450 /* 60Hz */
1451 }
1452 }
1453
1454 return light_freq;
1455 }
1456
ov5640_set_bandingfilter(struct ov5640_dev * sensor)1457 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1458 {
1459 u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1460 int ret;
1461
1462 /* read preview PCLK */
1463 ret = ov5640_get_sysclk(sensor);
1464 if (ret < 0)
1465 return ret;
1466 if (ret == 0)
1467 return -EINVAL;
1468 sensor->prev_sysclk = ret;
1469 /* read preview HTS */
1470 ret = ov5640_get_hts(sensor);
1471 if (ret < 0)
1472 return ret;
1473 if (ret == 0)
1474 return -EINVAL;
1475 sensor->prev_hts = ret;
1476
1477 /* read preview VTS */
1478 ret = ov5640_get_vts(sensor);
1479 if (ret < 0)
1480 return ret;
1481 prev_vts = ret;
1482
1483 /* calculate banding filter */
1484 /* 60Hz */
1485 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1486 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1487 if (ret)
1488 return ret;
1489 if (!band_step60)
1490 return -EINVAL;
1491 max_band60 = (int)((prev_vts - 4) / band_step60);
1492 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1493 if (ret)
1494 return ret;
1495
1496 /* 50Hz */
1497 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1498 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1499 if (ret)
1500 return ret;
1501 if (!band_step50)
1502 return -EINVAL;
1503 max_band50 = (int)((prev_vts - 4) / band_step50);
1504 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1505 }
1506
ov5640_set_ae_target(struct ov5640_dev * sensor,int target)1507 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1508 {
1509 /* stable in high */
1510 u32 fast_high, fast_low;
1511 int ret;
1512
1513 sensor->ae_low = target * 23 / 25; /* 0.92 */
1514 sensor->ae_high = target * 27 / 25; /* 1.08 */
1515
1516 fast_high = sensor->ae_high << 1;
1517 if (fast_high > 255)
1518 fast_high = 255;
1519
1520 fast_low = sensor->ae_low >> 1;
1521
1522 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1523 if (ret)
1524 return ret;
1525 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1526 if (ret)
1527 return ret;
1528 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1529 if (ret)
1530 return ret;
1531 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1532 if (ret)
1533 return ret;
1534 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1535 if (ret)
1536 return ret;
1537 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1538 }
1539
ov5640_get_binning(struct ov5640_dev * sensor)1540 static int ov5640_get_binning(struct ov5640_dev *sensor)
1541 {
1542 u8 temp;
1543 int ret;
1544
1545 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1546 if (ret)
1547 return ret;
1548
1549 return temp & BIT(0);
1550 }
1551
ov5640_set_binning(struct ov5640_dev * sensor,bool enable)1552 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1553 {
1554 int ret;
1555
1556 /*
1557 * TIMING TC REG21:
1558 * - [0]: Horizontal binning enable
1559 */
1560 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1561 BIT(0), enable ? BIT(0) : 0);
1562 if (ret)
1563 return ret;
1564 /*
1565 * TIMING TC REG20:
1566 * - [0]: Undocumented, but hardcoded init sequences
1567 * are always setting REG21/REG20 bit 0 to same value...
1568 */
1569 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1570 BIT(0), enable ? BIT(0) : 0);
1571 }
1572
ov5640_set_virtual_channel(struct ov5640_dev * sensor)1573 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1574 {
1575 struct i2c_client *client = sensor->i2c_client;
1576 u8 temp, channel = virtual_channel;
1577 int ret;
1578
1579 if (channel > 3) {
1580 dev_err(&client->dev,
1581 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1582 __func__, channel);
1583 return -EINVAL;
1584 }
1585
1586 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1587 if (ret)
1588 return ret;
1589 temp &= ~(3 << 6);
1590 temp |= (channel << 6);
1591 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1592 }
1593
1594 static const struct ov5640_mode_info *
ov5640_find_mode(struct ov5640_dev * sensor,enum ov5640_frame_rate fr,int width,int height,bool nearest)1595 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1596 int width, int height, bool nearest)
1597 {
1598 const struct ov5640_mode_info *mode;
1599
1600 mode = v4l2_find_nearest_size(ov5640_mode_data,
1601 ARRAY_SIZE(ov5640_mode_data),
1602 hact, vact,
1603 width, height);
1604
1605 if (!mode ||
1606 (!nearest && (mode->hact != width || mode->vact != height)))
1607 return NULL;
1608
1609 /* Only 640x480 can operate at 60fps (for now) */
1610 if (fr == OV5640_60_FPS &&
1611 !(mode->hact == 640 && mode->vact == 480))
1612 return NULL;
1613
1614 /* 2592x1944 only works at 15fps max */
1615 if ((mode->hact == 2592 && mode->vact == 1944) &&
1616 fr > OV5640_15_FPS)
1617 return NULL;
1618
1619 return mode;
1620 }
1621
1622 /*
1623 * sensor changes between scaling and subsampling, go through
1624 * exposure calculation
1625 */
ov5640_set_mode_exposure_calc(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1626 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1627 const struct ov5640_mode_info *mode)
1628 {
1629 u32 prev_shutter, prev_gain16;
1630 u32 cap_shutter, cap_gain16;
1631 u32 cap_sysclk, cap_hts, cap_vts;
