1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 *
5 * CX23888 Integrated Consumer Infrared Controller
6 *
7 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
8 */
9
10 #include "cx23885.h"
11 #include "cx23888-ir.h"
12
13 #include <linux/kfifo.h>
14 #include <linux/slab.h>
15
16 #include <media/v4l2-device.h>
17 #include <media/rc-core.h>
18
19 static unsigned int ir_888_debug;
20 module_param(ir_888_debug, int, 0644);
21 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
22
23 #define CX23888_IR_REG_BASE 0x170000
24 /*
25 * These CX23888 register offsets have a straightforward one to one mapping
26 * to the CX23885 register offsets of 0x200 through 0x218
27 */
28 #define CX23888_IR_CNTRL_REG 0x170000
29 #define CNTRL_WIN_3_3 0x00000000
30 #define CNTRL_WIN_4_3 0x00000001
31 #define CNTRL_WIN_3_4 0x00000002
32 #define CNTRL_WIN_4_4 0x00000003
33 #define CNTRL_WIN 0x00000003
34 #define CNTRL_EDG_NONE 0x00000000
35 #define CNTRL_EDG_FALL 0x00000004
36 #define CNTRL_EDG_RISE 0x00000008
37 #define CNTRL_EDG_BOTH 0x0000000C
38 #define CNTRL_EDG 0x0000000C
39 #define CNTRL_DMD 0x00000010
40 #define CNTRL_MOD 0x00000020
41 #define CNTRL_RFE 0x00000040
42 #define CNTRL_TFE 0x00000080
43 #define CNTRL_RXE 0x00000100
44 #define CNTRL_TXE 0x00000200
45 #define CNTRL_RIC 0x00000400
46 #define CNTRL_TIC 0x00000800
47 #define CNTRL_CPL 0x00001000
48 #define CNTRL_LBM 0x00002000
49 #define CNTRL_R 0x00004000
50 /* CX23888 specific control flag */
51 #define CNTRL_IVO 0x00008000
52
53 #define CX23888_IR_TXCLK_REG 0x170004
54 #define TXCLK_TCD 0x0000FFFF
55
56 #define CX23888_IR_RXCLK_REG 0x170008
57 #define RXCLK_RCD 0x0000FFFF
58
59 #define CX23888_IR_CDUTY_REG 0x17000C
60 #define CDUTY_CDC 0x0000000F
61
62 #define CX23888_IR_STATS_REG 0x170010
63 #define STATS_RTO 0x00000001
64 #define STATS_ROR 0x00000002
65 #define STATS_RBY 0x00000004
66 #define STATS_TBY 0x00000008
67 #define STATS_RSR 0x00000010
68 #define STATS_TSR 0x00000020
69
70 #define CX23888_IR_IRQEN_REG 0x170014
71 #define IRQEN_RTE 0x00000001
72 #define IRQEN_ROE 0x00000002
73 #define IRQEN_RSE 0x00000010
74 #define IRQEN_TSE 0x00000020
75
76 #define CX23888_IR_FILTR_REG 0x170018
77 #define FILTR_LPF 0x0000FFFF
78
79 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
80 #define CX23888_IR_FIFO_REG 0x170040
81 #define FIFO_RXTX 0x0000FFFF
82 #define FIFO_RXTX_LVL 0x00010000
83 #define FIFO_RXTX_RTO 0x0001FFFF
84 #define FIFO_RX_NDV 0x00020000
85 #define FIFO_RX_DEPTH 8
86 #define FIFO_TX_DEPTH 8
87
88 /* CX23888 unique registers */
89 #define CX23888_IR_SEEDP_REG 0x17001C
90 #define CX23888_IR_TIMOL_REG 0x170020
91 #define CX23888_IR_WAKE0_REG 0x170024
92 #define CX23888_IR_WAKE1_REG 0x170028
93 #define CX23888_IR_WAKE2_REG 0x17002C
94 #define CX23888_IR_MASK0_REG 0x170030
95 #define CX23888_IR_MASK1_REG 0x170034
96 #define CX23888_IR_MAKS2_REG 0x170038
97 #define CX23888_IR_DPIPG_REG 0x17003C
98 #define CX23888_IR_LEARN_REG 0x170044
99
100 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
101 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
102
103 /*
104 * We use this union internally for convenience, but callers to tx_write
105 * and rx_read will be expecting records of type struct ir_raw_event.
106 * Always ensure the size of this union is dictated by struct ir_raw_event.
