• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_tuning_erratum_type1;
81 	bool quirk_tuning_erratum_type2;
82 	bool quirk_ignore_data_inhibit;
83 	bool quirk_delay_before_data_reset;
84 	bool in_sw_tuning;
85 	unsigned int peripheral_clock;
86 	const struct esdhc_clk_fixup *clk_fixup;
87 	u32 div_ratio;
88 };
89 
90 /**
91  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
92  *		       to make it compatible with SD spec.
93  *
94  * @host: pointer to sdhci_host
95  * @spec_reg: SD spec register address
96  * @value: 32bit eSDHC register value on spec_reg address
97  *
98  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
99  * registers are 32 bits. There are differences in register size, register
100  * address, register function, bit position and function between eSDHC spec
101  * and SD spec.
102  *
103  * Return a fixed up register value
104  */
esdhc_readl_fixup(struct sdhci_host * host,int spec_reg,u32 value)105 static u32 esdhc_readl_fixup(struct sdhci_host *host,
106 				     int spec_reg, u32 value)
107 {
108 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
109 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
110 	u32 ret;
111 
112 	/*
113 	 * The bit of ADMA flag in eSDHC is not compatible with standard
114 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
115 	 * supported by eSDHC.
116 	 * And for many FSL eSDHC controller, the reset value of field
117 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
118 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
119 	 */
120 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
121 		if (esdhc->vendor_ver > VENDOR_V_22) {
122 			ret = value | SDHCI_CAN_DO_ADMA2;
123 			return ret;
124 		}
125 	}
126 	/*
127 	 * The DAT[3:0] line signal levels and the CMD line signal level are
128 	 * not compatible with standard SDHC register. The line signal levels
129 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
130 	 * bit 23. All other bits are the same as in the standard SDHC
131 	 * register.
132 	 */
133 	if (spec_reg == SDHCI_PRESENT_STATE) {
134 		ret = value & 0x000fffff;
135 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
136 		ret |= (value << 1) & SDHCI_CMD_LVL;
137 		return ret;
138 	}
139 
140 	/*
141 	 * DTS properties of mmc host are used to enable each speed mode
142 	 * according to soc and board capability. So clean up
143 	 * SDR50/SDR104/DDR50 support bits here.
144 	 */
145 	if (spec_reg == SDHCI_CAPABILITIES_1) {
146 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
147 				SDHCI_SUPPORT_DDR50);
148 		return ret;
149 	}
150 
151 	/*
152 	 * Some controllers have unreliable Data Line Active
153 	 * bit for commands with busy signal. This affects
154 	 * Command Inhibit (data) bit. Just ignore it since
155 	 * MMC core driver has already polled card status
156 	 * with CMD13 after any command with busy siganl.
157 	 */
158 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
159 	(esdhc->quirk_ignore_data_inhibit == true)) {
160 		ret = value & ~SDHCI_DATA_INHIBIT;
161 		return ret;
162 	}
163 
164 	ret = value;
165 	return ret;
166 }
167 
esdhc_readw_fixup(struct sdhci_host * host,int spec_reg,u32 value)168 static u16 esdhc_readw_fixup(struct sdhci_host *host,
169 				     int spec_reg, u32 value)
170 {
171 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
173 	u16 ret;
174 	int shift = (spec_reg & 0x2) * 8;
175 
176 	if (spec_reg == SDHCI_HOST_VERSION)
177 		ret = value & 0xffff;
178 	else
179 		ret = (value >> shift) & 0xffff;
180 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
181 	 * vendor version and spec version information.
182 	 */
183 	if ((spec_reg == SDHCI_HOST_VERSION) &&
184 	    (esdhc->quirk_incorrect_hostver))
185 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
186 	return ret;
187 }
188 
esdhc_readb_fixup(struct sdhci_host * host,int spec_reg,u32 value)189 static u8 esdhc_readb_fixup(struct sdhci_host *host,
190 				     int spec_reg, u32 value)
191 {
192 	u8 ret;
193 	u8 dma_bits;
194 	int shift = (spec_reg & 0x3) * 8;
195 
196 	ret = (value >> shift) & 0xff;
197 
198 	/*
199 	 * "DMA select" locates at offset 0x28 in SD specification, but on
200 	 * P5020 or P3041, it locates at 0x29.
201 	 */
202 	if (spec_reg == SDHCI_HOST_CONTROL) {
203 		/* DMA select is 22,23 bits in Protocol Control Register */
204 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
205 		/* fixup the result */
206 		ret &= ~SDHCI_CTRL_DMA_MASK;
207 		ret |= dma_bits;
208 	}
209 	return ret;
210 }
211 
212 /**
213  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
214  *			written into eSDHC register.
215  *
216  * @host: pointer to sdhci_host
217  * @spec_reg: SD spec register address
218  * @value: 8/16/32bit SD spec register value that would be written
219  * @old_value: 32bit eSDHC register value on spec_reg address
220  *
221  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
222  * registers are 32 bits. There are differences in register size, register
223  * address, register function, bit position and function between eSDHC spec
224  * and SD spec.
225  *
226  * Return a fixed up register value
227  */
esdhc_writel_fixup(struct sdhci_host * host,int spec_reg,u32 value,u32 old_value)228 static u32 esdhc_writel_fixup(struct sdhci_host *host,
229 				     int spec_reg, u32 value, u32 old_value)
230 {
231 	u32 ret;
232 
233 	/*
234 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
235 	 * when SYSCTL[RSTD] is set for some special operations.
