• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29 
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41 
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44 
45 #define MAX_RETRIES 3
46 
47 #define SST49LF004B		0x0060
48 #define SST49LF040B		0x0050
49 #define SST49LF008A		0x005a
50 #define AT49BV6416		0x00d6
51 
52 /*
53  * Status Register bit description. Used by flash devices that don't
54  * support DQ polling (e.g. HyperFlash)
55  */
56 #define CFI_SR_DRB		BIT(7)
57 #define CFI_SR_ESB		BIT(5)
58 #define CFI_SR_PSB		BIT(4)
59 #define CFI_SR_WBASB		BIT(3)
60 #define CFI_SR_SLSB		BIT(1)
61 
62 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 #if !FORCE_WORD_WRITE
65 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
66 #endif
67 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
68 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
69 static void cfi_amdstd_sync (struct mtd_info *);
70 static int cfi_amdstd_suspend (struct mtd_info *);
71 static void cfi_amdstd_resume (struct mtd_info *);
72 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
74 					 size_t *, struct otp_info *);
75 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
76 					 size_t *, struct otp_info *);
77 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
79 					 size_t *, u_char *);
80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
81 					 size_t *, u_char *);
82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
83 					  size_t *, u_char *);
84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
85 
86 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
87 				  size_t *retlen, const u_char *buf);
88 
89 static void cfi_amdstd_destroy(struct mtd_info *);
90 
91 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
92 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
93 
94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
96 #include "fwh_lock.h"
97 
98 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
99 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
100 
101 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
103 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
104 
105 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
106 	.probe		= NULL, /* Not usable directly */
107 	.destroy	= cfi_amdstd_destroy,
108 	.name		= "cfi_cmdset_0002",
109 	.module		= THIS_MODULE
110 };
111 
112 /*
113  * Use status register to poll for Erase/write completion when DQ is not
114  * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
115  * CFI Primary Vendor-Specific Extended Query table 1.5
116  */
cfi_use_status_reg(struct cfi_private * cfi)117 static int cfi_use_status_reg(struct cfi_private *cfi)
118 {
119 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
120 	u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
121 
122 	return extp->MinorVersion >= '5' &&
123 		(extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
124 }
125 
cfi_check_err_status(struct map_info * map,struct flchip * chip,unsigned long adr)126 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
127 				unsigned long adr)
128 {
129 	struct cfi_private *cfi = map->fldrv_priv;
130 	map_word status;
131 
132 	if (!cfi_use_status_reg(cfi))
133 		return 0;
134 
135 	cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
136 			 cfi->device_type, NULL);
137 	status = map_read(map, adr);
138 
139 	/* The error bits are invalid while the chip's busy */
140 	if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
141 		return 0;
142 
143 	if (map_word_bitsset(map, status, CMD(0x3a))) {
144 		unsigned long chipstatus = MERGESTATUS(status);
145 
146 		if (chipstatus & CFI_SR_ESB)
147 			pr_err("%s erase operation failed, status %lx\n",
148 			       map->name, chipstatus);
149 		if (chipstatus & CFI_SR_PSB)
150 			pr_err("%s program operation failed, status %lx\n",
151 			       map->name, chipstatus);
152 		if (chipstatus & CFI_SR_WBASB)
153 			pr_err("%s buffer program command aborted, status %lx\n",
154 			       map->name, chipstatus);
155 		if (chipstatus & CFI_SR_SLSB)
156 			pr_err("%s sector write protected, status %lx\n",
157 			       map->name, chipstatus);
158 
159 		/* Erase/Program status bits are set on the operation failure */
160 		if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
161 			return 1;
162 	}
163 	return 0;
164 }
165 
166 /* #define DEBUG_CFI_FEATURES */
167 
168 
169 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_amdstd * extp)170 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
171 {
172 	const char* erase_suspend[3] = {
173 		"Not supported", "Read only", "Read/write"
174 	};
175 	const char* top_bottom[6] = {
176 		"No WP", "8x8KiB sectors at top & bottom, no WP",
177 		"Bottom boot", "Top boot",
178 		"Uniform, Bottom WP", "Uniform, Top WP"
179 	};
180 
181 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
182 	printk("  Address sensitive unlock: %s\n",
183 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
184 
185 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
186 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
187 	else
188 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
189 
190 	if (extp->BlkProt == 0)
191 		printk("  Block protection: Not supported\n");
192 	else
193 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
194 
195 
196 	printk("  Temporary block unprotect: %s\n",
197 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
198 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
199 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
200 	printk("  Burst mode: %s\n",
201 	       extp->BurstMode ? "Supported" : "Not supported");
202 	if (extp->PageMode == 0)
203 		printk("  Page mode: Not supported\n");
204 	else
205 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
206 
207 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
208 	       extp->VppMin >> 4, extp->VppMin & 0xf);
209 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
210 	       extp->VppMax >> 4, extp->VppMax & 0xf);
211 
212 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
213 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
214 	else
215 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
216 }
217 #endif
218 
219 #ifdef AMD_BOOTLOC_BUG
220 /* Wheee. Bring me the head of someone at AMD. */
fixup_amd_bootblock(struct mtd_info * mtd)221 static void fixup_amd_bootblock(struct mtd_info *mtd)
222 {
223 	struct map_info *map = mtd->priv;
224 	struct cfi_private *cfi = map->fldrv_priv;
225 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
226 	__u8 major = extp->MajorVersion;
227 	__u8 minor = extp->MinorVersion;
228 
229 	if (((major << 8) | minor) < 0x3131) {
230 		/* CFI version 1.0 => don't trust bootloc */
231 
232 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
233 			map->name, cfi->mfr, cfi->id);
234 
235 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
236 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
237 		 * These were badly detected as they have the 0x80 bit set
238 		 * so treat them as a special case.
239 		 */
240 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
241 
242 			/* Macronix added CFI to their 2nd generation
243 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
244 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
245 			 * has CFI.
246 			 *
247 			 * Therefore also check the manufacturer.
248 			 * This reduces the risk of false detection due to
249 			 * the 8-bit device ID.
