1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale eSDHC controller driver.
4 *
5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6 * Copyright (c) 2009 MontaVista Software, Inc.
7 *
8 * Authors: Xiaobo Xie <X.Xie@freescale.com>
9 * Anton Vorontsov <avorontsov@ru.mvista.com>
10 */
11
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26
27 #define VENDOR_V_22 0x12
28 #define VENDOR_V_23 0x13
29
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31
32 struct esdhc_clk_fixup {
33 const unsigned int sd_dflt_max_clk;
34 const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 .sd_dflt_max_clk = 25000000,
39 .max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 .max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 .sd_dflt_max_clk = 25000000,
45 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 .sd_dflt_max_clk = 25000000,
51 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 .sd_dflt_max_clk = 20000000,
57 .max_clk[MMC_TIMING_LEGACY] = 20000000,
58 .max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 .max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk},
67 { .compatible = "fsl,mpc8379-esdhc" },
68 { .compatible = "fsl,mpc8536-esdhc" },
69 { .compatible = "fsl,esdhc" },
70 { }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73
74 struct sdhci_esdhc {
75 u8 vendor_ver;
76 u8 spec_ver;
77 bool quirk_incorrect_hostver;
78 bool quirk_limited_clk_division;
79 bool quirk_unreliable_pulse_detection;
80 bool quirk_tuning_erratum_type1;
81 bool quirk_tuning_erratum_type2;
82 bool quirk_ignore_data_inhibit;
83 bool quirk_delay_before_data_reset;
84 bool in_sw_tuning;
85 unsigned int peripheral_clock;
86 const struct esdhc_clk_fixup *clk_fixup;
87 u32 div_ratio;
88 };
89
90 /**
91 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
92 * to make it compatible with SD spec.
93 *
94 * @host: pointer to sdhci_host
95 * @spec_reg: SD spec register address
96 * @value: 32bit eSDHC register value on spec_reg address
97 *
98 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
99 * registers are 32 bits. There are differences in register size, register
100 * address, register function, bit position and function between eSDHC spec
101 * and SD spec.
102 *
103 * Return a fixed up register value
104 */
esdhc_readl_fixup(struct sdhci_host * host,int spec_reg,u32 value)105 static u32 esdhc_readl_fixup(struct sdhci_host *host,
106 int spec_reg, u32 value)
107 {
108 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
109 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
110 u32 ret;
111
112 /*
113 * The bit of ADMA flag in eSDHC is not compatible with standard
114 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
115 * supported by eSDHC.
116 * And for many FSL eSDHC controller, the reset value of field
117 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
118 * only these vendor version is greater than 2.2/0x12 support ADMA.
119 */
120 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
121 if (esdhc->vendor_ver > VENDOR_V_22) {
122 ret = value | SDHCI_CAN_DO_ADMA2;
123 return ret;
124 }
125 }
126 /*
127 * The DAT[3:0] line signal levels and the CMD line signal level are
128 * not compatible with standard SDHC register. The line signal levels
129 * DAT[7:0] are at bits 31:24 and the command line signal level is at
130 * bit 23. All other bits are the same as in the standard SDHC
131 * register.
132 */
133 if (spec_reg == SDHCI_PRESENT_STATE) {
134 ret = value & 0x000fffff;
135 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
136 ret |= (value << 1) & SDHCI_CMD_LVL;
137 return ret;
138 }
139
140 /*
141 * DTS properties of mmc host are used to enable each speed mode
142 * according to soc and board capability. So clean up
143 * SDR50/SDR104/DDR50 support bits here.
144 */
145 if (spec_reg == SDHCI_CAPABILITIES_1) {
146 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
147 SDHCI_SUPPORT_DDR50);
148 return ret;
149 }
150
151 /*
152 * Some controllers have unreliable Data Line Active
153 * bit for commands with busy signal. This affects
154 * Command Inhibit (data) bit. Just ignore it since
155 * MMC core driver has already polled card status
156 * with CMD13 after any command with busy siganl.
157 */
158 if ((spec_reg == SDHCI_PRESENT_STATE) &&
159 (esdhc->quirk_ignore_data_inhibit == true)) {
160 ret = value & ~SDHCI_DATA_INHIBIT;
161 return ret;
162 }
163
164 ret = value;
165 return ret;
166 }
167
esdhc_readw_fixup(struct sdhci_host * host,int spec_reg,u32 value)168 static u16 esdhc_readw_fixup(struct sdhci_host *host,
169 int spec_reg, u32 value)
170 {
171 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
173 u16 ret;
174 int shift = (spec_reg & 0x2) * 8;
175
176 if (spec_reg == SDHCI_HOST_VERSION)
177 ret = value & 0xffff;
178 else
179 ret = (value >> shift) & 0xffff;
180 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
181 * vendor version and spec version information.
182 */
183 if ((spec_reg == SDHCI_HOST_VERSION) &&
184 (esdhc->quirk_incorrect_hostver))
185 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
186 return ret;
187 }
188
esdhc_readb_fixup(struct sdhci_host * host,int spec_reg,u32 value)189 static u8 esdhc_readb_fixup(struct sdhci_host *host,
190 int spec_reg, u32 value)
191 {
192 u8 ret;
193 u8 dma_bits;
194 int shift = (spec_reg & 0x3) * 8;
195
196 ret = (value >> shift) & 0xff;
197
198 /*
199 * "DMA select" locates at offset 0x28 in SD specification, but on
200 * P5020 or P3041, it locates at 0x29.