236 	 * No any impact on other operation.
237 	 */
238 	if (spec_reg == SDHCI_INT_ENABLE)
239 		ret = value | SDHCI_INT_BLK_GAP;
240 	else
241 		ret = value;
242 
243 	return ret;
244 }
245 
esdhc_writew_fixup(struct sdhci_host * host,int spec_reg,u16 value,u32 old_value)246 static u32 esdhc_writew_fixup(struct sdhci_host *host,
247 				     int spec_reg, u16 value, u32 old_value)
248 {
249 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
250 	int shift = (spec_reg & 0x2) * 8;
251 	u32 ret;
252 
253 	switch (spec_reg) {
254 	case SDHCI_TRANSFER_MODE:
255 		/*
256 		 * Postpone this write, we must do it together with a
257 		 * command write that is down below. Return old value.
258 		 */
259 		pltfm_host->xfer_mode_shadow = value;
260 		return old_value;
261 	case SDHCI_COMMAND:
262 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
263 		return ret;
264 	}
265 
266 	ret = old_value & (~(0xffff << shift));
267 	ret |= (value << shift);
268 
269 	if (spec_reg == SDHCI_BLOCK_SIZE) {
270 		/*
271 		 * Two last DMA bits are reserved, and first one is used for
272 		 * non-standard blksz of 4096 bytes that we don't support
273 		 * yet. So clear the DMA boundary bits.
274 		 */
275 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
276 	}
277 	return ret;
278 }
279 
esdhc_writeb_fixup(struct sdhci_host * host,int spec_reg,u8 value,u32 old_value)280 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
281 				     int spec_reg, u8 value, u32 old_value)
282 {
283 	u32 ret;
284 	u32 dma_bits;
285 	u8 tmp;
286 	int shift = (spec_reg & 0x3) * 8;
287 
288 	/*
289 	 * eSDHC doesn't have a standard power control register, so we do
290 	 * nothing here to avoid incorrect operation.
291 	 */
292 	if (spec_reg == SDHCI_POWER_CONTROL)
293 		return old_value;
294 	/*
295 	 * "DMA select" location is offset 0x28 in SD specification, but on
296 	 * P5020 or P3041, it's located at 0x29.
297 	 */
298 	if (spec_reg == SDHCI_HOST_CONTROL) {
299 		/*
300 		 * If host control register is not standard, exit
301 		 * this function
302 		 */
303 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
304 			return old_value;
305 
306 		/* DMA select is 22,23 bits in Protocol Control Register */
307 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
308 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
309 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
310 		      (old_value & SDHCI_CTRL_DMA_MASK);
311 		ret = (ret & (~0xff)) | tmp;
312 
313 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
314 		ret &= ~ESDHC_HOST_CONTROL_RES;
315 		return ret;
316 	}
317 
318 	ret = (old_value & (~(0xff << shift))) | (value << shift);
319 	return ret;
320 }
321 
esdhc_be_readl(struct sdhci_host * host,int reg)322 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
323 {
324 	u32 ret;
325 	u32 value;
326 
327 	if (reg == SDHCI_CAPABILITIES_1)
328 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
329 	else
330 		value = ioread32be(host->ioaddr + reg);
331 
332 	ret = esdhc_readl_fixup(host, reg, value);
333 
334 	return ret;
335 }
336 
esdhc_le_readl(struct sdhci_host * host,int reg)337 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
338 {
339 	u32 ret;
340 	u32 value;
341 
342 	if (reg == SDHCI_CAPABILITIES_1)
343 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
344 	else
345 		value = ioread32(host->ioaddr + reg);
346 
347 	ret = esdhc_readl_fixup(host, reg, value);
348 
349 	return ret;
350 }
351 
esdhc_be_readw(struct sdhci_host * host,int reg)352 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
353 {
354 	u16 ret;
355 	u32 value;
356 	int base = reg & ~0x3;
357 
358 	value = ioread32be(host->ioaddr + base);
359 	ret = esdhc_readw_fixup(host, reg, value);
360 	return ret;
361 }
362 
esdhc_le_readw(struct sdhci_host * host,int reg)363 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
364 {
365 	u16 ret;
366 	u32 value;
367 	int base = reg & ~0x3;
368 
369 	value = ioread32(host->ioaddr + base);
370 	ret = esdhc_readw_fixup(host, reg, value);
371 	return ret;
372 }
373 
esdhc_be_readb(struct sdhci_host * host,int reg)374 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
375 {
376 	u8 ret;
377 	u32 value;
378 	int base = reg & ~0x3;
379 
380 	value = ioread32be(host->ioaddr + base);
381 	ret = esdhc_readb_fixup(host, reg, value);
382 	return ret;
383 }
384 
esdhc_le_readb(struct sdhci_host * host,int reg)385 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
386 {
387 	u8 ret;
388 	u32 value;
389 	int base = reg & ~0x3;
390 
391 	value = ioread32(host->ioaddr + base);
392 	ret = esdhc_readb_fixup(host, reg, value);
393 	return ret;
394 }
395 
esdhc_be_writel(struct sdhci_host * host,u32 val,int reg)396 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
397 {
398 	u32 value;
399 
400 	value = esdhc_writel_fixup(host, reg, val, 0);
401 	iowrite32be(value, host->ioaddr + reg);
402 }
403 
esdhc_le_writel(struct sdhci_host * host,u32 val,int reg)404 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
405 {
406 	u32 value;
407 
408 	value = esdhc_writel_fixup(host, reg, val, 0);
409 	iowrite32(value, host->ioaddr + reg);
410 }
411 
esdhc_be_writew(struct sdhci_host * host,u16 val,int reg)412 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
413 {
414 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
415 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
416 	int base = reg & ~0x3;
417 	u32 value;
418 	u32 ret;
419 
420 	value = ioread32be(host->ioaddr + base);
421 	ret = esdhc_writew_fixup(host, reg, val, value);
422 	if (reg != SDHCI_TRANSFER_MODE)
423 		iowrite32be(ret, host->ioaddr + base);
424 
425 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
426 	 * 1us later after ESDHC_EXTN is set.
