• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  pti.c - PTI driver for cJTAG data extration
4  *
5  *  Copyright (C) Intel 2010
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  * The PTI (Parallel Trace Interface) driver directs trace data routed from
10  * various parts in the system out through the Intel Penwell PTI port and
11  * out of the mobile device for analysis with a debugging tool
12  * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
13  * compact JTAG, standard.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/console.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/tty.h>
23 #include <linux/tty_driver.h>
24 #include <linux/pci.h>
25 #include <linux/mutex.h>
26 #include <linux/miscdevice.h>
27 #include <linux/intel-pti.h>
28 #include <linux/slab.h>
29 #include <linux/uaccess.h>
30 
31 #define DRIVERNAME		"pti"
32 #define PCINAME			"pciPTI"
33 #define TTYNAME			"ttyPTI"
34 #define CHARNAME		"pti"
35 #define PTITTY_MINOR_START	0
36 #define PTITTY_MINOR_NUM	2
37 #define MAX_APP_IDS		16   /* 128 channel ids / u8 bit size */
38 #define MAX_OS_IDS		16   /* 128 channel ids / u8 bit size */
39 #define MAX_MODEM_IDS		16   /* 128 channel ids / u8 bit size */
40 #define MODEM_BASE_ID		71   /* modem master ID address    */
41 #define CONTROL_ID		72   /* control master ID address  */
42 #define CONSOLE_ID		73   /* console master ID address  */
43 #define OS_BASE_ID		74   /* base OS master ID address  */
44 #define APP_BASE_ID		80   /* base App master ID address */
45 #define CONTROL_FRAME_LEN	32   /* PTI control frame maximum size */
46 #define USER_COPY_SIZE		8192 /* 8Kb buffer for user space copy */
47 #define APERTURE_14		0x3800000 /* offset to first OS write addr */
48 #define APERTURE_LEN		0x400000  /* address length */
49 
50 struct pti_tty {
51 	struct pti_masterchannel *mc;
52 };
53 
54 struct pti_dev {
55 	struct tty_port port[PTITTY_MINOR_NUM];
56 	unsigned long pti_addr;
57 	unsigned long aperture_base;
58 	void __iomem *pti_ioaddr;
59 	u8 ia_app[MAX_APP_IDS];
60 	u8 ia_os[MAX_OS_IDS];
61 	u8 ia_modem[MAX_MODEM_IDS];
62 };
63 
64 /*
65  * This protects access to ia_app, ia_os, and ia_modem,
66  * which keeps track of channels allocated in
67  * an aperture write id.
68  */
69 static DEFINE_MUTEX(alloclock);
70 
71 static const struct pci_device_id pci_ids[] = {
72 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
73 		{0}
74 };
75 
76 static struct tty_driver *pti_tty_driver;
77 static struct pti_dev *drv_data;
78 
79 static unsigned int pti_console_channel;
80 static unsigned int pti_control_channel;
81 
82 /**
83  *  pti_write_to_aperture()- The private write function to PTI HW.
84  *
85  *  @mc: The 'aperture'. It's part of a write address that holds
86  *       a master and channel ID.
87  *  @buf: Data being written to the HW that will ultimately be seen
88  *        in a debugging tool (Fido, Lauterbach).
89  *  @len: Size of buffer.
90  *
91  *  Since each aperture is specified by a unique
92  *  master/channel ID, no two processes will be writing
93  *  to the same aperture at the same time so no lock is required. The
94  *  PTI-Output agent will send these out in the order that they arrived, and
95  *  thus, it will intermix these messages. The debug tool can then later
96  *  regroup the appropriate message segments together reconstituting each
97  *  message.
98  */
pti_write_to_aperture(struct pti_masterchannel * mc,u8 * buf,int len)99 static void pti_write_to_aperture(struct pti_masterchannel *mc,
100 				  u8 *buf,
101 				  int len)
102 {
103 	int dwordcnt;
104 	int final;
105 	int i;
106 	u32 ptiword;
107 	u32 __iomem *aperture;
108 	u8 *p = buf;
109 
110 	/*
111 	 * calculate the aperture offset from the base using the master and
112 	 * channel id's.
