• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/smiapp/smiapp-core.c
4  *
5  * Generic driver for SMIA/SMIA++ compliant camera modules
6  *
7  * Copyright (C) 2010--2012 Nokia Corporation
8  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9  *
10  * Based on smiapp driver by Vimarsh Zutshi
11  * Based on jt8ev1.c by Vimarsh Zutshi
12  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/gpio.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/slab.h>
25 #include <linux/smiapp.h>
26 #include <linux/v4l2-mediabus.h>
27 #include <media/v4l2-fwnode.h>
28 #include <media/v4l2-device.h>
29 
30 #include "smiapp.h"
31 
32 #define SMIAPP_ALIGN_DIM(dim, flags)	\
33 	((flags) & V4L2_SEL_FLAG_GE	\
34 	 ? ALIGN((dim), 2)		\
35 	 : (dim) & ~1)
36 
37 /*
38  * smiapp_module_idents - supported camera modules
39  */
40 static const struct smiapp_module_ident smiapp_module_idents[] = {
41 	SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
42 	SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
43 	SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
44 	SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
45 	SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
46 	SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
47 	SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
48 	SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
49 	SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
50 	SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
51 	SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
52 };
53 
54 /*
55  *
56  * Dynamic Capability Identification
57  *
58  */
59 
smiapp_read_frame_fmt(struct smiapp_sensor * sensor)60 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
61 {
62 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
63 	u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
64 	unsigned int i;
65 	int pixel_count = 0;
66 	int line_count = 0;
67 	int rval;
68 
69 	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
70 			   &fmt_model_type);
71 	if (rval)
72 		return rval;
73 
74 	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
75 			   &fmt_model_subtype);
76 	if (rval)
77 		return rval;
78 
79 	ncol_desc = (fmt_model_subtype
80 		     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
81 		>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
82 	nrow_desc = fmt_model_subtype
83 		& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
84 
85 	dev_dbg(&client->dev, "format_model_type %s\n",
86 		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
87 		? "2 byte" :
88 		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
89 		? "4 byte" : "is simply bad");
90 
91 	for (i = 0; i < ncol_desc + nrow_desc; i++) {
92 		u32 desc;
93 		u32 pixelcode;
94 		u32 pixels;
95 		char *which;
96 		char *what;
97 		u32 reg;
98 
99 		if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
100 			reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
101 			rval = smiapp_read(sensor, reg,	&desc);
102 			if (rval)
103 				return rval;
104 
105 			pixelcode =
106 				(desc
107 				 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
108 				>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
109 			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
110 		} else if (fmt_model_type
111 			   == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
112 			reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
113 			rval = smiapp_read(sensor, reg, &desc);
114 			if (rval)
115 				return rval;
116 
117 			pixelcode =
118 				(desc
119 				 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
120 				>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
121 			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
122 		} else {
123 			dev_dbg(&client->dev,
124 				"invalid frame format model type %d\n",
125 				fmt_model_type);
126 			return -EINVAL;
127 		}
128 
129 		if (i < ncol_desc)
130 			which = "columns";
131 		else
132 			which = "rows";
133 
134 		switch (pixelcode) {
135 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
136 			what = "embedded";
137 			break;
138 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
139 			what = "dummy";
140 			break;
141 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
142 			what = "black";
143 			break;
144 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
145 			what = "dark";
146 			break;
147 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
148 			what = "visible";
149 			break;
150 		default:
151 			what = "invalid";
152 			break;
153 		}
154 
155 		dev_dbg(&client->dev,
156 			"0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
157 			what, pixels, which, pixelcode);
158 
159 		if (i < ncol_desc) {
160 			if (pixelcode ==
161 			    SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
162 				sensor->visible_pixel_start = pixel_count;
163 			pixel_count += pixels;
164 			continue;
165 		}
166 
167 		/* Handle row descriptors */
168 		switch (pixelcode) {
169 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
170 			if (sensor->embedded_end)
171 				break;
172 			sensor->embedded_start = line_count;
173 			sensor->embedded_end = line_count + pixels;
174 			break;
175 		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
176 			sensor->image_start = line_count;
177 			break;
178 		}
179 		line_count += pixels;
180 	}
181 
182 	if (sensor->embedded_end > sensor->image_start) {
183 		dev_dbg(&client->dev,
184 			"adjusting image start line to %u (was %u)\n",
185 			sensor->embedded_end, sensor->image_start);
186 		sensor->image_start = sensor->embedded_end;
187 	}
188 
189 	dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
190 		sensor->embedded_start, sensor->embedded_end);
191 	dev_dbg(&client->dev, "image data starts at line %d\n",
192 		sensor->image_start);
193 
194 	return 0;
195 }
196 
smiapp_pll_configure(struct smiapp_sensor * sensor)197 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
198 {
199 	struct smiapp_pll *pll = &sensor->pll;
200 	int rval;
201 
202 	rval = smiapp_write(
203 		sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
204 	if (rval < 0)
205 		return rval;
206 
207 	rval = smiapp_write(
208 		sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
209 	if (rval < 0)
210 		return rval;
211 
212 	rval = smiapp_write(
213 		sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
214 	if (rval < 0)
215 		return rval;
216 
217 	rval = smiapp_write(
218 		sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
219 	if (rval < 0)
220 		return rval;
221 
222 	/* Lane op clock ratio does not apply here. */
223 	rval = smiapp_write(
224 		sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
225 		DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
226 	if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
227 		return rval;
228 
229 	rval = smiapp_write(
230 		sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
231 	if (rval < 0)
232 		return rval;
233 
234 	return smiapp_write(
235 		sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
236 }
237 
smiapp_pll_try(struct smiapp_sensor * sensor,struct smiapp_pll * pll)238 static int smiapp_pll_try(struct smiapp_sensor *sensor,
239 			  struct smiapp_pll *pll)
240 {
241 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
242 	struct smiapp_pll_limits lim = {
243 		.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
244 		.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
245 		.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
246 		.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
247 		.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
248 		.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
249 		.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
250 		.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
251 
252 		.op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
253 		.op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
254 		.op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
255 		.op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
256 		.op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
257 		.op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
258 		.op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
259 		.op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
260 
261 		.vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
262 		.vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
263 		.vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
264 		.vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
265 		.vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
266 		.vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
267 		.vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
268 		.vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
269 
270 		.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
271 		.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
272 	};
273 
274 	return smiapp_pll_calculate(&client->dev, &lim, pll);
275 }
276 
smiapp_pll_update(struct smiapp_sensor * sensor)277 static int smiapp_pll_update(struct smiapp_sensor *sensor)
278 {
279 	struct smiapp_pll *pll = &sensor->pll;
280 	int rval;
281 
282 	pll->binning_horizontal = sensor->binning_horizontal;
283 	pll->binning_vertical = sensor->binning_vertical;
284 	pll->link_freq =
285 		sensor->link_freq->qmenu_int[sensor->link_freq->val];
286 	pll->scale_m = sensor->scale_m;
287 	pll->bits_per_pixel = sensor->csi_format->compressed;
288 
289 	rval = smiapp_pll_try(sensor, pll);
290 	if (rval < 0)
291 		return rval;
292 
293 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
294 				 pll->pixel_rate_pixel_array);
295 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
296 
297 	return 0;
298 }
299 
300 
301 /*
302  *
303  * V4L2 Controls handling
304  *
305  */
306 
__smiapp_update_exposure_limits(struct smiapp_sensor * sensor)307 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
308 {
309 	struct v4l2_ctrl *ctrl = sensor->exposure;
310 	int max;
311 
312 	max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
313 		+ sensor->vblank->val
314 		- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
315 
316 	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
317 }
318 
319 /*
320  * Order matters.
321  *
322  * 1. Bits-per-pixel, descending.
323  * 2. Bits-per-pixel compressed, descending.
324  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
325  *    orders must be defined.
326  */
327 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
328 	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
329 	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
330 	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
331 	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
332 	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
333 	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
334 	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
335 	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
336 	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
337 	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
338 	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
339 	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
340 	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
341 	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
342 	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
343 	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
344 	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
345 	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
346 	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
347 	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
348 	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349 	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350 	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351 	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352 };
353 
354 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
355 
356 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
357 				 - (unsigned long)smiapp_csi_data_formats) \
358 				/ sizeof(*smiapp_csi_data_formats))
359 
smiapp_pixel_order(struct smiapp_sensor * sensor)360 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
361 {
362 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
363 	int flip = 0;
364 
365 	if (sensor->hflip) {
366 		if (sensor->hflip->val)
367 			flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
368 
369 		if (sensor->vflip->val)
370 			flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
371 	}
372 
373 	flip ^= sensor->hvflip_inv_mask;
374 
375 	dev_dbg(&client->dev, "flip %d\n", flip);
376 	return sensor->default_pixel_order ^ flip;
377 }
378 
smiapp_update_mbus_formats(struct smiapp_sensor * sensor)379 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
380 {
381 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
382 	unsigned int csi_format_idx =
383 		to_csi_format_idx(sensor->csi_format) & ~3;
384 	unsigned int internal_csi_format_idx =
385 		to_csi_format_idx(sensor->internal_csi_format) & ~3;
386 	unsigned int pixel_order = smiapp_pixel_order(sensor);
387 
388 	sensor->mbus_frame_fmts =
389 		sensor->default_mbus_frame_fmts << pixel_order;
390 	sensor->csi_format =
391 		&smiapp_csi_data_formats[csi_format_idx + pixel_order];
392 	sensor->internal_csi_format =
393 		&smiapp_csi_data_formats[internal_csi_format_idx
394 					 + pixel_order];
395 
396 	BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
397 	       >= ARRAY_SIZE(smiapp_csi_data_formats));
398 
399 	dev_dbg(&client->dev, "new pixel order %s\n",
400 		pixel_order_str[pixel_order]);
401 }
402 
403 static const char * const smiapp_test_patterns[] = {
404 	"Disabled",
405 	"Solid Colour",
406 	"Eight Vertical Colour Bars",
407 	"Colour Bars With Fade to Grey",
408 	"Pseudorandom Sequence (PN9)",
409 };
410 
smiapp_set_ctrl(struct v4l2_ctrl * ctrl)411 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
412 {
413 	struct smiapp_sensor *sensor =
414 		container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
415 			->sensor;
416 	u32 orient = 0;
417 	int exposure;
418 	int rval;
419 
420 	switch (ctrl->id) {
421 	case V4L2_CID_ANALOGUE_GAIN:
422 		return smiapp_write(
423 			sensor,
424 			SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
425 
426 	case V4L2_CID_EXPOSURE:
427 		return smiapp_write(
428 			sensor,
429 			SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
430 
431 	case V4L2_CID_HFLIP:
432 	case V4L2_CID_VFLIP:
433 		if (sensor->streaming)
434 			return -EBUSY;
435 
436 		if (sensor->hflip->val)