107 */
108 union cx23888_ir_fifo_rec {
109 u32 hw_fifo_data;
110 struct ir_raw_event ir_core_data;
111 };
112
113 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
114 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
115
116 struct cx23888_ir_state {
117 struct v4l2_subdev sd;
118 struct cx23885_dev *dev;
119
120 struct v4l2_subdev_ir_parameters rx_params;
121 struct mutex rx_params_lock;
122 atomic_t rxclk_divider;
123 atomic_t rx_invert;
124
125 struct kfifo rx_kfifo;
126 spinlock_t rx_kfifo_lock;
127
128 struct v4l2_subdev_ir_parameters tx_params;
129 struct mutex tx_params_lock;
130 atomic_t txclk_divider;
131 };
132
to_state(struct v4l2_subdev * sd)133 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
134 {
135 return v4l2_get_subdevdata(sd);
136 }
137
138 /*
139 * IR register block read and write functions
140 */
141 static
cx23888_ir_write4(struct cx23885_dev * dev,u32 addr,u32 value)142 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
143 {
144 cx_write(addr, value);
145 return 0;
146 }
147
cx23888_ir_read4(struct cx23885_dev * dev,u32 addr)148 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
149 {
150 return cx_read(addr);
151 }
152
cx23888_ir_and_or4(struct cx23885_dev * dev,u32 addr,u32 and_mask,u32 or_value)153 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
154 u32 and_mask, u32 or_value)
155 {
156 cx_andor(addr, ~and_mask, or_value);
157 return 0;
158 }
159
160 /*
161 * Rx and Tx Clock Divider register computations
162 *
163 * Note the largest clock divider value of 0xffff corresponds to:
164 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
165 * which fits in 21 bits, so we'll use unsigned int for time arguments.
166 */
count_to_clock_divider(unsigned int d)167 static inline u16 count_to_clock_divider(unsigned int d)
168 {
169 if (d > RXCLK_RCD + 1)
170 d = RXCLK_RCD;
171 else if (d < 2)
172 d = 1;
173 else
174 d--;
175 return (u16) d;
176 }
177
ns_to_clock_divider(unsigned int ns)178 static inline u16 ns_to_clock_divider(unsigned int ns)
179 {
180 return count_to_clock_divider(
181 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
182 }
183
clock_divider_to_ns(unsigned int divider)184 static inline unsigned int clock_divider_to_ns(unsigned int divider)
185 {
186 /* Period of the Rx or Tx clock in ns */
187 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
188 CX23888_IR_REFCLK_FREQ / 1000000);
189 }
190
carrier_freq_to_clock_divider(unsigned int freq)191 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
192 {
193 return count_to_clock_divider(
194 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
195 }
196
clock_divider_to_carrier_freq(unsigned int divider)197 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
198 {
199 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
200 }
201
freq_to_clock_divider(unsigned int freq,unsigned int rollovers)202 static inline u16 freq_to_clock_divider(unsigned int freq,
203 unsigned int rollovers)
204 {
205 return count_to_clock_divider(
206 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
207 }
208
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)209 static inline unsigned int clock_divider_to_freq(unsigned int divider,
210 unsigned int rollovers)
211 {
212 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
213 (divider + 1) * rollovers);
214 }
215
216 /*
217 * Low Pass Filter register calculations
218 *
219 * Note the largest count value of 0xffff corresponds to:
220 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
221 * which fits in 21 bits, so we'll use unsigned int for time arguments.
222 */
count_to_lpf_count(unsigned int d)223 static inline u16 count_to_lpf_count(unsigned int d)
224 {
225 if (d > FILTR_LPF)
226 d = FILTR_LPF;
227 else if (d < 4)
228 d = 0;
229 return (u16) d;
230 }
231
ns_to_lpf_count(unsigned int ns)232 static inline u16 ns_to_lpf_count(unsigned int ns)
233 {
234 return count_to_lpf_count(
235 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
236 }
237
lpf_count_to_ns(unsigned int count)238 static inline unsigned int lpf_count_to_ns(unsigned int count)
239 {
240 /* Duration of the Low Pass Filter rejection window in ns */
241 return DIV_ROUND_CLOSEST(count * 1000,
242 CX23888_IR_REFCLK_FREQ / 1000000);
243 }
244
lpf_count_to_us(unsigned int count)245 static inline unsigned int lpf_count_to_us(unsigned int count)
246 {
247 /* Duration of the Low Pass Filter rejection window in us */
248 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
249 }
250
251 /*
252 * FIFO register pulse width count computations
253 */
clock_divider_to_resolution(u16 divider)254 static u32 clock_divider_to_resolution(u16 divider)
255 {
256 /*
257 * Resolution is the duration of 1 tick of the readable portion of
258 * of the pulse width counter as read from the FIFO. The two lsb's are
259 * not readable, hence the << 2. This function returns ns.