427 	 */
428 	if (base == ESDHC_SYSTEM_CONTROL_2) {
429 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
430 		    esdhc->in_sw_tuning) {
431 			udelay(1);
432 			ret |= ESDHC_SMPCLKSEL;
433 			iowrite32be(ret, host->ioaddr + base);
434 		}
435 	}
436 }
437 
esdhc_le_writew(struct sdhci_host * host,u16 val,int reg)438 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
439 {
440 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
441 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
442 	int base = reg & ~0x3;
443 	u32 value;
444 	u32 ret;
445 
446 	value = ioread32(host->ioaddr + base);
447 	ret = esdhc_writew_fixup(host, reg, val, value);
448 	if (reg != SDHCI_TRANSFER_MODE)
449 		iowrite32(ret, host->ioaddr + base);
450 
451 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
452 	 * 1us later after ESDHC_EXTN is set.
453 	 */
454 	if (base == ESDHC_SYSTEM_CONTROL_2) {
455 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
456 		    esdhc->in_sw_tuning) {
457 			udelay(1);
458 			ret |= ESDHC_SMPCLKSEL;
459 			iowrite32(ret, host->ioaddr + base);
460 		}
461 	}
462 }
463 
esdhc_be_writeb(struct sdhci_host * host,u8 val,int reg)464 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
465 {
466 	int base = reg & ~0x3;
467 	u32 value;
468 	u32 ret;
469 
470 	value = ioread32be(host->ioaddr + base);
471 	ret = esdhc_writeb_fixup(host, reg, val, value);
472 	iowrite32be(ret, host->ioaddr + base);
473 }
474 
esdhc_le_writeb(struct sdhci_host * host,u8 val,int reg)475 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
476 {
477 	int base = reg & ~0x3;
478 	u32 value;
479 	u32 ret;
480 
481 	value = ioread32(host->ioaddr + base);
482 	ret = esdhc_writeb_fixup(host, reg, val, value);
483 	iowrite32(ret, host->ioaddr + base);
484 }
485 
486 /*
487  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
488  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
489  * and Block Gap Event(IRQSTAT[BGE]) are also set.
490  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
491  * and re-issue the entire read transaction from beginning.
492  */
esdhc_of_adma_workaround(struct sdhci_host * host,u32 intmask)493 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
494 {
495 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
496 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
497 	bool applicable;
498 	dma_addr_t dmastart;
499 	dma_addr_t dmanow;
500 
501 	applicable = (intmask & SDHCI_INT_DATA_END) &&
502 		     (intmask & SDHCI_INT_BLK_GAP) &&
503 		     (esdhc->vendor_ver == VENDOR_V_23);
504 	if (!applicable)
505 		return;
506 
507 	host->data->error = 0;
508 	dmastart = sg_dma_address(host->data->sg);
509 	dmanow = dmastart + host->data->bytes_xfered;
510 	/*
511 	 * Force update to the next DMA block boundary.