437 			orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
438 
439 		if (sensor->vflip->val)
440 			orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
441 
442 		orient ^= sensor->hvflip_inv_mask;
443 		rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
444 				    orient);
445 		if (rval < 0)
446 			return rval;
447 
448 		smiapp_update_mbus_formats(sensor);
449 
450 		return 0;
451 
452 	case V4L2_CID_VBLANK:
453 		exposure = sensor->exposure->val;
454 
455 		__smiapp_update_exposure_limits(sensor);
456 
457 		if (exposure > sensor->exposure->maximum) {
458 			sensor->exposure->val =	sensor->exposure->maximum;
459 			rval = smiapp_set_ctrl(sensor->exposure);
460 			if (rval < 0)
461 				return rval;
462 		}
463 
464 		return smiapp_write(
465 			sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
466 			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
467 			+ ctrl->val);
468 
469 	case V4L2_CID_HBLANK:
470 		return smiapp_write(
471 			sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
472 			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
473 			+ ctrl->val);
474 
475 	case V4L2_CID_LINK_FREQ:
476 		if (sensor->streaming)
477 			return -EBUSY;
478 
479 		return smiapp_pll_update(sensor);
480 
481 	case V4L2_CID_TEST_PATTERN: {
482 		unsigned int i;
483 
484 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
485 			v4l2_ctrl_activate(
486 				sensor->test_data[i],
487 				ctrl->val ==
488 				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
489 
490 		return smiapp_write(
491 			sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
492 	}
493 
494 	case V4L2_CID_TEST_PATTERN_RED:
495 		return smiapp_write(
496 			sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
497 
498 	case V4L2_CID_TEST_PATTERN_GREENR:
499 		return smiapp_write(
500 			sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
501 
502 	case V4L2_CID_TEST_PATTERN_BLUE:
503 		return smiapp_write(
504 			sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
505 
506 	case V4L2_CID_TEST_PATTERN_GREENB:
507 		return smiapp_write(
508 			sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
509 
510 	case V4L2_CID_PIXEL_RATE:
511 		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
512 		return 0;
513 
514 	default:
515 		return -EINVAL;
516 	}
517 }
518 
519 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
520 	.s_ctrl = smiapp_set_ctrl,
521 };
522 
smiapp_init_controls(struct smiapp_sensor * sensor)523 static int smiapp_init_controls(struct smiapp_sensor *sensor)
524 {
525 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
526 	int rval;
527 
528 	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
529 	if (rval)
530 		return rval;
531 
532 	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
533 
534 	sensor->analog_gain = v4l2_ctrl_new_std(
535 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
536 		V4L2_CID_ANALOGUE_GAIN,
537 		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
538 		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
539 		max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
540 		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
541 
542 	/* Exposure limits will be updated soon, use just something here. */
543 	sensor->exposure = v4l2_ctrl_new_std(
544 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
545 		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
546 
547 	sensor->hflip = v4l2_ctrl_new_std(
548 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
549 		V4L2_CID_HFLIP, 0, 1, 1, 0);
550 	sensor->vflip = v4l2_ctrl_new_std(
551 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
552 		V4L2_CID_VFLIP, 0, 1, 1, 0);
553 
554 	sensor->vblank = v4l2_ctrl_new_std(
555 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
556 		V4L2_CID_VBLANK, 0, 1, 1, 0);
557 
558 	if (sensor->vblank)
559 		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
560 
561 	sensor->hblank = v4l2_ctrl_new_std(
562 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
563 		V4L2_CID_HBLANK, 0, 1, 1, 0);
564 
565 	if (sensor->hblank)
566 		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
567 
568 	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
569 		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
570 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
571 
572 	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
573 				     &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
574 				     ARRAY_SIZE(smiapp_test_patterns) - 1,
575 				     0, 0, smiapp_test_patterns);
576 
577 	if (sensor->pixel_array->ctrl_handler.error) {
578 		dev_err(&client->dev,
579 			"pixel array controls initialization failed (%d)\n",
580 			sensor->pixel_array->ctrl_handler.error);
581 		return sensor->pixel_array->ctrl_handler.error;
582 	}
583 
584 	sensor->pixel_array->sd.ctrl_handler =
585 		&sensor->pixel_array->ctrl_handler;
586 
587 	v4l2_ctrl_cluster(2, &sensor->hflip);
588 
589 	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
590 	if (rval)
591 		return rval;
592 
593 	sensor->src->ctrl_handler.lock = &sensor->mutex;
594 
595 	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
596 		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
597 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
598 
599 	if (sensor->src->ctrl_handler.error) {
600 		dev_err(&client->dev,
601 			"src controls initialization failed (%d)\n",
602 			sensor->src->ctrl_handler.error);
603 		return sensor->src->ctrl_handler.error;
604 	}
605 
606 	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
607 
608 	return 0;
609 }
610 
611 /*
612  * For controls that require information on available media bus codes
613  * and linke frequencies.
614  */
smiapp_init_late_controls(struct smiapp_sensor * sensor)615 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
616 {
617 	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
618 		sensor->csi_format->compressed - sensor->compressed_min_bpp];
619 	unsigned int i;
620 
621 	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
622 		int max_value = (1 << sensor->csi_format->width) - 1;
623 
624 		sensor->test_data[i] = v4l2_ctrl_new_std(
625 				&sensor->pixel_array->ctrl_handler,
626 				&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
627 				0, max_value, 1, max_value);
628 	}
629 
630 	sensor->link_freq = v4l2_ctrl_new_int_menu(
631 		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
632 		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
633 		__ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
634 
635 	return sensor->src->ctrl_handler.error;
636 }
637 
smiapp_free_controls(struct smiapp_sensor * sensor)638 static void smiapp_free_controls(struct smiapp_sensor *sensor)
639 {
640 	unsigned int i;
641 
642 	for (i = 0; i < sensor->ssds_used; i++)
643 		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
644 }
645 
smiapp_get_limits(struct smiapp_sensor * sensor,int const * limit,unsigned int n)646 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
647 			     unsigned int n)
648 {
649 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
650 	unsigned int i;
651 	u32 val;
652 	int rval;
653 
654 	for (i = 0; i < n; i++) {
655 		rval = smiapp_read(
656 			sensor, smiapp_reg_limits[limit[i]].addr, &val);
657 		if (rval)
658 			return rval;
659 		sensor->limits[limit[i]] = val;
660 		dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
661 			smiapp_reg_limits[limit[i]].addr,
662 			smiapp_reg_limits[limit[i]].what, val, val);
663 	}
664 
665 	return 0;
666 }
667 
smiapp_get_all_limits(struct smiapp_sensor * sensor)668 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
669 {
670 	unsigned int i;
671 	int rval;
672 
673 	for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
674 		rval = smiapp_get_limits(sensor, &i, 1);
675 		if (rval < 0)
676 			return rval;
677 	}
678 
679 	if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
680 		smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
681 
682 	return 0;
683 }
684 
smiapp_get_limits_binning(struct smiapp_sensor * sensor)685 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
686 {
687 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
688 	static u32 const limits[] = {
689 		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
690 		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
691 		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
692 		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
693 		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
694 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
695 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
696 	};
697 	static u32 const limits_replace[] = {
698 		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
699 		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
700 		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
701 		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
702 		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
703 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
704 		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
705 	};
706 	unsigned int i;
707 	int rval;
708 
709 	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
710 	    SMIAPP_BINNING_CAPABILITY_NO) {
711 		for (i = 0; i < ARRAY_SIZE(limits); i++)
712 			sensor->limits[limits[i]] =
713 				sensor->limits[limits_replace[i]];
714 
715 		return 0;
716 	}
717 
718 	rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
719 	if (rval < 0)
720 		return rval;
721 
722 	/*
723 	 * Sanity check whether the binning limits are valid. If not,
724 	 * use the non-binning ones.
725 	 */
726 	if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
727 	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
728 	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
729 		return 0;
730 
731 	for (i = 0; i < ARRAY_SIZE(limits); i++) {
732 		dev_dbg(&client->dev,
733 			"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
734 			smiapp_reg_limits[limits[i]].addr,
735 			smiapp_reg_limits[limits[i]].what,
736 			sensor->limits[limits_replace[i]],
737 			sensor->limits[limits_replace[i]]);
738 		sensor->limits[limits[i]] =
739 			sensor->limits[limits_replace[i]];
740 	}
741 
742 	return 0;
743 }
744 
smiapp_get_mbus_formats(struct smiapp_sensor * sensor)745 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
746 {
747 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
748 	struct smiapp_pll *pll = &sensor->pll;
749 	u8 compressed_max_bpp = 0;
750 	unsigned int type, n;
751 	unsigned int i, pixel_order;
752 	int rval;
753 
754 	rval = smiapp_read(
755 		sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
756 	if (rval)
757 		return rval;
758 
759 	dev_dbg(&client->dev, "data_format_model_type %d\n", type);
760 
761 	rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
762 			   &pixel_order);
763 	if (rval)
764 		return rval;
765 
766 	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
767 		dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
768 		return -EINVAL;
769 	}
770 
771 	dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
772 		pixel_order_str[pixel_order]);
773 
774 	switch (type) {
775 	case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
776 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
777 		break;
778 	case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
779 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
780 		break;
781 	default:
782 		return -EINVAL;
783 	}
784 
785 	sensor->default_pixel_order = pixel_order;
786 	sensor->mbus_frame_fmts = 0;
787 
788 	for (i = 0; i < n; i++) {
789 		unsigned int fmt, j;
790 
791 		rval = smiapp_read(
792 			sensor,
793 			SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
794 		if (rval)
795 			return rval;
796 
797 		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
798 			i, fmt >> 8, (u8)fmt);
799 
800 		for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
801 			const struct smiapp_csi_data_format *f =
802 				&smiapp_csi_data_formats[j];
803 
804 			if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
805 				continue;
806 
807 			if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
808 				continue;
809 
810 			dev_dbg(&client->dev, "jolly good! %d\n", j);
811 
812 			sensor->default_mbus_frame_fmts |= 1 << j;
813 		}
814 	}
815 
816 	/* Figure out which BPP values can be used with which formats. */
817 	pll->binning_horizontal = 1;
818 	pll->binning_vertical = 1;
819 	pll->scale_m = sensor->scale_m;
820 
821 	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
822 		sensor->compressed_min_bpp =
823 			min(smiapp_csi_data_formats[i].compressed,
824 			    sensor->compressed_min_bpp);
825 		compressed_max_bpp =
826 			max(smiapp_csi_data_formats[i].compressed,
827 			    compressed_max_bpp);
828 	}
829 
830 	sensor->valid_link_freqs = devm_kcalloc(
831 		&client->dev,
832 		compressed_max_bpp - sensor->compressed_min_bpp + 1,
833 		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
834 	if (!sensor->valid_link_freqs)
835 		return -ENOMEM;
836 
837 	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
838 		const struct smiapp_csi_data_format *f =
839 			&smiapp_csi_data_formats[i];
840 		unsigned long *valid_link_freqs =
841 			&sensor->valid_link_freqs[
842 				f->compressed - sensor->compressed_min_bpp];
843 		unsigned int j;
844 
845 		if (!(sensor->default_mbus_frame_fmts & 1 << i))
846 			continue;
847 
848 		pll->bits_per_pixel = f->compressed;
849 
850 		for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
851 			pll->link_freq = sensor->hwcfg->op_sys_clock[j];
852 
853 			rval = smiapp_pll_try(sensor, pll);
854 			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
855 				pll->link_freq, pll->bits_per_pixel,
856 				rval ? "not ok" : "ok");
857 			if (rval)
858 				continue;
859 
860 			set_bit(j, valid_link_freqs);
861 		}
862 
863 		if (!*valid_link_freqs) {
864 			dev_info(&client->dev,
865 				 "no valid link frequencies for %u bpp\n",
866 				 f->compressed);
867 			sensor->default_mbus_frame_fmts &= ~BIT(i);
868 			continue;
869 		}
870 
871 		if (!sensor->csi_format
872 		    || f->width > sensor->csi_format->width
873 		    || (f->width == sensor->csi_format->width
874 			&& f->compressed > sensor->csi_format->compressed)) {
875 			sensor->csi_format = f;
876 			sensor->internal_csi_format = f;
877 		}
878 	}
879 
880 	if (!sensor->csi_format) {
881 		dev_err(&client->dev, "no supported mbus code found\n");
882 		return -EINVAL;
883 	}
884 
885 	smiapp_update_mbus_formats(sensor);
886 
887 	return 0;
888 }
889 
smiapp_update_blanking(struct smiapp_sensor * sensor)890 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
891 {