113 	 */
114 	aperture = drv_data->pti_ioaddr + (mc->master << 15)
115 		+ (mc->channel << 8);
116 
117 	dwordcnt = len >> 2;
118 	final = len - (dwordcnt << 2);	    /* final = trailing bytes    */
119 	if (final == 0 && dwordcnt != 0) {  /* always need a final dword */
120 		final += 4;
121 		dwordcnt--;
122 	}
123 
124 	for (i = 0; i < dwordcnt; i++) {
125 		ptiword = be32_to_cpu(*(u32 *)p);
126 		p += 4;
127 		iowrite32(ptiword, aperture);
128 	}
129 
130 	aperture += PTI_LASTDWORD_DTS;	/* adding DTS signals that is EOM */
131 
132 	ptiword = 0;
133 	for (i = 0; i < final; i++)
134 		ptiword |= *p++ << (24-(8*i));
135 
136 	iowrite32(ptiword, aperture);
137 	return;
138 }
139 
140 /**
141  *  pti_control_frame_built_and_sent()- control frame build and send function.
142  *
143  *  @mc:          The master / channel structure on which the function
144  *                built a control frame.
145  *  @thread_name: The thread name associated with the master / channel or
146  *                'NULL' if using the 'current' global variable.
147  *
148  *  To be able to post process the PTI contents on host side, a control frame
149  *  is added before sending any PTI content. So the host side knows on
150  *  each PTI frame the name of the thread using a dedicated master / channel.
151  *  The thread name is retrieved from 'current' global variable if 'thread_name'
152  *  is 'NULL', else it is retrieved from 'thread_name' parameter.
153  *  This function builds this frame and sends it to a master ID CONTROL_ID.
154  *  The overhead is only 32 bytes since the driver only writes to HW
155  *  in 32 byte chunks.
156  */
pti_control_frame_built_and_sent(struct pti_masterchannel * mc,const char * thread_name)157 static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
158 					     const char *thread_name)
159 {
160 	/*
161 	 * Since we access the comm member in current's task_struct, we only
162 	 * need to be as large as what 'comm' in that structure is.
163 	 */
164 	char comm[TASK_COMM_LEN];
165 	struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
166 					      .channel = 0};
167 	const char *thread_name_p;
168 	const char *control_format = "%3d %3d %s";
169 	u8 control_frame[CONTROL_FRAME_LEN];
170 
171 	if (!thread_name) {
172 		if (!in_interrupt())
173 			get_task_comm(comm, current);
174 		else
175 			strncpy(comm, "Interrupt", TASK_COMM_LEN);
176 
177 		/* Absolutely ensure our buffer is zero terminated. */
178 		comm[TASK_COMM_LEN-1] = 0;
179 		thread_name_p = comm;
180 	} else {
181 		thread_name_p = thread_name;
182 	}
183 
184 	mccontrol.channel = pti_control_channel;
185 	pti_control_channel = (pti_control_channel + 1) & 0x7f;
186 
187 	snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
188 		mc->channel, thread_name_p);
189 	pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
190 }
191 
192 /**
193  *  pti_write_full_frame_to_aperture()- high level function to
194  *					write to PTI.
195  *
196  *  @mc:  The 'aperture'. It's part of a write address that holds
197  *        a master and channel ID.
198  *  @buf: Data being written to the HW that will ultimately be seen
199  *        in a debugging tool (Fido, Lauterbach).
200  *  @len: Size of buffer.
201  *
202  *  All threads sending data (either console, user space application, ...)
203  *  are calling the high level function to write to PTI meaning that it is
204  *  possible to add a control frame before sending the content.
205  */
pti_write_full_frame_to_aperture(struct pti_masterchannel * mc,const unsigned char * buf,int len)206 static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
207 						const unsigned char *buf,
208 						int len)
209 {
210 	pti_control_frame_built_and_sent(mc, NULL);
211 	pti_write_to_aperture(mc, (u8 *)buf, len);
212 }
213 
214 /**
215  * get_id()- Allocate a master and channel ID.
216  *
217  * @id_array:    an array of bits representing what channel
218  *               id's are allocated for writing.
219  * @max_ids:     The max amount of available write IDs to use.
220  * @base_id:     The starting SW channel ID, based on the Intel
221  *               PTI arch.
222  * @thread_name: The thread name associated with the master / channel or
223  *               'NULL' if using the 'current' global variable.