260 */
261 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
262 CX23888_IR_REFCLK_FREQ / 1000000);
263 }
264
pulse_width_count_to_ns(u16 count,u16 divider)265 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
266 {
267 u64 n;
268 u32 rem;
269
270 /*
271 * The 2 lsb's of the pulse width timer count are not readable, hence
272 * the (count << 2) | 0x3
273 */
274 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
275 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
276 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
277 n++;
278 return n;
279 }
280
pulse_width_count_to_us(u16 count,u16 divider)281 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
282 {
283 u64 n;
284 u32 rem;
285
286 /*
287 * The 2 lsb's of the pulse width timer count are not readable, hence
288 * the (count << 2) | 0x3
289 */
290 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
291 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
292 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293 n++;
294 return (unsigned int) n;
295 }
296
297 /*
298 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
299 *
300 * The total pulse clock count is an 18 bit pulse width timer count as the most
301 * significant part and (up to) 16 bit clock divider count as a modulus.
302 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
303 * width timer count's least significant bit.
304 */
ns_to_pulse_clocks(u32 ns)305 static u64 ns_to_pulse_clocks(u32 ns)
306 {
307 u64 clocks;
308 u32 rem;
309 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
310 rem = do_div(clocks, 1000); /* /1000 = cycles */
311 if (rem >= 1000 / 2)
312 clocks++;
313 return clocks;
314 }
315
pulse_clocks_to_clock_divider(u64 count)316 static u16 pulse_clocks_to_clock_divider(u64 count)
317 {
318 do_div(count, (FIFO_RXTX << 2) | 0x3);
319
320 /* net result needs to be rounded down and decremented by 1 */
321 if (count > RXCLK_RCD + 1)
322 count = RXCLK_RCD;
323 else if (count < 2)
324 count = 1;
325 else
326 count--;
327 return (u16) count;
328 }
329
330 /*
331 * IR Control Register helpers
332 */
333 enum tx_fifo_watermark {
334 TX_FIFO_HALF_EMPTY = 0,
335 TX_FIFO_EMPTY = CNTRL_TIC,
336 };
337
338 enum rx_fifo_watermark {
339 RX_FIFO_HALF_FULL = 0,
340 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
341 };
342
control_tx_irq_watermark(struct cx23885_dev * dev,enum tx_fifo_watermark level)343 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
344 enum tx_fifo_watermark level)
345 {
346 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
347 }
348
control_rx_irq_watermark(struct cx23885_dev * dev,enum rx_fifo_watermark level)349 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
350 enum rx_fifo_watermark level)
351 {
352 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
353 }
354
control_tx_enable(struct cx23885_dev * dev,bool enable)355 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
356 {
357 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
358 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
359 }
360
control_rx_enable(struct cx23885_dev * dev,bool enable)361 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
362 {
363 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
364 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
365 }
366
control_tx_modulation_enable(struct cx23885_dev * dev,bool enable)367 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
368 bool enable)
369 {
370 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
371 enable ? CNTRL_MOD : 0);
372 }
373
control_rx_demodulation_enable(struct cx23885_dev * dev,bool enable)374 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
375 bool enable)
376 {
377 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
378 enable ? CNTRL_DMD : 0);
379 }
380
control_rx_s_edge_detection(struct cx23885_dev * dev,u32 edge_types)381 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
382 u32 edge_types)
383 {
384 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
385 edge_types & CNTRL_EDG_BOTH);
386 }
387
control_rx_s_carrier_window(struct cx23885_dev * dev,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)388 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
389 unsigned int carrier,
390 unsigned int *carrier_range_low,
391 unsigned int *carrier_range_high)
392 {
393 u32 v;
394 unsigned int c16 = carrier * 16;
395
396 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
397 v = CNTRL_WIN_3_4;
398 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
399 } else {
400 v = CNTRL_WIN_3_3;
401 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
402 }
403
404 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
405 v |= CNTRL_WIN_4_3;
406 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
407 } else {
408 v |= CNTRL_WIN_3_3;
409 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
410 }
411 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
412 }
413
control_tx_polarity_invert(struct cx23885_dev * dev,bool invert)414 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
415 bool invert)
416 {
417 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
418 invert ? CNTRL_CPL : 0);
419 }
420
control_tx_level_invert(struct cx23885_dev * dev,bool invert)421 static inline void control_tx_level_invert(struct cx23885_dev *dev,
422 bool invert)
423 {
424 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
425 invert ? CNTRL_IVO : 0);
426 }
427
428 /*
429 * IR Rx & Tx Clock Register helpers