892 	struct v4l2_ctrl *vblank = sensor->vblank;
893 	struct v4l2_ctrl *hblank = sensor->hblank;
894 	int min, max;
895 
896 	min = max_t(int,
897 		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
898 		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
899 		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
900 	max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
901 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
902 
903 	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
904 
905 	min = max_t(int,
906 		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
907 		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
908 		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
909 	max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
910 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
911 
912 	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
913 
914 	__smiapp_update_exposure_limits(sensor);
915 }
916 
smiapp_update_mode(struct smiapp_sensor * sensor)917 static int smiapp_update_mode(struct smiapp_sensor *sensor)
918 {
919 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
920 	unsigned int binning_mode;
921 	int rval;
922 
923 	/* Binning has to be set up here; it affects limits */
924 	if (sensor->binning_horizontal == 1 &&
925 	    sensor->binning_vertical == 1) {
926 		binning_mode = 0;
927 	} else {
928 		u8 binning_type =
929 			(sensor->binning_horizontal << 4)
930 			| sensor->binning_vertical;
931 
932 		rval = smiapp_write(
933 			sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
934 		if (rval < 0)
935 			return rval;
936 
937 		binning_mode = 1;
938 	}
939 	rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
940 	if (rval < 0)
941 		return rval;
942 
943 	/* Get updated limits due to binning */
944 	rval = smiapp_get_limits_binning(sensor);
945 	if (rval < 0)
946 		return rval;
947 
948 	rval = smiapp_pll_update(sensor);
949 	if (rval < 0)
950 		return rval;
951 
952 	/* Output from pixel array, including blanking */
953 	smiapp_update_blanking(sensor);
954 
955 	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
956 	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
957 
958 	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
959 		sensor->pll.pixel_rate_pixel_array /
960 		((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
961 		  + sensor->hblank->val) *
962 		 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
963 		  + sensor->vblank->val) / 100));
964 
965 	return 0;
966 }
967 
968 /*
969  *
970  * SMIA++ NVM handling
971  *
972  */
smiapp_read_nvm(struct smiapp_sensor * sensor,unsigned char * nvm)973 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
974 			   unsigned char *nvm)
975 {
976 	u32 i, s, p, np, v;
977 	int rval = 0, rval2;
978 
979 	np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
980 	for (p = 0; p < np; p++) {
981 		rval = smiapp_write(
982 			sensor,
983 			SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
984 		if (rval)
985 			goto out;
986 
987 		rval = smiapp_write(sensor,
988 				    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
989 				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
990 				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
991 		if (rval)
992 			goto out;
993 
994 		for (i = 1000; i > 0; i--) {
995 			rval = smiapp_read(
996 				sensor,
997 				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
998 
999 			if (rval)
1000 				goto out;
1001 
1002 			if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
1003 				break;
1004 
1005 		}
1006 		if (!i) {
1007 			rval = -ETIMEDOUT;
1008 			goto out;
1009 		}
1010 
1011 		for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1012 			rval = smiapp_read(
1013 				sensor,
1014 				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1015 				&v);
1016 			if (rval)
1017 				goto out;
1018 
1019 			*nvm++ = v;
1020 		}
1021 	}
1022 
1023 out:
1024 	rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1025 	if (rval < 0)
1026 		return rval;
1027 	else
1028 		return rval2;
1029 }
1030 
1031 /*
1032  *
1033  * SMIA++ CCI address control
1034  *
1035  */
smiapp_change_cci_addr(struct smiapp_sensor * sensor)1036 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1037 {
1038 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1039 	int rval;
1040 	u32 val;
1041 
1042 	client->addr = sensor->hwcfg->i2c_addr_dfl;
1043 
1044 	rval = smiapp_write(sensor,
1045 			    SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1046 			    sensor->hwcfg->i2c_addr_alt << 1);
1047 	if (rval)
1048 		return rval;
1049 
1050 	client->addr = sensor->hwcfg->i2c_addr_alt;
1051 
1052 	/* verify addr change went ok */
1053 	rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1054 	if (rval)
1055 		return rval;
1056 
1057 	if (val != sensor->hwcfg->i2c_addr_alt << 1)
1058 		return -ENODEV;
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  *
1065  * SMIA++ Mode Control
1066  *
1067  */
smiapp_setup_flash_strobe(struct smiapp_sensor * sensor)1068 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1069 {
1070 	struct smiapp_flash_strobe_parms *strobe_setup;
1071 	unsigned int ext_freq = sensor->hwcfg->ext_clk;
1072 	u32 tmp;
1073 	u32 strobe_adjustment;
1074 	u32 strobe_width_high_rs;
1075 	int rval;
1076 
1077 	strobe_setup = sensor->hwcfg->strobe_setup;
1078 
1079 	/*
1080 	 * How to calculate registers related to strobe length. Please
1081 	 * do not change, or if you do at least know what you're
1082 	 * doing. :-)
1083 	 *
1084 	 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1085 	 *
1086 	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1087 	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1088 	 *
1089 	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1090 	 * flash_strobe_adjustment E N, [1 - 0xff]
1091 	 *
1092 	 * The formula above is written as below to keep it on one
1093 	 * line:
1094 	 *
1095 	 * l / 10^6 = w / e * a
1096 	 *
1097 	 * Let's mark w * a by x:
1098 	 *
1099 	 * x = w * a
1100 	 *
1101 	 * Thus, we get:
1102 	 *
1103 	 * x = l * e / 10^6
1104 	 *
1105 	 * The strobe width must be at least as long as requested,
1106 	 * thus rounding upwards is needed.
1107 	 *
1108 	 * x = (l * e + 10^6 - 1) / 10^6
1109 	 * -----------------------------
1110 	 *
1111 	 * Maximum possible accuracy is wanted at all times. Thus keep
1112 	 * a as small as possible.
1113 	 *
1114 	 * Calculate a, assuming maximum w, with rounding upwards:
1115 	 *
1116 	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1117 	 * -------------------------------------
1118 	 *
1119 	 * Thus, we also get w, with that a, with rounding upwards:
1120 	 *
1121 	 * w = (x + a - 1) / a
1122 	 * -------------------
1123 	 *
1124 	 * To get limits:
1125 	 *
1126 	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1127 	 *
1128 	 * Substituting maximum x to the original formula (with rounding),
1129 	 * the maximum l is thus
1130 	 *
1131 	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1132 	 *
1133 	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1134 	 * --------------------------------------------------
1135 	 *
1136 	 * flash_strobe_length must be clamped between 1 and
1137 	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1138 	 *
1139 	 * Then,
1140 	 *
1141 	 * flash_strobe_adjustment = ((flash_strobe_length *
1142 	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1143 	 *
1144 	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1145 	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1146 	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1147 	 */
1148 	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1149 		      1000000 + 1, ext_freq);
1150 	strobe_setup->strobe_width_high_us =
1151 		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1152 
1153 	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1154 			1000000 - 1), 1000000ULL);
1155 	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1156 	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1157 				strobe_adjustment;
1158 
1159 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1160 			    strobe_setup->mode);
1161 	if (rval < 0)
1162 		goto out;
1163 
1164 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1165 			    strobe_adjustment);
1166 	if (rval < 0)
1167 		goto out;
1168 
1169 	rval = smiapp_write(
1170 		sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1171 		strobe_width_high_rs);
1172 	if (rval < 0)
1173 		goto out;
1174 
1175 	rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1176 			    strobe_setup->strobe_delay);
1177 	if (rval < 0)
1178 		goto out;
1179 
1180 	rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1181 			    strobe_setup->stobe_start_point);
1182 	if (rval < 0)
1183 		goto out;
1184 
1185 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1186 			    strobe_setup->trigger);
1187 
1188 out:
1189 	sensor->hwcfg->strobe_setup->trigger = 0;
1190 
1191 	return rval;
1192 }
1193 
1194 /* -----------------------------------------------------------------------------
1195  * Power management
1196  */
1197 
smiapp_power_on(struct device * dev)1198 static int smiapp_power_on(struct device *dev)
1199 {
1200 	struct i2c_client *client = to_i2c_client(dev);
1201 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1202 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1203 	/*
1204 	 * The sub-device related to the I2C device is always the
1205 	 * source one, i.e. ssds[0].
1206 	 */
1207 	struct smiapp_sensor *sensor =
1208 		container_of(ssd, struct smiapp_sensor, ssds[0]);
1209 	unsigned int sleep;
1210 	int rval;
1211 
1212 	rval = regulator_enable(sensor->vana);
1213 	if (rval) {
1214 		dev_err(&client->dev, "failed to enable vana regulator\n");
1215 		return rval;
1216 	}
1217 	usleep_range(1000, 1000);
1218 
1219 	rval = clk_prepare_enable(sensor->ext_clk);
1220 	if (rval < 0) {
1221 		dev_dbg(&client->dev, "failed to enable xclk\n");
1222 		goto out_xclk_fail;
1223 	}
1224 	usleep_range(1000, 1000);
1225 
1226 	gpiod_set_value(sensor->xshutdown, 1);
1227 
1228 	sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
1229 	usleep_range(sleep, sleep);
1230 
1231 	mutex_lock(&sensor->mutex);
1232 
1233 	sensor->active = true;
1234 
1235 	/*
1236 	 * Failures to respond to the address change command have been noticed.
1237 	 * Those failures seem to be caused by the sensor requiring a longer
1238 	 * boot time than advertised. An additional 10ms delay seems to work
1239 	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1240 	 * unnecessary. The failures need to be investigated to find a proper
1241 	 * fix, and a delay will likely need to be added here if the I2C write
1242 	 * retry hack is reverted before the root cause of the boot time issue
1243 	 * is found.
1244 	 */
1245 
1246 	if (sensor->hwcfg->i2c_addr_alt) {
1247 		rval = smiapp_change_cci_addr(sensor);
1248 		if (rval) {
1249 			dev_err(&client->dev, "cci address change error\n");
1250 			goto out_cci_addr_fail;
1251 		}
1252 	}
1253 
1254 	rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1255 			    SMIAPP_SOFTWARE_RESET);
1256 	if (rval < 0) {
1257 		dev_err(&client->dev, "software reset failed\n");
1258 		goto out_cci_addr_fail;
1259 	}
1260 
1261 	if (sensor->hwcfg->i2c_addr_alt) {
1262 		rval = smiapp_change_cci_addr(sensor);
1263 		if (rval) {
1264 			dev_err(&client->dev, "cci address change error\n");
1265 			goto out_cci_addr_fail;
1266 		}
1267 	}
1268 
1269 	rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1270 			    SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1271 	if (rval) {
1272 		dev_err(&client->dev, "compression mode set failed\n");
1273 		goto out_cci_addr_fail;
1274 	}
1275 
1276 	rval = smiapp_write(
1277 		sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1278 		sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
1279 	if (rval) {
1280 		dev_err(&client->dev, "extclk frequency set failed\n");
1281 		goto out_cci_addr_fail;
1282 	}
1283 
1284 	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1285 			    sensor->hwcfg->lanes - 1);
1286 	if (rval) {
1287 		dev_err(&client->dev, "csi lane mode set failed\n");
1288 		goto out_cci_addr_fail;
1289 	}
1290 
1291 	rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1292 			    SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1293 	if (rval) {
1294 		dev_err(&client->dev, "fast standby set failed\n");
1295 		goto out_cci_addr_fail;
1296 	}
1297 
1298 	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1299 			    sensor->hwcfg->csi_signalling_mode);
1300 	if (rval) {
1301 		dev_err(&client->dev, "csi signalling mode set failed\n");
1302 		goto out_cci_addr_fail;
1303 	}
1304 
1305 	/* DPHY control done by sensor based on requested link rate */
1306 	rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1307 			    SMIAPP_DPHY_CTRL_UI);
1308 	if (rval < 0)
1309 		goto out_cci_addr_fail;
1310 
1311 	rval = smiapp_call_quirk(sensor, post_poweron);
1312 	if (rval) {
1313 		dev_err(&client->dev, "post_poweron quirks failed\n");
1314 		goto out_cci_addr_fail;
1315 	}
1316 
1317 	/* Are we still initialising...? If not, proceed with control setup. */
1318 	if (sensor->pixel_array) {
1319 		rval = __v4l2_ctrl_handler_setup(
1320 			&sensor->pixel_array->ctrl_handler);
1321 		if (rval)
1322 			goto out_cci_addr_fail;
1323 
1324 		rval = __v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1325 		if (rval)
1326 			goto out_cci_addr_fail;
1327 
1328 		rval = smiapp_update_mode(sensor);
1329 		if (rval < 0)
1330 			goto out_cci_addr_fail;
1331 	}
1332 
1333 	mutex_unlock(&sensor->mutex);
1334 
1335 	return 0;
1336 
1337 out_cci_addr_fail:
1338 	mutex_unlock(&sensor->mutex);
1339 	gpiod_set_value(sensor->xshutdown, 0);
1340 	clk_disable_unprepare(sensor->ext_clk);
1341 
1342 out_xclk_fail:
1343 	regulator_disable(sensor->vana);
1344 
1345 	return rval;
1346 }
1347 
smiapp_power_off(struct device * dev)1348 static int smiapp_power_off(struct device *dev)
1349 {
1350 	struct i2c_client *client = to_i2c_client(dev);
1351 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1352 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1353 	struct smiapp_sensor *sensor =
1354 		container_of(ssd, struct smiapp_sensor, ssds[0]);
1355 
1356 	mutex_lock(&sensor->mutex);
1357 
1358 	/*
1359 	 * Currently power/clock to lens are enable/disabled separately
1360 	 * but they are essentially the same signals. So if the sensor is
1361 	 * powered off while the lens is powered on the sensor does not
1362 	 * really see a power off and next time the cci address change
1363 	 * will fail. So do a soft reset explicitly here.