224  *
225  * Returns:
226  *	pti_masterchannel struct with master, channel ID address
227  *	0 for error
228  *
229  * Each bit in the arrays ia_app and ia_os correspond to a master and
230  * channel id. The bit is one if the id is taken and 0 if free. For
231  * every master there are 128 channel id's.
232  */
get_id(u8 * id_array,int max_ids,int base_id,const char * thread_name)233 static struct pti_masterchannel *get_id(u8 *id_array,
234 					int max_ids,
235 					int base_id,
236 					const char *thread_name)
237 {
238 	struct pti_masterchannel *mc;
239 	int i, j, mask;
240 
241 	mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
242 	if (mc == NULL)
243 		return NULL;
244 
245 	/* look for a byte with a free bit */
246 	for (i = 0; i < max_ids; i++)
247 		if (id_array[i] != 0xff)
248 			break;
249 	if (i == max_ids) {
250 		kfree(mc);
251 		return NULL;
252 	}
253 	/* find the bit in the 128 possible channel opportunities */
254 	mask = 0x80;
255 	for (j = 0; j < 8; j++) {
256 		if ((id_array[i] & mask) == 0)
257 			break;
258 		mask >>= 1;
259 	}
260 
261 	/* grab it */
262 	id_array[i] |= mask;
263 	mc->master  = base_id;
264 	mc->channel = ((i & 0xf)<<3) + j;
265 	/* write new master Id / channel Id allocation to channel control */
266 	pti_control_frame_built_and_sent(mc, thread_name);
267 	return mc;
268 }
269 
270 /*
271  * The following three functions:
272  * pti_request_mastercahannel(), mipi_release_masterchannel()
273  * and pti_writedata() are an API for other kernel drivers to
274  * access PTI.
275  */
276 
277 /**
278  * pti_request_masterchannel()- Kernel API function used to allocate
279  *				a master, channel ID address
280  *				to write to PTI HW.
281  *
282  * @type:        0- request Application  master, channel aperture ID
283  *                  write address.
284  *               1- request OS master, channel aperture ID write
285  *                  address.
286  *               2- request Modem master, channel aperture ID
287  *                  write address.
288  *               Other values, error.
289  * @thread_name: The thread name associated with the master / channel or
290  *               'NULL' if using the 'current' global variable.
291  *
292  * Returns:
293  *	pti_masterchannel struct
294  *	0 for error
295  */
pti_request_masterchannel(u8 type,const char * thread_name)296 struct pti_masterchannel *pti_request_masterchannel(u8 type,
297 						    const char *thread_name)
298 {
299 	struct pti_masterchannel *mc;
300 
301 	mutex_lock(&alloclock);
302 
303 	switch (type) {
304 
305 	case 0:
306 		mc = get_id(drv_data->ia_app, MAX_APP_IDS,
307 			    APP_BASE_ID, thread_name);
308 		break;
309 
310 	case 1:
311 		mc = get_id(drv_data->ia_os, MAX_OS_IDS,
312 			    OS_BASE_ID, thread_name);
313 		break;
314 
315 	case 2:
316 		mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
317 			    MODEM_BASE_ID, thread_name);
318 		break;
319 	default:
320 		mc = NULL;
321 	}
322 
323 	mutex_unlock(&alloclock);
324 	return mc;
325 }
326 EXPORT_SYMBOL_GPL(pti_request_masterchannel);
327 
328 /**
329  * pti_release_masterchannel()- Kernel API function used to release
330  *				a master, channel ID address
331  *				used to write to PTI HW.
332  *
333  * @mc: master, channel apeture ID address to be released.  This
334  *      will de-allocate the structure via kfree().
335  */
pti_release_masterchannel(struct pti_masterchannel * mc)336 void pti_release_masterchannel(struct pti_masterchannel *mc)
337 {
338 	u8 master, channel, i;
339 
340 	mutex_lock(&alloclock);
341 
342 	if (mc) {
343 		master = mc->master;
344 		channel = mc->channel;
345 
346 		if (master == APP_BASE_ID) {
347 			i = channel >> 3;
348 			drv_data->ia_app[i] &=  ~(0x80>>(channel & 0x7));
349 		} else if (master == OS_BASE_ID) {
350 			i = channel >> 3;
351 			drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
352 		} else {
353 			i = channel >> 3;
354 			drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
355 		}
356 
357 		kfree(mc);
358 	}
359 
360 	mutex_unlock(&alloclock);
361 }
362 EXPORT_SYMBOL_GPL(pti_release_masterchannel);
363 
364 /**
365  * pti_writedata()- Kernel API function used to write trace
366  *                  debugging data to PTI HW.