201 */
202 if (spec_reg == SDHCI_HOST_CONTROL) {
203 /* DMA select is 22,23 bits in Protocol Control Register */
204 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
205 /* fixup the result */
206 ret &= ~SDHCI_CTRL_DMA_MASK;
207 ret |= dma_bits;
208 }
209 return ret;
210 }
211
212 /**
213 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
214 * written into eSDHC register.
215 *
216 * @host: pointer to sdhci_host
217 * @spec_reg: SD spec register address
218 * @value: 8/16/32bit SD spec register value that would be written
219 * @old_value: 32bit eSDHC register value on spec_reg address
220 *
221 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
222 * registers are 32 bits. There are differences in register size, register
223 * address, register function, bit position and function between eSDHC spec
224 * and SD spec.
225 *
226 * Return a fixed up register value
227 */
esdhc_writel_fixup(struct sdhci_host * host,int spec_reg,u32 value,u32 old_value)228 static u32 esdhc_writel_fixup(struct sdhci_host *host,
229 int spec_reg, u32 value, u32 old_value)
230 {
231 u32 ret;
232
233 /*
234 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
235 * when SYSCTL[RSTD] is set for some special operations.
236 * No any impact on other operation.
237 */
238 if (spec_reg == SDHCI_INT_ENABLE)
239 ret = value | SDHCI_INT_BLK_GAP;
240 else
241 ret = value;
242
243 return ret;
244 }
245
esdhc_writew_fixup(struct sdhci_host * host,int spec_reg,u16 value,u32 old_value)246 static u32 esdhc_writew_fixup(struct sdhci_host *host,
247 int spec_reg, u16 value, u32 old_value)
248 {
249 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
250 int shift = (spec_reg & 0x2) * 8;
251 u32 ret;
252
253 switch (spec_reg) {
254 case SDHCI_TRANSFER_MODE:
255 /*
256 * Postpone this write, we must do it together with a
257 * command write that is down below. Return old value.
258 */
259 pltfm_host->xfer_mode_shadow = value;
260 return old_value;
261 case SDHCI_COMMAND:
262 ret = (value << 16) | pltfm_host->xfer_mode_shadow;
263 return ret;
264 }
265
266 ret = old_value & (~(0xffff << shift));
267 ret |= (value << shift);
268
269 if (spec_reg == SDHCI_BLOCK_SIZE) {
270 /*
271 * Two last DMA bits are reserved, and first one is used for
272 * non-standard blksz of 4096 bytes that we don't support
273 * yet. So clear the DMA boundary bits.
274 */
275 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
276 }
277 return ret;
278 }
279
esdhc_writeb_fixup(struct sdhci_host * host,int spec_reg,u8 value,u32 old_value)280 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
281 int spec_reg, u8 value, u32 old_value)
282 {
283 u32 ret;
284 u32 dma_bits;
285 u8 tmp;
286 int shift = (spec_reg & 0x3) * 8;
287
288 /*
289 * eSDHC doesn't have a standard power control register, so we do
290 * nothing here to avoid incorrect operation.
291 */
292 if (spec_reg == SDHCI_POWER_CONTROL)
293 return old_value;
294 /*
295 * "DMA select" location is offset 0x28 in SD specification, but on
296 * P5020 or P3041, it's located at 0x29.
297 */
298 if (spec_reg == SDHCI_HOST_CONTROL) {
299 /*
300 * If host control register is not standard, exit
301 * this function
302 */
303 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
304 return old_value;
305
306 /* DMA select is 22,23 bits in Protocol Control Register */
307 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
308 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
309 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
310 (old_value & SDHCI_CTRL_DMA_MASK);
311 ret = (ret & (~0xff)) | tmp;
312
313 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
314 ret &= ~ESDHC_HOST_CONTROL_RES;
315 return ret;
316 }
317
318 ret = (old_value & (~(0xff << shift))) | (value << shift);
319 return ret;
320 }
321
esdhc_be_readl(struct sdhci_host * host,int reg)322 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
323 {
324 u32 ret;
325 u32 value;
326
327 if (reg == SDHCI_CAPABILITIES_1)
328 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
329 else
330 value = ioread32be(host->ioaddr + reg);
331
332 ret = esdhc_readl_fixup(host, reg, value);
333
334 return ret;
335 }
336
esdhc_le_readl(struct sdhci_host * host,int reg)337 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
338 {
339 u32 ret;
340 u32 value;
341
342 if (reg == SDHCI_CAPABILITIES_1)
343 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
344 else
345 value = ioread32(host->ioaddr + reg);
346
347 ret = esdhc_readl_fixup(host, reg, value);
348
349 return ret;
350 }
351
esdhc_be_readw(struct sdhci_host * host,int reg)352 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
353 {
354 u16 ret;
355 u32 value;
356 int base = reg & ~0x3;
357
358 value = ioread32be(host->ioaddr + base);
359 ret = esdhc_readw_fixup(host, reg, value);
360 return ret;
361 }
362
esdhc_le_readw(struct sdhci_host * host,int reg)363 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
364 {
365 u16 ret;
366 u32 value;
367 int base = reg & ~0x3;
368
369 value = ioread32(host->ioaddr + base);
370 ret = esdhc_readw_fixup(host, reg, value);
371 return ret;
372 }
373
esdhc_be_readb(struct sdhci_host * host,int reg)374 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
375 {
376 u8 ret;
377 u32 value;
378 int base = reg & ~0x3;
379
380 value = ioread32be(host->ioaddr + base);
381 ret = esdhc_readb_fixup(host, reg, value);
382 return ret;
383 }
384
esdhc_le_readb(struct sdhci_host * host,int reg)385 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
386 {
387 u8 ret;
388 u32 value;
389 int base = reg & ~0x3;
390
391 value = ioread32(host->ioaddr + base);
392 ret = esdhc_readb_fixup(host, reg, value);
393 return ret;
394 }
395
esdhc_be_writel(struct sdhci_host * host,u32 val,int reg)396 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
397 {
398 u32 value;
399
400 value = esdhc_writel_fixup(host, reg, val, 0);
401 iowrite32be(value, host->ioaddr + reg);
402 }
403
esdhc_le_writel(struct sdhci_host * host,u32 val,int reg)404 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
405 {
406 u32 value;
407
408 value = esdhc_writel_fixup(host, reg, val, 0);
409 iowrite32(value, host->ioaddr + reg);
410 }
411
esdhc_be_writew(struct sdhci_host * host,u16 val,int reg)412 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
413 {
414 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
415 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
416 int base = reg & ~0x3;
417 u32 value;
418 u32 ret;
419
420 value = ioread32be(host->ioaddr + base);
421 ret = esdhc_writew_fixup(host, reg, val, value);
422 if (reg != SDHCI_TRANSFER_MODE)
423 iowrite32be(ret, host->ioaddr + base);
424
425 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
426 * 1us later after ESDHC_EXTN is set.