1364 	 */
1365 	if (sensor->hwcfg->i2c_addr_alt)
1366 		smiapp_write(sensor,
1367 			     SMIAPP_REG_U8_SOFTWARE_RESET,
1368 			     SMIAPP_SOFTWARE_RESET);
1369 
1370 	sensor->active = false;
1371 
1372 	mutex_unlock(&sensor->mutex);
1373 
1374 	gpiod_set_value(sensor->xshutdown, 0);
1375 	clk_disable_unprepare(sensor->ext_clk);
1376 	usleep_range(5000, 5000);
1377 	regulator_disable(sensor->vana);
1378 	sensor->streaming = false;
1379 
1380 	return 0;
1381 }
1382 
1383 /* -----------------------------------------------------------------------------
1384  * Video stream management
1385  */
1386 
smiapp_start_streaming(struct smiapp_sensor * sensor)1387 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1388 {
1389 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1390 	int rval;
1391 
1392 	mutex_lock(&sensor->mutex);
1393 
1394 	rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1395 			    (sensor->csi_format->width << 8) |
1396 			    sensor->csi_format->compressed);
1397 	if (rval)
1398 		goto out;
1399 
1400 	rval = smiapp_pll_configure(sensor);
1401 	if (rval)
1402 		goto out;
1403 
1404 	/* Analog crop start coordinates */
1405 	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1406 			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1407 	if (rval < 0)
1408 		goto out;
1409 
1410 	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1411 			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1412 	if (rval < 0)
1413 		goto out;
1414 
1415 	/* Analog crop end coordinates */
1416 	rval = smiapp_write(
1417 		sensor, SMIAPP_REG_U16_X_ADDR_END,
1418 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1419 		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1420 	if (rval < 0)
1421 		goto out;
1422 
1423 	rval = smiapp_write(
1424 		sensor, SMIAPP_REG_U16_Y_ADDR_END,
1425 		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1426 		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1427 	if (rval < 0)
1428 		goto out;
1429 
1430 	/*
1431 	 * Output from pixel array, including blanking, is set using
1432 	 * controls below. No need to set here.
1433 	 */
1434 
1435 	/* Digital crop */
1436 	if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1437 	    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1438 		rval = smiapp_write(
1439 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1440 			sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1441 		if (rval < 0)
1442 			goto out;
1443 
1444 		rval = smiapp_write(
1445 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1446 			sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1447 		if (rval < 0)
1448 			goto out;
1449 
1450 		rval = smiapp_write(
1451 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1452 			sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1453 		if (rval < 0)
1454 			goto out;
1455 
1456 		rval = smiapp_write(
1457 			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1458 			sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1459 		if (rval < 0)
1460 			goto out;
1461 	}
1462 
1463 	/* Scaling */
1464 	if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1465 	    != SMIAPP_SCALING_CAPABILITY_NONE) {
1466 		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1467 				    sensor->scaling_mode);
1468 		if (rval < 0)
1469 			goto out;
1470 
1471 		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1472 				    sensor->scale_m);
1473 		if (rval < 0)
1474 			goto out;
1475 	}
1476 
1477 	/* Output size from sensor */
1478 	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1479 			    sensor->src->crop[SMIAPP_PAD_SRC].width);
1480 	if (rval < 0)
1481 		goto out;
1482 	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1483 			    sensor->src->crop[SMIAPP_PAD_SRC].height);
1484 	if (rval < 0)
1485 		goto out;
1486 
1487 	if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1488 	     (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1489 	      SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1490 	    sensor->hwcfg->strobe_setup != NULL &&
1491 	    sensor->hwcfg->strobe_setup->trigger != 0) {
1492 		rval = smiapp_setup_flash_strobe(sensor);
1493 		if (rval)
1494 			goto out;
1495 	}
1496 
1497 	rval = smiapp_call_quirk(sensor, pre_streamon);
1498 	if (rval) {
1499 		dev_err(&client->dev, "pre_streamon quirks failed\n");
1500 		goto out;
1501 	}
1502 
1503 	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1504 			    SMIAPP_MODE_SELECT_STREAMING);
1505 
1506 out:
1507 	mutex_unlock(&sensor->mutex);
1508 
1509 	return rval;
1510 }
1511 
smiapp_stop_streaming(struct smiapp_sensor * sensor)1512 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1513 {
1514 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1515 	int rval;
1516 
1517 	mutex_lock(&sensor->mutex);
1518 	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1519 			    SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1520 	if (rval)
1521 		goto out;
1522 
1523 	rval = smiapp_call_quirk(sensor, post_streamoff);
1524 	if (rval)
1525 		dev_err(&client->dev, "post_streamoff quirks failed\n");
1526 
1527 out:
1528 	mutex_unlock(&sensor->mutex);
1529 	return rval;
1530 }
1531 
1532 /* -----------------------------------------------------------------------------
1533  * V4L2 subdev video operations
1534  */
1535 
smiapp_set_stream(struct v4l2_subdev * subdev,int enable)1536 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1537 {
1538 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1539 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1540 	int rval;
1541 
1542 	if (sensor->streaming == enable)
1543 		return 0;
1544 
1545 	if (enable) {
1546 		rval = pm_runtime_get_sync(&client->dev);
1547 		if (rval < 0) {
1548 			if (rval != -EBUSY && rval != -EAGAIN)
1549 				pm_runtime_set_active(&client->dev);
1550 			pm_runtime_put(&client->dev);
1551 			return rval;
1552 		}
1553 
1554 		sensor->streaming = true;
1555 
1556 		rval = smiapp_start_streaming(sensor);
1557 		if (rval < 0)
1558 			sensor->streaming = false;
1559 	} else {
1560 		rval = smiapp_stop_streaming(sensor);
1561 		sensor->streaming = false;
1562 		pm_runtime_mark_last_busy(&client->dev);
1563 		pm_runtime_put_autosuspend(&client->dev);
1564 	}
1565 
1566 	return rval;
1567 }
1568 
smiapp_enum_mbus_code(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)1569 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1570 				 struct v4l2_subdev_pad_config *cfg,
1571 				 struct v4l2_subdev_mbus_code_enum *code)
1572 {
1573 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1574 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1575 	unsigned int i;
1576 	int idx = -1;
1577 	int rval = -EINVAL;
1578 
1579 	mutex_lock(&sensor->mutex);
1580 
1581 	dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1582 		subdev->name, code->pad, code->index);
1583 
1584 	if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1585 		if (code->index)
1586 			goto out;
1587 
1588 		code->code = sensor->internal_csi_format->code;
1589 		rval = 0;
1590 		goto out;
1591 	}
1592 
1593 	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1594 		if (sensor->mbus_frame_fmts & (1 << i))
1595 			idx++;
1596 
1597 		if (idx == code->index) {
1598 			code->code = smiapp_csi_data_formats[i].code;
1599 			dev_err(&client->dev, "found index %d, i %d, code %x\n",
1600 				code->index, i, code->code);
1601 			rval = 0;
1602 			break;
1603 		}
1604 	}
1605 
1606 out:
1607 	mutex_unlock(&sensor->mutex);
1608 
1609 	return rval;
1610 }
1611 
__smiapp_get_mbus_code(struct v4l2_subdev * subdev,unsigned int pad)1612 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1613 				  unsigned int pad)
1614 {
1615 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1616 
1617 	if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1618 		return sensor->csi_format->code;
1619 	else
1620 		return sensor->internal_csi_format->code;
1621 }
1622 
__smiapp_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1623 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1624 			       struct v4l2_subdev_pad_config *cfg,
1625 			       struct v4l2_subdev_format *fmt)
1626 {
1627 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1628 
1629 	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1630 		fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
1631 							  fmt->pad);
1632 	} else {
1633 		struct v4l2_rect *r;
1634 
1635 		if (fmt->pad == ssd->source_pad)
1636 			r = &ssd->crop[ssd->source_pad];
1637 		else
1638 			r = &ssd->sink_fmt;
1639 
1640 		fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1641 		fmt->format.width = r->width;
1642 		fmt->format.height = r->height;
1643 		fmt->format.field = V4L2_FIELD_NONE;
1644 	}
1645 
1646 	return 0;
1647 }
1648 
smiapp_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1649 static int smiapp_get_format(struct v4l2_subdev *subdev,
1650 			     struct v4l2_subdev_pad_config *cfg,
1651 			     struct v4l2_subdev_format *fmt)
1652 {
1653 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1654 	int rval;
1655 
1656 	mutex_lock(&sensor->mutex);
1657 	rval = __smiapp_get_format(subdev, cfg, fmt);
1658 	mutex_unlock(&sensor->mutex);
1659 
1660 	return rval;
1661 }
1662 
smiapp_get_crop_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_rect ** crops,struct v4l2_rect ** comps,int which)1663 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1664 				    struct v4l2_subdev_pad_config *cfg,
1665 				    struct v4l2_rect **crops,
1666 				    struct v4l2_rect **comps, int which)
1667 {
1668 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1669 	unsigned int i;
1670 
1671 	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1672 		if (crops)
1673 			for (i = 0; i < subdev->entity.num_pads; i++)
1674 				crops[i] = &ssd->crop[i];
1675 		if (comps)
1676 			*comps = &ssd->compose;
1677 	} else {
1678 		if (crops) {
1679 			for (i = 0; i < subdev->entity.num_pads; i++) {
1680 				crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1681 				BUG_ON(!crops[i]);
1682 			}
1683 		}
1684 		if (comps) {
1685 			*comps = v4l2_subdev_get_try_compose(subdev, cfg,
1686 							     SMIAPP_PAD_SINK);
1687 			BUG_ON(!*comps);
1688 		}
1689 	}
1690 }
1691 
1692 /* Changes require propagation only on sink pad. */
smiapp_propagate(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,int which,int target)1693 static void smiapp_propagate(struct v4l2_subdev *subdev,
1694 			     struct v4l2_subdev_pad_config *cfg, int which,
1695 			     int target)
1696 {
1697 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1698 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1699 	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1700 
1701 	smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1702 
1703 	switch (target) {
1704 	case V4L2_SEL_TGT_CROP:
1705 		comp->width = crops[SMIAPP_PAD_SINK]->width;
1706 		comp->height = crops[SMIAPP_PAD_SINK]->height;
1707 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1708 			if (ssd == sensor->scaler) {
1709 				sensor->scale_m =
1710 					sensor->limits[
1711 						SMIAPP_LIMIT_SCALER_N_MIN];
1712 				sensor->scaling_mode =
1713 					SMIAPP_SCALING_MODE_NONE;
1714 			} else if (ssd == sensor->binner) {
1715 				sensor->binning_horizontal = 1;
1716 				sensor->binning_vertical = 1;
1717 			}
1718 		}
1719 		/* Fall through */
1720 	case V4L2_SEL_TGT_COMPOSE:
1721 		*crops[SMIAPP_PAD_SRC] = *comp;
1722 		break;
1723 	default:
1724 		BUG();
1725 	}
1726 }
1727 
1728 static const struct smiapp_csi_data_format
smiapp_validate_csi_data_format(struct smiapp_sensor * sensor,u32 code)1729 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1730 {
1731 	unsigned int i;
1732 
1733 	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1734 		if (sensor->mbus_frame_fmts & (1 << i)
1735 		    && smiapp_csi_data_formats[i].code == code)
1736 			return &smiapp_csi_data_formats[i];
1737 	}
1738 
1739 	return sensor->csi_format;
1740 }
1741 
smiapp_set_format_source(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1742 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1743 				    struct v4l2_subdev_pad_config *cfg,
1744 				    struct v4l2_subdev_format *fmt)
1745 {
1746 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1747 	const struct smiapp_csi_data_format *csi_format,
1748 		*old_csi_format = sensor->csi_format;
1749 	unsigned long *valid_link_freqs;
1750 	u32 code = fmt->format.code;
1751 	unsigned int i;
1752 	int rval;
1753 
1754 	rval = __smiapp_get_format(subdev, cfg, fmt);
1755 	if (rval)
1756 		return rval;
1757 
1758 	/*
1759 	 * Media bus code is changeable on src subdev's source pad. On
1760 	 * other source pads we just get format here.