367  *
368  * @mc:    Master, channel aperture ID address to write to.
369  *         Null value will return with no write occurring.
370  * @buf:   Trace debuging data to write to the PTI HW.
371  *         Null value will return with no write occurring.
372  * @count: Size of buf. Value of 0 or a negative number will
373  *         return with no write occuring.
374  */
pti_writedata(struct pti_masterchannel * mc,u8 * buf,int count)375 void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
376 {
377 	/*
378 	 * since this function is exported, this is treated like an
379 	 * API function, thus, all parameters should
380 	 * be checked for validity.
381 	 */
382 	if ((mc != NULL) && (buf != NULL) && (count > 0))
383 		pti_write_to_aperture(mc, buf, count);
384 	return;
385 }
386 EXPORT_SYMBOL_GPL(pti_writedata);
387 
388 /*
389  * for the tty_driver_*() basic function descriptions, see tty_driver.h.
390  * Specific header comments made for PTI-related specifics.
391  */
392 
393 /**
394  * pti_tty_driver_open()- Open an Application master, channel aperture
395  * ID to the PTI device via tty device.
396  *
397  * @tty: tty interface.
398  * @filp: filp interface pased to tty_port_open() call.
399  *
400  * Returns:
401  *	int, 0 for success
402  *	otherwise, fail value
403  *
404  * The main purpose of using the tty device interface is for
405  * each tty port to have a unique PTI write aperture.  In an
406  * example use case, ttyPTI0 gets syslogd and an APP aperture
407  * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
408  * modem messages into PTI.  Modem trace data does not have to
409  * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
410  * master IDs.  These messages go through the PTI HW and out of
411  * the handheld platform and to the Fido/Lauterbach device.
412  */
pti_tty_driver_open(struct tty_struct * tty,struct file * filp)413 static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
414 {
415 	/*
416 	 * we actually want to allocate a new channel per open, per
417 	 * system arch.  HW gives more than plenty channels for a single
418 	 * system task to have its own channel to write trace data. This
419 	 * also removes a locking requirement for the actual write
420 	 * procedure.
421 	 */
422 	return tty_port_open(tty->port, tty, filp);
423 }
424 
425 /**
426  * pti_tty_driver_close()- close tty device and release Application
427  * master, channel aperture ID to the PTI device via tty device.
428  *
429  * @tty: tty interface.
430  * @filp: filp interface pased to tty_port_close() call.
431  *
432  * The main purpose of using the tty device interface is to route
433  * syslog daemon messages to the PTI HW and out of the handheld platform
434  * and to the Fido/Lauterbach device.
435  */
pti_tty_driver_close(struct tty_struct * tty,struct file * filp)436 static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
437 {
438 	tty_port_close(tty->port, tty, filp);
439 }
440 
441 /**
442  * pti_tty_install()- Used to set up specific master-channels
443  *		      to tty ports for organizational purposes when
444  *		      tracing viewed from debuging tools.
445  *
446  * @driver: tty driver information.
447  * @tty: tty struct containing pti information.
448  *
449  * Returns:
450  *	0 for success
451  *	otherwise, error
452  */
pti_tty_install(struct tty_driver * driver,struct tty_struct * tty)453 static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
454 {
455 	int idx = tty->index;
456 	struct pti_tty *pti_tty_data;
457 	int ret = tty_standard_install(driver, tty);
458 
459 	if (ret == 0) {
460 		pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
461 		if (pti_tty_data == NULL)
462 			return -ENOMEM;
463 
464 		if (idx == PTITTY_MINOR_START)
465 			pti_tty_data->mc = pti_request_masterchannel(0, NULL);
466 		else
467 			pti_tty_data->mc = pti_request_masterchannel(2, NULL);
468 
469 		if (pti_tty_data->mc == NULL) {
470 			kfree(pti_tty_data);
471 			return -ENXIO;
472 		}
473 		tty->driver_data = pti_tty_data;
474 	}
475 
476 	return ret;
477 }
478 
479 /**
480  * pti_tty_cleanup()- Used to de-allocate master-channel resources
481  *		      tied to tty's of this driver.