1632 u32 light_freq, cap_bandfilt, cap_maxband;
1633 u32 cap_gain16_shutter;
1634 u8 average;
1635 int ret;
1636
1637 if (!mode->reg_data)
1638 return -EINVAL;
1639
1640 /* read preview shutter */
1641 ret = ov5640_get_exposure(sensor);
1642 if (ret < 0)
1643 return ret;
1644 prev_shutter = ret;
1645 ret = ov5640_get_binning(sensor);
1646 if (ret < 0)
1647 return ret;
1648 if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1649 mode->id != OV5640_MODE_1080P_1920_1080)
1650 prev_shutter *= 2;
1651
1652 /* read preview gain */
1653 ret = ov5640_get_gain(sensor);
1654 if (ret < 0)
1655 return ret;
1656 prev_gain16 = ret;
1657
1658 /* get average */
1659 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1660 if (ret)
1661 return ret;
1662
1663 /* turn off night mode for capture */
1664 ret = ov5640_set_night_mode(sensor);
1665 if (ret < 0)
1666 return ret;
1667
1668 /* Write capture setting */
1669 ret = ov5640_load_regs(sensor, mode);
1670 if (ret < 0)
1671 return ret;
1672
1673 /* read capture VTS */
1674 ret = ov5640_get_vts(sensor);
1675 if (ret < 0)
1676 return ret;
1677 cap_vts = ret;
1678 ret = ov5640_get_hts(sensor);
1679 if (ret < 0)
1680 return ret;
1681 if (ret == 0)
1682 return -EINVAL;
1683 cap_hts = ret;
1684
1685 ret = ov5640_get_sysclk(sensor);
1686 if (ret < 0)
1687 return ret;
1688 if (ret == 0)
1689 return -EINVAL;
1690 cap_sysclk = ret;
1691
1692 /* calculate capture banding filter */
1693 ret = ov5640_get_light_freq(sensor);
1694 if (ret < 0)
1695 return ret;
1696 light_freq = ret;
1697
1698 if (light_freq == 60) {
1699 /* 60Hz */
1700 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1701 } else {
1702 /* 50Hz */
1703 cap_bandfilt = cap_sysclk * 100 / cap_hts;
1704 }
1705
1706 if (!sensor->prev_sysclk) {
1707 ret = ov5640_get_sysclk(sensor);
1708 if (ret < 0)
1709 return ret;
1710 if (ret == 0)
1711 return -EINVAL;
1712 sensor->prev_sysclk = ret;
1713 }
1714
1715 if (!cap_bandfilt)
1716 return -EINVAL;
1717
1718 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1719
1720 /* calculate capture shutter/gain16 */
1721 if (average > sensor->ae_low && average < sensor->ae_high) {
1722 /* in stable range */
1723 cap_gain16_shutter =
1724 prev_gain16 * prev_shutter *
1725 cap_sysclk / sensor->prev_sysclk *
1726 sensor->prev_hts / cap_hts *
1727 sensor->ae_target / average;
1728 } else {
1729 cap_gain16_shutter =
1730 prev_gain16 * prev_shutter *
1731 cap_sysclk / sensor->prev_sysclk *
1732 sensor->prev_hts / cap_hts;
1733 }
1734
1735 /* gain to shutter */
1736 if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1737 /* shutter < 1/100 */
1738 cap_shutter = cap_gain16_shutter / 16;
1739 if (cap_shutter < 1)
1740 cap_shutter = 1;
1741
1742 cap_gain16 = cap_gain16_shutter / cap_shutter;
1743 if (cap_gain16 < 16)
1744 cap_gain16 = 16;
1745 } else {
1746 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1747 /* exposure reach max */
1748 cap_shutter = cap_bandfilt * cap_maxband;
1749 if (!cap_shutter)
1750 return -EINVAL;
1751
1752 cap_gain16 = cap_gain16_shutter / cap_shutter;
1753 } else {
1754 /* 1/100 < (cap_shutter = n/100) =< max */
1755 cap_shutter =
1756 ((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1757 * cap_bandfilt;
1758 if (!cap_shutter)
1759 return -EINVAL;
1760
1761 cap_gain16 = cap_gain16_shutter / cap_shutter;
1762 }
1763 }
1764
1765 /* set capture gain */
1766 ret = ov5640_set_gain(sensor, cap_gain16);
1767 if (ret)
1768 return ret;
1769
1770 /* write capture shutter */
1771 if (cap_shutter > (cap_vts - 4)) {
1772 cap_vts = cap_shutter + 4;
1773 ret = ov5640_set_vts(sensor, cap_vts);
1774 if (ret < 0)
1775 return ret;
1776 }
1777
1778 /* set exposure */
1779 return ov5640_set_exposure(sensor, cap_shutter);
1780 }
1781
1782 /*
1783 * if sensor changes inside scaling or subsampling
1784 * change mode directly
1785 */
ov5640_set_mode_direct(struct ov5640_dev * sensor,const struct ov5640_mode_info * mode)1786 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1787 const struct ov5640_mode_info *mode)
1788 {
1789 if (!mode->reg_data)
1790 return -EINVAL;
1791
1792 /* Write capture setting */
1793 return ov5640_load_regs(sensor, mode);
1794 }
1795
ov5640_set_mode(struct ov5640_dev * sensor)1796 static int ov5640_set_mode(struct ov5640_dev *sensor)
1797 {
1798 const struct ov5640_mode_info *mode = sensor->current_mode;
1799 const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1800 enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1801 bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1802 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1803 unsigned long rate;
1804 int ret;
1805
1806 dn_mode = mode->dn_mode;
1807 orig_dn_mode = orig_mode->dn_mode;
1808
1809 /* auto gain and exposure must be turned off when changing modes */
1810 if (auto_gain) {
1811 ret = ov5640_set_autogain(sensor, false);
1812 if (ret)
1813 return ret;
1814 }
1815
1816 if (auto_exp) {
1817 ret = ov5640_set_autoexposure(sensor, false);
1818 if (ret)
1819 goto restore_auto_gain;
1820 }
1821
1822 /*
1823 * All the formats we support have 16 bits per pixel, seems to require
1824 * the same rate than YUV, so we can just use 16 bpp all the time.