1761 	 */
1762 	if (subdev != &sensor->src->sd)
1763 		return 0;
1764 
1765 	csi_format = smiapp_validate_csi_data_format(sensor, code);
1766 
1767 	fmt->format.code = csi_format->code;
1768 
1769 	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1770 		return 0;
1771 
1772 	sensor->csi_format = csi_format;
1773 
1774 	if (csi_format->width != old_csi_format->width)
1775 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1776 			__v4l2_ctrl_modify_range(
1777 				sensor->test_data[i], 0,
1778 				(1 << csi_format->width) - 1, 1, 0);
1779 
1780 	if (csi_format->compressed == old_csi_format->compressed)
1781 		return 0;
1782 
1783 	valid_link_freqs =
1784 		&sensor->valid_link_freqs[sensor->csi_format->compressed
1785 					  - sensor->compressed_min_bpp];
1786 
1787 	__v4l2_ctrl_modify_range(
1788 		sensor->link_freq, 0,
1789 		__fls(*valid_link_freqs), ~*valid_link_freqs,
1790 		__ffs(*valid_link_freqs));
1791 
1792 	return smiapp_pll_update(sensor);
1793 }
1794 
smiapp_set_format(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)1795 static int smiapp_set_format(struct v4l2_subdev *subdev,
1796 			     struct v4l2_subdev_pad_config *cfg,
1797 			     struct v4l2_subdev_format *fmt)
1798 {
1799 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1800 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1801 	struct v4l2_rect *crops[SMIAPP_PADS];
1802 
1803 	mutex_lock(&sensor->mutex);
1804 
1805 	if (fmt->pad == ssd->source_pad) {
1806 		int rval;
1807 
1808 		rval = smiapp_set_format_source(subdev, cfg, fmt);
1809 
1810 		mutex_unlock(&sensor->mutex);
1811 
1812 		return rval;
1813 	}
1814 
1815 	/* Sink pad. Width and height are changeable here. */
1816 	fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1817 	fmt->format.width &= ~1;
1818 	fmt->format.height &= ~1;
1819 	fmt->format.field = V4L2_FIELD_NONE;
1820 
1821 	fmt->format.width =
1822 		clamp(fmt->format.width,
1823 		      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1824 		      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1825 	fmt->format.height =
1826 		clamp(fmt->format.height,
1827 		      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1828 		      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1829 
1830 	smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1831 
1832 	crops[ssd->sink_pad]->left = 0;
1833 	crops[ssd->sink_pad]->top = 0;
1834 	crops[ssd->sink_pad]->width = fmt->format.width;
1835 	crops[ssd->sink_pad]->height = fmt->format.height;
1836 	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1837 		ssd->sink_fmt = *crops[ssd->sink_pad];
1838 	smiapp_propagate(subdev, cfg, fmt->which,
1839 			 V4L2_SEL_TGT_CROP);
1840 
1841 	mutex_unlock(&sensor->mutex);
1842 
1843 	return 0;
1844 }
1845 
1846 /*
1847  * Calculate goodness of scaled image size compared to expected image
1848  * size and flags provided.
1849  */
1850 #define SCALING_GOODNESS		100000
1851 #define SCALING_GOODNESS_EXTREME	100000000
scaling_goodness(struct v4l2_subdev * subdev,int w,int ask_w,int h,int ask_h,u32 flags)1852 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1853 			    int h, int ask_h, u32 flags)
1854 {
1855 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1856 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1857 	int val = 0;
1858 
1859 	w &= ~1;
1860 	ask_w &= ~1;
1861 	h &= ~1;
1862 	ask_h &= ~1;
1863 
1864 	if (flags & V4L2_SEL_FLAG_GE) {
1865 		if (w < ask_w)
1866 			val -= SCALING_GOODNESS;
1867 		if (h < ask_h)
1868 			val -= SCALING_GOODNESS;
1869 	}
1870 
1871 	if (flags & V4L2_SEL_FLAG_LE) {
1872 		if (w > ask_w)
1873 			val -= SCALING_GOODNESS;
1874 		if (h > ask_h)
1875 			val -= SCALING_GOODNESS;
1876 	}
1877 
1878 	val -= abs(w - ask_w);
1879 	val -= abs(h - ask_h);
1880 
1881 	if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1882 		val -= SCALING_GOODNESS_EXTREME;
1883 
1884 	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1885 		w, ask_w, h, ask_h, val);
1886 
1887 	return val;
1888 }
1889 
smiapp_set_compose_binner(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)1890 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1891 				      struct v4l2_subdev_pad_config *cfg,
1892 				      struct v4l2_subdev_selection *sel,
1893 				      struct v4l2_rect **crops,
1894 				      struct v4l2_rect *comp)
1895 {
1896 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1897 	unsigned int i;
1898 	unsigned int binh = 1, binv = 1;
1899 	int best = scaling_goodness(
1900 		subdev,
1901 		crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1902 		crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1903 
1904 	for (i = 0; i < sensor->nbinning_subtypes; i++) {
1905 		int this = scaling_goodness(
1906 			subdev,
1907 			crops[SMIAPP_PAD_SINK]->width
1908 			/ sensor->binning_subtypes[i].horizontal,
1909 			sel->r.width,
1910 			crops[SMIAPP_PAD_SINK]->height
1911 			/ sensor->binning_subtypes[i].vertical,
1912 			sel->r.height, sel->flags);
1913 
1914 		if (this > best) {
1915 			binh = sensor->binning_subtypes[i].horizontal;
1916 			binv = sensor->binning_subtypes[i].vertical;
1917 			best = this;
1918 		}
1919 	}
1920 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1921 		sensor->binning_vertical = binv;
1922 		sensor->binning_horizontal = binh;
1923 	}
1924 
1925 	sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1926 	sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1927 }
1928 
1929 /*
1930  * Calculate best scaling ratio and mode for given output resolution.
1931  *
1932  * Try all of these: horizontal ratio, vertical ratio and smallest
1933  * size possible (horizontally).
1934  *
1935  * Also try whether horizontal scaler or full scaler gives a better
1936  * result.
1937  */
smiapp_set_compose_scaler(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)1938 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1939 				      struct v4l2_subdev_pad_config *cfg,
1940 				      struct v4l2_subdev_selection *sel,
1941 				      struct v4l2_rect **crops,
1942 				      struct v4l2_rect *comp)
1943 {
1944 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1945 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1946 	u32 min, max, a, b, max_m;
1947 	u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1948 	int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1949 	u32 try[4];
1950 	u32 ntry = 0;
1951 	unsigned int i;
1952 	int best = INT_MIN;
1953 
1954 	sel->r.width = min_t(unsigned int, sel->r.width,
1955 			     crops[SMIAPP_PAD_SINK]->width);
1956 	sel->r.height = min_t(unsigned int, sel->r.height,
1957 			      crops[SMIAPP_PAD_SINK]->height);
1958 
1959 	a = crops[SMIAPP_PAD_SINK]->width
1960 		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1961 	b = crops[SMIAPP_PAD_SINK]->height
1962 		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1963 	max_m = crops[SMIAPP_PAD_SINK]->width
1964 		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1965 		/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1966 
1967 	a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1968 		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1969 	b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1970 		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1971 	max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1972 		      sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1973 
1974 	dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1975 
1976 	min = min(max_m, min(a, b));
1977 	max = min(max_m, max(a, b));
1978 
1979 	try[ntry] = min;
1980 	ntry++;
1981 	if (min != max) {
1982 		try[ntry] = max;
1983 		ntry++;
1984 	}
1985 	if (max != max_m) {
1986 		try[ntry] = min + 1;
1987 		ntry++;
1988 		if (min != max) {
1989 			try[ntry] = max + 1;
1990 			ntry++;
1991 		}
1992 	}
1993 
1994 	for (i = 0; i < ntry; i++) {
1995 		int this = scaling_goodness(
1996 			subdev,
1997 			crops[SMIAPP_PAD_SINK]->width
1998 			/ try[i]
1999 			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2000 			sel->r.width,
2001 			crops[SMIAPP_PAD_SINK]->height,
2002 			sel->r.height,
2003 			sel->flags);
2004 
2005 		dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2006 
2007 		if (this > best) {
2008 			scale_m = try[i];
2009 			mode = SMIAPP_SCALING_MODE_HORIZONTAL;
2010 			best = this;
2011 		}
2012 
2013 		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2014 		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2015 			continue;
2016 
2017 		this = scaling_goodness(
2018 			subdev, crops[SMIAPP_PAD_SINK]->width
2019 			/ try[i]
2020 			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2021 			sel->r.width,
2022 			crops[SMIAPP_PAD_SINK]->height
2023 			/ try[i]
2024 			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2025 			sel->r.height,
2026 			sel->flags);
2027 
2028 		if (this > best) {
2029 			scale_m = try[i];
2030 			mode = SMIAPP_SCALING_MODE_BOTH;
2031 			best = this;
2032 		}
2033 	}
2034 
2035 	sel->r.width =
2036 		(crops[SMIAPP_PAD_SINK]->width
2037 		 / scale_m
2038 		 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2039 	if (mode == SMIAPP_SCALING_MODE_BOTH)
2040 		sel->r.height =
2041 			(crops[SMIAPP_PAD_SINK]->height
2042 			 / scale_m
2043 			 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2044 			& ~1;
2045 	else
2046 		sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2047 
2048 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2049 		sensor->scale_m = scale_m;
2050 		sensor->scaling_mode = mode;
2051 	}
2052 }
2053 /* We're only called on source pads. This function sets scaling. */
smiapp_set_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2054 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2055 			      struct v4l2_subdev_pad_config *cfg,
2056 			      struct v4l2_subdev_selection *sel)
2057 {
2058 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2059 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2060 	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2061 
2062 	smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2063 
2064 	sel->r.top = 0;
2065 	sel->r.left = 0;
2066 
2067 	if (ssd == sensor->binner)
2068 		smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2069 	else
2070 		smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2071 
2072 	*comp = sel->r;
2073 	smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
2074 
2075 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2076 		return smiapp_update_mode(sensor);
2077 
2078 	return 0;
2079 }
2080 
__smiapp_sel_supported(struct v4l2_subdev * subdev,struct v4l2_subdev_selection * sel)2081 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2082 				  struct v4l2_subdev_selection *sel)
2083 {
2084 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2085 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2086 
2087 	/* We only implement crop in three places. */
2088 	switch (sel->target) {
2089 	case V4L2_SEL_TGT_CROP:
2090 	case V4L2_SEL_TGT_CROP_BOUNDS:
2091 		if (ssd == sensor->pixel_array
2092 		    && sel->pad == SMIAPP_PA_PAD_SRC)
2093 			return 0;
2094 		if (ssd == sensor->src
2095 		    && sel->pad == SMIAPP_PAD_SRC)
2096 			return 0;
2097 		if (ssd == sensor->scaler
2098 		    && sel->pad == SMIAPP_PAD_SINK
2099 		    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2100 		    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2101 			return 0;
2102 		return -EINVAL;
2103 	case V4L2_SEL_TGT_NATIVE_SIZE:
2104 		if (ssd == sensor->pixel_array
2105 		    && sel->pad == SMIAPP_PA_PAD_SRC)
2106 			return 0;
2107 		return -EINVAL;
2108 	case V4L2_SEL_TGT_COMPOSE:
2109 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2110 		if (sel->pad == ssd->source_pad)