482  *
483  * @tty: tty struct containing pti information.
484  */
pti_tty_cleanup(struct tty_struct * tty)485 static void pti_tty_cleanup(struct tty_struct *tty)
486 {
487 	struct pti_tty *pti_tty_data = tty->driver_data;
488 	if (pti_tty_data == NULL)
489 		return;
490 	pti_release_masterchannel(pti_tty_data->mc);
491 	kfree(pti_tty_data);
492 	tty->driver_data = NULL;
493 }
494 
495 /**
496  * pti_tty_driver_write()-  Write trace debugging data through the char
497  * interface to the PTI HW.  Part of the misc device implementation.
498  *
499  * @filp: Contains private data which is used to obtain
500  *        master, channel write ID.
501  * @data: trace data to be written.
502  * @len:  # of byte to write.
503  *
504  * Returns:
505  *	int, # of bytes written
506  *	otherwise, error
507  */
pti_tty_driver_write(struct tty_struct * tty,const unsigned char * buf,int len)508 static int pti_tty_driver_write(struct tty_struct *tty,
509 	const unsigned char *buf, int len)
510 {
511 	struct pti_tty *pti_tty_data = tty->driver_data;
512 	if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
513 		pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
514 		return len;
515 	}
516 	/*
517 	 * we can't write to the pti hardware if the private driver_data
518 	 * and the mc address is not there.
519 	 */
520 	else
521 		return -EFAULT;
522 }
523 
524 /**
525  * pti_tty_write_room()- Always returns 2048.
526  *
527  * @tty: contains tty info of the pti driver.
528  */
pti_tty_write_room(struct tty_struct * tty)529 static int pti_tty_write_room(struct tty_struct *tty)
530 {
531 	return 2048;
532 }
533 
534 /**
535  * pti_char_open()- Open an Application master, channel aperture
536  * ID to the PTI device. Part of the misc device implementation.
537  *
538  * @inode: not used.
539  * @filp:  Output- will have a masterchannel struct set containing
540  *                 the allocated application PTI aperture write address.
541  *
542  * Returns:
543  *	int, 0 for success
544  *	otherwise, a fail value
545  */
pti_char_open(struct inode * inode,struct file * filp)546 static int pti_char_open(struct inode *inode, struct file *filp)
547 {
548 	struct pti_masterchannel *mc;
549 
550 	/*
551 	 * We really do want to fail immediately if
552 	 * pti_request_masterchannel() fails,
553 	 * before assigning the value to filp->private_data.
554 	 * Slightly easier to debug if this driver needs debugging.
555 	 */
556 	mc = pti_request_masterchannel(0, NULL);
557 	if (mc == NULL)
558 		return -ENOMEM;
559 	filp->private_data = mc;
560 	return 0;
561 }
562 
563 /**
564  * pti_char_release()-  Close a char channel to the PTI device. Part
565  * of the misc device implementation.
566  *
567  * @inode: Not used in this implementaiton.
568  * @filp:  Contains private_data that contains the master, channel
569  *         ID to be released by the PTI device.
570  *
571  * Returns:
572  *	always 0
573  */
pti_char_release(struct inode * inode,struct file * filp)574 static int pti_char_release(struct inode *inode, struct file *filp)
575 {
576 	pti_release_masterchannel(filp->private_data);
577 	filp->private_data = NULL;
578 	return 0;
579 }
580 
581 /**
582  * pti_char_write()-  Write trace debugging data through the char
583  * interface to the PTI HW.  Part of the misc device implementation.
584  *
585  * @filp:  Contains private data which is used to obtain
586  *         master, channel write ID.
587  * @data:  trace data to be written.
588  * @len:   # of byte to write.
589  * @ppose: Not used in this function implementation.
590  *
591  * Returns:
592  *	int, # of bytes written
593  *	otherwise, error value
594  *
595  * Notes: From side discussions with Alan Cox and experimenting
596  * with PTI debug HW like Nokia's Fido box and Lauterbach
597  * devices, 8192 byte write buffer used by USER_COPY_SIZE was
598  * deemed an appropriate size for this type of usage with
599  * debugging HW.