427 */
428 if (base == ESDHC_SYSTEM_CONTROL_2) {
429 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
430 esdhc->in_sw_tuning) {
431 udelay(1);
432 ret |= ESDHC_SMPCLKSEL;
433 iowrite32be(ret, host->ioaddr + base);
434 }
435 }
436 }
437
esdhc_le_writew(struct sdhci_host * host,u16 val,int reg)438 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
439 {
440 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
441 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
442 int base = reg & ~0x3;
443 u32 value;
444 u32 ret;
445
446 value = ioread32(host->ioaddr + base);
447 ret = esdhc_writew_fixup(host, reg, val, value);
448 if (reg != SDHCI_TRANSFER_MODE)
449 iowrite32(ret, host->ioaddr + base);
450
451 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
452 * 1us later after ESDHC_EXTN is set.
453 */
454 if (base == ESDHC_SYSTEM_CONTROL_2) {
455 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
456 esdhc->in_sw_tuning) {
457 udelay(1);
458 ret |= ESDHC_SMPCLKSEL;
459 iowrite32(ret, host->ioaddr + base);
460 }
461 }
462 }
463
esdhc_be_writeb(struct sdhci_host * host,u8 val,int reg)464 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
465 {
466 int base = reg & ~0x3;
467 u32 value;
468 u32 ret;
469
470 value = ioread32be(host->ioaddr + base);
471 ret = esdhc_writeb_fixup(host, reg, val, value);
472 iowrite32be(ret, host->ioaddr + base);
473 }
474
esdhc_le_writeb(struct sdhci_host * host,u8 val,int reg)475 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
476 {
477 int base = reg & ~0x3;
478 u32 value;
479 u32 ret;
480
481 value = ioread32(host->ioaddr + base);
482 ret = esdhc_writeb_fixup(host, reg, val, value);
483 iowrite32(ret, host->ioaddr + base);
484 }
485
486 /*
487 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
488 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
489 * and Block Gap Event(IRQSTAT[BGE]) are also set.
490 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
491 * and re-issue the entire read transaction from beginning.
492 */
esdhc_of_adma_workaround(struct sdhci_host * host,u32 intmask)493 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
494 {
495 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
496 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
497 bool applicable;
498 dma_addr_t dmastart;
499 dma_addr_t dmanow;
500
501 applicable = (intmask & SDHCI_INT_DATA_END) &&
502 (intmask & SDHCI_INT_BLK_GAP) &&
503 (esdhc->vendor_ver == VENDOR_V_23);
504 if (!applicable)
505 return;
506
507 host->data->error = 0;
508 dmastart = sg_dma_address(host->data->sg);
509 dmanow = dmastart + host->data->bytes_xfered;
510 /*
511 * Force update to the next DMA block boundary.