512 	 */
513 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
514 		SDHCI_DEFAULT_BOUNDARY_SIZE;
515 	host->data->bytes_xfered = dmanow - dmastart;
516 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
517 }
518 
esdhc_of_enable_dma(struct sdhci_host * host)519 static int esdhc_of_enable_dma(struct sdhci_host *host)
520 {
521 	u32 value;
522 	struct device *dev = mmc_dev(host->mmc);
523 
524 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
525 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
526 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
527 
528 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
529 
530 	if (of_dma_is_coherent(dev->of_node))
531 		value |= ESDHC_DMA_SNOOP;
532 	else
533 		value &= ~ESDHC_DMA_SNOOP;
534 
535 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
536 	return 0;
537 }
538 
esdhc_of_get_max_clock(struct sdhci_host * host)539 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
540 {
541 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
542 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
543 
544 	if (esdhc->peripheral_clock)
545 		return esdhc->peripheral_clock;
546 	else
547 		return pltfm_host->clock;
548 }
549 
esdhc_of_get_min_clock(struct sdhci_host * host)550 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
551 {
552 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
553 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
554 	unsigned int clock;
555 
556 	if (esdhc->peripheral_clock)
557 		clock = esdhc->peripheral_clock;
558 	else
559 		clock = pltfm_host->clock;
560 	return clock / 256 / 16;
561 }
562 
esdhc_clock_enable(struct sdhci_host * host,bool enable)563 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
564 {
565 	u32 val;
566 	ktime_t timeout;
567 
568 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
569 
570 	if (enable)
571 		val |= ESDHC_CLOCK_SDCLKEN;
572 	else
573 		val &= ~ESDHC_CLOCK_SDCLKEN;
574 
575 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
576 
577 	/* Wait max 20 ms */
578 	timeout = ktime_add_ms(ktime_get(), 20);
579 	val = ESDHC_CLOCK_STABLE;
580 	while  (1) {
581 		bool timedout = ktime_after(ktime_get(), timeout);
582 
583 		if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
584 			break;
585 		if (timedout) {
586 			pr_err("%s: Internal clock never stabilised.\n",
587 				mmc_hostname(host->mmc));
588 			break;
589 		}
590 		udelay(10);
591 	}
592 }
593 
esdhc_of_set_clock(struct sdhci_host * host,unsigned int clock)594 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
595 {
596 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
597 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
598 	int pre_div = 1;
599 	int div = 1;
600 	int division;
601 	ktime_t timeout;
602 	long fixup = 0;
603 	u32 temp;
604 
605 	host->mmc->actual_clock = 0;
606 
607 	if (clock == 0) {
608 		esdhc_clock_enable(host, false);
609 		return;
610 	}
611 
612 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
613 	if (esdhc->vendor_ver < VENDOR_V_23)
614 		pre_div = 2;
615 
616 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
617 		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
618 		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
619 	else if (esdhc->clk_fixup)
620 		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
621 
622 	if (fixup && clock > fixup)
623 		clock = fixup;
624 
625 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
626 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
627 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
628 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
629 
630 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
631 		pre_div *= 2;
632 
633 	while (host->max_clk / pre_div / div > clock && div < 16)
634 		div++;
635 
636 	if (esdhc->quirk_limited_clk_division &&
637 	    clock == MMC_HS200_MAX_DTR &&
638 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
639 	     host->flags & SDHCI_HS400_TUNING)) {
640 		division = pre_div * div;
641 		if (division <= 4) {
642 			pre_div = 4;
643 			div = 1;
644 		} else if (division <= 8) {
645 			pre_div = 4;
646 			div = 2;
647 		} else if (division <= 12) {
648 			pre_div = 4;
649 			div = 3;
650 		} else {
651 			pr_warn("%s: using unsupported clock division.\n",
652 				mmc_hostname(host->mmc));
653 		}
654 	}
655 
656 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
657 		clock, host->max_clk / pre_div / div);
658 	host->mmc->actual_clock = host->max_clk / pre_div / div;
659 	esdhc->div_ratio = pre_div * div;
660 	pre_div >>= 1;
661 	div--;
662 
663 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
664 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
665 		| (div << ESDHC_DIVIDER_SHIFT)
666 		| (pre_div << ESDHC_PREDIV_SHIFT));
667 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
668 
669 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
670 	    clock == MMC_HS200_MAX_DTR) {
671 		temp = sdhci_readl(host, ESDHC_TBCTL);
672 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
673 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
674 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
675 		esdhc_clock_enable(host, true);
676 
677 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
678 		temp |= ESDHC_DLL_ENABLE;
679 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
680 			temp |= ESDHC_DLL_FREQ_SEL;
681 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
682 		temp = sdhci_readl(host, ESDHC_TBCTL);
683 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
684 
685 		esdhc_clock_enable(host, false);
686 		temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
687 		temp |= ESDHC_FLUSH_ASYNC_FIFO;
688 		sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
689 	}
690 
691 	/* Wait max 20 ms */
692 	timeout = ktime_add_ms(ktime_get(), 20);
693 	while (1) {
694 		bool timedout = ktime_after(ktime_get(), timeout);
695 
696 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
697 			break;
698 		if (timedout) {
699 			pr_err("%s: Internal clock never stabilised.\n",
700 				mmc_hostname(host->mmc));
701 			return;
702 		}
703 		udelay(10);
704 	}
705 
706 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
707 	temp |= ESDHC_CLOCK_SDCLKEN;
708 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
709 }
710 
esdhc_pltfm_set_bus_width(struct sdhci_host * host,int width)711 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
712 {
713 	u32 ctrl;
714 
715 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
716 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
717 	switch (width) {
718 	case MMC_BUS_WIDTH_8:
719 		ctrl |= ESDHC_CTRL_8BITBUS;
720 		break;
721 
722 	case MMC_BUS_WIDTH_4:
723 		ctrl |= ESDHC_CTRL_4BITBUS;
724 		break;
725 
726 	default:
727 		break;
728 	}
729 
730 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
731 }
732 
esdhc_reset(struct sdhci_host * host,u8 mask)733 static void esdhc_reset(struct sdhci_host *host, u8 mask)
734 {
735 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
736 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
737 	u32 val;
738 
739 	if (esdhc->quirk_delay_before_data_reset &&
740 	    (mask & SDHCI_RESET_DATA) &&
741 	    (host->flags & SDHCI_REQ_USE_DMA))
742 		mdelay(5);
743 
744 	sdhci_reset(host, mask);
745 
746 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
747 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
748 
749 	if (mask & SDHCI_RESET_ALL) {
750 		val = sdhci_readl(host, ESDHC_TBCTL);
751 		val &= ~ESDHC_TB_EN;
752 		sdhci_writel(host, val, ESDHC_TBCTL);
753 
754 		if (esdhc->quirk_unreliable_pulse_detection) {
755 			val = sdhci_readl(host, ESDHC_DLLCFG1);
756 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
757 			sdhci_writel(host, val, ESDHC_DLLCFG1);
758 		}
759 	}
760 }
761 
762 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
763  * configuration and status registers for the device. There is a
764  * SDHC IO VSEL control register on SCFG for some platforms. It's
765  * used to support SDHC IO voltage switching.