1825 */
1826 rate = mode->vtot * mode->htot * 16;
1827 rate *= ov5640_framerates[sensor->current_fr];
1828 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1829 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1830 ret = ov5640_set_mipi_pclk(sensor, rate);
1831 } else {
1832 rate = rate / sensor->ep.bus.parallel.bus_width;
1833 ret = ov5640_set_dvp_pclk(sensor, rate);
1834 }
1835
1836 if (ret < 0)
1837 return 0;
1838
1839 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1840 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1841 /*
1842 * change between subsampling and scaling
1843 * go through exposure calculation
1844 */
1845 ret = ov5640_set_mode_exposure_calc(sensor, mode);
1846 } else {
1847 /*
1848 * change inside subsampling or scaling
1849 * download firmware directly
1850 */
1851 ret = ov5640_set_mode_direct(sensor, mode);
1852 }
1853 if (ret < 0)
1854 goto restore_auto_exp_gain;
1855
1856 /* restore auto gain and exposure */
1857 if (auto_gain)
1858 ov5640_set_autogain(sensor, true);
1859 if (auto_exp)
1860 ov5640_set_autoexposure(sensor, true);
1861
1862 ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1863 if (ret < 0)
1864 return ret;
1865 ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1866 if (ret < 0)
1867 return ret;
1868 ret = ov5640_get_light_freq(sensor);
1869 if (ret < 0)
1870 return ret;
1871 ret = ov5640_set_bandingfilter(sensor);
1872 if (ret < 0)
1873 return ret;
1874 ret = ov5640_set_virtual_channel(sensor);
1875 if (ret < 0)
1876 return ret;
1877
1878 sensor->pending_mode_change = false;
1879 sensor->last_mode = mode;
1880
1881 return 0;
1882
1883 restore_auto_exp_gain:
1884 if (auto_exp)
1885 ov5640_set_autoexposure(sensor, true);
1886 restore_auto_gain:
1887 if (auto_gain)
1888 ov5640_set_autogain(sensor, true);
1889
1890 return ret;
1891 }
1892
1893 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1894 struct v4l2_mbus_framefmt *format);
1895
1896 /* restore the last set video mode after chip power-on */
ov5640_restore_mode(struct ov5640_dev * sensor)1897 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1898 {
1899 int ret;
1900
1901 /* first load the initial register values */
1902 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1903 if (ret < 0)
1904 return ret;
1905 sensor->last_mode = &ov5640_mode_init_data;
1906
1907 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1908 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1909 ilog2(OV5640_SCLK_ROOT_DIV));
1910 if (ret)
1911 return ret;
1912
1913 /* now restore the last capture mode */
1914 ret = ov5640_set_mode(sensor);
1915 if (ret < 0)
1916 return ret;
1917
1918 return ov5640_set_framefmt(sensor, &sensor->fmt);
1919 }
1920
ov5640_power(struct ov5640_dev * sensor,bool enable)1921 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1922 {
1923 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1924 }
1925
ov5640_reset(struct ov5640_dev * sensor)1926 static void ov5640_reset(struct ov5640_dev *sensor)
1927 {
1928 if (!sensor->reset_gpio)
1929 return;
1930
1931 gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1932
1933 /* camera power cycle */
1934 ov5640_power(sensor, false);
1935 usleep_range(5000, 10000);
1936 ov5640_power(sensor, true);
1937 usleep_range(5000, 10000);
1938
1939 gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1940 usleep_range(1000, 2000);
1941
1942 gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1943 usleep_range(20000, 25000);
1944 }
1945
ov5640_set_power_on(struct ov5640_dev * sensor)1946 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1947 {
1948 struct i2c_client *client = sensor->i2c_client;
1949 int ret;
1950
1951 ret = clk_prepare_enable(sensor->xclk);
1952 if (ret) {
1953 dev_err(&client->dev, "%s: failed to enable clock\n",
1954 __func__);
1955 return ret;
1956 }
1957
1958 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1959 sensor->supplies);
1960 if (ret) {
1961 dev_err(&client->dev, "%s: failed to enable regulators\n",
1962 __func__);
1963 goto xclk_off;
1964 }
1965
1966 ov5640_reset(sensor);
1967 ov5640_power(sensor, true);
1968
1969 ret = ov5640_init_slave_id(sensor);
1970 if (ret)
1971 goto power_off;
1972
1973 return 0;
1974
1975 power_off:
1976 ov5640_power(sensor, false);
1977 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1978 xclk_off:
1979 clk_disable_unprepare(sensor->xclk);
1980 return ret;
1981 }
1982
ov5640_set_power_off(struct ov5640_dev * sensor)1983 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1984 {
1985 ov5640_power(sensor, false);
1986 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1987 clk_disable_unprepare(sensor->xclk);
1988 }
1989
ov5640_set_power(struct ov5640_dev * sensor,bool on)1990 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
1991 {
1992 int ret = 0;
1993
1994 if (on) {
1995 ret = ov5640_set_power_on(sensor);
1996 if (ret)
1997 return ret;
1998
1999 ret = ov5640_restore_mode(sensor);
2000 if (ret)
2001 goto power_off;
2002
2003 /* We're done here for DVP bus, while CSI-2 needs setup. */
2004 if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
2005 return 0;
2006
2007 /*
2008 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
2009 *
2010 * 0x300e = 0x40
2011 * [7:5] = 010 : 2 data lanes mode (see FIXME note in
2012 * "ov5640_set_stream_mipi()")
2013 * [4] = 0 : Power up MIPI HS Tx
2014 * [3] = 0 : Power up MIPI LS Rx
2015 * [2] = 0 : MIPI interface disabled
2016 */
2017 ret = ov5640_write_reg(sensor,
2018 OV5640_REG_IO_MIPI_CTRL00, 0x40);
2019 if (ret)
2020 goto power_off;
2021
2022 /*
2023 * Gate clock and set LP11 in 'no packets mode' (idle)
2024 *
2025 * 0x4800 = 0x24
2026 * [5] = 1 : Gate clock when 'no packets'
2027 * [2] = 1 : MIPI bus in LP11 when 'no packets'
2028 */
2029 ret = ov5640_write_reg(sensor,
2030 OV5640_REG_MIPI_CTRL00, 0x24);
2031 if (ret)
2032 goto power_off;
2033
2034 /*
2035 * Set data lanes and clock in LP11 when 'sleeping'
2036 *
2037 * 0x3019 = 0x70
2038 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping'
2039 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping'
2040 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping'
2041 */
2042 ret = ov5640_write_reg(sensor,
2043 OV5640_REG_PAD_OUTPUT00, 0x70);
2044 if (ret)
2045 goto power_off;
2046
2047 /* Give lanes some time to coax into LP11 state. */
2048 usleep_range(500, 1000);
2049
2050 } else {
2051 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
2052 /* Reset MIPI bus settings to their default values. */
2053 ov5640_write_reg(sensor,
2054 OV5640_REG_IO_MIPI_CTRL00, 0x58);
2055 ov5640_write_reg(sensor,
2056 OV5640_REG_MIPI_CTRL00, 0x04);
2057 ov5640_write_reg(sensor,
2058 OV5640_REG_PAD_OUTPUT00, 0x00);
2059 }
2060
2061 ov5640_set_power_off(sensor);
2062 }
2063
2064 return 0;
2065
2066 power_off:
2067 ov5640_set_power_off(sensor);
2068 return ret;
2069 }
2070
2071 /* --------------- Subdev Operations --------------- */
2072
ov5640_s_power(struct v4l2_subdev * sd,int on)2073 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2074 {
2075 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2076 int ret = 0;
2077
2078 mutex_lock(&sensor->lock);
2079
2080 /*
2081 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2082 * update the power state.