512 */
513 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
514 SDHCI_DEFAULT_BOUNDARY_SIZE;
515 host->data->bytes_xfered = dmanow - dmastart;
516 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
517 }
518
esdhc_of_enable_dma(struct sdhci_host * host)519 static int esdhc_of_enable_dma(struct sdhci_host *host)
520 {
521 u32 value;
522 struct device *dev = mmc_dev(host->mmc);
523
524 if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
525 of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
526 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
527
528 value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
529
530 if (of_dma_is_coherent(dev->of_node))
531 value |= ESDHC_DMA_SNOOP;
532 else
533 value &= ~ESDHC_DMA_SNOOP;
534
535 sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
536 return 0;
537 }
538
esdhc_of_get_max_clock(struct sdhci_host * host)539 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
540 {
541 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
542 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
543
544 if (esdhc->peripheral_clock)
545 return esdhc->peripheral_clock;
546 else
547 return pltfm_host->clock;
548 }
549
esdhc_of_get_min_clock(struct sdhci_host * host)550 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
551 {
552 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
553 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
554 unsigned int clock;
555
556 if (esdhc->peripheral_clock)
557 clock = esdhc->peripheral_clock;
558 else
559 clock = pltfm_host->clock;
560 return clock / 256 / 16;
561 }
562
esdhc_clock_enable(struct sdhci_host * host,bool enable)563 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
564 {
565 u32 val;
566 ktime_t timeout;
567
568 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
569
570 if (enable)
571 val |= ESDHC_CLOCK_SDCLKEN;
572 else
573 val &= ~ESDHC_CLOCK_SDCLKEN;
574
575 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
576
577 /* Wait max 20 ms */
578 timeout = ktime_add_ms(ktime_get(), 20);
579 val = ESDHC_CLOCK_STABLE;
580 while (1) {
581 bool timedout = ktime_after(ktime_get(), timeout);
582
583 if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
584 break;
585 if (timedout) {
586 pr_err("%s: Internal clock never stabilised.\n",
587 mmc_hostname(host->mmc));
588 break;
589 }
590 udelay(10);
591 }
592 }
593
esdhc_of_set_clock(struct sdhci_host * host,unsigned int clock)594 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
595 {
596 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
597 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
598 int pre_div = 1;
599 int div = 1;
600 int division;
601 ktime_t timeout;
602 long fixup = 0;
603 u32 temp;
604
605 host->mmc->actual_clock = 0;
606
607 if (clock == 0) {
608 esdhc_clock_enable(host, false);
609 return;
610 }
611
612 /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
613 if (esdhc->vendor_ver < VENDOR_V_23)
614 pre_div = 2;
615
616 if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
617 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
618 fixup = esdhc->clk_fixup->sd_dflt_max_clk;
619 else if (esdhc->clk_fixup)
620 fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
621
622 if (fixup && clock > fixup)
623 clock = fixup;
624
625 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
626 temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
627 ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
628 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
629
630 while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
631 pre_div *= 2;
632
633 while (host->max_clk / pre_div / div > clock && div < 16)
634 div++;
635
636 if (esdhc->quirk_limited_clk_division &&
637 clock == MMC_HS200_MAX_DTR &&
638 (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
639 host->flags & SDHCI_HS400_TUNING)) {
640 division = pre_div * div;
641 if (division <= 4) {
642 pre_div = 4;
643 div = 1;
644 } else if (division <= 8) {
645 pre_div = 4;
646 div = 2;
647 } else if (division <= 12) {
648 pre_div = 4;
649 div = 3;
650 } else {
651 pr_warn("%s: using unsupported clock division.\n",
652 mmc_hostname(host->mmc));
653 }
654 }
655
656 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
657 clock, host->max_clk / pre_div / div);
658 host->mmc->actual_clock = host->max_clk / pre_div / div;
659 esdhc->div_ratio = pre_div * div;
660 pre_div >>= 1;
661 div--;
662
663 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
664 temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
665 | (div << ESDHC_DIVIDER_SHIFT)
666 | (pre_div << ESDHC_PREDIV_SHIFT));
667 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
668
669 if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
670 clock == MMC_HS200_MAX_DTR) {
671 temp = sdhci_readl(host, ESDHC_TBCTL);
672 sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
673 temp = sdhci_readl(host, ESDHC_SDCLKCTL);
674 sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
675 esdhc_clock_enable(host, true);
676
677 temp = sdhci_readl(host, ESDHC_DLLCFG0);
678 temp |= ESDHC_DLL_ENABLE;
679 if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
680 temp |= ESDHC_DLL_FREQ_SEL;
681 sdhci_writel(host, temp, ESDHC_DLLCFG0);
682 temp = sdhci_readl(host, ESDHC_TBCTL);
683 sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
684
685 esdhc_clock_enable(host, false);
686 temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
687 temp |= ESDHC_FLUSH_ASYNC_FIFO;
688 sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
689 }
690
691 /* Wait max 20 ms */
692 timeout = ktime_add_ms(ktime_get(), 20);
693 while (1) {
694 bool timedout = ktime_after(ktime_get(), timeout);
695
696 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
697 break;
698 if (timedout) {
699 pr_err("%s: Internal clock never stabilised.\n",
700 mmc_hostname(host->mmc));
701 return;
702 }
703 udelay(10);
704 }
705
706 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
707 temp |= ESDHC_CLOCK_SDCLKEN;
708 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
709 }
710
esdhc_pltfm_set_bus_width(struct sdhci_host * host,int width)711 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
712 {
713 u32 ctrl;
714
715 ctrl = sdhci_readl(host, ESDHC_PROCTL);
716 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
717 switch (width) {
718 case MMC_BUS_WIDTH_8:
719 ctrl |= ESDHC_CTRL_8BITBUS;
720 break;
721
722 case MMC_BUS_WIDTH_4:
723 ctrl |= ESDHC_CTRL_4BITBUS;
724 break;
725
726 default:
727 break;
728 }
729
730 sdhci_writel(host, ctrl, ESDHC_PROCTL);
731 }
732
esdhc_reset(struct sdhci_host * host,u8 mask)733 static void esdhc_reset(struct sdhci_host *host, u8 mask)
734 {
735 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
736 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
737 u32 val;
738
739 if (esdhc->quirk_delay_before_data_reset &&
740 (mask & SDHCI_RESET_DATA) &&
741 (host->flags & SDHCI_REQ_USE_DMA))
742 mdelay(5);
743
744 sdhci_reset(host, mask);
745
746 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
747 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
748
749 if (mask & SDHCI_RESET_ALL) {
750 val = sdhci_readl(host, ESDHC_TBCTL);
751 val &= ~ESDHC_TB_EN;
752 sdhci_writel(host, val, ESDHC_TBCTL);
753
754 if (esdhc->quirk_unreliable_pulse_detection) {
755 val = sdhci_readl(host, ESDHC_DLLCFG1);
756 val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
757 sdhci_writel(host, val, ESDHC_DLLCFG1);
758 }
759 }
760 }
761
762 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
763 * configuration and status registers for the device. There is a
764 * SDHC IO VSEL control register on SCFG for some platforms. It's
765 * used to support SDHC IO voltage switching.