430 */
txclk_tx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)431 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
432 unsigned int freq,
433 u16 *divider)
434 {
435 *divider = carrier_freq_to_clock_divider(freq);
436 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
437 return clock_divider_to_carrier_freq(*divider);
438 }
439
rxclk_rx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)440 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
441 unsigned int freq,
442 u16 *divider)
443 {
444 *divider = carrier_freq_to_clock_divider(freq);
445 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
446 return clock_divider_to_carrier_freq(*divider);
447 }
448
txclk_tx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)449 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
450 u16 *divider)
451 {
452 u64 pulse_clocks;
453
454 if (ns > IR_MAX_DURATION)
455 ns = IR_MAX_DURATION;
456 pulse_clocks = ns_to_pulse_clocks(ns);
457 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
458 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
459 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
460 }
461
rxclk_rx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)462 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
463 u16 *divider)
464 {
465 u64 pulse_clocks;
466
467 if (ns > IR_MAX_DURATION)
468 ns = IR_MAX_DURATION;
469 pulse_clocks = ns_to_pulse_clocks(ns);
470 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
471 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
472 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
473 }
474
475 /*
476 * IR Tx Carrier Duty Cycle register helpers
477 */
cduty_tx_s_duty_cycle(struct cx23885_dev * dev,unsigned int duty_cycle)478 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
479 unsigned int duty_cycle)
480 {
481 u32 n;
482 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
483 if (n != 0)
484 n--;
485 if (n > 15)
486 n = 15;
487 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
488 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
489 }
490
491 /*
492 * IR Filter Register helpers
493 */
filter_rx_s_min_width(struct cx23885_dev * dev,u32 min_width_ns)494 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
495 {
496 u32 count = ns_to_lpf_count(min_width_ns);
497 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
498 return lpf_count_to_ns(count);
499 }
500
501 /*
502 * IR IRQ Enable Register helpers
503 */
irqenable_rx(struct cx23885_dev * dev,u32 mask)504 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
505 {
506 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
507 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
508 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
509 }
510
irqenable_tx(struct cx23885_dev * dev,u32 mask)511 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
512 {
513 mask &= IRQEN_TSE;
514 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
515 }
516
517 /*
518 * V4L2 Subdevice IR Ops
519 */
cx23888_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)520 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
521 bool *handled)
522 {
523 struct cx23888_ir_state *state = to_state(sd);
524 struct cx23885_dev *dev = state->dev;
525 unsigned long flags;
526
527 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
528 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
529 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
530
531 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
532 unsigned int i, j, k;
533 u32 events, v;
534 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
535
536 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
537 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
538 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
539 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
540
541 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
542 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
543 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
544 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
545
546 *handled = false;
547 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
548 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
549 rto ? "rto" : " ", ror ? "ror" : " ",
550 stats & STATS_TBY ? "tby" : " ",
551 stats & STATS_RBY ? "rby" : " ");
552
553 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
554 tse ? "tse" : " ", rse ? "rse" : " ",
555 rte ? "rte" : " ", roe ? "roe" : " ");
556
557 /*
558 * Transmitter interrupt service
559 */
560 if (tse && tsr) {
561 /*
562 * TODO:
563 * Check the watermark threshold setting
564 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
565 * Push the data to the hardware FIFO.
566 * If there was nothing more to send in the tx_kfifo, disable
567 * the TSR IRQ and notify the v4l2_device.
568 * If there was something in the tx_kfifo, check the tx_kfifo
569 * level and notify the v4l2_device, if it is low.
570 */
571 /* For now, inhibit TSR interrupt until Tx is implemented */
572 irqenable_tx(dev, 0);
573 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
574 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
575 *handled = true;
576 }
577
578 /*
579 * Receiver interrupt service
580 */
581 kror = 0;
582 if ((rse && rsr) || (rte && rto)) {
583 /*
584 * Receive data on RSR to clear the STATS_RSR.
585 * Receive data on RTO, since we may not have yet hit the RSR
586 * watermark when we receive the RTO.