2083 */
2084 if (sensor->power_count == !on) {
2085 ret = ov5640_set_power(sensor, !!on);
2086 if (ret)
2087 goto out;
2088 }
2089
2090 /* Update the power count. */
2091 sensor->power_count += on ? 1 : -1;
2092 WARN_ON(sensor->power_count < 0);
2093 out:
2094 mutex_unlock(&sensor->lock);
2095
2096 if (on && !ret && sensor->power_count == 1) {
2097 /* restore controls */
2098 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2099 }
2100
2101 return ret;
2102 }
2103
ov5640_try_frame_interval(struct ov5640_dev * sensor,struct v4l2_fract * fi,u32 width,u32 height)2104 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2105 struct v4l2_fract *fi,
2106 u32 width, u32 height)
2107 {
2108 const struct ov5640_mode_info *mode;
2109 enum ov5640_frame_rate rate = OV5640_15_FPS;
2110 int minfps, maxfps, best_fps, fps;
2111 int i;
2112
2113 minfps = ov5640_framerates[OV5640_15_FPS];
2114 maxfps = ov5640_framerates[OV5640_60_FPS];
2115
2116 if (fi->numerator == 0) {
2117 fi->denominator = maxfps;
2118 fi->numerator = 1;
2119 rate = OV5640_60_FPS;
2120 goto find_mode;
2121 }
2122
2123 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2124 minfps, maxfps);
2125
2126 best_fps = minfps;
2127 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2128 int curr_fps = ov5640_framerates[i];
2129
2130 if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2131 best_fps = curr_fps;
2132 rate = i;
2133 }
2134 }
2135
2136 fi->numerator = 1;
2137 fi->denominator = best_fps;
2138
2139 find_mode:
2140 mode = ov5640_find_mode(sensor, rate, width, height, false);
2141 return mode ? rate : -EINVAL;
2142 }
2143
ov5640_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * format)2144 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2145 struct v4l2_subdev_pad_config *cfg,
2146 struct v4l2_subdev_format *format)
2147 {
2148 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2149 struct v4l2_mbus_framefmt *fmt;
2150
2151 if (format->pad != 0)
2152 return -EINVAL;
2153
2154 mutex_lock(&sensor->lock);
2155
2156 if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2157 fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg,
2158 format->pad);
2159 else
2160 fmt = &sensor->fmt;
2161
2162 format->format = *fmt;
2163
2164 mutex_unlock(&sensor->lock);
2165
2166 return 0;
2167 }
2168
ov5640_try_fmt_internal(struct v4l2_subdev * sd,struct v4l2_mbus_framefmt * fmt,enum ov5640_frame_rate fr,const struct ov5640_mode_info ** new_mode)2169 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2170 struct v4l2_mbus_framefmt *fmt,
2171 enum ov5640_frame_rate fr,
2172 const struct ov5640_mode_info **new_mode)
2173 {
2174 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2175 const struct ov5640_mode_info *mode;
2176 int i;
2177
2178 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2179 if (!mode)
2180 return -EINVAL;
2181 fmt->width = mode->hact;
2182 fmt->height = mode->vact;
2183
2184 if (new_mode)
2185 *new_mode = mode;
2186
2187 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2188 if (ov5640_formats[i].code == fmt->code)
2189 break;
2190 if (i >= ARRAY_SIZE(ov5640_formats))
2191 i = 0;
2192
2193 fmt->code = ov5640_formats[i].code;
2194 fmt->colorspace = ov5640_formats[i].colorspace;
2195 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2196 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2197 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2198
2199 return 0;
2200 }
2201
ov5640_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * format)2202 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2203 struct v4l2_subdev_pad_config *cfg,
2204 struct v4l2_subdev_format *format)
2205 {
2206 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2207 const struct ov5640_mode_info *new_mode;
2208 struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2209 struct v4l2_mbus_framefmt *fmt;
2210 int ret;
2211
2212 if (format->pad != 0)
2213 return -EINVAL;
2214
2215 mutex_lock(&sensor->lock);
2216
2217 if (sensor->streaming) {
2218 ret = -EBUSY;
2219 goto out;
2220 }
2221
2222 ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2223 sensor->current_fr, &new_mode);
2224 if (ret)
2225 goto out;
2226
2227 if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2228 fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
2229 else
2230 fmt = &sensor->fmt;
2231
2232 *fmt = *mbus_fmt;
2233
2234 if (new_mode != sensor->current_mode) {
2235 sensor->current_mode = new_mode;
2236 sensor->pending_mode_change = true;
2237 }
2238 if (mbus_fmt->code != sensor->fmt.code)
2239 sensor->pending_fmt_change = true;
2240
2241 out:
2242 mutex_unlock(&sensor->lock);
2243 return ret;
2244 }
2245
ov5640_set_framefmt(struct ov5640_dev * sensor,struct v4l2_mbus_framefmt * format)2246 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2247 struct v4l2_mbus_framefmt *format)
2248 {
2249 int ret = 0;
2250 bool is_jpeg = false;
2251 u8 fmt, mux;
2252
2253 switch (format->code) {
2254 case MEDIA_BUS_FMT_UYVY8_2X8:
2255 /* YUV422, UYVY */
2256 fmt = 0x3f;
2257 mux = OV5640_FMT_MUX_YUV422;
2258 break;
2259 case MEDIA_BUS_FMT_YUYV8_2X8:
2260 /* YUV422, YUYV */
2261 fmt = 0x30;
2262 mux = OV5640_FMT_MUX_YUV422;
2263 break;
2264 case MEDIA_BUS_FMT_RGB565_2X8_LE:
2265 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2266 fmt = 0x6F;
2267 mux = OV5640_FMT_MUX_RGB;
2268 break;
2269 case MEDIA_BUS_FMT_RGB565_2X8_BE:
2270 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2271 fmt = 0x61;
2272 mux = OV5640_FMT_MUX_RGB;
2273 break;
2274 case MEDIA_BUS_FMT_JPEG_1X8:
2275 /* YUV422, YUYV */
2276 fmt = 0x30;
2277 mux = OV5640_FMT_MUX_YUV422;
2278 is_jpeg = true;
2279 break;
2280 case MEDIA_BUS_FMT_SBGGR8_1X8:
2281 /* Raw, BGBG... / GRGR... */
2282 fmt = 0x00;
2283 mux = OV5640_FMT_MUX_RAW_DPC;
2284 break;
2285 case MEDIA_BUS_FMT_SGBRG8_1X8:
2286 /* Raw bayer, GBGB... / RGRG... */
2287 fmt = 0x01;
2288 mux = OV5640_FMT_MUX_RAW_DPC;
2289 break;
2290 case MEDIA_BUS_FMT_SGRBG8_1X8:
2291 /* Raw bayer, GRGR... / BGBG... */
2292 fmt = 0x02;
2293 mux = OV5640_FMT_MUX_RAW_DPC;
2294 break;
2295 case MEDIA_BUS_FMT_SRGGB8_1X8:
2296 /* Raw bayer, RGRG... / GBGB... */
2297 fmt = 0x03;
2298 mux = OV5640_FMT_MUX_RAW_DPC;
2299 break;
2300 default:
2301 return -EINVAL;
2302 }
2303
2304 /* FORMAT CONTROL00: YUV and RGB formatting */
2305 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2306 if (ret)
2307 return ret;
2308
2309 /* FORMAT MUX CONTROL: ISP YUV or RGB */