600  */
pti_char_write(struct file * filp,const char __user * data,size_t len,loff_t * ppose)601 static ssize_t pti_char_write(struct file *filp, const char __user *data,
602 			      size_t len, loff_t *ppose)
603 {
604 	struct pti_masterchannel *mc;
605 	void *kbuf;
606 	const char __user *tmp;
607 	size_t size = USER_COPY_SIZE;
608 	size_t n = 0;
609 
610 	tmp = data;
611 	mc = filp->private_data;
612 
613 	kbuf = kmalloc(size, GFP_KERNEL);
614 	if (kbuf == NULL)  {
615 		pr_err("%s(%d): buf allocation failed\n",
616 			__func__, __LINE__);
617 		return -ENOMEM;
618 	}
619 
620 	do {
621 		if (len - n > USER_COPY_SIZE)
622 			size = USER_COPY_SIZE;
623 		else
624 			size = len - n;
625 
626 		if (copy_from_user(kbuf, tmp, size)) {
627 			kfree(kbuf);
628 			return n ? n : -EFAULT;
629 		}
630 
631 		pti_write_to_aperture(mc, kbuf, size);
632 		n  += size;
633 		tmp += size;
634 
635 	} while (len > n);
636 
637 	kfree(kbuf);
638 	return len;
639 }
640 
641 static const struct tty_operations pti_tty_driver_ops = {
642 	.open		= pti_tty_driver_open,
643 	.close		= pti_tty_driver_close,
644 	.write		= pti_tty_driver_write,
645 	.write_room	= pti_tty_write_room,
646 	.install	= pti_tty_install,
647 	.cleanup	= pti_tty_cleanup
648 };
649 
650 static const struct file_operations pti_char_driver_ops = {
651 	.owner		= THIS_MODULE,
652 	.write		= pti_char_write,
653 	.open		= pti_char_open,
654 	.release	= pti_char_release,
655 };
656 
657 static struct miscdevice pti_char_driver = {
658 	.minor		= MISC_DYNAMIC_MINOR,
659 	.name		= CHARNAME,
660 	.fops		= &pti_char_driver_ops
661 };
662 
663 /**
664  * pti_console_write()-  Write to the console that has been acquired.
665  *
666  * @c:   Not used in this implementaiton.
667  * @buf: Data to be written.
668  * @len: Length of buf.
669  */
pti_console_write(struct console * c,const char * buf,unsigned len)670 static void pti_console_write(struct console *c, const char *buf, unsigned len)
671 {
672 	static struct pti_masterchannel mc = {.master  = CONSOLE_ID,
673 					      .channel = 0};
674 
675 	mc.channel = pti_console_channel;
676 	pti_console_channel = (pti_console_channel + 1) & 0x7f;
677 
678 	pti_write_full_frame_to_aperture(&mc, buf, len);
679 }
680 
681 /**
682  * pti_console_device()-  Return the driver tty structure and set the
683  *			  associated index implementation.
684  *
685  * @c:     Console device of the driver.
686  * @index: index associated with c.
687  *
688  * Returns:
689  *	always value of pti_tty_driver structure when this function
690  *	is called.
691  */
pti_console_device(struct console * c,int * index)692 static struct tty_driver *pti_console_device(struct console *c, int *index)
693 {
694 	*index = c->index;
695 	return pti_tty_driver;
696 }
697 
698 /**
699  * pti_console_setup()-  Initialize console variables used by the driver.
700  *
701  * @c:     Not used.
702  * @opts:  Not used.
703  *
704  * Returns:
705  *	always 0.
706  */
pti_console_setup(struct console * c,char * opts)707 static int pti_console_setup(struct console *c, char *opts)
708 {
709 	pti_console_channel = 0;
710 	pti_control_channel = 0;
711 	return 0;
712 }
713 
714 /*
715  * pti_console struct, used to capture OS printk()'s and shift
716  * out to the PTI device for debugging.  This cannot be
717  * enabled upon boot because of the possibility of eating
718  * any serial console printk's (race condition discovered).
719  * The console should be enabled upon when the tty port is
720  * used for the first time.  Since the primary purpose for
721  * the tty port is to hook up syslog to it, the tty port
722  * will be open for a really long time.