587 */
588 for (i = 0, v = FIFO_RX_NDV;
589 (v & FIFO_RX_NDV) && !kror; i = 0) {
590 for (j = 0;
591 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
592 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
593 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
594 i++;
595 }
596 if (i == 0)
597 break;
598 j = i * sizeof(union cx23888_ir_fifo_rec);
599 k = kfifo_in_locked(&state->rx_kfifo,
600 (unsigned char *) rx_data, j,
601 &state->rx_kfifo_lock);
602 if (k != j)
603 kror++; /* rx_kfifo over run */
604 }
605 *handled = true;
606 }
607
608 events = 0;
609 v = 0;
610 if (kror) {
611 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
612 v4l2_err(sd, "IR receiver software FIFO overrun\n");
613 }
614 if (roe && ror) {
615 /*
616 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
617 * the Rx FIFO Over Run status (STATS_ROR)
618 */
619 v |= CNTRL_RFE;
620 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
621 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
622 }
623 if (rte && rto) {
624 /*
625 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
626 * the Rx Pulse Width Timer Time Out (STATS_RTO)
627 */
628 v |= CNTRL_RXE;
629 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
630 }
631 if (v) {
632 /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
633 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
634 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
635 *handled = true;
636 }
637
638 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
639 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
640 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
641 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
642
643 if (events)
644 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
645 return 0;
646 }
647
648 /* Receiver */
cx23888_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)649 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
650 ssize_t *num)
651 {
652 struct cx23888_ir_state *state = to_state(sd);
653 bool invert = (bool) atomic_read(&state->rx_invert);
654 u16 divider = (u16) atomic_read(&state->rxclk_divider);
655
656 unsigned int i, n;
657 union cx23888_ir_fifo_rec *p;
658 unsigned u, v, w;
659
660 n = count / sizeof(union cx23888_ir_fifo_rec)
661 * sizeof(union cx23888_ir_fifo_rec);
662 if (n == 0) {
663 *num = 0;
664 return 0;
665 }
666
667 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
668
669 n /= sizeof(union cx23888_ir_fifo_rec);
670 *num = n * sizeof(union cx23888_ir_fifo_rec);
671
672 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
673
674 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
675 /* Assume RTO was because of no IR light input */
676 u = 0;
677 w = 1;
678 } else {
679 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
680 if (invert)
681 u = u ? 0 : 1;
682 w = 0;
683 }
684
685 v = (unsigned) pulse_width_count_to_ns(
686 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
687 if (v > IR_MAX_DURATION)
688 v = IR_MAX_DURATION;
689
690 p->ir_core_data = (struct ir_raw_event)
691 { .pulse = u, .duration = v, .timeout = w };
692
693 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
694 v, u ? "mark" : "space", w ? "(timed out)" : "");
695 if (w)
696 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
697 }
698 return 0;
699 }
700
cx23888_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)701 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
702 struct v4l2_subdev_ir_parameters *p)
703 {
704 struct cx23888_ir_state *state = to_state(sd);
705 mutex_lock(&state->rx_params_lock);
706 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
707 mutex_unlock(&state->rx_params_lock);
708 return 0;
709 }
710
cx23888_ir_rx_shutdown(struct v4l2_subdev * sd)711 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
712 {
713 struct cx23888_ir_state *state = to_state(sd);
714 struct cx23885_dev *dev = state->dev;
715
716 mutex_lock(&state->rx_params_lock);
717
718 /* Disable or slow down all IR Rx circuits and counters */
719 irqenable_rx(dev, 0);
720 control_rx_enable(dev, false);
721 control_rx_demodulation_enable(dev, false);
722 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
723 filter_rx_s_min_width(dev, 0);
724 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
725
726 state->rx_params.shutdown = true;
727
728 mutex_unlock(&state->rx_params_lock);
729 return 0;
730 }
731
cx23888_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)732 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
733 struct v4l2_subdev_ir_parameters *p)
734 {
735 struct cx23888_ir_state *state = to_state(sd);
736 struct cx23885_dev *dev = state->dev;
737 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
738 u16 rxclk_divider;
739
740 if (p->shutdown)
741 return cx23888_ir_rx_shutdown(sd);
742
743 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
744 return -ENOSYS;
745
746 mutex_lock(&state->rx_params_lock);
747
748 o->shutdown = p->shutdown;
749
750 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
751
752 o->bytes_per_data_element = p->bytes_per_data_element
753 = sizeof(union cx23888_ir_fifo_rec);
754
755 /* Before we tweak the hardware, we have to disable the receiver */