2310 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2311 if (ret)
2312 return ret;
2313
2314 /*
2315 * TIMING TC REG21:
2316 * - [5]: JPEG enable
2317 */
2318 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2319 BIT(5), is_jpeg ? BIT(5) : 0);
2320 if (ret)
2321 return ret;
2322
2323 /*
2324 * SYSTEM RESET02:
2325 * - [4]: Reset JFIFO
2326 * - [3]: Reset SFIFO
2327 * - [2]: Reset JPEG
2328 */
2329 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2330 BIT(4) | BIT(3) | BIT(2),
2331 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2332 if (ret)
2333 return ret;
2334
2335 /*
2336 * CLOCK ENABLE02:
2337 * - [5]: Enable JPEG 2x clock
2338 * - [3]: Enable JPEG clock
2339 */
2340 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2341 BIT(5) | BIT(3),
2342 is_jpeg ? (BIT(5) | BIT(3)) : 0);
2343 }
2344
2345 /*
2346 * Sensor Controls.
2347 */
2348
ov5640_set_ctrl_hue(struct ov5640_dev * sensor,int value)2349 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2350 {
2351 int ret;
2352
2353 if (value) {
2354 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2355 BIT(0), BIT(0));
2356 if (ret)
2357 return ret;
2358 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2359 } else {
2360 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2361 }
2362
2363 return ret;
2364 }
2365
ov5640_set_ctrl_contrast(struct ov5640_dev * sensor,int value)2366 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2367 {
2368 int ret;
2369
2370 if (value) {
2371 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2372 BIT(2), BIT(2));
2373 if (ret)
2374 return ret;
2375 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2376 value & 0xff);
2377 } else {
2378 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2379 }
2380
2381 return ret;
2382 }
2383
ov5640_set_ctrl_saturation(struct ov5640_dev * sensor,int value)2384 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2385 {
2386 int ret;
2387
2388 if (value) {
2389 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2390 BIT(1), BIT(1));
2391 if (ret)
2392 return ret;
2393 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2394 value & 0xff);
2395 if (ret)
2396 return ret;
2397 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2398 value & 0xff);
2399 } else {
2400 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2401 }
2402
2403 return ret;
2404 }
2405
ov5640_set_ctrl_white_balance(struct ov5640_dev * sensor,int awb)2406 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2407 {
2408 int ret;
2409
2410 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2411 BIT(0), awb ? 0 : 1);
2412 if (ret)
2413 return ret;
2414
2415 if (!awb) {
2416 u16 red = (u16)sensor->ctrls.red_balance->val;
2417 u16 blue = (u16)sensor->ctrls.blue_balance->val;
2418
2419 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2420 if (ret)
2421 return ret;
2422 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2423 }
2424
2425 return ret;
2426 }
2427
ov5640_set_ctrl_exposure(struct ov5640_dev * sensor,enum v4l2_exposure_auto_type auto_exposure)2428 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2429 enum v4l2_exposure_auto_type auto_exposure)
2430 {
2431 struct ov5640_ctrls *ctrls = &sensor->ctrls;
2432 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2433 int ret = 0;
2434
2435 if (ctrls->auto_exp->is_new) {
2436 ret = ov5640_set_autoexposure(sensor, auto_exp);
2437 if (ret)
2438 return ret;
2439 }
2440
2441 if (!auto_exp && ctrls->exposure->is_new) {
2442 u16 max_exp;
2443
2444 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2445 &max_exp);
2446 if (ret)
2447 return ret;
2448 ret = ov5640_get_vts(sensor);
2449 if (ret < 0)
2450 return ret;
2451 max_exp += ret;
2452 ret = 0;
2453
2454 if (ctrls->exposure->val < max_exp)
2455 ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2456 }
2457
2458 return ret;
2459 }
2460
ov5640_set_ctrl_gain(struct ov5640_dev * sensor,bool auto_gain)2461 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2462 {
2463 struct ov5640_ctrls *ctrls = &sensor->ctrls;
2464 int ret = 0;
2465
2466 if (ctrls->auto_gain->is_new) {
2467 ret = ov5640_set_autogain(sensor, auto_gain);
2468 if (ret)
2469 return ret;
2470 }
2471
2472 if (!auto_gain && ctrls->gain->is_new)
2473 ret = ov5640_set_gain(sensor, ctrls->gain->val);
2474
2475 return ret;
2476 }
2477
2478 static const char * const test_pattern_menu[] = {
2479 "Disabled",
2480 "Color bars",
2481 "Color bars w/ rolling bar",
2482 "Color squares",
2483 "Color squares w/ rolling bar",
2484 };
2485
2486 #define OV5640_TEST_ENABLE BIT(7)
2487 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */
2488 #define OV5640_TEST_TRANSPARENT BIT(5)
2489 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */
2490 #define OV5640_TEST_BAR_STANDARD (0 << 2)
2491 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2)
2492 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2)
2493 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2)
2494 #define OV5640_TEST_BAR (0 << 0)
2495 #define OV5640_TEST_RANDOM (1 << 0)
2496 #define OV5640_TEST_SQUARE (2 << 0)
2497 #define OV5640_TEST_BLACK (3 << 0)
2498
2499 static const u8 test_pattern_val[] = {
2500 0,
2501 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2502 OV5640_TEST_BAR,
2503 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2504 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2505 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2506 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2507 };
2508
ov5640_set_ctrl_test_pattern(struct ov5640_dev * sensor,int value)2509 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2510 {
2511 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2512 test_pattern_val[value]);
2513 }
2514
ov5640_set_ctrl_light_freq(struct ov5640_dev * sensor,int value)2515 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2516 {
2517 int ret;
2518
2519 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2520 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2521 0 : BIT(7));
2522 if (ret)
2523 return ret;
2524
2525 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2526 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2527 BIT(2) : 0);
2528 }
2529
ov5640_set_ctrl_hflip(struct ov5640_dev * sensor,int value)2530 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2531 {
2532 /*
2533 * If sensor is mounted upside down, mirror logic is inversed.