766  */
767 static const struct of_device_id scfg_device_ids[] = {
768 	{ .compatible = "fsl,t1040-scfg", },
769 	{ .compatible = "fsl,ls1012a-scfg", },
770 	{ .compatible = "fsl,ls1046a-scfg", },
771 	{}
772 };
773 
774 /* SDHC IO VSEL control register definition */
775 #define SCFG_SDHCIOVSELCR	0x408
776 #define SDHCIOVSELCR_TGLEN	0x80000000
777 #define SDHCIOVSELCR_VSELVAL	0x60000000
778 #define SDHCIOVSELCR_SDHC_VS	0x00000001
779 
esdhc_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)780 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
781 				       struct mmc_ios *ios)
782 {
783 	struct sdhci_host *host = mmc_priv(mmc);
784 	struct device_node *scfg_node;
785 	void __iomem *scfg_base = NULL;
786 	u32 sdhciovselcr;
787 	u32 val;
788 
789 	/*
790 	 * Signal Voltage Switching is only applicable for Host Controllers
791 	 * v3.00 and above.
792 	 */
793 	if (host->version < SDHCI_SPEC_300)
794 		return 0;
795 
796 	val = sdhci_readl(host, ESDHC_PROCTL);
797 
798 	switch (ios->signal_voltage) {
799 	case MMC_SIGNAL_VOLTAGE_330:
800 		val &= ~ESDHC_VOLT_SEL;
801 		sdhci_writel(host, val, ESDHC_PROCTL);
802 		return 0;
803 	case MMC_SIGNAL_VOLTAGE_180:
804 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
805 		if (scfg_node)
806 			scfg_base = of_iomap(scfg_node, 0);
807 		if (scfg_base) {
808 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
809 				       SDHCIOVSELCR_VSELVAL;
810 			iowrite32be(sdhciovselcr,
811 				scfg_base + SCFG_SDHCIOVSELCR);
812 
813 			val |= ESDHC_VOLT_SEL;
814 			sdhci_writel(host, val, ESDHC_PROCTL);
815 			mdelay(5);
816 
817 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
818 				       SDHCIOVSELCR_SDHC_VS;
819 			iowrite32be(sdhciovselcr,
820 				scfg_base + SCFG_SDHCIOVSELCR);
821 			iounmap(scfg_base);
822 		} else {
823 			val |= ESDHC_VOLT_SEL;
824 			sdhci_writel(host, val, ESDHC_PROCTL);
825 		}
826 		return 0;
827 	default:
828 		return 0;
829 	}
830 }
831 
832 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
833 	{ .family = "QorIQ T1023", .revision = "1.0", },
834 	{ .family = "QorIQ T1040", .revision = "1.0", },
835 	{ .family = "QorIQ T2080", .revision = "1.0", },
836 	{ .family = "QorIQ LS1021A", .revision = "1.0", },
837 	{ },
838 };
839 
840 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
841 	{ .family = "QorIQ LS1012A", .revision = "1.0", },
842 	{ .family = "QorIQ LS1043A", .revision = "1.*", },
843 	{ .family = "QorIQ LS1046A", .revision = "1.0", },
844 	{ .family = "QorIQ LS1080A", .revision = "1.0", },
845 	{ .family = "QorIQ LS2080A", .revision = "1.0", },
846 	{ .family = "QorIQ LA1575A", .revision = "1.0", },
847 	{ },
848 };
849 
esdhc_tuning_block_enable(struct sdhci_host * host,bool enable)850 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
851 {
852 	u32 val;
853 
854 	esdhc_clock_enable(host, false);
855 
856 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
857 	val |= ESDHC_FLUSH_ASYNC_FIFO;
858 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
859 
860 	val = sdhci_readl(host, ESDHC_TBCTL);
861 	if (enable)
862 		val |= ESDHC_TB_EN;
863 	else
864 		val &= ~ESDHC_TB_EN;
865 	sdhci_writel(host, val, ESDHC_TBCTL);
866 
867 	esdhc_clock_enable(host, true);
868 }
869 
esdhc_prepare_sw_tuning(struct sdhci_host * host,u8 * window_start,u8 * window_end)870 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
871 				    u8 *window_end)
872 {
873 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
874 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
875 	u8 tbstat_15_8, tbstat_7_0;
876 	u32 val;
877 
878 	if (esdhc->quirk_tuning_erratum_type1) {