756 irqenable_rx(dev, 0);
757 control_rx_enable(dev, false);
758
759 control_rx_demodulation_enable(dev, p->modulation);
760 o->modulation = p->modulation;
761
762 if (p->modulation) {
763 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
764 &rxclk_divider);
765
766 o->carrier_freq = p->carrier_freq;
767
768 o->duty_cycle = p->duty_cycle = 50;
769
770 control_rx_s_carrier_window(dev, p->carrier_freq,
771 &p->carrier_range_lower,
772 &p->carrier_range_upper);
773 o->carrier_range_lower = p->carrier_range_lower;
774 o->carrier_range_upper = p->carrier_range_upper;
775
776 p->max_pulse_width =
777 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
778 } else {
779 p->max_pulse_width =
780 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
781 &rxclk_divider);
782 }
783 o->max_pulse_width = p->max_pulse_width;
784 atomic_set(&state->rxclk_divider, rxclk_divider);
785
786 p->noise_filter_min_width =
787 filter_rx_s_min_width(dev, p->noise_filter_min_width);
788 o->noise_filter_min_width = p->noise_filter_min_width;
789
790 p->resolution = clock_divider_to_resolution(rxclk_divider);
791 o->resolution = p->resolution;
792
793 /* FIXME - make this dependent on resolution for better performance */
794 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
795
796 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
797
798 o->invert_level = p->invert_level;
799 atomic_set(&state->rx_invert, p->invert_level);
800
801 o->interrupt_enable = p->interrupt_enable;
802 o->enable = p->enable;
803 if (p->enable) {
804 unsigned long flags;
805
806 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
807 kfifo_reset(&state->rx_kfifo);
808 /* reset tx_fifo too if there is one... */
809 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
810 if (p->interrupt_enable)
811 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
812 control_rx_enable(dev, p->enable);
813 }
814
815 mutex_unlock(&state->rx_params_lock);
816 return 0;
817 }
818
819 /* Transmitter */
cx23888_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)820 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
821 ssize_t *num)
822 {
823 struct cx23888_ir_state *state = to_state(sd);
824 struct cx23885_dev *dev = state->dev;
825 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
826 irqenable_tx(dev, IRQEN_TSE);
827 *num = count;
828 return 0;
829 }
830
cx23888_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)831 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
832 struct v4l2_subdev_ir_parameters *p)
833 {
834 struct cx23888_ir_state *state = to_state(sd);
835 mutex_lock(&state->tx_params_lock);
836 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
837 mutex_unlock(&state->tx_params_lock);
838 return 0;
839 }
840
cx23888_ir_tx_shutdown(struct v4l2_subdev * sd)841 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
842 {
843 struct cx23888_ir_state *state = to_state(sd);
844 struct cx23885_dev *dev = state->dev;
845
846 mutex_lock(&state->tx_params_lock);
847
848 /* Disable or slow down all IR Tx circuits and counters */
849 irqenable_tx(dev, 0);
850 control_tx_enable(dev, false);
851 control_tx_modulation_enable(dev, false);
852 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
853
854 state->tx_params.shutdown = true;
855
856 mutex_unlock(&state->tx_params_lock);
857 return 0;
858 }
859
cx23888_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)860 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
861 struct v4l2_subdev_ir_parameters *p)
862 {
863 struct cx23888_ir_state *state = to_state(sd);
864 struct cx23885_dev *dev = state->dev;
865 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
866 u16 txclk_divider;
867
868 if (p->shutdown)
869 return cx23888_ir_tx_shutdown(sd);
870
871 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
872 return -ENOSYS;
873
874 mutex_lock(&state->tx_params_lock);
875
876 o->shutdown = p->shutdown;
877
878 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
879
880 o->bytes_per_data_element = p->bytes_per_data_element
881 = sizeof(union cx23888_ir_fifo_rec);
882
883 /* Before we tweak the hardware, we have to disable the transmitter */
884 irqenable_tx(dev, 0);
885 control_tx_enable(dev, false);
886
887 control_tx_modulation_enable(dev, p->modulation);
888 o->modulation = p->modulation;
889
890 if (p->modulation) {
891 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
892 &txclk_divider);
893 o->carrier_freq = p->carrier_freq;
894
895 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
896 o->duty_cycle = p->duty_cycle;
897
898 p->max_pulse_width =
899 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
900 } else {
901 p->max_pulse_width =
902 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
903 &txclk_divider);
904 }
905 o->max_pulse_width = p->max_pulse_width;
906 atomic_set(&state->txclk_divider, txclk_divider);
907
908 p->resolution = clock_divider_to_resolution(txclk_divider);
909 o->resolution = p->resolution;
910
911 /* FIXME - make this dependent on resolution for better performance */
912 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
913