766 */
767 static const struct of_device_id scfg_device_ids[] = {
768 { .compatible = "fsl,t1040-scfg", },
769 { .compatible = "fsl,ls1012a-scfg", },
770 { .compatible = "fsl,ls1046a-scfg", },
771 {}
772 };
773
774 /* SDHC IO VSEL control register definition */
775 #define SCFG_SDHCIOVSELCR 0x408
776 #define SDHCIOVSELCR_TGLEN 0x80000000
777 #define SDHCIOVSELCR_VSELVAL 0x60000000
778 #define SDHCIOVSELCR_SDHC_VS 0x00000001
779
esdhc_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)780 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
781 struct mmc_ios *ios)
782 {
783 struct sdhci_host *host = mmc_priv(mmc);
784 struct device_node *scfg_node;
785 void __iomem *scfg_base = NULL;
786 u32 sdhciovselcr;
787 u32 val;
788
789 /*
790 * Signal Voltage Switching is only applicable for Host Controllers
791 * v3.00 and above.
792 */
793 if (host->version < SDHCI_SPEC_300)
794 return 0;
795
796 val = sdhci_readl(host, ESDHC_PROCTL);
797
798 switch (ios->signal_voltage) {
799 case MMC_SIGNAL_VOLTAGE_330:
800 val &= ~ESDHC_VOLT_SEL;
801 sdhci_writel(host, val, ESDHC_PROCTL);
802 return 0;
803 case MMC_SIGNAL_VOLTAGE_180:
804 scfg_node = of_find_matching_node(NULL, scfg_device_ids);
805 if (scfg_node)
806 scfg_base = of_iomap(scfg_node, 0);
807 if (scfg_base) {
808 sdhciovselcr = SDHCIOVSELCR_TGLEN |
809 SDHCIOVSELCR_VSELVAL;
810 iowrite32be(sdhciovselcr,
811 scfg_base + SCFG_SDHCIOVSELCR);
812
813 val |= ESDHC_VOLT_SEL;
814 sdhci_writel(host, val, ESDHC_PROCTL);
815 mdelay(5);
816
817 sdhciovselcr = SDHCIOVSELCR_TGLEN |
818 SDHCIOVSELCR_SDHC_VS;
819 iowrite32be(sdhciovselcr,
820 scfg_base + SCFG_SDHCIOVSELCR);
821 iounmap(scfg_base);
822 } else {
823 val |= ESDHC_VOLT_SEL;
824 sdhci_writel(host, val, ESDHC_PROCTL);
825 }
826 return 0;
827 default:
828 return 0;
829 }
830 }
831
832 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
833 { .family = "QorIQ T1023", .revision = "1.0", },
834 { .family = "QorIQ T1040", .revision = "1.0", },
835 { .family = "QorIQ T2080", .revision = "1.0", },
836 { .family = "QorIQ LS1021A", .revision = "1.0", },
837 { },
838 };
839
840 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
841 { .family = "QorIQ LS1012A", .revision = "1.0", },
842 { .family = "QorIQ LS1043A", .revision = "1.*", },
843 { .family = "QorIQ LS1046A", .revision = "1.0", },
844 { .family = "QorIQ LS1080A", .revision = "1.0", },
845 { .family = "QorIQ LS2080A", .revision = "1.0", },
846 { .family = "QorIQ LA1575A", .revision = "1.0", },
847 { },
848 };
849
esdhc_tuning_block_enable(struct sdhci_host * host,bool enable)850 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
851 {
852 u32 val;
853
854 esdhc_clock_enable(host, false);
855
856 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
857 val |= ESDHC_FLUSH_ASYNC_FIFO;
858 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
859
860 val = sdhci_readl(host, ESDHC_TBCTL);
861 if (enable)
862 val |= ESDHC_TB_EN;
863 else
864 val &= ~ESDHC_TB_EN;
865 sdhci_writel(host, val, ESDHC_TBCTL);
866
867 esdhc_clock_enable(host, true);
868 }
869
esdhc_prepare_sw_tuning(struct sdhci_host * host,u8 * window_start,u8 * window_end)870 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
871 u8 *window_end)
872 {
873 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
874 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
875 u8 tbstat_15_8, tbstat_7_0;
876 u32 val;
877
878 if (esdhc->quirk_tuning_erratum_type1) {
879 *window_start = 5 * esdhc->div_ratio;
880 *window_end = 3 * esdhc->div_ratio;
881 return;
882 }
883
884 /* Write TBCTL[11:8]=4'h8 */
885 val = sdhci_readl(host, ESDHC_TBCTL);
886 val &= ~(0xf << 8);
887 val |= 8 << 8;
888 sdhci_writel(host, val, ESDHC_TBCTL);
889
890 mdelay(1);
891
892 /* Read TBCTL[31:0] register and rewrite again */
893 val = sdhci_readl(host, ESDHC_TBCTL);
894 sdhci_writel(host, val, ESDHC_TBCTL);
895
896 mdelay(1);
897
898 /* Read the TBSTAT[31:0] register twice */
899 val = sdhci_readl(host, ESDHC_TBSTAT);
900 val = sdhci_readl(host, ESDHC_TBSTAT);
901
902 /* Reset data lines by setting ESDHCCTL[RSTD] */
903 sdhci_reset(host, SDHCI_RESET_DATA);
904 /* Write 32'hFFFF_FFFF to IRQSTAT register */
905 sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
906
907 /* If TBSTAT[15:8]-TBSTAT[7:0] > 4 * div_ratio
908 * or TBSTAT[7:0]-TBSTAT[15:8] > 4 * div_ratio,
909 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
910 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
911 */
912 tbstat_7_0 = val & 0xff;
913 tbstat_15_8 = (val >> 8) & 0xff;
914
915 if (abs(tbstat_15_8 - tbstat_7_0) > (4 * esdhc->div_ratio)) {
916 *window_start = 8 * esdhc->div_ratio;
917 *window_end = 4 * esdhc->div_ratio;
918 } else {