250 			 */
251 			(cfi->mfr == CFI_MFR_MACRONIX)) {
252 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
253 				" detected\n", map->name);
254 			extp->TopBottom = 2;	/* bottom boot */
255 		} else
256 		if (cfi->id & 0x80) {
257 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
258 			extp->TopBottom = 3;	/* top boot */
259 		} else {
260 			extp->TopBottom = 2;	/* bottom boot */
261 		}
262 
263 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
264 			" deduced %s from Device ID\n", map->name, major, minor,
265 			extp->TopBottom == 2 ? "bottom" : "top");
266 	}
267 }
268 #endif
269 
270 #if !FORCE_WORD_WRITE
fixup_use_write_buffers(struct mtd_info * mtd)271 static void fixup_use_write_buffers(struct mtd_info *mtd)
272 {
273 	struct map_info *map = mtd->priv;
274 	struct cfi_private *cfi = map->fldrv_priv;
275 	if (cfi->cfiq->BufWriteTimeoutTyp) {
276 		pr_debug("Using buffer write method\n");
277 		mtd->_write = cfi_amdstd_write_buffers;
278 	}
279 }
280 #endif /* !FORCE_WORD_WRITE */
281 
282 /* Atmel chips don't use the same PRI format as AMD chips */
fixup_convert_atmel_pri(struct mtd_info * mtd)283 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
284 {
285 	struct map_info *map = mtd->priv;
286 	struct cfi_private *cfi = map->fldrv_priv;
287 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
288 	struct cfi_pri_atmel atmel_pri;
289 
290 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
291 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
292 
293 	if (atmel_pri.Features & 0x02)
294 		extp->EraseSuspend = 2;
295 
296 	/* Some chips got it backwards... */
297 	if (cfi->id == AT49BV6416) {
298 		if (atmel_pri.BottomBoot)
299 			extp->TopBottom = 3;
300 		else
301 			extp->TopBottom = 2;
302 	} else {
303 		if (atmel_pri.BottomBoot)
304 			extp->TopBottom = 2;
305 		else
306 			extp->TopBottom = 3;
307 	}
308 
309 	/* burst write mode not supported */
310 	cfi->cfiq->BufWriteTimeoutTyp = 0;
311 	cfi->cfiq->BufWriteTimeoutMax = 0;
312 }
313 
fixup_use_secsi(struct mtd_info * mtd)314 static void fixup_use_secsi(struct mtd_info *mtd)
315 {
316 	/* Setup for chips with a secsi area */
317 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
318 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
319 }
320 
fixup_use_erase_chip(struct mtd_info * mtd)321 static void fixup_use_erase_chip(struct mtd_info *mtd)
322 {
323 	struct map_info *map = mtd->priv;
324 	struct cfi_private *cfi = map->fldrv_priv;
325 	if ((cfi->cfiq->NumEraseRegions == 1) &&
326 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
327 		mtd->_erase = cfi_amdstd_erase_chip;
328 	}
329 
330 }
331 
332 /*
333  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
334  * locked by default.
335  */
fixup_use_atmel_lock(struct mtd_info * mtd)336 static void fixup_use_atmel_lock(struct mtd_info *mtd)
337 {
338 	mtd->_lock = cfi_atmel_lock;
339 	mtd->_unlock = cfi_atmel_unlock;
340 	mtd->flags |= MTD_POWERUP_LOCK;
341 }
342 
fixup_old_sst_eraseregion(struct mtd_info * mtd)343 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
344 {
345 	struct map_info *map = mtd->priv;
346 	struct cfi_private *cfi = map->fldrv_priv;
347 
348 	/*
349 	 * These flashes report two separate eraseblock regions based on the
350 	 * sector_erase-size and block_erase-size, although they both operate on the
351 	 * same memory. This is not allowed according to CFI, so we just pick the
352 	 * sector_erase-size.
353 	 */
354 	cfi->cfiq->NumEraseRegions = 1;
355 }
356 
fixup_sst39vf(struct mtd_info * mtd)357 static void fixup_sst39vf(struct mtd_info *mtd)
358 {
359 	struct map_info *map = mtd->priv;
360 	struct cfi_private *cfi = map->fldrv_priv;
361 
362 	fixup_old_sst_eraseregion(mtd);
363 
364 	cfi->addr_unlock1 = 0x5555;
365 	cfi->addr_unlock2 = 0x2AAA;
366 }
367 
fixup_sst39vf_rev_b(struct mtd_info * mtd)368 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
369 {
370 	struct map_info *map = mtd->priv;
371 	struct cfi_private *cfi = map->fldrv_priv;
372 
373 	fixup_old_sst_eraseregion(mtd);
374 
375 	cfi->addr_unlock1 = 0x555;
376 	cfi->addr_unlock2 = 0x2AA;
377 
378 	cfi->sector_erase_cmd = CMD(0x50);
379 }
380 
fixup_sst38vf640x_sectorsize(struct mtd_info * mtd)381 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
382 {
383 	struct map_info *map = mtd->priv;
384 	struct cfi_private *cfi = map->fldrv_priv;
385 
386 	fixup_sst39vf_rev_b(mtd);
387 
388 	/*
389 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
390 	 * it should report a size of 8KBytes (0x0020*256).
391 	 */
392 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
393 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
394 		mtd->name);
395 }
396 
fixup_s29gl064n_sectors(struct mtd_info * mtd)397 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
398 {
399 	struct map_info *map = mtd->priv;
400 	struct cfi_private *cfi = map->fldrv_priv;
401 
402 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
403 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
404 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
405 			mtd->name);
406 	}
407 }
408 
fixup_s29gl032n_sectors(struct mtd_info * mtd)409 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
410 {
411 	struct map_info *map = mtd->priv;
412 	struct cfi_private *cfi = map->fldrv_priv;
413 
414 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
415 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
416 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
417 			mtd->name);
418 	}
419 }
420 
fixup_s29ns512p_sectors(struct mtd_info * mtd)421 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
422 {
423 	struct map_info *map = mtd->priv;
424 	struct cfi_private *cfi = map->fldrv_priv;
425 
426 	/*
427 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
428 	 * which is not permitted by CFI.
429 	 */
430 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
431 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
432 		mtd->name);
433 }
434 
435 /* Used to fix CFI-Tables of chips without Extended Query Tables */
436 static struct cfi_fixup cfi_nopri_fixup_table[] = {
437 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
438 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
439 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
440 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
441 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
442 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
443 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
444 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
445 	{ 0, 0, NULL }
446 };
447 
448 static struct cfi_fixup cfi_fixup_table[] = {
449 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
450 #ifdef AMD_BOOTLOC_BUG
451 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
452 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
453 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
454 #endif
455 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
456 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
457 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
458 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
459 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
460 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
461 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
462 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
463 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
464 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
465 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
466 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
467 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
468 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
469 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
470 #if !FORCE_WORD_WRITE
471 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
472 #endif
473 	{ 0, 0, NULL }
474 };
475 static struct cfi_fixup jedec_fixup_table[] = {
476 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
477 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
478 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
479 	{ 0, 0, NULL }
480 };
481 
482 static struct cfi_fixup fixup_table[] = {
483 	/* The CFI vendor ids and the JEDEC vendor IDs appear
484 	 * to be common.  It is like the devices id's are as
485 	 * well.  This table is to pick all cases where
486 	 * we know that is the case.
487 	 */
488 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
489 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
490 	{ 0, 0, NULL }
491 };
492 
493 
cfi_fixup_major_minor(struct cfi_private * cfi,struct cfi_pri_amdstd * extp)494 static void cfi_fixup_major_minor(struct cfi_private *cfi,
495 				  struct cfi_pri_amdstd *extp)
496 {
497 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
498 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
499 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
500 			/*
501 			 * Samsung K8P2815UQB and K8D6x16UxM chips
502 			 * report major=0 / minor=0.