2111 			return -EINVAL;
2112 		if (ssd == sensor->binner)
2113 			return 0;
2114 		if (ssd == sensor->scaler
2115 		    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2116 		    != SMIAPP_SCALING_CAPABILITY_NONE)
2117 			return 0;
2118 		/* Fall through */
2119 	default:
2120 		return -EINVAL;
2121 	}
2122 }
2123 
smiapp_set_crop(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2124 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2125 			   struct v4l2_subdev_pad_config *cfg,
2126 			   struct v4l2_subdev_selection *sel)
2127 {
2128 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2129 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2130 	struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2131 	struct v4l2_rect _r;
2132 
2133 	smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2134 
2135 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2136 		if (sel->pad == ssd->sink_pad)
2137 			src_size = &ssd->sink_fmt;
2138 		else
2139 			src_size = &ssd->compose;
2140 	} else {
2141 		if (sel->pad == ssd->sink_pad) {
2142 			_r.left = 0;
2143 			_r.top = 0;
2144 			_r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2145 				->width;
2146 			_r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2147 				->height;
2148 			src_size = &_r;
2149 		} else {
2150 			src_size = v4l2_subdev_get_try_compose(
2151 				subdev, cfg, ssd->sink_pad);
2152 		}
2153 	}
2154 
2155 	if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2156 		sel->r.left = 0;
2157 		sel->r.top = 0;
2158 	}
2159 
2160 	sel->r.width = min(sel->r.width, src_size->width);
2161 	sel->r.height = min(sel->r.height, src_size->height);
2162 
2163 	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2164 	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2165 
2166 	*crops[sel->pad] = sel->r;
2167 
2168 	if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2169 		smiapp_propagate(subdev, cfg, sel->which,
2170 				 V4L2_SEL_TGT_CROP);
2171 
2172 	return 0;
2173 }
2174 
smiapp_get_native_size(struct smiapp_subdev * ssd,struct v4l2_rect * r)2175 static void smiapp_get_native_size(struct smiapp_subdev *ssd,
2176 				    struct v4l2_rect *r)
2177 {
2178 	r->top = 0;
2179 	r->left = 0;
2180 	r->width = ssd->sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2181 	r->height = ssd->sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2182 }
2183 
__smiapp_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2184 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2185 				  struct v4l2_subdev_pad_config *cfg,
2186 				  struct v4l2_subdev_selection *sel)
2187 {
2188 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2189 	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2190 	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2191 	struct v4l2_rect sink_fmt;
2192 	int ret;
2193 
2194 	ret = __smiapp_sel_supported(subdev, sel);
2195 	if (ret)
2196 		return ret;
2197 
2198 	smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2199 
2200 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2201 		sink_fmt = ssd->sink_fmt;
2202 	} else {
2203 		struct v4l2_mbus_framefmt *fmt =
2204 			v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2205 
2206 		sink_fmt.left = 0;
2207 		sink_fmt.top = 0;
2208 		sink_fmt.width = fmt->width;
2209 		sink_fmt.height = fmt->height;
2210 	}
2211 
2212 	switch (sel->target) {
2213 	case V4L2_SEL_TGT_CROP_BOUNDS:
2214 	case V4L2_SEL_TGT_NATIVE_SIZE:
2215 		if (ssd == sensor->pixel_array)
2216 			smiapp_get_native_size(ssd, &sel->r);
2217 		else if (sel->pad == ssd->sink_pad)
2218 			sel->r = sink_fmt;
2219 		else
2220 			sel->r = *comp;
2221 		break;
2222 	case V4L2_SEL_TGT_CROP:
2223 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2224 		sel->r = *crops[sel->pad];
2225 		break;
2226 	case V4L2_SEL_TGT_COMPOSE:
2227 		sel->r = *comp;
2228 		break;
2229 	}
2230 
2231 	return 0;
2232 }
2233 
smiapp_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2234 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2235 				struct v4l2_subdev_pad_config *cfg,
2236 				struct v4l2_subdev_selection *sel)
2237 {
2238 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2239 	int rval;
2240 
2241 	mutex_lock(&sensor->mutex);
2242 	rval = __smiapp_get_selection(subdev, cfg, sel);
2243 	mutex_unlock(&sensor->mutex);
2244 
2245 	return rval;
2246 }
smiapp_set_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)2247 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2248 				struct v4l2_subdev_pad_config *cfg,
2249 				struct v4l2_subdev_selection *sel)
2250 {
2251 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2252 	int ret;
2253 
2254 	ret = __smiapp_sel_supported(subdev, sel);
2255 	if (ret)
2256 		return ret;
2257 
2258 	mutex_lock(&sensor->mutex);
2259 
2260 	sel->r.left = max(0, sel->r.left & ~1);
2261 	sel->r.top = max(0, sel->r.top & ~1);
2262 	sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2263 	sel->r.height =	SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2264 
2265 	sel->r.width = max_t(unsigned int,
2266 			     sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2267 			     sel->r.width);
2268 	sel->r.height = max_t(unsigned int,
2269 			      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2270 			      sel->r.height);
2271 
2272 	switch (sel->target) {
2273 	case V4L2_SEL_TGT_CROP:
2274 		ret = smiapp_set_crop(subdev, cfg, sel);
2275 		break;
2276 	case V4L2_SEL_TGT_COMPOSE:
2277 		ret = smiapp_set_compose(subdev, cfg, sel);
2278 		break;
2279 	default:
2280 		ret = -EINVAL;
2281 	}
2282 
2283 	mutex_unlock(&sensor->mutex);
2284 	return ret;
2285 }
2286 
smiapp_get_skip_frames(struct v4l2_subdev * subdev,u32 * frames)2287 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2288 {
2289 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2290 
2291 	*frames = sensor->frame_skip;
2292 	return 0;
2293 }
2294 
smiapp_get_skip_top_lines(struct v4l2_subdev * subdev,u32 * lines)2295 static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2296 {
2297 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2298 
2299 	*lines = sensor->image_start;
2300 
2301 	return 0;
2302 }
2303 
2304 /* -----------------------------------------------------------------------------
2305  * sysfs attributes
2306  */
2307 
2308 static ssize_t
smiapp_sysfs_nvm_read(struct device * dev,struct device_attribute * attr,char * buf)2309 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2310 		      char *buf)
2311 {
2312 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2313 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2314 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2315 	unsigned int nbytes;
2316 
2317 	if (!sensor->dev_init_done)
2318 		return -EBUSY;
2319 
2320 	if (!sensor->nvm_size) {
2321 		int rval;
2322 
2323 		/* NVM not read yet - read it now */
2324 		sensor->nvm_size = sensor->hwcfg->nvm_size;
2325 
2326 		rval = pm_runtime_get_sync(&client->dev);
2327 		if (rval < 0) {
2328 			if (rval != -EBUSY && rval != -EAGAIN)
2329 				pm_runtime_set_active(&client->dev);
2330 			pm_runtime_put(&client->dev);
2331 			return -ENODEV;
2332 		}
2333 
2334 		if (smiapp_read_nvm(sensor, sensor->nvm)) {
2335 			dev_err(&client->dev, "nvm read failed\n");
2336 			return -ENODEV;
2337 		}
2338 
2339 		pm_runtime_mark_last_busy(&client->dev);
2340 		pm_runtime_put_autosuspend(&client->dev);
2341 	}
2342 	/*
2343 	 * NVM is still way below a PAGE_SIZE, so we can safely
2344 	 * assume this for now.
2345 	 */
2346 	nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2347 	memcpy(buf, sensor->nvm, nbytes);
2348 
2349 	return nbytes;
2350 }
2351 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2352 
2353 static ssize_t
smiapp_sysfs_ident_read(struct device * dev,struct device_attribute * attr,char * buf)2354 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2355 			char *buf)
2356 {
2357 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2358 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2359 	struct smiapp_module_info *minfo = &sensor->minfo;
2360 
2361 	return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2362 			minfo->manufacturer_id, minfo->model_id,
2363 			minfo->revision_number_major) + 1;
2364 }
2365 
2366 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2367 
2368 /* -----------------------------------------------------------------------------
2369  * V4L2 subdev core operations
2370  */
2371 
smiapp_identify_module(struct smiapp_sensor * sensor)2372 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2373 {
2374 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2375 	struct smiapp_module_info *minfo = &sensor->minfo;
2376 	unsigned int i;
2377 	int rval = 0;
2378 
2379 	minfo->name = SMIAPP_NAME;
2380 
2381 	/* Module info */
2382 	rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2383 				 &minfo->manufacturer_id);
2384 	if (!rval)
2385 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2386 					 &minfo->model_id);
2387 	if (!rval)
2388 		rval = smiapp_read_8only(sensor,
2389 					 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2390 					 &minfo->revision_number_major);
2391 	if (!rval)
2392 		rval = smiapp_read_8only(sensor,
2393 					 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2394 					 &minfo->revision_number_minor);
2395 	if (!rval)
2396 		rval = smiapp_read_8only(sensor,
2397 					 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2398 					 &minfo->module_year);
2399 	if (!rval)
2400 		rval = smiapp_read_8only(sensor,
2401 					 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2402 					 &minfo->module_month);
2403 	if (!rval)
2404 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2405 					 &minfo->module_day);
2406 
2407 	/* Sensor info */
2408 	if (!rval)
2409 		rval = smiapp_read_8only(sensor,
2410 					 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2411 					 &minfo->sensor_manufacturer_id);
2412 	if (!rval)
2413 		rval = smiapp_read_8only(sensor,
2414 					 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2415 					 &minfo->sensor_model_id);
2416 	if (!rval)
2417 		rval = smiapp_read_8only(sensor,
2418 					 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2419 					 &minfo->sensor_revision_number);
2420 	if (!rval)
2421 		rval = smiapp_read_8only(sensor,
2422 					 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2423 					 &minfo->sensor_firmware_version);
2424 
2425 	/* SMIA */
2426 	if (!rval)
2427 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2428 					 &minfo->smia_version);
2429 	if (!rval)
2430 		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2431 					 &minfo->smiapp_version);
2432 
2433 	if (rval) {
2434 		dev_err(&client->dev, "sensor detection failed\n");
2435 		return -ENODEV;
2436 	}
2437 
2438 	dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2439 		minfo->manufacturer_id, minfo->model_id);
2440 
2441 	dev_dbg(&client->dev,
2442 		"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2443 		minfo->revision_number_major, minfo->revision_number_minor,
2444 		minfo->module_year, minfo->module_month, minfo->module_day);
2445 
2446 	dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2447 		minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2448 
2449 	dev_dbg(&client->dev,
2450 		"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2451 		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2452 
2453 	dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2454 		minfo->smia_version, minfo->smiapp_version);
2455 
2456 	/*
2457 	 * Some modules have bad data in the lvalues below. Hope the
2458 	 * rvalues have better stuff. The lvalues are module
2459 	 * parameters whereas the rvalues are sensor parameters.