919 *window_start = 5 * esdhc->div_ratio;
920 *window_end = 3 * esdhc->div_ratio;
921 }
922 }
923
esdhc_execute_sw_tuning(struct mmc_host * mmc,u32 opcode,u8 window_start,u8 window_end)924 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
925 u8 window_start, u8 window_end)
926 {
927 struct sdhci_host *host = mmc_priv(mmc);
928 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
929 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
930 u32 val;
931 int ret;
932
933 /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
934 val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
935 ESDHC_WNDW_STRT_PTR_MASK;
936 val |= window_end & ESDHC_WNDW_END_PTR_MASK;
937 sdhci_writel(host, val, ESDHC_TBPTR);
938
939 /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
940 val = sdhci_readl(host, ESDHC_TBCTL);
941 val &= ~ESDHC_TB_MODE_MASK;
942 val |= ESDHC_TB_MODE_SW;
943 sdhci_writel(host, val, ESDHC_TBCTL);
944
945 esdhc->in_sw_tuning = true;
946 ret = sdhci_execute_tuning(mmc, opcode);
947 esdhc->in_sw_tuning = false;
948 return ret;
949 }
950
esdhc_execute_tuning(struct mmc_host * mmc,u32 opcode)951 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
952 {
953 struct sdhci_host *host = mmc_priv(mmc);
954 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
955 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
956 u8 window_start, window_end;
957 int ret, retries = 1;
958 bool hs400_tuning;
959 unsigned int clk;
960 u32 val;
961
962 /* For tuning mode, the sd clock divisor value
963 * must be larger than 3 according to reference manual.
964 */
965 clk = esdhc->peripheral_clock / 3;
966 if (host->clock > clk)
967 esdhc_of_set_clock(host, clk);
968
969 esdhc_tuning_block_enable(host, true);
970
971 hs400_tuning = host->flags & SDHCI_HS400_TUNING;
972
973 do {
974 if (esdhc->quirk_limited_clk_division &&
975 hs400_tuning)
976 esdhc_of_set_clock(host, host->clock);
977
978 /* Do HW tuning */
979 val = sdhci_readl(host, ESDHC_TBCTL);
980 val &= ~ESDHC_TB_MODE_MASK;
981 val |= ESDHC_TB_MODE_3;
982 sdhci_writel(host, val, ESDHC_TBCTL);
983
984 ret = sdhci_execute_tuning(mmc, opcode);
985 if (ret)
986 break;
987
988 /* If HW tuning fails and triggers erratum,
989 * try workaround.
990 */
991 ret = host->tuning_err;
992 if (ret == -EAGAIN &&
993 (esdhc->quirk_tuning_erratum_type1 ||
994 esdhc->quirk_tuning_erratum_type2)) {
995 /* Recover HS400 tuning flag */
996 if (hs400_tuning)
997 host->flags |= SDHCI_HS400_TUNING;
998 pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
999 mmc_hostname(mmc));
1000 /* Do SW tuning */
1001 esdhc_prepare_sw_tuning(host, &window_start,
1002 &window_end);
1003 ret = esdhc_execute_sw_tuning(mmc, opcode,
1004 window_start,
1005 window_end);
1006 if (ret)
1007 break;
1008
1009 /* Retry both HW/SW tuning with reduced clock. */
1010 ret = host->tuning_err;
1011 if (ret == -EAGAIN && retries) {
1012 /* Recover HS400 tuning flag */
1013 if (hs400_tuning)
1014 host->flags |= SDHCI_HS400_TUNING;
1015
1016 clk = host->max_clk / (esdhc->div_ratio + 1);
1017 esdhc_of_set_clock(host, clk);
1018 pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1019 mmc_hostname(mmc));
1020 } else {
1021 break;
1022 }
1023 } else {
1024 break;
1025 }
1026 } while (retries--);
1027
1028 if (ret) {
1029 esdhc_tuning_block_enable(host, false);
1030 } else if (hs400_tuning) {
1031 val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1032 val |= ESDHC_FLW_CTL_BG;
1033 sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1034 }
1035
1036 return ret;
1037 }
1038
esdhc_set_uhs_signaling(struct sdhci_host * host,unsigned int timing)1039 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1040 unsigned int timing)
1041 {
1042 if (timing == MMC_TIMING_MMC_HS400)
1043 esdhc_tuning_block_enable(host, true);
1044 else
1045 sdhci_set_uhs_signaling(host, timing);
1046 }
1047
esdhc_irq(struct sdhci_host * host,u32 intmask)1048 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1049 {
1050 u32 command;
1051
1052 if (of_find_compatible_node(NULL, NULL,
1053 "fsl,p2020-esdhc")) {
1054 command = SDHCI_GET_CMD(sdhci_readw(host,
1055 SDHCI_COMMAND));
1056 if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1057 sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1058 intmask & SDHCI_INT_DATA_END) {
1059 intmask &= ~SDHCI_INT_DATA_END;
1060 sdhci_writel(host, SDHCI_INT_DATA_END,
1061 SDHCI_INT_STATUS);
1062 }
1063 }
1064 return intmask;
1065 }
1066
1067 #ifdef CONFIG_PM_SLEEP
1068 static u32 esdhc_proctl;
esdhc_of_suspend(struct device * dev)1069 static int esdhc_of_suspend(struct device *dev)
1070 {
1071 struct sdhci_host *host = dev_get_drvdata(dev);
1072
1073 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1074