723  */
724 static struct console pti_console = {
725 	.name		= TTYNAME,
726 	.write		= pti_console_write,
727 	.device		= pti_console_device,
728 	.setup		= pti_console_setup,
729 	.flags		= CON_PRINTBUFFER,
730 	.index		= 0,
731 };
732 
733 /**
734  * pti_port_activate()- Used to start/initialize any items upon
735  * first opening of tty_port().
736  *
737  * @port- The tty port number of the PTI device.
738  * @tty-  The tty struct associated with this device.
739  *
740  * Returns:
741  *	always returns 0
742  *
743  * Notes: The primary purpose of the PTI tty port 0 is to hook
744  * the syslog daemon to it; thus this port will be open for a
745  * very long time.
746  */
pti_port_activate(struct tty_port * port,struct tty_struct * tty)747 static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
748 {
749 	if (port->tty->index == PTITTY_MINOR_START)
750 		console_start(&pti_console);
751 	return 0;
752 }
753 
754 /**
755  * pti_port_shutdown()- Used to stop/shutdown any items upon the
756  * last tty port close.
757  *
758  * @port- The tty port number of the PTI device.
759  *
760  * Notes: The primary purpose of the PTI tty port 0 is to hook
761  * the syslog daemon to it; thus this port will be open for a
762  * very long time.
763  */
pti_port_shutdown(struct tty_port * port)764 static void pti_port_shutdown(struct tty_port *port)
765 {
766 	if (port->tty->index == PTITTY_MINOR_START)
767 		console_stop(&pti_console);
768 }
769 
770 static const struct tty_port_operations tty_port_ops = {
771 	.activate = pti_port_activate,
772 	.shutdown = pti_port_shutdown,
773 };
774 
775 /*
776  * Note the _probe() call sets everything up and ties the char and tty
777  * to successfully detecting the PTI device on the pci bus.
778  */
779 
780 /**
781  * pti_pci_probe()- Used to detect pti on the pci bus and set
782  *		    things up in the driver.
783  *
784  * @pdev- pci_dev struct values for pti.
785  * @ent-  pci_device_id struct for pti driver.
786  *
787  * Returns:
788  *	0 for success
789  *	otherwise, error
790  */
pti_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)791 static int pti_pci_probe(struct pci_dev *pdev,
792 		const struct pci_device_id *ent)
793 {
794 	unsigned int a;
795 	int retval = -EINVAL;
796 	int pci_bar = 1;
797 
798 	dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
799 			__func__, __LINE__, pdev->vendor, pdev->device);
800 
801 	retval = misc_register(&pti_char_driver);
802 	if (retval) {
803 		pr_err("%s(%d): CHAR registration failed of pti driver\n",
804 			__func__, __LINE__);
805 		pr_err("%s(%d): Error value returned: %d\n",
806 			__func__, __LINE__, retval);
807 		goto err;
808 	}
809 
810 	retval = pci_enable_device(pdev);
811 	if (retval != 0) {
812 		dev_err(&pdev->dev,
813 			"%s: pci_enable_device() returned error %d\n",
814 			__func__, retval);
815 		goto err_unreg_misc;
816 	}
817 
818 	drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
819 	if (drv_data == NULL) {
820 		retval = -ENOMEM;
821 		dev_err(&pdev->dev,
822 			"%s(%d): kmalloc() returned NULL memory.\n",
823 			__func__, __LINE__);
824 		goto err_disable_pci;
825 	}
826 	drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
827 
828 	retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
829 	if (retval != 0) {
830 		dev_err(&pdev->dev,
831 			"%s(%d): pci_request_region() returned error %d\n",
832 			__func__, __LINE__, retval);
833 		goto err_free_dd;
834 	}
835 	drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
836 	drv_data->pti_ioaddr =
837 		ioremap_nocache((u32)drv_data->aperture_base,
838 		APERTURE_LEN);
839 	if (!drv_data->pti_ioaddr) {
840 		retval = -ENOMEM;
841 		goto err_rel_reg;
842 	}
843 
844 	pci_set_drvdata(pdev, drv_data);
845 
846 	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
847 		struct tty_port *port = &drv_data->port[a];
848 		tty_port_init(port);
849 		port->ops = &tty_port_ops;
850 
851 		tty_port_register_device(port, pti_tty_driver, a, &pdev->dev);
852 	}
853 
854 	register_console(&pti_console);
855 
856 	return 0;
857 err_rel_reg:
858 	pci_release_region(pdev, pci_bar);
859 err_free_dd:
860 	kfree(drv_data);
861 err_disable_pci:
862 	pci_disable_device(pdev);
863 err_unreg_misc:
864 	misc_deregister(&pti_char_driver);
865 err:
866 	return retval;
867 }
868 
869 /**
870  * pti_pci_remove()- Driver exit method to remove PTI from
871  *		   PCI bus.