914 control_tx_polarity_invert(dev, p->invert_carrier_sense);
915 o->invert_carrier_sense = p->invert_carrier_sense;
916
917 control_tx_level_invert(dev, p->invert_level);
918 o->invert_level = p->invert_level;
919
920 o->interrupt_enable = p->interrupt_enable;
921 o->enable = p->enable;
922 if (p->enable) {
923 if (p->interrupt_enable)
924 irqenable_tx(dev, IRQEN_TSE);
925 control_tx_enable(dev, p->enable);
926 }
927
928 mutex_unlock(&state->tx_params_lock);
929 return 0;
930 }
931
932
933 /*
934 * V4L2 Subdevice Core Ops
935 */
cx23888_ir_log_status(struct v4l2_subdev * sd)936 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
937 {
938 struct cx23888_ir_state *state = to_state(sd);
939 struct cx23885_dev *dev = state->dev;
940 char *s;
941 int i, j;
942
943 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
944 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
945 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
946 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
947 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
948 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
949 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
950
951 v4l2_info(sd, "IR Receiver:\n");
952 v4l2_info(sd, "\tEnabled: %s\n",
953 cntrl & CNTRL_RXE ? "yes" : "no");
954 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
955 cntrl & CNTRL_DMD ? "enabled" : "disabled");
956 v4l2_info(sd, "\tFIFO: %s\n",
957 cntrl & CNTRL_RFE ? "enabled" : "disabled");
958 switch (cntrl & CNTRL_EDG) {
959 case CNTRL_EDG_NONE:
960 s = "disabled";
961 break;
962 case CNTRL_EDG_FALL:
963 s = "falling edge";
964 break;
965 case CNTRL_EDG_RISE:
966 s = "rising edge";
967 break;
968 case CNTRL_EDG_BOTH:
969 s = "rising & falling edges";
970 break;
971 default:
972 s = "??? edge";
973 break;
974 }
975 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
976 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
977 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
978 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
979 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
980 v4l2_info(sd, "\tLoopback mode: %s\n",
981 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
982 if (cntrl & CNTRL_DMD) {
983 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
984 clock_divider_to_carrier_freq(rxclk));
985 switch (cntrl & CNTRL_WIN) {
986 case CNTRL_WIN_3_3:
987 i = 3;
988 j = 3;
989 break;
990 case CNTRL_WIN_4_3:
991 i = 4;
992 j = 3;
993 break;
994 case CNTRL_WIN_3_4:
995 i = 3;
996 j = 4;
997 break;
998 case CNTRL_WIN_4_4:
999 i = 4;
1000 j = 4;
1001 break;
1002 default:
1003 i = 0;
1004 j = 0;
1005 break;
1006 }
1007 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
1008 i, j,
1009 clock_divider_to_freq(rxclk, 16 + j),
1010 clock_divider_to_freq(rxclk, 16 - i));
1011 }
1012 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1013 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1014 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1015 v4l2_info(sd, "\tLow pass filter: %s\n",
1016 filtr ? "enabled" : "disabled");
1017 if (filtr)
1018 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
1019 lpf_count_to_us(filtr),
1020 lpf_count_to_ns(filtr));
1021 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1022 stats & STATS_RTO ? "yes" : "no");
1023 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1024 irqen & IRQEN_RTE ? "enabled" : "disabled");
1025 v4l2_info(sd, "\tFIFO overrun: %s\n",
1026 stats & STATS_ROR ? "yes" : "no");
1027 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1028 irqen & IRQEN_ROE ? "enabled" : "disabled");
1029 v4l2_info(sd, "\tBusy: %s\n",
1030 stats & STATS_RBY ? "yes" : "no");
1031 v4l2_info(sd, "\tFIFO service requested: %s\n",
1032 stats & STATS_RSR ? "yes" : "no");
1033 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1034 irqen & IRQEN_RSE ? "enabled" : "disabled");
1035
1036 v4l2_info(sd, "IR Transmitter:\n");
1037 v4l2_info(sd, "\tEnabled: %s\n",
1038 cntrl & CNTRL_TXE ? "yes" : "no");
1039 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1040 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1041 v4l2_info(sd, "\tFIFO: %s\n",
1042 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1043 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1044 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1045 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1046 cntrl & CNTRL_IVO ? "yes" : "no");
1047 v4l2_info(sd, "\tCarrier polarity: %s\n",
1048 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1049 : "space:noburst mark:burst");
1050 if (cntrl & CNTRL_MOD) {
1051 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1052 clock_divider_to_carrier_freq(txclk));
1053 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1054 cduty + 1);
1055 }
1056 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1057 pulse_width_count_to_us(FIFO_RXTX, txclk),
1058 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1059 v4l2_info(sd, "\tBusy: %s\n",
1060 stats & STATS_TBY ? "yes" : "no");
1061 v4l2_info(sd, "\tFIFO service requested: %s\n",
1062 stats & STATS_TSR ? "yes" : "no");