503 			 * K8D3x16UxC chips report major=3 / minor=3.
504 			 */
505 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
506 			       " Extended Query version to 1.%c\n",
507 			       extp->MinorVersion);
508 			extp->MajorVersion = '1';
509 		}
510 	}
511 
512 	/*
513 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
514 	 */
515 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
516 		extp->MajorVersion = '1';
517 		extp->MinorVersion = '0';
518 	}
519 }
520 
is_m29ew(struct cfi_private * cfi)521 static int is_m29ew(struct cfi_private *cfi)
522 {
523 	if (cfi->mfr == CFI_MFR_INTEL &&
524 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
525 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
526 		return 1;
527 	return 0;
528 }
529 
530 /*
531  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
532  * Some revisions of the M29EW suffer from erase suspend hang ups. In
533  * particular, it can occur when the sequence
534  * Erase Confirm -> Suspend -> Program -> Resume
535  * causes a lockup due to internal timing issues. The consequence is that the
536  * erase cannot be resumed without inserting a dummy command after programming
537  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
538  * that writes an F0 command code before the RESUME command.
539  */
cfi_fixup_m29ew_erase_suspend(struct map_info * map,unsigned long adr)540 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
541 					  unsigned long adr)
542 {
543 	struct cfi_private *cfi = map->fldrv_priv;
544 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
545 	if (is_m29ew(cfi))
546 		map_write(map, CMD(0xF0), adr);
547 }
548 
549 /*
550  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
551  *
552  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
553  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
554  * command is issued after an ERASE RESUME operation without waiting for a
555  * minimum delay.  The result is that once the ERASE seems to be completed
556  * (no bits are toggling), the contents of the Flash memory block on which
557  * the erase was ongoing could be inconsistent with the expected values
558  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
559  * values), causing a consequent failure of the ERASE operation.
560  * The occurrence of this issue could be high, especially when file system
561  * operations on the Flash are intensive.  As a result, it is recommended
562  * that a patch be applied.  Intensive file system operations can cause many
563  * calls to the garbage routine to free Flash space (also by erasing physical
564  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
565  * commands can occur.  The problem disappears when a delay is inserted after
566  * the RESUME command by using the udelay() function available in Linux.
567  * The DELAY value must be tuned based on the customer's platform.
568  * The maximum value that fixes the problem in all cases is 500us.
569  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
570  * in most cases.
571  * We have chosen 500µs because this latency is acceptable.
572  */
cfi_fixup_m29ew_delay_after_resume(struct cfi_private * cfi)573 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
574 {
575 	/*
576 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
577 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
578 	 */
579 	if (is_m29ew(cfi))
580 		cfi_udelay(500);
581 }
582 
cfi_cmdset_0002(struct map_info * map,int primary)583 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
584 {
585 	struct cfi_private *cfi = map->fldrv_priv;
586 	struct device_node __maybe_unused *np = map->device_node;
587 	struct mtd_info *mtd;
588 	int i;
589 
590 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
591 	if (!mtd)
592 		return NULL;
593 	mtd->priv = map;
594 	mtd->type = MTD_NORFLASH;
595 
596 	/* Fill in the default mtd operations */
597 	mtd->_erase   = cfi_amdstd_erase_varsize;
598 	mtd->_write   = cfi_amdstd_write_words;
599 	mtd->_read    = cfi_amdstd_read;
600 	mtd->_sync    = cfi_amdstd_sync;
601 	mtd->_suspend = cfi_amdstd_suspend;
602 	mtd->_resume  = cfi_amdstd_resume;
603 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
604 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
605 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
606 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
607 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
608 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
609 	mtd->flags   = MTD_CAP_NORFLASH;
610 	mtd->name    = map->name;
611 	mtd->writesize = 1;
612 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
613 
614 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
615 			mtd->writebufsize);
616 
617 	mtd->_panic_write = cfi_amdstd_panic_write;
618 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
619 
620 	if (cfi->cfi_mode==CFI_MODE_CFI){
621 		unsigned char bootloc;
622 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
623 		struct cfi_pri_amdstd *extp;
624 
625 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
626 		if (extp) {
627 			/*
628 			 * It's a real CFI chip, not one for which the probe
629 			 * routine faked a CFI structure.
630 			 */
631 			cfi_fixup_major_minor(cfi, extp);
632 
633 			/*
634 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
635 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
636 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
637 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
638 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
639 			 */
640 			if (extp->MajorVersion != '1' ||
641 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
642 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
643 				       "version %c.%c (%#02x/%#02x).\n",
644 				       extp->MajorVersion, extp->MinorVersion,
645 				       extp->MajorVersion, extp->MinorVersion);
646 				kfree(extp);
647 				kfree(mtd);
648 				return NULL;
649 			}
650 
651 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
652 			       extp->MajorVersion, extp->MinorVersion);
653 
654 			/* Install our own private info structure */
655 			cfi->cmdset_priv = extp;
656 
657 			/* Apply cfi device specific fixups */
658 			cfi_fixup(mtd, cfi_fixup_table);
659 
660 #ifdef DEBUG_CFI_FEATURES
661 			/* Tell the user about it in lots of lovely detail */
662 			cfi_tell_features(extp);
663 #endif
664 
665 #ifdef CONFIG_OF
666 			if (np && of_property_read_bool(
667 				    np, "use-advanced-sector-protection")
668 			    && extp->BlkProtUnprot == 8) {
669 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
670 				mtd->_lock = cfi_ppb_lock;
671 				mtd->_unlock = cfi_ppb_unlock;
672 				mtd->_is_locked = cfi_ppb_is_locked;
673 			}
674 #endif
675 
676 			bootloc = extp->TopBottom;
677 			if ((bootloc < 2) || (bootloc > 5)) {
678 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
679 				       "bank location (%d). Assuming bottom.\n",
680 				       map->name, bootloc);
681 				bootloc = 2;
682 			}
683 
684 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
685 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
686 
687 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
688 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
689 
690 					swap(cfi->cfiq->EraseRegionInfo[i],
691 					     cfi->cfiq->EraseRegionInfo[j]);
692 				}
693 			}
694 			/* Set the default CFI lock/unlock addresses */
695 			cfi->addr_unlock1 = 0x555;
696 			cfi->addr_unlock2 = 0x2aa;
697 		}
698 		cfi_fixup(mtd, cfi_nopri_fixup_table);
699 
700 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
701 			kfree(mtd);
702 			return NULL;
703 		}
704 
705 	} /* CFI mode */
706 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
707 		/* Apply jedec specific fixups */
708 		cfi_fixup(mtd, jedec_fixup_table);
709 	}
710 	/* Apply generic fixups */
711 	cfi_fixup(mtd, fixup_table);
712 
713 	for (i=0; i< cfi->numchips; i++) {
714 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
715 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
716 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
717 		/*
718 		 * First calculate the timeout max according to timeout field
719 		 * of struct cfi_ident that probed from chip's CFI aera, if
720 		 * available. Specify a minimum of 2000us, in case the CFI data
721 		 * is wrong.