2460 	 */
2461 	if (!minfo->manufacturer_id && !minfo->model_id) {
2462 		minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2463 		minfo->model_id = minfo->sensor_model_id;
2464 		minfo->revision_number_major = minfo->sensor_revision_number;
2465 	}
2466 
2467 	for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2468 		if (smiapp_module_idents[i].manufacturer_id
2469 		    != minfo->manufacturer_id)
2470 			continue;
2471 		if (smiapp_module_idents[i].model_id != minfo->model_id)
2472 			continue;
2473 		if (smiapp_module_idents[i].flags
2474 		    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2475 			if (smiapp_module_idents[i].revision_number_major
2476 			    < minfo->revision_number_major)
2477 				continue;
2478 		} else {
2479 			if (smiapp_module_idents[i].revision_number_major
2480 			    != minfo->revision_number_major)
2481 				continue;
2482 		}
2483 
2484 		minfo->name = smiapp_module_idents[i].name;
2485 		minfo->quirk = smiapp_module_idents[i].quirk;
2486 		break;
2487 	}
2488 
2489 	if (i >= ARRAY_SIZE(smiapp_module_idents))
2490 		dev_warn(&client->dev,
2491 			 "no quirks for this module; let's hope it's fully compliant\n");
2492 
2493 	dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2494 		minfo->name, minfo->manufacturer_id, minfo->model_id,
2495 		minfo->revision_number_major);
2496 
2497 	return 0;
2498 }
2499 
2500 static const struct v4l2_subdev_ops smiapp_ops;
2501 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2502 static const struct media_entity_operations smiapp_entity_ops;
2503 
smiapp_register_subdev(struct smiapp_sensor * sensor,struct smiapp_subdev * ssd,struct smiapp_subdev * sink_ssd,u16 source_pad,u16 sink_pad,u32 link_flags)2504 static int smiapp_register_subdev(struct smiapp_sensor *sensor,
2505 				  struct smiapp_subdev *ssd,
2506 				  struct smiapp_subdev *sink_ssd,
2507 				  u16 source_pad, u16 sink_pad, u32 link_flags)
2508 {
2509 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2510 	int rval;
2511 
2512 	if (!sink_ssd)
2513 		return 0;
2514 
2515 	rval = media_entity_pads_init(&ssd->sd.entity,
2516 				      ssd->npads, ssd->pads);
2517 	if (rval) {
2518 		dev_err(&client->dev,
2519 			"media_entity_pads_init failed\n");
2520 		return rval;
2521 	}
2522 
2523 	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2524 					   &ssd->sd);
2525 	if (rval) {
2526 		dev_err(&client->dev,
2527 			"v4l2_device_register_subdev failed\n");
2528 		return rval;
2529 	}
2530 
2531 	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2532 				     &sink_ssd->sd.entity, sink_pad,
2533 				     link_flags);
2534 	if (rval) {
2535 		dev_err(&client->dev,
2536 			"media_create_pad_link failed\n");
2537 		v4l2_device_unregister_subdev(&ssd->sd);
2538 		return rval;
2539 	}
2540 
2541 	return 0;
2542 }
2543 
smiapp_unregistered(struct v4l2_subdev * subdev)2544 static void smiapp_unregistered(struct v4l2_subdev *subdev)
2545 {
2546 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2547 	unsigned int i;
2548 
2549 	for (i = 1; i < sensor->ssds_used; i++)
2550 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2551 }
2552 
smiapp_registered(struct v4l2_subdev * subdev)2553 static int smiapp_registered(struct v4l2_subdev *subdev)
2554 {
2555 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2556 	int rval;
2557 
2558 	if (sensor->scaler) {
2559 		rval = smiapp_register_subdev(
2560 			sensor, sensor->binner, sensor->scaler,
2561 			SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
2562 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2563 		if (rval < 0)
2564 			return rval;
2565 	}
2566 
2567 	rval = smiapp_register_subdev(
2568 		sensor, sensor->pixel_array, sensor->binner,
2569 		SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
2570 		MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2571 	if (rval)
2572 		goto out_err;
2573 
2574 	return 0;
2575 
2576 out_err:
2577 	smiapp_unregistered(subdev);
2578 
2579 	return rval;
2580 }
2581 
smiapp_cleanup(struct smiapp_sensor * sensor)2582 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2583 {
2584 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2585 
2586 	device_remove_file(&client->dev, &dev_attr_nvm);
2587 	device_remove_file(&client->dev, &dev_attr_ident);
2588 
2589 	smiapp_free_controls(sensor);
2590 }
2591 
smiapp_create_subdev(struct smiapp_sensor * sensor,struct smiapp_subdev * ssd,const char * name,unsigned short num_pads)2592 static void smiapp_create_subdev(struct smiapp_sensor *sensor,
2593 				 struct smiapp_subdev *ssd, const char *name,
2594 				 unsigned short num_pads)
2595 {
2596 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2597 
2598 	if (!ssd)
2599 		return;
2600 
2601 	if (ssd != sensor->src)
2602 		v4l2_subdev_init(&ssd->sd, &smiapp_ops);
2603 
2604 	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2605 	ssd->sensor = sensor;
2606 
2607 	ssd->npads = num_pads;
2608 	ssd->source_pad = num_pads - 1;
2609 
2610 	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2611 
2612 	smiapp_get_native_size(ssd, &ssd->sink_fmt);
2613 
2614 	ssd->compose.width = ssd->sink_fmt.width;
2615 	ssd->compose.height = ssd->sink_fmt.height;
2616 	ssd->crop[ssd->source_pad] = ssd->compose;
2617 	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2618 	if (ssd != sensor->pixel_array) {
2619 		ssd->crop[ssd->sink_pad] = ssd->compose;
2620 		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2621 	}
2622 
2623 	ssd->sd.entity.ops = &smiapp_entity_ops;
2624 
2625 	if (ssd == sensor->src)
2626 		return;
2627 
2628 	ssd->sd.internal_ops = &smiapp_internal_ops;
2629 	ssd->sd.owner = THIS_MODULE;
2630 	ssd->sd.dev = &client->dev;
2631 	v4l2_set_subdevdata(&ssd->sd, client);
2632 }
2633 
smiapp_open(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)2634 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2635 {
2636 	struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2637 	struct smiapp_sensor *sensor = ssd->sensor;
2638 	unsigned int i;
2639 
2640 	mutex_lock(&sensor->mutex);
2641 
2642 	for (i = 0; i < ssd->npads; i++) {
2643 		struct v4l2_mbus_framefmt *try_fmt =
2644 			v4l2_subdev_get_try_format(sd, fh->pad, i);
2645 		struct v4l2_rect *try_crop =
2646 			v4l2_subdev_get_try_crop(sd, fh->pad, i);
2647 		struct v4l2_rect *try_comp;
2648 
2649 		smiapp_get_native_size(ssd, try_crop);
2650 
2651 		try_fmt->width = try_crop->width;
2652 		try_fmt->height = try_crop->height;
2653 		try_fmt->code = sensor->internal_csi_format->code;
2654 		try_fmt->field = V4L2_FIELD_NONE;
2655 
2656 		if (ssd != sensor->pixel_array)
2657 			continue;
2658 
2659 		try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2660 		*try_comp = *try_crop;
2661 	}
2662 
2663 	mutex_unlock(&sensor->mutex);
2664 
2665 	return 0;
2666 }
2667 
2668 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2669 	.s_stream = smiapp_set_stream,
2670 };
2671 
2672 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2673 	.enum_mbus_code = smiapp_enum_mbus_code,
2674 	.get_fmt = smiapp_get_format,
2675 	.set_fmt = smiapp_set_format,
2676 	.get_selection = smiapp_get_selection,
2677 	.set_selection = smiapp_set_selection,
2678 };
2679 
2680 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2681 	.g_skip_frames = smiapp_get_skip_frames,
2682 	.g_skip_top_lines = smiapp_get_skip_top_lines,
2683 };
2684 
2685 static const struct v4l2_subdev_ops smiapp_ops = {
2686 	.video = &smiapp_video_ops,
2687 	.pad = &smiapp_pad_ops,
2688 	.sensor = &smiapp_sensor_ops,
2689 };
2690 
2691 static const struct media_entity_operations smiapp_entity_ops = {
2692 	.link_validate = v4l2_subdev_link_validate,
2693 };
2694 
2695 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2696 	.registered = smiapp_registered,
2697 	.unregistered = smiapp_unregistered,
2698 	.open = smiapp_open,
2699 };
2700 
2701 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2702 	.open = smiapp_open,
2703 };
2704 
2705 /* -----------------------------------------------------------------------------
2706  * I2C Driver
2707  */
2708 
smiapp_suspend(struct device * dev)2709 static int __maybe_unused smiapp_suspend(struct device *dev)
2710 {
2711 	struct i2c_client *client = to_i2c_client(dev);
2712 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2713 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2714 	bool streaming = sensor->streaming;
2715 	int rval;
2716 
2717 	rval = pm_runtime_get_sync(dev);
2718 	if (rval < 0) {
2719 		if (rval != -EBUSY && rval != -EAGAIN)
2720 			pm_runtime_set_active(&client->dev);
2721 		pm_runtime_put(dev);
2722 		return -EAGAIN;
2723 	}
2724 
2725 	if (sensor->streaming)
2726 		smiapp_stop_streaming(sensor);
2727 
2728 	/* save state for resume */
2729 	sensor->streaming = streaming;
2730 
2731 	return 0;
2732 }
2733 
smiapp_resume(struct device * dev)2734 static int __maybe_unused smiapp_resume(struct device *dev)
2735 {
2736 	struct i2c_client *client = to_i2c_client(dev);
2737 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2738 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2739 	int rval = 0;
2740 
2741 	pm_runtime_put(dev);
2742 
2743 	if (sensor->streaming)
2744 		rval = smiapp_start_streaming(sensor);
2745 
2746 	return rval;
2747 }
2748 
smiapp_get_hwconfig(struct device * dev)2749 static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
2750 {
2751 	struct smiapp_hwconfig *hwcfg;
2752 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2753 	struct fwnode_handle *ep;
2754 	struct fwnode_handle *fwnode = dev_fwnode(dev);
2755 	u32 rotation;
2756 	int i;
2757 	int rval;
2758 
2759 	if (!fwnode)
2760 		return dev->platform_data;
2761 
2762 	ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
2763 	if (!ep)
2764 		return NULL;
2765 
2766 	bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
2767 	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2768 	if (rval == -ENXIO) {
2769 		bus_cfg = (struct v4l2_fwnode_endpoint)
2770 			{ .bus_type = V4L2_MBUS_CCP2 };
2771 		rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2772 	}
2773 	if (rval)
2774 		goto out_err;
2775 
2776 	hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
2777 	if (!hwcfg)
2778 		goto out_err;
2779 
2780 	switch (bus_cfg.bus_type) {
2781 	case V4L2_MBUS_CSI2_DPHY:
2782 		hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
2783 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
2784 		break;
2785 	case V4L2_MBUS_CCP2:
2786 		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
2787 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
2788 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
2789 		hwcfg->lanes = 1;
2790 		break;
2791 	default:
2792 		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
2793 		goto out_err;
2794 	}
2795 
2796 	dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
2797 
2798 	rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
2799 	if (!rval) {
2800 		switch (rotation) {
2801 		case 180:
2802 			hwcfg->module_board_orient =
2803 				SMIAPP_MODULE_BOARD_ORIENT_180;
2804 			/* Fall through */
2805 		case 0:
2806 			break;
2807 		default:
2808 			dev_err(dev, "invalid rotation %u\n", rotation);
2809 			goto out_err;
2810 		}
2811 	}
2812 
2813 	/* NVM size is not mandatory */
2814 	fwnode_property_read_u32(fwnode, "nokia,nvm-size", &hwcfg->nvm_size);
2815 
2816 	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
2817 					&hwcfg->ext_clk);
2818 	if (rval)
2819 		dev_info(dev, "can't get clock-frequency\n");
2820 
2821 	dev_dbg(dev, "nvm %d, clk %d, mode %d\n",
2822 		hwcfg->nvm_size, hwcfg->ext_clk, hwcfg->csi_signalling_mode);
2823 
2824 	if (!bus_cfg.nr_of_link_frequencies) {
2825 		dev_warn(dev, "no link frequencies defined\n");
2826 		goto out_err;