879 		*window_start = 5 * esdhc->div_ratio;
880 		*window_end = 3 * esdhc->div_ratio;
881 		return;
882 	}
883 
884 	/* Write TBCTL[11:8]=4'h8 */
885 	val = sdhci_readl(host, ESDHC_TBCTL);
886 	val &= ~(0xf << 8);
887 	val |= 8 << 8;
888 	sdhci_writel(host, val, ESDHC_TBCTL);
889 
890 	mdelay(1);
891 
892 	/* Read TBCTL[31:0] register and rewrite again */
893 	val = sdhci_readl(host, ESDHC_TBCTL);
894 	sdhci_writel(host, val, ESDHC_TBCTL);
895 
896 	mdelay(1);
897 
898 	/* Read the TBSTAT[31:0] register twice */
899 	val = sdhci_readl(host, ESDHC_TBSTAT);
900 	val = sdhci_readl(host, ESDHC_TBSTAT);
901 
902 	/* Reset data lines by setting ESDHCCTL[RSTD] */
903 	sdhci_reset(host, SDHCI_RESET_DATA);
904 	/* Write 32'hFFFF_FFFF to IRQSTAT register */
905 	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
906 
907 	/* If TBSTAT[15:8]-TBSTAT[7:0] > 4 * div_ratio
908 	 * or TBSTAT[7:0]-TBSTAT[15:8] > 4 * div_ratio,
909 	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
910 	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
911 	 */
912 	tbstat_7_0 = val & 0xff;
913 	tbstat_15_8 = (val >> 8) & 0xff;
914 
915 	if (abs(tbstat_15_8 - tbstat_7_0) > (4 * esdhc->div_ratio)) {
916 		*window_start = 8 * esdhc->div_ratio;
917 		*window_end = 4 * esdhc->div_ratio;
918 	} else {
919 		*window_start = 5 * esdhc->div_ratio;
920 		*window_end = 3 * esdhc->div_ratio;
921 	}
922 }
923 
esdhc_execute_sw_tuning(struct mmc_host * mmc,u32 opcode,u8 window_start,u8 window_end)924 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
925 				   u8 window_start, u8 window_end)
926 {
927 	struct sdhci_host *host = mmc_priv(mmc);
928 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
929 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
930 	u32 val;
931 	int ret;
932 
933 	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
934 	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
935 	      ESDHC_WNDW_STRT_PTR_MASK;
936 	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
937 	sdhci_writel(host, val, ESDHC_TBPTR);
938 
939 	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
940 	val = sdhci_readl(host, ESDHC_TBCTL);
941 	val &= ~ESDHC_TB_MODE_MASK;
942 	val |= ESDHC_TB_MODE_SW;
943 	sdhci_writel(host, val, ESDHC_TBCTL);
944 
945 	esdhc->in_sw_tuning = true;
946 	ret = sdhci_execute_tuning(mmc, opcode);
947 	esdhc->in_sw_tuning = false;
948 	return ret;
949 }
950 
esdhc_execute_tuning(struct mmc_host * mmc,u32 opcode)951 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
952 {
953 	struct sdhci_host *host = mmc_priv(mmc);
954 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
955 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
956 	u8 window_start, window_end;
957 	int ret, retries = 1;
958 	bool hs400_tuning;
959 	unsigned int clk;
960 	u32 val;
961 
962 	/* For tuning mode, the sd clock divisor value
963 	 * must be larger than 3 according to reference manual.
964 	 */
965 	clk = esdhc->peripheral_clock / 3;
966 	if (host->clock > clk)
967 		esdhc_of_set_clock(host, clk);
968 
969 	esdhc_tuning_block_enable(host, true);
970 
971 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
972 
973 	do {
974 		if (esdhc->quirk_limited_clk_division &&
975 		    hs400_tuning)
976 			esdhc_of_set_clock(host, host->clock);
977 
978 		/* Do HW tuning */
979 		val = sdhci_readl(host, ESDHC_TBCTL);
980 		val &= ~ESDHC_TB_MODE_MASK;
981 		val |= ESDHC_TB_MODE_3;
982 		sdhci_writel(host, val, ESDHC_TBCTL);
983 
984 		ret = sdhci_execute_tuning(mmc, opcode);
985 		if (ret)
986 			break;
987 
988 		/* If HW tuning fails and triggers erratum,
989 		 * try workaround.