872  * @pdev: variable containing pci info of PTI.
873  */
pti_pci_remove(struct pci_dev * pdev)874 static void pti_pci_remove(struct pci_dev *pdev)
875 {
876 	struct pti_dev *drv_data = pci_get_drvdata(pdev);
877 	unsigned int a;
878 
879 	unregister_console(&pti_console);
880 
881 	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
882 		tty_unregister_device(pti_tty_driver, a);
883 		tty_port_destroy(&drv_data->port[a]);
884 	}
885 
886 	iounmap(drv_data->pti_ioaddr);
887 	kfree(drv_data);
888 	pci_release_region(pdev, 1);
889 	pci_disable_device(pdev);
890 
891 	misc_deregister(&pti_char_driver);
892 }
893 
894 static struct pci_driver pti_pci_driver = {
895 	.name		= PCINAME,
896 	.id_table	= pci_ids,
897 	.probe		= pti_pci_probe,
898 	.remove		= pti_pci_remove,
899 };
900 
901 /**
902  *
903  * pti_init()- Overall entry/init call to the pti driver.
904  *             It starts the registration process with the kernel.
905  *
906  * Returns:
907  *	int __init, 0 for success
908  *	otherwise value is an error
909  *
910  */
pti_init(void)911 static int __init pti_init(void)
912 {
913 	int retval = -EINVAL;
914 
915 	/* First register module as tty device */
916 
917 	pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM);
918 	if (pti_tty_driver == NULL) {
919 		pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
920 			__func__, __LINE__);
921 		return -ENOMEM;
922 	}
923 
924 	pti_tty_driver->driver_name		= DRIVERNAME;
925 	pti_tty_driver->name			= TTYNAME;
926 	pti_tty_driver->major			= 0;
927 	pti_tty_driver->minor_start		= PTITTY_MINOR_START;
928 	pti_tty_driver->type			= TTY_DRIVER_TYPE_SYSTEM;
929 	pti_tty_driver->subtype			= SYSTEM_TYPE_SYSCONS;
930 	pti_tty_driver->flags			= TTY_DRIVER_REAL_RAW |
931 						  TTY_DRIVER_DYNAMIC_DEV;
932 	pti_tty_driver->init_termios		= tty_std_termios;
933 
934 	tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
935 
936 	retval = tty_register_driver(pti_tty_driver);
937 	if (retval) {
938 		pr_err("%s(%d): TTY registration failed of pti driver\n",
939 			__func__, __LINE__);
940 		pr_err("%s(%d): Error value returned: %d\n",
941 			__func__, __LINE__, retval);
942 
943 		goto put_tty;
944 	}
945 
946 	retval = pci_register_driver(&pti_pci_driver);
947 	if (retval) {
948 		pr_err("%s(%d): PCI registration failed of pti driver\n",
949 			__func__, __LINE__);
950 		pr_err("%s(%d): Error value returned: %d\n",
951 			__func__, __LINE__, retval);
952 		goto unreg_tty;
953 	}
954 
955 	return 0;
956 unreg_tty:
957 	tty_unregister_driver(pti_tty_driver);
958 put_tty:
959 	put_tty_driver(pti_tty_driver);
960 	pti_tty_driver = NULL;
961 	return retval;
962 }
963 
964 /**
965  * pti_exit()- Unregisters this module as a tty and pci driver.
966  */
pti_exit(void)967 static void __exit pti_exit(void)
968 {
969 	tty_unregister_driver(pti_tty_driver);
970 	pci_unregister_driver(&pti_pci_driver);
971 	put_tty_driver(pti_tty_driver);
972 }
973 
974 module_init(pti_init);
975 module_exit(pti_exit);
976 
977 MODULE_LICENSE("GPL");
978 MODULE_AUTHOR("Ken Mills, Jay Freyensee");
979 MODULE_DESCRIPTION("PTI Driver");
980 
981