1063 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1064 irqen & IRQEN_TSE ? "enabled" : "disabled");
1065
1066 return 0;
1067 }
1068
1069 #ifdef CONFIG_VIDEO_ADV_DEBUG
cx23888_ir_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1070 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1071 struct v4l2_dbg_register *reg)
1072 {
1073 struct cx23888_ir_state *state = to_state(sd);
1074 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1075
1076 if ((addr & 0x3) != 0)
1077 return -EINVAL;
1078 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1079 return -EINVAL;
1080 reg->size = 4;
1081 reg->val = cx23888_ir_read4(state->dev, addr);
1082 return 0;
1083 }
1084
cx23888_ir_s_register(struct v4l2_subdev * sd,const struct v4l2_dbg_register * reg)1085 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1086 const struct v4l2_dbg_register *reg)
1087 {
1088 struct cx23888_ir_state *state = to_state(sd);
1089 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1090
1091 if ((addr & 0x3) != 0)
1092 return -EINVAL;
1093 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1094 return -EINVAL;
1095 cx23888_ir_write4(state->dev, addr, reg->val);
1096 return 0;
1097 }
1098 #endif
1099
1100 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1101 .log_status = cx23888_ir_log_status,
1102 #ifdef CONFIG_VIDEO_ADV_DEBUG
1103 .g_register = cx23888_ir_g_register,
1104 .s_register = cx23888_ir_s_register,
1105 #endif
1106 .interrupt_service_routine = cx23888_ir_irq_handler,
1107 };
1108
1109 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1110 .rx_read = cx23888_ir_rx_read,
1111 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1112 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1113
1114 .tx_write = cx23888_ir_tx_write,
1115 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1116 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1117 };
1118
1119 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1120 .core = &cx23888_ir_core_ops,
1121 .ir = &cx23888_ir_ir_ops,
1122 };
1123
1124 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1125 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1126 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1127
1128 .enable = false,
1129 .interrupt_enable = false,
1130 .shutdown = true,
1131
1132 .modulation = true,
1133 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1134
1135 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1136 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1137 .noise_filter_min_width = 333333, /* ns */
1138 .carrier_range_lower = 35000,
1139 .carrier_range_upper = 37000,
1140 .invert_level = false,
1141 };
1142
1143 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1144 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1145 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1146
1147 .enable = false,
1148 .interrupt_enable = false,
1149 .shutdown = true,
1150
1151 .modulation = true,
1152 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1153 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1154 .invert_level = false,
1155 .invert_carrier_sense = false,
1156 };
1157
cx23888_ir_probe(struct cx23885_dev * dev)1158 int cx23888_ir_probe(struct cx23885_dev *dev)
1159 {
1160 struct cx23888_ir_state *state;
1161 struct v4l2_subdev *sd;
1162 struct v4l2_subdev_ir_parameters default_params;
1163 int ret;
1164
1165 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1166 if (state == NULL)
1167 return -ENOMEM;
1168
1169 spin_lock_init(&state->rx_kfifo_lock);
1170 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1171 return -ENOMEM;
1172
1173 state->dev = dev;
1174 sd = &state->sd;
1175
1176 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1177 v4l2_set_subdevdata(sd, state);
1178 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1179 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1180 sd->grp_id = CX23885_HW_888_IR;
1181
1182 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1183 if (ret == 0) {
1184 /*
1185 * Ensure no interrupts arrive from '888 specific conditions,
1186 * since we ignore them in this driver to have commonality with
1187 * similar IR controller cores.
1188 */
1189 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1190
1191 mutex_init(&state->rx_params_lock);
1192 default_params = default_rx_params;
1193 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1194
1195 mutex_init(&state->tx_params_lock);
1196 default_params = default_tx_params;
1197 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1198 } else {
1199 kfifo_free(&state->rx_kfifo);
1200 }
1201 return ret;
1202 }
1203
cx23888_ir_remove(struct cx23885_dev * dev)1204 int cx23888_ir_remove(struct cx23885_dev *dev)
1205 {
1206 struct v4l2_subdev *sd;
1207 struct cx23888_ir_state *state;
1208
1209 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1210 if (sd == NULL)
1211 return -ENODEV;
1212
1213 cx23888_ir_rx_shutdown(sd);
1214 cx23888_ir_tx_shutdown(sd);
1215
1216 state = to_state(sd);
1217 v4l2_device_unregister_subdev(sd);
1218 kfifo_free(&state->rx_kfifo);
1219 kfree(state);
1220 /* Nothing more to free() as state held the actual v4l2_subdev object */
1221 return 0;
1222 }
1223