990 		 */
991 		ret = host->tuning_err;
992 		if (ret == -EAGAIN &&
993 		    (esdhc->quirk_tuning_erratum_type1 ||
994 		     esdhc->quirk_tuning_erratum_type2)) {
995 			/* Recover HS400 tuning flag */
996 			if (hs400_tuning)
997 				host->flags |= SDHCI_HS400_TUNING;
998 			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
999 				mmc_hostname(mmc));
1000 			/* Do SW tuning */
1001 			esdhc_prepare_sw_tuning(host, &window_start,
1002 						&window_end);
1003 			ret = esdhc_execute_sw_tuning(mmc, opcode,
1004 						      window_start,
1005 						      window_end);
1006 			if (ret)
1007 				break;
1008 
1009 			/* Retry both HW/SW tuning with reduced clock. */
1010 			ret = host->tuning_err;
1011 			if (ret == -EAGAIN && retries) {
1012 				/* Recover HS400 tuning flag */
1013 				if (hs400_tuning)
1014 					host->flags |= SDHCI_HS400_TUNING;
1015 
1016 				clk = host->max_clk / (esdhc->div_ratio + 1);
1017 				esdhc_of_set_clock(host, clk);
1018 				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1019 					mmc_hostname(mmc));
1020 			} else {
1021 				break;
1022 			}
1023 		} else {
1024 			break;
1025 		}
1026 	} while (retries--);
1027 
1028 	if (ret) {
1029 		esdhc_tuning_block_enable(host, false);
1030 	} else if (hs400_tuning) {
1031 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1032 		val |= ESDHC_FLW_CTL_BG;
1033 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1034 	}
1035 
1036 	return ret;
1037 }
1038 
esdhc_set_uhs_signaling(struct sdhci_host * host,unsigned int timing)1039 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1040 				   unsigned int timing)
1041 {
1042 	if (timing == MMC_TIMING_MMC_HS400)
1043 		esdhc_tuning_block_enable(host, true);
1044 	else
1045 		sdhci_set_uhs_signaling(host, timing);
1046 }
1047 
esdhc_irq(struct sdhci_host * host,u32 intmask)1048 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1049 {
1050 	u32 command;
1051 
1052 	if (of_find_compatible_node(NULL, NULL,
1053 				"fsl,p2020-esdhc")) {
1054 		command = SDHCI_GET_CMD(sdhci_readw(host,
1055 					SDHCI_COMMAND));
1056 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1057 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1058 				intmask & SDHCI_INT_DATA_END) {
1059 			intmask &= ~SDHCI_INT_DATA_END;
1060 			sdhci_writel(host, SDHCI_INT_DATA_END,
1061 					SDHCI_INT_STATUS);
1062 		}
1063 	}
1064 	return intmask;
1065 }
1066 
1067 #ifdef CONFIG_PM_SLEEP
1068 static u32 esdhc_proctl;
esdhc_of_suspend(struct device * dev)1069 static int esdhc_of_suspend(struct device *dev)
1070 {
1071 	struct sdhci_host *host = dev_get_drvdata(dev);
1072 
1073 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1074 
1075 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1076 		mmc_retune_needed(host->mmc);
1077 
1078 	return sdhci_suspend_host(host);
1079 }
1080 
esdhc_of_resume(struct device * dev)1081 static int esdhc_of_resume(struct device *dev)
1082 {
1083 	struct sdhci_host *host = dev_get_drvdata(dev);
1084 	int ret = sdhci_resume_host(host);
1085 
1086 	if (ret == 0) {
1087 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1088 		esdhc_of_enable_dma(host);
1089 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1090 	}
1091 	return ret;
1092 }
1093 #endif
1094 
1095 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1096 			esdhc_of_suspend,
1097 			esdhc_of_resume);
1098 
1099 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1100 	.read_l = esdhc_be_readl,
1101 	.read_w = esdhc_be_readw,
1102 	.read_b = esdhc_be_readb,
1103 	.write_l = esdhc_be_writel,
1104 	.write_w = esdhc_be_writew,
1105 	.write_b = esdhc_be_writeb,
1106 	.set_clock = esdhc_of_set_clock,
1107 	.enable_dma = esdhc_of_enable_dma,
1108 	.get_max_clock = esdhc_of_get_max_clock,
1109 	.get_min_clock = esdhc_of_get_min_clock,
1110 	.adma_workaround = esdhc_of_adma_workaround,
1111 	.set_bus_width = esdhc_pltfm_set_bus_width,
1112 	.reset = esdhc_reset,
1113 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1114 	.irq = esdhc_irq,
1115 };
1116 
1117 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1118 	.read_l = esdhc_le_readl,
1119 	.read_w = esdhc_le_readw,
1120 	.read_b = esdhc_le_readb,
1121 	.write_l = esdhc_le_writel,
1122 	.write_w = esdhc_le_writew,
1123 	.write_b = esdhc_le_writeb,
1124 	.set_clock = esdhc_of_set_clock,
1125 	.enable_dma = esdhc_of_enable_dma,
1126 	.get_max_clock = esdhc_of_get_max_clock,
1127 	.get_min_clock = esdhc_of_get_min_clock,
1128 	.adma_workaround = esdhc_of_adma_workaround,
1129 	.set_bus_width = esdhc_pltfm_set_bus_width,
1130 	.reset = esdhc_reset,
1131 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1132 	.irq = esdhc_irq,
1133 };
1134 
1135 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1136 	.quirks = ESDHC_DEFAULT_QUIRKS |
1137 #ifdef CONFIG_PPC
1138 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1139 #endif
1140 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1141 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1142 	.ops = &sdhci_esdhc_be_ops,
1143 };
1144 
1145 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1146 	.quirks = ESDHC_DEFAULT_QUIRKS |
1147 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1148 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1149 	.ops = &sdhci_esdhc_le_ops,
1150 };
1151 
1152 static struct soc_device_attribute soc_incorrect_hostver[] = {
1153 	{ .family = "QorIQ T4240", .revision = "1.0", },
1154 	{ .family = "QorIQ T4240", .revision = "2.0", },
1155 	{ },
1156 };
1157 
1158 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1159 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1160 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1161 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1162 	{ },
1163 };
1164 
1165 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1166 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1167 	{ },
1168 };
1169 
esdhc_init(struct platform_device * pdev,struct sdhci_host * host)1170 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1171 {
1172 	const struct of_device_id *match;
1173 	struct sdhci_pltfm_host *pltfm_host;
1174 	struct sdhci_esdhc *esdhc;
1175 	struct device_node *np;
1176 	struct clk *clk;
1177 	u32 val;
1178 	u16 host_ver;
1179 
1180 	pltfm_host = sdhci_priv(host);
1181 	esdhc = sdhci_pltfm_priv(pltfm_host);
1182 
1183 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1184 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1185 			     SDHCI_VENDOR_VER_SHIFT;
1186 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1187 	if (soc_device_match(soc_incorrect_hostver))
1188 		esdhc->quirk_incorrect_hostver = true;
1189 	else
1190 		esdhc->quirk_incorrect_hostver = false;
1191 
1192 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1193 		esdhc->quirk_limited_clk_division = true;
1194 	else
1195 		esdhc->quirk_limited_clk_division = false;
1196 
1197 	if (soc_device_match(soc_unreliable_pulse_detection))
1198 		esdhc->quirk_unreliable_pulse_detection = true;
1199 	else
1200 		esdhc->quirk_unreliable_pulse_detection = false;
1201 
1202 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1203 	if (match)
1204 		esdhc->clk_fixup = match->data;
1205 	np = pdev->dev.of_node;
1206 
1207 	if (of_device_is_compatible(np, "fsl,p2020-esdhc"))
1208 		esdhc->quirk_delay_before_data_reset = true;
1209 
1210 	clk = of_clk_get(np, 0);
1211 	if (!IS_ERR(clk)) {
1212 		/*
1213 		 * esdhc->peripheral_clock would be assigned with a value
1214 		 * which is eSDHC base clock when use periperal clock.