722 		 */
723 		if (cfi->cfiq->BufWriteTimeoutTyp &&
724 		    cfi->cfiq->BufWriteTimeoutMax)
725 			cfi->chips[i].buffer_write_time_max =
726 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
727 				      cfi->cfiq->BufWriteTimeoutMax);
728 		else
729 			cfi->chips[i].buffer_write_time_max = 0;
730 
731 		cfi->chips[i].buffer_write_time_max =
732 			max(cfi->chips[i].buffer_write_time_max, 2000);
733 
734 		cfi->chips[i].ref_point_counter = 0;
735 		init_waitqueue_head(&(cfi->chips[i].wq));
736 	}
737 
738 	map->fldrv = &cfi_amdstd_chipdrv;
739 
740 	return cfi_amdstd_setup(mtd);
741 }
742 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
743 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
744 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
745 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
746 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
747 
cfi_amdstd_setup(struct mtd_info * mtd)748 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
749 {
750 	struct map_info *map = mtd->priv;
751 	struct cfi_private *cfi = map->fldrv_priv;
752 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
753 	unsigned long offset = 0;
754 	int i,j;
755 
756 	printk(KERN_NOTICE "number of %s chips: %d\n",
757 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
758 	/* Select the correct geometry setup */
759 	mtd->size = devsize * cfi->numchips;
760 
761 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
762 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
763 					  sizeof(struct mtd_erase_region_info),
764 					  GFP_KERNEL);
765 	if (!mtd->eraseregions)
766 		goto setup_err;
767 
768 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
769 		unsigned long ernum, ersize;
770 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
771 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
772 
773 		if (mtd->erasesize < ersize) {
774 			mtd->erasesize = ersize;
775 		}
776 		for (j=0; j<cfi->numchips; j++) {
777 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
778 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
779 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
780 		}
781 		offset += (ersize * ernum);
782 	}
783 	if (offset != devsize) {
784 		/* Argh */
785 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
786 		goto setup_err;
787 	}
788 
789 	__module_get(THIS_MODULE);
790 	register_reboot_notifier(&mtd->reboot_notifier);
791 	return mtd;
792 
793  setup_err:
794 	kfree(mtd->eraseregions);
795 	kfree(mtd);
796 	kfree(cfi->cmdset_priv);
797 	kfree(cfi->cfiq);
798 	return NULL;
799 }
800 
801 /*
802  * Return true if the chip is ready.
803  *
804  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
805  * non-suspended sector) and is indicated by no toggle bits toggling.
806  *
807  * Note that anything more complicated than checking if no bits are toggling
808  * (including checking DQ5 for an error status) is tricky to get working
809  * correctly and is therefore not done	(particularly with interleaved chips
810  * as each chip must be checked independently of the others).
811  */
chip_ready(struct map_info * map,struct flchip * chip,unsigned long addr)812 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
813 			       unsigned long addr)
814 {
815 	struct cfi_private *cfi = map->fldrv_priv;
816 	map_word d, t;
817 
818 	if (cfi_use_status_reg(cfi)) {
819 		map_word ready = CMD(CFI_SR_DRB);
820 		/*
821 		 * For chips that support status register, check device
822 		 * ready bit
823 		 */
824 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
825 				 cfi->device_type, NULL);
826 		d = map_read(map, addr);
827 
828 		return map_word_andequal(map, d, ready, ready);
829 	}
830 
831 	d = map_read(map, addr);
832 	t = map_read(map, addr);
833 
834 	return map_word_equal(map, d, t);
835 }
836 
837 /*
838  * Return true if the chip is ready and has the correct value.
839  *
840  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
841  * non-suspended sector) and it is indicated by no bits toggling.
842  *
843  * Error are indicated by toggling bits or bits held with the wrong value,
844  * or with bits toggling.
845  *
846  * Note that anything more complicated than checking if no bits are toggling
847  * (including checking DQ5 for an error status) is tricky to get working
848  * correctly and is therefore not done	(particularly with interleaved chips
849  * as each chip must be checked independently of the others).
850  *
851  */
chip_good(struct map_info * map,struct flchip * chip,unsigned long addr,map_word expected)852 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
853 			      unsigned long addr, map_word expected)
854 {
855 	struct cfi_private *cfi = map->fldrv_priv;
856 	map_word oldd, curd;
857 
858 	if (cfi_use_status_reg(cfi)) {
859 		map_word ready = CMD(CFI_SR_DRB);
860 
861 		/*
862 		 * For chips that support status register, check device
863 		 * ready bit
864 		 */
865 		cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
866 				 cfi->device_type, NULL);
867 		curd = map_read(map, addr);
868 
869 		return map_word_andequal(map, curd, ready, ready);
870 	}
871 
872 	oldd = map_read(map, addr);
873 	curd = map_read(map, addr);
874 
875 	return	map_word_equal(map, oldd, curd) &&
876 		map_word_equal(map, curd, expected);
877 }
878 
get_chip(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)879 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
880 {
881 	DECLARE_WAITQUEUE(wait, current);
882 	struct cfi_private *cfi = map->fldrv_priv;
883 	unsigned long timeo;
884 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
885 
886  resettime:
887 	timeo = jiffies + HZ;
888  retry:
889 	switch (chip->state) {
890 
891 	case FL_STATUS:
892 		for (;;) {
893 			if (chip_ready(map, chip, adr))
894 				break;
895 
896 			if (time_after(jiffies, timeo)) {
897 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
898 				return -EIO;
899 			}
900 			mutex_unlock(&chip->mutex);
901 			cfi_udelay(1);
902 			mutex_lock(&chip->mutex);
903 			/* Someone else might have been playing with it. */
904 			goto retry;
905 		}
906 
907 	case FL_READY:
908 	case FL_CFI_QUERY:
909 	case FL_JEDEC_QUERY:
910 		return 0;
911 
912 	case FL_ERASING:
913 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
914 		    !(mode == FL_READY || mode == FL_POINT ||
915 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
916 			goto sleep;
917 
918 		/* Do not allow suspend iff read/write to EB address */
919 		if ((adr & chip->in_progress_block_mask) ==
920 		    chip->in_progress_block_addr)
921 			goto sleep;
922 
923 		/* Erase suspend */
924 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
925 		 * commands when the erase algorithm isn't in progress. */
926 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
927 		chip->oldstate = FL_ERASING;
928 		chip->state = FL_ERASE_SUSPENDING;
929 		chip->erase_suspended = 1;
930 		for (;;) {
931 			if (chip_ready(map, chip, adr))
932 				break;
933 
934 			if (time_after(jiffies, timeo)) {
935 				/* Should have suspended the erase by now.