2534 *
2535 * Sensor is a BSI (Back Side Illuminated) one,
2536 * so image captured is physically mirrored.
2537 * This is why mirror logic is inversed in
2538 * order to cancel this mirror effect.
2539 */
2540
2541 /*
2542 * TIMING TC REG21:
2543 * - [2]: ISP mirror
2544 * - [1]: Sensor mirror
2545 */
2546 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2547 BIT(2) | BIT(1),
2548 (!(value ^ sensor->upside_down)) ?
2549 (BIT(2) | BIT(1)) : 0);
2550 }
2551
ov5640_set_ctrl_vflip(struct ov5640_dev * sensor,int value)2552 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2553 {
2554 /* If sensor is mounted upside down, flip logic is inversed */
2555
2556 /*
2557 * TIMING TC REG20:
2558 * - [2]: ISP vflip
2559 * - [1]: Sensor vflip
2560 */
2561 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2562 BIT(2) | BIT(1),
2563 (value ^ sensor->upside_down) ?
2564 (BIT(2) | BIT(1)) : 0);
2565 }
2566
ov5640_g_volatile_ctrl(struct v4l2_ctrl * ctrl)2567 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2568 {
2569 struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2570 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2571 int val;
2572
2573 /* v4l2_ctrl_lock() locks our own mutex */
2574
2575 switch (ctrl->id) {
2576 case V4L2_CID_AUTOGAIN:
2577 val = ov5640_get_gain(sensor);
2578 if (val < 0)
2579 return val;
2580 sensor->ctrls.gain->val = val;
2581 break;
2582 case V4L2_CID_EXPOSURE_AUTO:
2583 val = ov5640_get_exposure(sensor);
2584 if (val < 0)
2585 return val;
2586 sensor->ctrls.exposure->val = val;
2587 break;
2588 }
2589
2590 return 0;
2591 }
2592
ov5640_s_ctrl(struct v4l2_ctrl * ctrl)2593 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2594 {
2595 struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2596 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2597 int ret;
2598
2599 /* v4l2_ctrl_lock() locks our own mutex */
2600
2601 /*
2602 * If the device is not powered up by the host driver do
2603 * not apply any controls to H/W at this time. Instead
2604 * the controls will be restored right after power-up.
2605 */
2606 if (sensor->power_count == 0)
2607 return 0;
2608
2609 switch (ctrl->id) {
2610 case V4L2_CID_AUTOGAIN:
2611 ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2612 break;
2613 case V4L2_CID_EXPOSURE_AUTO:
2614 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2615 break;
2616 case V4L2_CID_AUTO_WHITE_BALANCE:
2617 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2618 break;
2619 case V4L2_CID_HUE:
2620 ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2621 break;
2622 case V4L2_CID_CONTRAST:
2623 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2624 break;
2625 case V4L2_CID_SATURATION:
2626 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2627 break;
2628 case V4L2_CID_TEST_PATTERN:
2629 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2630 break;
2631 case V4L2_CID_POWER_LINE_FREQUENCY:
2632 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2633 break;
2634 case V4L2_CID_HFLIP:
2635 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2636 break;
2637 case V4L2_CID_VFLIP:
2638 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2639 break;
2640 default:
2641 ret = -EINVAL;
2642 break;
2643 }
2644
2645 return ret;
2646 }
2647
2648 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2649 .g_volatile_ctrl = ov5640_g_volatile_ctrl,
2650 .s_ctrl = ov5640_s_ctrl,
2651 };
2652
ov5640_init_controls(struct ov5640_dev * sensor)2653 static int ov5640_init_controls(struct ov5640_dev *sensor)
2654 {
2655 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2656 struct ov5640_ctrls *ctrls = &sensor->ctrls;
2657 struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2658 int ret;
2659
2660 v4l2_ctrl_handler_init(hdl, 32);
2661
2662 /* we can use our own mutex for the ctrl lock */
2663 hdl->lock = &sensor->lock;
2664
2665 /* Auto/manual white balance */
2666 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2667 V4L2_CID_AUTO_WHITE_BALANCE,
2668 0, 1, 1, 1);
2669 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2670 0, 4095, 1, 0);
2671 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2672 0, 4095, 1, 0);
2673 /* Auto/manual exposure */
2674 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2675 V4L2_CID_EXPOSURE_AUTO,
2676 V4L2_EXPOSURE_MANUAL, 0,
2677 V4L2_EXPOSURE_AUTO);
2678 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2679 0, 65535, 1, 0);
2680 /* Auto/manual gain */
2681 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2682 0, 1, 1, 1);
2683 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2684 0, 1023, 1, 0);
2685
2686 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2687 0, 255, 1, 64);
2688 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2689 0, 359, 1, 0);
2690 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2691 0, 255, 1, 0);
2692 ctrls->test_pattern =
2693 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2694 ARRAY_SIZE(test_pattern_menu) - 1,
2695 0, 0, test_pattern_menu);
2696 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2697 0, 1, 1, 0);
2698 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2699 0, 1, 1, 0);
2700
2701 ctrls->light_freq =
2702 v4l2_ctrl_new_std_menu(hdl, ops,
2703 V4L2_CID_POWER_LINE_FREQUENCY,
2704 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2705 V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2706
2707 if (hdl->error) {
2708 ret = hdl->error;
2709 goto free_ctrls;
2710 }
2711
2712 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2713 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2714
2715 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2716 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2717 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2718