1075 if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1076 mmc_retune_needed(host->mmc);
1077
1078 return sdhci_suspend_host(host);
1079 }
1080
esdhc_of_resume(struct device * dev)1081 static int esdhc_of_resume(struct device *dev)
1082 {
1083 struct sdhci_host *host = dev_get_drvdata(dev);
1084 int ret = sdhci_resume_host(host);
1085
1086 if (ret == 0) {
1087 /* Isn't this already done by sdhci_resume_host() ? --rmk */
1088 esdhc_of_enable_dma(host);
1089 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1090 }
1091 return ret;
1092 }
1093 #endif
1094
1095 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1096 esdhc_of_suspend,
1097 esdhc_of_resume);
1098
1099 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1100 .read_l = esdhc_be_readl,
1101 .read_w = esdhc_be_readw,
1102 .read_b = esdhc_be_readb,
1103 .write_l = esdhc_be_writel,
1104 .write_w = esdhc_be_writew,
1105 .write_b = esdhc_be_writeb,
1106 .set_clock = esdhc_of_set_clock,
1107 .enable_dma = esdhc_of_enable_dma,
1108 .get_max_clock = esdhc_of_get_max_clock,
1109 .get_min_clock = esdhc_of_get_min_clock,
1110 .adma_workaround = esdhc_of_adma_workaround,
1111 .set_bus_width = esdhc_pltfm_set_bus_width,
1112 .reset = esdhc_reset,
1113 .set_uhs_signaling = esdhc_set_uhs_signaling,
1114 .irq = esdhc_irq,
1115 };
1116
1117 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1118 .read_l = esdhc_le_readl,
1119 .read_w = esdhc_le_readw,
1120 .read_b = esdhc_le_readb,
1121 .write_l = esdhc_le_writel,
1122 .write_w = esdhc_le_writew,
1123 .write_b = esdhc_le_writeb,
1124 .set_clock = esdhc_of_set_clock,
1125 .enable_dma = esdhc_of_enable_dma,
1126 .get_max_clock = esdhc_of_get_max_clock,
1127 .get_min_clock = esdhc_of_get_min_clock,
1128 .adma_workaround = esdhc_of_adma_workaround,
1129 .set_bus_width = esdhc_pltfm_set_bus_width,
1130 .reset = esdhc_reset,
1131 .set_uhs_signaling = esdhc_set_uhs_signaling,
1132 .irq = esdhc_irq,
1133 };
1134
1135 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1136 .quirks = ESDHC_DEFAULT_QUIRKS |
1137 #ifdef CONFIG_PPC
1138 SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1139 #endif
1140 SDHCI_QUIRK_NO_CARD_NO_RESET |
1141 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1142 .ops = &sdhci_esdhc_be_ops,
1143 };
1144
1145 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1146 .quirks = ESDHC_DEFAULT_QUIRKS |
1147 SDHCI_QUIRK_NO_CARD_NO_RESET |
1148 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1149 .ops = &sdhci_esdhc_le_ops,
1150 };
1151
1152 static struct soc_device_attribute soc_incorrect_hostver[] = {
1153 { .family = "QorIQ T4240", .revision = "1.0", },
1154 { .family = "QorIQ T4240", .revision = "2.0", },
1155 { },
1156 };
1157
1158 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1159 { .family = "QorIQ LX2160A", .revision = "1.0", },
1160 { .family = "QorIQ LX2160A", .revision = "2.0", },
1161 { .family = "QorIQ LS1028A", .revision = "1.0", },
1162 { },
1163 };
1164
1165 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1166 { .family = "QorIQ LX2160A", .revision = "1.0", },
1167 { },
1168 };
1169
esdhc_init(struct platform_device * pdev,struct sdhci_host * host)1170 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1171 {
1172 const struct of_device_id *match;
1173 struct sdhci_pltfm_host *pltfm_host;
1174 struct sdhci_esdhc *esdhc;
1175 struct device_node *np;
1176 struct clk *clk;
1177 u32 val;
1178 u16 host_ver;
1179
1180 pltfm_host = sdhci_priv(host);
1181 esdhc = sdhci_pltfm_priv(pltfm_host);
1182
1183 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1184 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1185 SDHCI_VENDOR_VER_SHIFT;
1186 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1187 if (soc_device_match(soc_incorrect_hostver))
1188 esdhc->quirk_incorrect_hostver = true;
1189 else
1190 esdhc->quirk_incorrect_hostver = false;
1191
1192 if (soc_device_match(soc_fixup_sdhc_clkdivs))
1193 esdhc->quirk_limited_clk_division = true;
1194 else
1195 esdhc->quirk_limited_clk_division = false;
1196
1197 if (soc_device_match(soc_unreliable_pulse_detection))
1198 esdhc->quirk_unreliable_pulse_detection = true;
1199 else
1200 esdhc->quirk_unreliable_pulse_detection = false;
1201
1202 match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1203 if (match)
1204 esdhc->clk_fixup = match->data;
1205 np = pdev->dev.of_node;
1206
1207 if (of_device_is_compatible(np, "fsl,p2020-esdhc"))
1208 esdhc->quirk_delay_before_data_reset = true;
1209
1210 clk = of_clk_get(np, 0);
1211 if (!IS_ERR(clk)) {
1212 /*
1213 * esdhc->peripheral_clock would be assigned with a value
1214 * which is eSDHC base clock when use periperal clock.