1215 		 * For some platforms, the clock value got by common clk
1216 		 * API is peripheral clock while the eSDHC base clock is
1217 		 * 1/2 peripheral clock.
1218 		 */
1219 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1220 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
1221 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1222 		else
1223 			esdhc->peripheral_clock = clk_get_rate(clk);
1224 
1225 		clk_put(clk);
1226 	}
1227 
1228 	if (esdhc->peripheral_clock) {
1229 		esdhc_clock_enable(host, false);
1230 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1231 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1232 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1233 		esdhc_clock_enable(host, true);
1234 	}
1235 }
1236 
esdhc_hs400_prepare_ddr(struct mmc_host * mmc)1237 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1238 {
1239 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1240 	return 0;
1241 }
1242 
sdhci_esdhc_probe(struct platform_device * pdev)1243 static int sdhci_esdhc_probe(struct platform_device *pdev)
1244 {
1245 	struct sdhci_host *host;
1246 	struct device_node *np;
1247 	struct sdhci_pltfm_host *pltfm_host;
1248 	struct sdhci_esdhc *esdhc;
1249 	int ret;
1250 
1251 	np = pdev->dev.of_node;
1252 
1253 	if (of_property_read_bool(np, "little-endian"))
1254 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1255 					sizeof(struct sdhci_esdhc));
1256 	else
1257 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1258 					sizeof(struct sdhci_esdhc));
1259 
1260 	if (IS_ERR(host))
1261 		return PTR_ERR(host);
1262 
1263 	host->mmc_host_ops.start_signal_voltage_switch =
1264 		esdhc_signal_voltage_switch;
1265 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1266 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1267 	host->tuning_delay = 1;
1268 
1269 	esdhc_init(pdev, host);
1270 
1271 	sdhci_get_of_property(pdev);
1272 
1273 	pltfm_host = sdhci_priv(host);
1274 	esdhc = sdhci_pltfm_priv(pltfm_host);
1275 	if (soc_device_match(soc_tuning_erratum_type1))
1276 		esdhc->quirk_tuning_erratum_type1 = true;
1277 	else
1278 		esdhc->quirk_tuning_erratum_type1 = false;
1279 
1280 	if (soc_device_match(soc_tuning_erratum_type2))
1281 		esdhc->quirk_tuning_erratum_type2 = true;
1282 	else
1283 		esdhc->quirk_tuning_erratum_type2 = false;
1284 
1285 	if (esdhc->vendor_ver == VENDOR_V_22)
1286 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1287 
1288 	if (esdhc->vendor_ver > VENDOR_V_22)
1289 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1290 
1291 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1292 		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1293 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1294 	}
1295 
1296 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1297 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1298 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1299 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1300 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1301 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1302 
1303 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1304 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1305 
1306 	esdhc->quirk_ignore_data_inhibit = false;
1307 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1308 		/*
1309 		 * Freescale messed up with P2020 as it has a non-standard
1310 		 * host control register
1311 		 */
1312 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1313 		esdhc->quirk_ignore_data_inhibit = true;
1314 	}
1315 
1316 	/* call to generic mmc_of_parse to support additional capabilities */
1317 	ret = mmc_of_parse(host->mmc);
1318 	if (ret)
1319 		goto err;
1320 
1321 	mmc_of_parse_voltage(np, &host->ocr_mask);
1322 
1323 	ret = sdhci_add_host(host);
1324 	if (ret)
1325 		goto err;
1326 
1327 	return 0;
1328  err:
1329 	sdhci_pltfm_free(pdev);
1330 	return ret;
1331 }
1332 
1333 static struct platform_driver sdhci_esdhc_driver = {
1334 	.driver = {
1335 		.name = "sdhci-esdhc",
1336 		.of_match_table = sdhci_esdhc_of_match,
1337 		.pm = &esdhc_of_dev_pm_ops,
1338 	},
1339 	.probe = sdhci_esdhc_probe,
1340 	.remove = sdhci_pltfm_unregister,
1341 };
1342 
1343 module_platform_driver(sdhci_esdhc_driver);
1344 
1345 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1346 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1347 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1348 MODULE_LICENSE("GPL v2");
1349