2719 sensor->sd.ctrl_handler = hdl;
2720 return 0;
2721
2722 free_ctrls:
2723 v4l2_ctrl_handler_free(hdl);
2724 return ret;
2725 }
2726
ov5640_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_size_enum * fse)2727 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2728 struct v4l2_subdev_pad_config *cfg,
2729 struct v4l2_subdev_frame_size_enum *fse)
2730 {
2731 if (fse->pad != 0)
2732 return -EINVAL;
2733 if (fse->index >= OV5640_NUM_MODES)
2734 return -EINVAL;
2735
2736 fse->min_width =
2737 ov5640_mode_data[fse->index].hact;
2738 fse->max_width = fse->min_width;
2739 fse->min_height =
2740 ov5640_mode_data[fse->index].vact;
2741 fse->max_height = fse->min_height;
2742
2743 return 0;
2744 }
2745
ov5640_enum_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_interval_enum * fie)2746 static int ov5640_enum_frame_interval(
2747 struct v4l2_subdev *sd,
2748 struct v4l2_subdev_pad_config *cfg,
2749 struct v4l2_subdev_frame_interval_enum *fie)
2750 {
2751 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2752 struct v4l2_fract tpf;
2753 int ret;
2754
2755 if (fie->pad != 0)
2756 return -EINVAL;
2757 if (fie->index >= OV5640_NUM_FRAMERATES)
2758 return -EINVAL;
2759
2760 tpf.numerator = 1;
2761 tpf.denominator = ov5640_framerates[fie->index];
2762
2763 ret = ov5640_try_frame_interval(sensor, &tpf,
2764 fie->width, fie->height);
2765 if (ret < 0)
2766 return -EINVAL;
2767
2768 fie->interval = tpf;
2769 return 0;
2770 }
2771
ov5640_g_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)2772 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2773 struct v4l2_subdev_frame_interval *fi)
2774 {
2775 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2776
2777 mutex_lock(&sensor->lock);
2778 fi->interval = sensor->frame_interval;
2779 mutex_unlock(&sensor->lock);
2780
2781 return 0;
2782 }
2783
ov5640_s_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)2784 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2785 struct v4l2_subdev_frame_interval *fi)
2786 {
2787 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2788 const struct ov5640_mode_info *mode;
2789 int frame_rate, ret = 0;
2790
2791 if (fi->pad != 0)
2792 return -EINVAL;
2793
2794 mutex_lock(&sensor->lock);
2795
2796 if (sensor->streaming) {
2797 ret = -EBUSY;
2798 goto out;
2799 }
2800
2801 mode = sensor->current_mode;
2802
2803 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2804 mode->hact, mode->vact);
2805 if (frame_rate < 0) {
2806 /* Always return a valid frame interval value */
2807 fi->interval = sensor->frame_interval;
2808 goto out;
2809 }
2810
2811 mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2812 mode->vact, true);
2813 if (!mode) {
2814 ret = -EINVAL;
2815 goto out;
2816 }
2817
2818 if (mode != sensor->current_mode ||
2819 frame_rate != sensor->current_fr) {
2820 sensor->current_fr = frame_rate;
2821 sensor->frame_interval = fi->interval;
2822 sensor->current_mode = mode;
2823 sensor->pending_mode_change = true;
2824 }
2825 out:
2826 mutex_unlock(&sensor->lock);
2827 return ret;
2828 }
2829
ov5640_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)2830 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2831 struct v4l2_subdev_pad_config *cfg,
2832 struct v4l2_subdev_mbus_code_enum *code)
2833 {
2834 if (code->pad != 0)
2835 return -EINVAL;
2836 if (code->index >= ARRAY_SIZE(ov5640_formats))
2837 return -EINVAL;
2838
2839 code->code = ov5640_formats[code->index].code;
2840 return 0;
2841 }
2842
ov5640_s_stream(struct v4l2_subdev * sd,int enable)2843 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2844 {
2845 struct ov5640_dev *sensor = to_ov5640_dev(sd);
2846 int ret = 0;
2847
2848 mutex_lock(&sensor->lock);
2849
2850 if (sensor->streaming == !enable) {
2851 if (enable && sensor->pending_mode_change) {
2852 ret = ov5640_set_mode(sensor);
2853 if (ret)
2854 goto out;
2855 }
2856
2857 if (enable && sensor->pending_fmt_change) {
2858 ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2859 if (ret)
2860 goto out;
2861 sensor->pending_fmt_change = false;
2862 }
2863
2864 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2865 ret = ov5640_set_stream_mipi(sensor, enable);
2866 else
2867 ret = ov5640_set_stream_dvp(sensor, enable);
2868
2869 if (!ret)
2870 sensor->streaming = enable;
2871 }
2872 out:
2873 mutex_unlock(&sensor->lock);
2874 return ret;
2875 }
2876
2877 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2878 .s_power = ov5640_s_power,
2879 .log_status = v4l2_ctrl_subdev_log_status,
2880 .subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2881 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2882 };
2883
2884 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2885 .g_frame_interval = ov5640_g_frame_interval,
2886 .s_frame_interval = ov5640_s_frame_interval,
2887 .s_stream = ov5640_s_stream,
2888 };
2889
2890 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2891 .enum_mbus_code = ov5640_enum_mbus_code,
2892 .get_fmt = ov5640_get_fmt,
2893 .set_fmt = ov5640_set_fmt,
2894 .enum_frame_size = ov5640_enum_frame_size,
2895 .enum_frame_interval = ov5640_enum_frame_interval,
2896 };
2897
2898 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2899 .core = &ov5640_core_ops,
2900 .video = &ov5640_video_ops,
2901 .pad = &ov5640_pad_ops,
2902 };
2903
ov5640_get_regulators(struct ov5640_dev * sensor)2904 static int ov5640_get_regulators(struct ov5640_dev *sensor)
2905 {
2906 int i;
2907
2908 for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
2909 sensor->supplies[i].supply = ov5640_supply_name[i];
2910
2911 return devm_regulator_bulk_get(&sensor->i2c_client->dev,
2912 OV5640_NUM_SUPPLIES,
2913 sensor->supplies);
2914 }