936 				 * Send an Erase-Resume command as either
937 				 * there was an error (so leave the erase
938 				 * routine to recover from it) or we trying to
939 				 * use the erase-in-progress sector. */
940 				put_chip(map, chip, adr);
941 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
942 				return -EIO;
943 			}
944 
945 			mutex_unlock(&chip->mutex);
946 			cfi_udelay(1);
947 			mutex_lock(&chip->mutex);
948 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
949 			   So we can just loop here. */
950 		}
951 		chip->state = FL_READY;
952 		return 0;
953 
954 	case FL_XIP_WHILE_ERASING:
955 		if (mode != FL_READY && mode != FL_POINT &&
956 		    (!cfip || !(cfip->EraseSuspend&2)))
957 			goto sleep;
958 		chip->oldstate = chip->state;
959 		chip->state = FL_READY;
960 		return 0;
961 
962 	case FL_SHUTDOWN:
963 		/* The machine is rebooting */
964 		return -EIO;
965 
966 	case FL_POINT:
967 		/* Only if there's no operation suspended... */
968 		if (mode == FL_READY && chip->oldstate == FL_READY)
969 			return 0;
970 		/* fall through */
971 
972 	default:
973 	sleep:
974 		set_current_state(TASK_UNINTERRUPTIBLE);
975 		add_wait_queue(&chip->wq, &wait);
976 		mutex_unlock(&chip->mutex);
977 		schedule();
978 		remove_wait_queue(&chip->wq, &wait);
979 		mutex_lock(&chip->mutex);
980 		goto resettime;
981 	}
982 }
983 
984 
put_chip(struct map_info * map,struct flchip * chip,unsigned long adr)985 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
986 {
987 	struct cfi_private *cfi = map->fldrv_priv;
988 
989 	switch(chip->oldstate) {
990 	case FL_ERASING:
991 		cfi_fixup_m29ew_erase_suspend(map,
992 			chip->in_progress_block_addr);
993 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
994 		cfi_fixup_m29ew_delay_after_resume(cfi);
995 		chip->oldstate = FL_READY;
996 		chip->state = FL_ERASING;
997 		break;
998 
999 	case FL_XIP_WHILE_ERASING:
1000 		chip->state = chip->oldstate;
1001 		chip->oldstate = FL_READY;
1002 		break;
1003 
1004 	case FL_READY:
1005 	case FL_STATUS:
1006 		break;
1007 	default:
1008 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1009 	}
1010 	wake_up(&chip->wq);
1011 }
1012 
1013 #ifdef CONFIG_MTD_XIP
1014 
1015 /*
1016  * No interrupt what so ever can be serviced while the flash isn't in array
1017  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1018  * enclosing any code path where the flash is known not to be in array mode.
1019  * And within a XIP disabled code path, only functions marked with __xipram
1020  * may be called and nothing else (it's a good thing to inspect generated
1021  * assembly to make sure inline functions were actually inlined and that gcc
1022  * didn't emit calls to its own support functions). Also configuring MTD CFI
1023  * support to a single buswidth and a single interleave is also recommended.
1024  */
1025 
xip_disable(struct map_info * map,struct flchip * chip,unsigned long adr)1026 static void xip_disable(struct map_info *map, struct flchip *chip,
1027 			unsigned long adr)
1028 {
1029 	/* TODO: chips with no XIP use should ignore and return */
1030 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
1031 	local_irq_disable();
1032 }
1033 
xip_enable(struct map_info * map,struct flchip * chip,unsigned long adr)1034 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1035 				unsigned long adr)
1036 {
1037 	struct cfi_private *cfi = map->fldrv_priv;
1038 
1039 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1040 		map_write(map, CMD(0xf0), adr);
1041 		chip->state = FL_READY;
1042 	}
1043 	(void) map_read(map, adr);
1044 	xip_iprefetch();
1045 	local_irq_enable();
1046 }
1047 
1048 /*
1049  * When a delay is required for the flash operation to complete, the
1050  * xip_udelay() function is polling for both the given timeout and pending
1051  * (but still masked) hardware interrupts.  Whenever there is an interrupt
1052  * pending then the flash erase operation is suspended, array mode restored
1053  * and interrupts unmasked.  Task scheduling might also happen at that
1054  * point.  The CPU eventually returns from the interrupt or the call to
1055  * schedule() and the suspended flash operation is resumed for the remaining
1056  * of the delay period.
1057  *
1058  * Warning: this function _will_ fool interrupt latency tracing tools.
1059  */
1060 
xip_udelay(struct map_info * map,struct flchip * chip,unsigned long adr,int usec)1061 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1062 				unsigned long adr, int usec)
1063 {
1064 	struct cfi_private *cfi = map->fldrv_priv;
1065 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1066 	map_word status, OK = CMD(0x80);
1067 	unsigned long suspended, start = xip_currtime();
1068 	flstate_t oldstate;
1069 
1070 	do {
1071 		cpu_relax();
1072 		if (xip_irqpending() && extp &&
1073 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1074 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1075 			/*
1076 			 * Let's suspend the erase operation when supported.
1077 			 * Note that we currently don't try to suspend
1078 			 * interleaved chips if there is already another
1079 			 * operation suspended (imagine what happens
1080 			 * when one chip was already done with the current
1081 			 * operation while another chip suspended it, then
1082 			 * we resume the whole thing at once).  Yes, it
1083 			 * can happen!
1084 			 */
1085 			map_write(map, CMD(0xb0), adr);
1086 			usec -= xip_elapsed_since(start);
1087 			suspended = xip_currtime();
1088 			do {
1089 				if (xip_elapsed_since(suspended) > 100000) {
1090 					/*
1091 					 * The chip doesn't want to suspend
1092 					 * after waiting for 100 msecs.
1093 					 * This is a critical error but there
1094 					 * is not much we can do here.
1095 					 */
1096 					return;
1097 				}
1098 				status = map_read(map, adr);
1099 			} while (!map_word_andequal(map, status, OK, OK));
1100 
1101 			/* Suspend succeeded */
1102 			oldstate = chip->state;
1103 			if (!map_word_bitsset(map, status, CMD(0x40)))
1104 				break;
1105 			chip->state = FL_XIP_WHILE_ERASING;
1106 			chip->erase_suspended = 1;
1107 			map_write(map, CMD(0xf0), adr);
1108 			(void) map_read(map, adr);
1109 			xip_iprefetch();
1110 			local_irq_enable();
1111 			mutex_unlock(&chip->mutex);
1112 			xip_iprefetch();
1113 			cond_resched();
1114 
1115 			/*
1116 			 * We're back.  However someone else might have
1117 			 * decided to go write to the chip if we are in
1118 			 * a suspended erase state.  If so let's wait
1119 			 * until it's done.