1215 * For some platforms, the clock value got by common clk
1216 * API is peripheral clock while the eSDHC base clock is
1217 * 1/2 peripheral clock.
1218 */
1219 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1220 of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
1221 esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1222 else
1223 esdhc->peripheral_clock = clk_get_rate(clk);
1224
1225 clk_put(clk);
1226 }
1227
1228 if (esdhc->peripheral_clock) {
1229 esdhc_clock_enable(host, false);
1230 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1231 val |= ESDHC_PERIPHERAL_CLK_SEL;
1232 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1233 esdhc_clock_enable(host, true);
1234 }
1235 }
1236
esdhc_hs400_prepare_ddr(struct mmc_host * mmc)1237 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1238 {
1239 esdhc_tuning_block_enable(mmc_priv(mmc), false);
1240 return 0;
1241 }
1242
sdhci_esdhc_probe(struct platform_device * pdev)1243 static int sdhci_esdhc_probe(struct platform_device *pdev)
1244 {
1245 struct sdhci_host *host;
1246 struct device_node *np;
1247 struct sdhci_pltfm_host *pltfm_host;
1248 struct sdhci_esdhc *esdhc;
1249 int ret;
1250
1251 np = pdev->dev.of_node;
1252
1253 if (of_property_read_bool(np, "little-endian"))
1254 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1255 sizeof(struct sdhci_esdhc));
1256 else
1257 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1258 sizeof(struct sdhci_esdhc));
1259
1260 if (IS_ERR(host))
1261 return PTR_ERR(host);
1262
1263 host->mmc_host_ops.start_signal_voltage_switch =
1264 esdhc_signal_voltage_switch;
1265 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1266 host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1267 host->tuning_delay = 1;
1268
1269 esdhc_init(pdev, host);
1270
1271 sdhci_get_of_property(pdev);
1272
1273 pltfm_host = sdhci_priv(host);
1274 esdhc = sdhci_pltfm_priv(pltfm_host);
1275 if (soc_device_match(soc_tuning_erratum_type1))
1276 esdhc->quirk_tuning_erratum_type1 = true;
1277 else
1278 esdhc->quirk_tuning_erratum_type1 = false;
1279
1280 if (soc_device_match(soc_tuning_erratum_type2))
1281 esdhc->quirk_tuning_erratum_type2 = true;
1282 else
1283 esdhc->quirk_tuning_erratum_type2 = false;
1284
1285 if (esdhc->vendor_ver == VENDOR_V_22)
1286 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1287
1288 if (esdhc->vendor_ver > VENDOR_V_22)
1289 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1290
1291 if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1292 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1293 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1294 }
1295
1296 if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1297 of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1298 of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1299 of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1300 of_device_is_compatible(np, "fsl,t1040-esdhc"))
1301 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1302
1303 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1304 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1305
1306 esdhc->quirk_ignore_data_inhibit = false;
1307 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1308 /*
1309 * Freescale messed up with P2020 as it has a non-standard
1310 * host control register
1311 */
1312 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1313 esdhc->quirk_ignore_data_inhibit = true;
1314 }
1315
1316 /* call to generic mmc_of_parse to support additional capabilities */
1317 ret = mmc_of_parse(host->mmc);
1318 if (ret)
1319 goto err;
1320
1321 mmc_of_parse_voltage(np, &host->ocr_mask);
1322
1323 ret = sdhci_add_host(host);
1324 if (ret)
1325 goto err;
1326
1327 return 0;
1328 err:
1329 sdhci_pltfm_free(pdev);
1330 return ret;
1331 }
1332
1333 static struct platform_driver sdhci_esdhc_driver = {
1334 .driver = {
1335 .name = "sdhci-esdhc",
1336 .of_match_table = sdhci_esdhc_of_match,
1337 .pm = &esdhc_of_dev_pm_ops,
1338 },
1339 .probe = sdhci_esdhc_probe,
1340 .remove = sdhci_pltfm_unregister,
1341 };
1342
1343 module_platform_driver(sdhci_esdhc_driver);
1344
1345 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1346 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1347 "Anton Vorontsov <avorontsov@ru.mvista.com>");
1348 MODULE_LICENSE("GPL v2");
1349