2915
ov5640_check_chip_id(struct ov5640_dev * sensor)2916 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
2917 {
2918 struct i2c_client *client = sensor->i2c_client;
2919 int ret = 0;
2920 u16 chip_id;
2921
2922 ret = ov5640_set_power_on(sensor);
2923 if (ret)
2924 return ret;
2925
2926 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
2927 if (ret) {
2928 dev_err(&client->dev, "%s: failed to read chip identifier\n",
2929 __func__);
2930 goto power_off;
2931 }
2932
2933 if (chip_id != 0x5640) {
2934 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
2935 __func__, chip_id);
2936 ret = -ENXIO;
2937 }
2938
2939 power_off:
2940 ov5640_set_power_off(sensor);
2941 return ret;
2942 }
2943
ov5640_probe(struct i2c_client * client)2944 static int ov5640_probe(struct i2c_client *client)
2945 {
2946 struct device *dev = &client->dev;
2947 struct fwnode_handle *endpoint;
2948 struct ov5640_dev *sensor;
2949 struct v4l2_mbus_framefmt *fmt;
2950 u32 rotation;
2951 int ret;
2952
2953 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
2954 if (!sensor)
2955 return -ENOMEM;
2956
2957 sensor->i2c_client = client;
2958
2959 /*
2960 * default init sequence initialize sensor to
2961 * YUV422 UYVY VGA@30fps
2962 */
2963 fmt = &sensor->fmt;
2964 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
2965 fmt->colorspace = V4L2_COLORSPACE_SRGB;
2966 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2967 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2968 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2969 fmt->width = 640;
2970 fmt->height = 480;
2971 fmt->field = V4L2_FIELD_NONE;
2972 sensor->frame_interval.numerator = 1;
2973 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
2974 sensor->current_fr = OV5640_30_FPS;
2975 sensor->current_mode =
2976 &ov5640_mode_data[OV5640_MODE_VGA_640_480];
2977 sensor->last_mode = sensor->current_mode;
2978
2979 sensor->ae_target = 52;
2980
2981 /* optional indication of physical rotation of sensor */
2982 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
2983 &rotation);
2984 if (!ret) {
2985 switch (rotation) {
2986 case 180:
2987 sensor->upside_down = true;
2988 /* fall through */
2989 case 0:
2990 break;
2991 default:
2992 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
2993 rotation);
2994 }
2995 }
2996
2997 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
2998 NULL);
2999 if (!endpoint) {
3000 dev_err(dev, "endpoint node not found\n");
3001 return -EINVAL;
3002 }
3003
3004 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3005 fwnode_handle_put(endpoint);
3006 if (ret) {
3007 dev_err(dev, "Could not parse endpoint\n");
3008 return ret;
3009 }
3010
3011 /* get system clock (xclk) */
3012 sensor->xclk = devm_clk_get(dev, "xclk");
3013 if (IS_ERR(sensor->xclk)) {
3014 dev_err(dev, "failed to get xclk\n");
3015 return PTR_ERR(sensor->xclk);
3016 }
3017
3018 sensor->xclk_freq = clk_get_rate(sensor->xclk);
3019 if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3020 sensor->xclk_freq > OV5640_XCLK_MAX) {
3021 dev_err(dev, "xclk frequency out of range: %d Hz\n",
3022 sensor->xclk_freq);
3023 return -EINVAL;
3024 }
3025
3026 /* request optional power down pin */
3027 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3028 GPIOD_OUT_HIGH);
3029 if (IS_ERR(sensor->pwdn_gpio))
3030 return PTR_ERR(sensor->pwdn_gpio);
3031
3032 /* request optional reset pin */
3033 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3034 GPIOD_OUT_HIGH);
3035 if (IS_ERR(sensor->reset_gpio))
3036 return PTR_ERR(sensor->reset_gpio);
3037
3038 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3039
3040 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3041 V4L2_SUBDEV_FL_HAS_EVENTS;
3042 sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3043 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3044 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3045 if (ret)
3046 return ret;
3047
3048 ret = ov5640_get_regulators(sensor);
3049 if (ret)
3050 return ret;
3051
3052 mutex_init(&sensor->lock);
3053
3054 ret = ov5640_check_chip_id(sensor);
3055 if (ret)
3056 goto entity_cleanup;
3057
3058 ret = ov5640_init_controls(sensor);
3059 if (ret)
3060 goto entity_cleanup;
3061
3062 ret = v4l2_async_register_subdev_sensor_common(&sensor->sd);
3063 if (ret)
3064 goto free_ctrls;
3065
3066 return 0;
3067
3068 free_ctrls:
3069 v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3070 entity_cleanup:
3071 mutex_destroy(&sensor->lock);
3072 media_entity_cleanup(&sensor->sd.entity);
3073 return ret;
3074 }
3075
ov5640_remove(struct i2c_client * client)3076 static int ov5640_remove(struct i2c_client *client)
3077 {
3078 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3079 struct ov5640_dev *sensor = to_ov5640_dev(sd);
3080
3081 v4l2_async_unregister_subdev(&sensor->sd);
3082 mutex_destroy(&sensor->lock);
3083 media_entity_cleanup(&sensor->sd.entity);
3084 v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3085
3086 return 0;
3087 }
3088
3089 static const struct i2c_device_id ov5640_id[] = {
3090 {"ov5640", 0},
3091 {},
3092 };
3093 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3094
3095 static const struct of_device_id ov5640_dt_ids[] = {
3096 { .compatible = "ovti,ov5640" },
3097 { /* sentinel */ }
3098 };
3099 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3100
3101 static struct i2c_driver ov5640_i2c_driver = {
3102 .driver = {
3103 .name = "ov5640",
3104 .of_match_table = ov5640_dt_ids,
3105 },
3106 .id_table = ov5640_id,
3107 .probe_new = ov5640_probe,
3108 .remove = ov5640_remove,
3109 };
3110
3111 module_i2c_driver(ov5640_i2c_driver);
3112
3113 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3114 MODULE_LICENSE("GPL");
3115