1120 			 */
1121 			mutex_lock(&chip->mutex);
1122 			while (chip->state != FL_XIP_WHILE_ERASING) {
1123 				DECLARE_WAITQUEUE(wait, current);
1124 				set_current_state(TASK_UNINTERRUPTIBLE);
1125 				add_wait_queue(&chip->wq, &wait);
1126 				mutex_unlock(&chip->mutex);
1127 				schedule();
1128 				remove_wait_queue(&chip->wq, &wait);
1129 				mutex_lock(&chip->mutex);
1130 			}
1131 			/* Disallow XIP again */
1132 			local_irq_disable();
1133 
1134 			/* Correct Erase Suspend Hangups for M29EW */
1135 			cfi_fixup_m29ew_erase_suspend(map, adr);
1136 			/* Resume the write or erase operation */
1137 			map_write(map, cfi->sector_erase_cmd, adr);
1138 			chip->state = oldstate;
1139 			start = xip_currtime();
1140 		} else if (usec >= 1000000/HZ) {
1141 			/*
1142 			 * Try to save on CPU power when waiting delay
1143 			 * is at least a system timer tick period.
1144 			 * No need to be extremely accurate here.
1145 			 */
1146 			xip_cpu_idle();
1147 		}
1148 		status = map_read(map, adr);
1149 	} while (!map_word_andequal(map, status, OK, OK)
1150 		 && xip_elapsed_since(start) < usec);
1151 }
1152 
1153 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1154 
1155 /*
1156  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1157  * the flash is actively programming or erasing since we have to poll for
1158  * the operation to complete anyway.  We can't do that in a generic way with
1159  * a XIP setup so do it before the actual flash operation in this case
1160  * and stub it out from INVALIDATE_CACHE_UDELAY.
1161  */
1162 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1163 	INVALIDATE_CACHED_RANGE(map, from, size)
1164 
1165 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1166 	UDELAY(map, chip, adr, usec)
1167 
1168 /*
1169  * Extra notes:
1170  *
1171  * Activating this XIP support changes the way the code works a bit.  For
1172  * example the code to suspend the current process when concurrent access
1173  * happens is never executed because xip_udelay() will always return with the
1174  * same chip state as it was entered with.  This is why there is no care for
1175  * the presence of add_wait_queue() or schedule() calls from within a couple
1176  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1177  * The queueing and scheduling are always happening within xip_udelay().
1178  *
1179  * Similarly, get_chip() and put_chip() just happen to always be executed
1180  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1181  * is in array mode, therefore never executing many cases therein and not
1182  * causing any problem with XIP.
1183  */
1184 
1185 #else
1186 
1187 #define xip_disable(map, chip, adr)
1188 #define xip_enable(map, chip, adr)
1189 #define XIP_INVAL_CACHED_RANGE(x...)
1190 
1191 #define UDELAY(map, chip, adr, usec)  \
1192 do {  \
1193 	mutex_unlock(&chip->mutex);  \
1194 	cfi_udelay(usec);  \
1195 	mutex_lock(&chip->mutex);  \
1196 } while (0)
1197 
1198 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1199 do {  \
1200 	mutex_unlock(&chip->mutex);  \
1201 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1202 	cfi_udelay(usec);  \
1203 	mutex_lock(&chip->mutex);  \
1204 } while (0)
1205 
1206 #endif
1207 
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)1208 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1209 {
1210 	unsigned long cmd_addr;
1211 	struct cfi_private *cfi = map->fldrv_priv;
1212 	int ret;
1213 
1214 	adr += chip->start;
1215 
1216 	/* Ensure cmd read/writes are aligned. */
1217 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1218 
1219 	mutex_lock(&chip->mutex);
1220 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1221 	if (ret) {
1222 		mutex_unlock(&chip->mutex);
1223 		return ret;
1224 	}
1225 
1226 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1227 		map_write(map, CMD(0xf0), cmd_addr);
1228 		chip->state = FL_READY;
1229 	}
1230 
1231 	map_copy_from(map, buf, adr, len);
1232 
1233 	put_chip(map, chip, cmd_addr);
1234 
1235 	mutex_unlock(&chip->mutex);
1236 	return 0;
1237 }
1238 
1239 
cfi_amdstd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1240 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1241 {
1242 	struct map_info *map = mtd->priv;
1243 	struct cfi_private *cfi = map->fldrv_priv;
1244 	unsigned long ofs;
1245 	int chipnum;
1246 	int ret = 0;
1247 
1248 	/* ofs: offset within the first chip that the first read should start */
1249 	chipnum = (from >> cfi->chipshift);
1250 	ofs = from - (chipnum <<  cfi->chipshift);
1251 
1252 	while (len) {
1253 		unsigned long thislen;
1254 
1255 		if (chipnum >= cfi->numchips)
1256 			break;
1257 
1258 		if ((len + ofs -1) >> cfi->chipshift)
1259 			thislen = (1<<cfi->chipshift) - ofs;
1260 		else
1261 			thislen = len;
1262 
1263 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1264 		if (ret)
1265 			break;
1266 
1267 		*retlen += thislen;
1268 		len -= thislen;
1269 		buf += thislen;
1270 
1271 		ofs = 0;
1272 		chipnum++;
1273 	}
1274 	return ret;
1275 }
1276 
1277 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1278 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1279 
otp_enter(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1280 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1281 			     loff_t adr, size_t len)
1282 {
1283 	struct cfi_private *cfi = map->fldrv_priv;
1284 
1285 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1286 			 cfi->device_type, NULL);
1287 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1288 			 cfi->device_type, NULL);
1289 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1290 			 cfi->device_type, NULL);
1291 
1292 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1293 }
1294 
otp_exit(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1295 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1296 			    loff_t adr, size_t len)
1297 {
1298 	struct cfi_private *cfi = map->fldrv_priv;
1299 
1300 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1301 			 cfi->device_type, NULL);
1302 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1303 			 cfi->device_type, NULL);
1304 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1305 			 cfi->device_type, NULL);
1306 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1307 			 cfi->device_type, NULL);
1308 
1309 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1310 }
1311 
do_read_secsi_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1312 static inline int do_read_secsi_onechip(struct map_info *map,
1313 					struct flchip *chip, loff_t adr,
1314 					size_t len, u_char *buf,
1315 					size_t grouplen)
1316 {
1317 	DECLARE_WAITQUEUE(wait, current);
1318 
1319  retry:
1320 	mutex_lock(&chip->mutex);
1321 
1322 	if (chip->state != FL_READY){
1323 		set_current_state(TASK_UNINTERRUPTIBLE);
1324 		add_wait_queue(&chip->wq, &wait);
1325 
1326 		mutex_unlock(&chip->mutex);
1327 
1328 		schedule();
1329 		remove_wait_queue(&chip->wq, &wait);