2827 	}
2828 
2829 	hwcfg->op_sys_clock = devm_kcalloc(
2830 		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
2831 		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
2832 	if (!hwcfg->op_sys_clock)
2833 		goto out_err;
2834 
2835 	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
2836 		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
2837 		dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
2838 	}
2839 
2840 	v4l2_fwnode_endpoint_free(&bus_cfg);
2841 	fwnode_handle_put(ep);
2842 	return hwcfg;
2843 
2844 out_err:
2845 	v4l2_fwnode_endpoint_free(&bus_cfg);
2846 	fwnode_handle_put(ep);
2847 	return NULL;
2848 }
2849 
smiapp_probe(struct i2c_client * client)2850 static int smiapp_probe(struct i2c_client *client)
2851 {
2852 	struct smiapp_sensor *sensor;
2853 	struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
2854 	unsigned int i;
2855 	int rval;
2856 
2857 	if (hwcfg == NULL)
2858 		return -ENODEV;
2859 
2860 	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2861 	if (sensor == NULL)
2862 		return -ENOMEM;
2863 
2864 	sensor->hwcfg = hwcfg;
2865 	mutex_init(&sensor->mutex);
2866 	sensor->src = &sensor->ssds[sensor->ssds_used];
2867 
2868 	v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2869 	sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2870 
2871 	sensor->vana = devm_regulator_get(&client->dev, "vana");
2872 	if (IS_ERR(sensor->vana)) {
2873 		dev_err(&client->dev, "could not get regulator for vana\n");
2874 		return PTR_ERR(sensor->vana);
2875 	}
2876 
2877 	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2878 	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
2879 		dev_info(&client->dev, "no clock defined, continuing...\n");
2880 		sensor->ext_clk = NULL;
2881 	} else if (IS_ERR(sensor->ext_clk)) {
2882 		dev_err(&client->dev, "could not get clock (%ld)\n",
2883 			PTR_ERR(sensor->ext_clk));
2884 		return -EPROBE_DEFER;
2885 	}
2886 
2887 	if (sensor->ext_clk) {
2888 		if (sensor->hwcfg->ext_clk) {
2889 			unsigned long rate;
2890 
2891 			rval = clk_set_rate(sensor->ext_clk,
2892 					    sensor->hwcfg->ext_clk);
2893 			if (rval < 0) {
2894 				dev_err(&client->dev,
2895 					"unable to set clock freq to %u\n",
2896 					sensor->hwcfg->ext_clk);
2897 				return rval;
2898 			}
2899 
2900 			rate = clk_get_rate(sensor->ext_clk);
2901 			if (rate != sensor->hwcfg->ext_clk) {
2902 				dev_err(&client->dev,
2903 					"can't set clock freq, asked for %u but got %lu\n",
2904 					sensor->hwcfg->ext_clk, rate);
2905 				return rval;
2906 			}
2907 		} else {
2908 			sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
2909 			dev_dbg(&client->dev, "obtained clock freq %u\n",
2910 				sensor->hwcfg->ext_clk);
2911 		}
2912 	} else if (sensor->hwcfg->ext_clk) {
2913 		dev_dbg(&client->dev, "assuming clock freq %u\n",
2914 			sensor->hwcfg->ext_clk);
2915 	} else {
2916 		dev_err(&client->dev, "unable to obtain clock freq\n");
2917 		return -EINVAL;
2918 	}
2919 
2920 	sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
2921 						    GPIOD_OUT_LOW);
2922 	if (IS_ERR(sensor->xshutdown))
2923 		return PTR_ERR(sensor->xshutdown);
2924 
2925 	rval = smiapp_power_on(&client->dev);
2926 	if (rval < 0)
2927 		return rval;
2928 
2929 	rval = smiapp_identify_module(sensor);
2930 	if (rval) {
2931 		rval = -ENODEV;
2932 		goto out_power_off;
2933 	}
2934 
2935 	rval = smiapp_get_all_limits(sensor);
2936 	if (rval) {
2937 		rval = -ENODEV;
2938 		goto out_power_off;
2939 	}
2940 
2941 	rval = smiapp_read_frame_fmt(sensor);
2942 	if (rval) {
2943 		rval = -ENODEV;
2944 		goto out_power_off;
2945 	}
2946 
2947 	/*
2948 	 * Handle Sensor Module orientation on the board.
2949 	 *
2950 	 * The application of H-FLIP and V-FLIP on the sensor is modified by
2951 	 * the sensor orientation on the board.
2952 	 *
2953 	 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2954 	 * both H-FLIP and V-FLIP for normal operation which also implies
2955 	 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2956 	 * controls will need to be internally inverted.
2957 	 *
2958 	 * Rotation also changes the bayer pattern.
2959 	 */
2960 	if (sensor->hwcfg->module_board_orient ==
2961 	    SMIAPP_MODULE_BOARD_ORIENT_180)
2962 		sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2963 					  SMIAPP_IMAGE_ORIENTATION_VFLIP;
2964 
2965 	rval = smiapp_call_quirk(sensor, limits);
2966 	if (rval) {
2967 		dev_err(&client->dev, "limits quirks failed\n");
2968 		goto out_power_off;
2969 	}
2970 
2971 	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2972 		u32 val;
2973 
2974 		rval = smiapp_read(sensor,
2975 				   SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2976 		if (rval < 0) {
2977 			rval = -ENODEV;
2978 			goto out_power_off;
2979 		}
2980 		sensor->nbinning_subtypes = min_t(u8, val,
2981 						  SMIAPP_BINNING_SUBTYPES);
2982 
2983 		for (i = 0; i < sensor->nbinning_subtypes; i++) {
2984 			rval = smiapp_read(
2985 				sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2986 			if (rval < 0) {
2987 				rval = -ENODEV;
2988 				goto out_power_off;
2989 			}
2990 			sensor->binning_subtypes[i] =
2991 				*(struct smiapp_binning_subtype *)&val;
2992 
2993 			dev_dbg(&client->dev, "binning %xx%x\n",
2994 				sensor->binning_subtypes[i].horizontal,
2995 				sensor->binning_subtypes[i].vertical);
2996 		}
2997 	}
2998 	sensor->binning_horizontal = 1;
2999 	sensor->binning_vertical = 1;
3000 
3001 	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3002 		dev_err(&client->dev, "sysfs ident entry creation failed\n");
3003 		rval = -ENOENT;
3004 		goto out_power_off;
3005 	}
3006 	/* SMIA++ NVM initialization - it will be read from the sensor
3007 	 * when it is first requested by userspace.
3008 	 */
3009 	if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) {
3010 		sensor->nvm = devm_kzalloc(&client->dev,
3011 				sensor->hwcfg->nvm_size, GFP_KERNEL);
3012 		if (sensor->nvm == NULL) {
3013 			rval = -ENOMEM;
3014 			goto out_cleanup;
3015 		}
3016 
3017 		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3018 			dev_err(&client->dev, "sysfs nvm entry failed\n");
3019 			rval = -EBUSY;
3020 			goto out_cleanup;
3021 		}
3022 	}
3023 
3024 	/* We consider this as profile 0 sensor if any of these are zero. */
3025 	if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
3026 	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
3027 	    !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
3028 	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
3029 		sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
3030 	} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3031 		   != SMIAPP_SCALING_CAPABILITY_NONE) {
3032 		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3033 		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
3034 			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
3035 		else
3036 			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
3037 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
3038 		sensor->ssds_used++;
3039 	} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
3040 		   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3041 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
3042 		sensor->ssds_used++;
3043 	}
3044 	sensor->binner = &sensor->ssds[sensor->ssds_used];
3045 	sensor->ssds_used++;
3046 	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3047 	sensor->ssds_used++;
3048 
3049 	sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3050 
3051 	/* prepare PLL configuration input values */
3052 	sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
3053 	sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
3054 	sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
3055 	sensor->pll.scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3056 	/* Profile 0 sensors have no separate OP clock branch. */
3057 	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
3058 		sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
3059 
3060 	smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
3061 	smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
3062 	smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);
3063 
3064 	dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
3065 
3066 	sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3067 
3068 	rval = smiapp_init_controls(sensor);
3069 	if (rval < 0)
3070 		goto out_cleanup;
3071 
3072 	rval = smiapp_call_quirk(sensor, init);
3073 	if (rval)
3074 		goto out_cleanup;
3075 
3076 	rval = smiapp_get_mbus_formats(sensor);
3077 	if (rval) {
3078 		rval = -ENODEV;
3079 		goto out_cleanup;
3080 	}
3081 
3082 	rval = smiapp_init_late_controls(sensor);
3083 	if (rval) {
3084 		rval = -ENODEV;
3085 		goto out_cleanup;
3086 	}
3087 
3088 	mutex_lock(&sensor->mutex);
3089 	rval = smiapp_update_mode(sensor);
3090 	mutex_unlock(&sensor->mutex);
3091 	if (rval) {
3092 		dev_err(&client->dev, "update mode failed\n");
3093 		goto out_cleanup;
3094 	}
3095 
3096 	sensor->streaming = false;
3097 	sensor->dev_init_done = true;
3098 
3099 	rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3100 				 sensor->src->pads);
3101 	if (rval < 0)
3102 		goto out_media_entity_cleanup;
3103 
3104 	pm_runtime_set_active(&client->dev);
3105 	pm_runtime_get_noresume(&client->dev);
3106 	pm_runtime_enable(&client->dev);
3107 
3108 	rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
3109 	if (rval < 0)
3110 		goto out_disable_runtime_pm;
3111 
3112 	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3113 	pm_runtime_use_autosuspend(&client->dev);
3114 	pm_runtime_put_autosuspend(&client->dev);
3115 
3116 	return 0;
3117 
3118 out_disable_runtime_pm:
3119 	pm_runtime_disable(&client->dev);
3120 
3121 out_media_entity_cleanup:
3122 	media_entity_cleanup(&sensor->src->sd.entity);
3123 
3124 out_cleanup:
3125 	smiapp_cleanup(sensor);
3126 
3127 out_power_off:
3128 	smiapp_power_off(&client->dev);
3129 
3130 	return rval;
3131 }
3132 
smiapp_remove(struct i2c_client * client)3133 static int smiapp_remove(struct i2c_client *client)
3134 {
3135 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3136 	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3137 	unsigned int i;
3138 
3139 	v4l2_async_unregister_subdev(subdev);
3140 
3141 	pm_runtime_disable(&client->dev);
3142 	if (!pm_runtime_status_suspended(&client->dev))
3143 		smiapp_power_off(&client->dev);
3144 	pm_runtime_set_suspended(&client->dev);
3145 
3146 	for (i = 0; i < sensor->ssds_used; i++) {
3147 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3148 		media_entity_cleanup(&sensor->ssds[i].sd.entity);
3149 	}
3150 	smiapp_cleanup(sensor);
3151 
3152 	return 0;
3153 }
3154 
3155 static const struct of_device_id smiapp_of_table[] = {
3156 	{ .compatible = "nokia,smia" },
3157 	{ },
3158 };
3159 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3160 
3161 static const struct i2c_device_id smiapp_id_table[] = {
3162 	{ SMIAPP_NAME, 0 },
3163 	{ },
3164 };
3165 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3166 
3167 static const struct dev_pm_ops smiapp_pm_ops = {
3168 	SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
3169 	SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
3170 };
3171 
3172 static struct i2c_driver smiapp_i2c_driver = {
3173 	.driver	= {
3174 		.of_match_table = smiapp_of_table,
3175 		.name = SMIAPP_NAME,
3176 		.pm = &smiapp_pm_ops,
3177 	},
3178 	.probe_new = smiapp_probe,
3179 	.remove	= smiapp_remove,
3180 	.id_table = smiapp_id_table,
3181 };
3182 
3183 module_i2c_driver(smiapp_i2c_driver);
3184 
3185 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3186 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3187 MODULE_LICENSE("GPL v2");
3188