1330 
1331 		goto retry;
1332 	}
1333 
1334 	adr += chip->start;
1335 
1336 	chip->state = FL_READY;
1337 
1338 	otp_enter(map, chip, adr, len);
1339 	map_copy_from(map, buf, adr, len);
1340 	otp_exit(map, chip, adr, len);
1341 
1342 	wake_up(&chip->wq);
1343 	mutex_unlock(&chip->mutex);
1344 
1345 	return 0;
1346 }
1347 
cfi_amdstd_secsi_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1348 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1349 {
1350 	struct map_info *map = mtd->priv;
1351 	struct cfi_private *cfi = map->fldrv_priv;
1352 	unsigned long ofs;
1353 	int chipnum;
1354 	int ret = 0;
1355 
1356 	/* ofs: offset within the first chip that the first read should start */
1357 	/* 8 secsi bytes per chip */
1358 	chipnum=from>>3;
1359 	ofs=from & 7;
1360 
1361 	while (len) {
1362 		unsigned long thislen;
1363 
1364 		if (chipnum >= cfi->numchips)
1365 			break;
1366 
1367 		if ((len + ofs -1) >> 3)
1368 			thislen = (1<<3) - ofs;
1369 		else
1370 			thislen = len;
1371 
1372 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1373 					    thislen, buf, 0);
1374 		if (ret)
1375 			break;
1376 
1377 		*retlen += thislen;
1378 		len -= thislen;
1379 		buf += thislen;
1380 
1381 		ofs = 0;
1382 		chipnum++;
1383 	}
1384 	return ret;
1385 }
1386 
1387 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1388 				     unsigned long adr, map_word datum,
1389 				     int mode);
1390 
do_otp_write(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1391 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1392 			size_t len, u_char *buf, size_t grouplen)
1393 {
1394 	int ret;
1395 	while (len) {
1396 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1397 		int gap = adr - bus_ofs;
1398 		int n = min_t(int, len, map_bankwidth(map) - gap);
1399 		map_word datum = map_word_ff(map);
1400 
1401 		if (n != map_bankwidth(map)) {
1402 			/* partial write of a word, load old contents */
1403 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1404 			datum = map_read(map, bus_ofs);
1405 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1406 		}
1407 
1408 		datum = map_word_load_partial(map, datum, buf, gap, n);
1409 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1410 		if (ret)
1411 			return ret;
1412 
1413 		adr += n;
1414 		buf += n;
1415 		len -= n;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
do_otp_lock(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1421 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1422 		       size_t len, u_char *buf, size_t grouplen)
1423 {
1424 	struct cfi_private *cfi = map->fldrv_priv;
1425 	uint8_t lockreg;
1426 	unsigned long timeo;
1427 	int ret;
1428 
1429 	/* make sure area matches group boundaries */
1430 	if ((adr != 0) || (len != grouplen))
1431 		return -EINVAL;
1432 
1433 	mutex_lock(&chip->mutex);
1434 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1435 	if (ret) {
1436 		mutex_unlock(&chip->mutex);
1437 		return ret;
1438 	}
1439 	chip->state = FL_LOCKING;
1440 
1441 	/* Enter lock register command */
1442 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1443 			 cfi->device_type, NULL);
1444 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1445 			 cfi->device_type, NULL);
1446 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1447 			 cfi->device_type, NULL);
1448 
1449 	/* read lock register */
1450 	lockreg = cfi_read_query(map, 0);
1451 
1452 	/* set bit 0 to protect extended memory block */
1453 	lockreg &= ~0x01;
1454 
1455 	/* set bit 0 to protect extended memory block */
1456 	/* write lock register */
1457 	map_write(map, CMD(0xA0), chip->start);
1458 	map_write(map, CMD(lockreg), chip->start);
1459 
1460 	/* wait for chip to become ready */
1461 	timeo = jiffies + msecs_to_jiffies(2);
1462 	for (;;) {
1463 		if (chip_ready(map, chip, adr))
1464 			break;
1465 
1466 		if (time_after(jiffies, timeo)) {
1467 			pr_err("Waiting for chip to be ready timed out.\n");
1468 			ret = -EIO;
1469 			break;
1470 		}
1471 		UDELAY(map, chip, 0, 1);
1472 	}
1473 
1474 	/* exit protection commands */
1475 	map_write(map, CMD(0x90), chip->start);
1476 	map_write(map, CMD(0x00), chip->start);
1477 
1478 	chip->state = FL_READY;
1479 	put_chip(map, chip, chip->start);
1480 	mutex_unlock(&chip->mutex);
1481 
1482 	return ret;
1483 }
1484 
cfi_amdstd_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int user_regs)1485 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1486 			       size_t *retlen, u_char *buf,
1487 			       otp_op_t action, int user_regs)
1488 {
1489 	struct map_info *map = mtd->priv;
1490 	struct cfi_private *cfi = map->fldrv_priv;
1491 	int ofs_factor = cfi->interleave * cfi->device_type;
1492 	unsigned long base;
1493 	int chipnum;
1494 	struct flchip *chip;
1495 	uint8_t otp, lockreg;
1496 	int ret;
1497 
1498 	size_t user_size, factory_size, otpsize;
1499 	loff_t user_offset, factory_offset, otpoffset;
1500 	int user_locked = 0, otplocked;
1501 
1502 	*retlen = 0;
1503 
1504 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1505 		chip = &cfi->chips[chipnum];
1506 		factory_size = 0;
1507 		user_size = 0;
1508 
1509 		/* Micron M29EW family */
1510 		if (is_m29ew(cfi)) {
1511 			base = chip->start;
1512 
1513 			/* check whether secsi area is factory locked
1514 			   or user lockable */
1515 			mutex_lock(&chip->mutex);
1516 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1517 			if (ret) {
1518 				mutex_unlock(&chip->mutex);
1519 				return ret;
1520 			}
1521 			cfi_qry_mode_on(base, map, cfi);
1522 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1523 			cfi_qry_mode_off(base, map, cfi);
1524 			put_chip(map, chip, base);
1525 			mutex_unlock(&chip->mutex);
1526 
1527 			if (otp & 0x80) {
1528 				/* factory locked */
1529 				factory_offset = 0;
1530 				factory_size = 0x100;
1531 			} else {
1532 				/* customer lockable */
1533 				user_offset = 0;
1534 				user_size = 0x100;
1535 
1536 				mutex_lock(&chip->mutex);
1537 				ret = get_chip(map, chip, base, FL_LOCKING);
1538 				if (ret) {
1539 					mutex_unlock(&chip->mutex);
1540 					return ret;
1541 				}
1542 
1543 				/* Enter lock register command */
1544 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1545 						 chip->start, map, cfi,
1546 						 cfi->device_type, NULL);
1547 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1548 						 chip->start, map, cfi,
1549 						 cfi->device_type, NULL);
1550 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1551 						 chip->start, map, cfi,
1552 						 cfi->device_type, NULL);
1553 				/* read lock register */
1554 				lockreg = cfi_read_query(map, 0);
1555 				/* exit protection commands */
1556 				map_write(map, CMD(0x90), chip->start);
1557 				map_write(map, CMD(0x00), chip->start);
1558 				put_chip(map, chip, chip->start);
1559 				mutex_unlock(&chip->mutex);
1560 
1561 				user_locked = ((lockreg & 0x01) == 0x00);
1562 			}
1563 		}
1564 
1565 		otpsize = user_regs ? user_size : factory_size;
1566 		if (!otpsize)
1567 			continue;
1568 		otpoffset = user_regs ? user_offset : factory_offset;
1569 		otplocked = user_regs ? user_locked : 1;
1570 
1571 		if (!action) {
1572 			/* return otpinfo */
1573 			struct otp_info *otpinfo;
1574 			len -= sizeof(*otpinfo);
1575 			if (len <= 0)
1576 				return -ENOSPC;
1577 			otpinfo = (struct otp_info *)buf;
1578 			otpinfo->start = from;
1579 			otpinfo->length = otpsize;
1580 			otpinfo->locked = otplocked;
1581 			buf += sizeof(*otpinfo);
1582 			*retlen += sizeof(*otpinfo);
1583 			from += otpsize;
1584 		} else if ((from < otpsize) && (len > 0)) {
1585 			size_t size;
1586 			size = (len < otpsize - from) ? len : otpsize - from;
1587 			ret = action(map, chip, otpoffset + from, size, buf,
1588 				     otpsize);
1589 			if (ret < 0)
1590 				return ret;
1591 
1592 			buf += size;
1593 			len -= size;
1594 			*retlen += size;
1595 			from = 0;
1596 		} else {
1597 			from -= otpsize;
1598 		}
1599 	}
1600 	return 0;
1601 }
1602 
cfi_amdstd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1603 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1604 					 size_t *retlen, struct otp_info *buf)
1605 {
1606 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1607 				   NULL, 0);
1608 }
1609 
cfi_amdstd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1610 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1611 					 size_t *retlen, struct otp_info *buf)
1612 {
1613 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1614 				   NULL, 1);
1615 }
1616 
cfi_amdstd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1617 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1618 					 size_t len, size_t *retlen,
1619 					 u_char *buf)
1620 {
1621 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1622 				   buf, do_read_secsi_onechip, 0);
1623 }
1624 
cfi_amdstd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1625 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1626 					 size_t len, size_t *retlen,
1627 					 u_char *buf)
1628 {
1629 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1630 				   buf, do_read_secsi_onechip, 1);
1631 }
1632 
cfi_amdstd_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1633 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1634 					  size_t len, size_t *retlen,
1635 					  u_char *buf)
1636 {
1637 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1638 				   do_otp_write, 1);
1639 }
1640 
cfi_amdstd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1641 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1642 					 size_t len)
1643 {
1644 	size_t retlen;
1645 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1646 				   do_otp_lock, 1);
1647 }
1648 
do_write_oneword_once(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode,struct cfi_private * cfi)1649 static int __xipram do_write_oneword_once(struct map_info *map,
1650 					  struct flchip *chip,
1651 					  unsigned long adr, map_word datum,
1652 					  int mode, struct cfi_private *cfi)
1653 {
1654 	unsigned long timeo = jiffies + HZ;
1655 	/*
1656 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1657 	 * have a max write time of a few hundreds usec). However, we should
1658 	 * use the maximum timeout value given by the chip at probe time
1659 	 * instead.  Unfortunately, struct flchip does have a field for
1660 	 * maximum timeout, only for typical which can be far too short
1661 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1662 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1663 	 */
1664 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
1665 	int ret = 0;
1666 
1667 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1668 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1669 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1670 	map_write(map, datum, adr);
1671 	chip->state = mode;
1672 
1673 	INVALIDATE_CACHE_UDELAY(map, chip,
1674 				adr, map_bankwidth(map),
1675 				chip->word_write_time);
1676 
1677 	/* See comment above for timeout value. */
1678 	timeo = jiffies + uWriteTimeout;
1679 	for (;;) {
1680 		if (chip->state != mode) {
1681 			/* Someone's suspended the write. Sleep */
1682 			DECLARE_WAITQUEUE(wait, current);
1683 
1684 			set_current_state(TASK_UNINTERRUPTIBLE);
1685 			add_wait_queue(&chip->wq, &wait);
1686 			mutex_unlock(&chip->mutex);
1687 			schedule();
1688 			remove_wait_queue(&chip->wq, &wait);
1689 			timeo = jiffies + (HZ / 2); /* FIXME */
1690 			mutex_lock(&chip->mutex);
1691 			continue;
1692 		}
1693 
1694 		/*
1695 		 * We check "time_after" and "!chip_good" before checking
1696 		 * "chip_good" to avoid the failure due to scheduling.
1697 		 */
1698 		if (time_after(jiffies, timeo) &&
1699 		    !chip_good(map, chip, adr, datum)) {
1700 			xip_enable(map, chip, adr);
1701 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1702 			xip_disable(map, chip, adr);
1703 			ret = -EIO;
1704 			break;
1705 		}
1706 
1707 		if (chip_good(map, chip, adr, datum)) {
1708 			if (cfi_check_err_status(map, chip, adr))
1709 				ret = -EIO;
1710 			break;
1711 		}
1712 
1713 		/* Latency issues. Drop the lock, wait a while and retry */
1714 		UDELAY(map, chip, adr, 1);
1715 	}
1716 
1717 	return ret;
1718 }
1719 
do_write_oneword_start(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1720 static int __xipram do_write_oneword_start(struct map_info *map,
1721 					   struct flchip *chip,
1722 					   unsigned long adr, int mode)
1723 {
1724 	int ret = 0;
1725 
1726 	mutex_lock(&chip->mutex);
1727 
1728 	ret = get_chip(map, chip, adr, mode);
1729 	if (ret) {
1730 		mutex_unlock(&chip->mutex);
1731 		return ret;
1732 	}
1733 
1734 	if (mode == FL_OTP_WRITE)
1735 		otp_enter(map, chip, adr, map_bankwidth(map));
1736 
1737 	return ret;
1738 }
1739 
do_write_oneword_done(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1740 static void __xipram do_write_oneword_done(struct map_info *map,
1741 					   struct flchip *chip,
1742 					   unsigned long adr, int mode)
1743 {
1744 	if (mode == FL_OTP_WRITE)
1745 		otp_exit(map, chip, adr, map_bankwidth(map));
1746 
1747 	chip->state = FL_READY;
1748 	DISABLE_VPP(map);
1749 	put_chip(map, chip, adr);
1750 
1751 	mutex_unlock(&chip->mutex);
1752 }
1753 
do_write_oneword_retry(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1754 static int __xipram do_write_oneword_retry(struct map_info *map,
1755 					   struct flchip *chip,
1756 					   unsigned long adr, map_word datum,
1757 					   int mode)
1758 {
1759 	struct cfi_private *cfi = map->fldrv_priv;
1760 	int ret = 0;
1761 	map_word oldd;
1762 	int retry_cnt = 0;
1763 
1764 	/*
1765 	 * Check for a NOP for the case when the datum to write is already
1766 	 * present - it saves time and works around buggy chips that corrupt
1767 	 * data at other locations when 0xff is written to a location that
1768 	 * already contains 0xff.
1769 	 */
1770 	oldd = map_read(map, adr);
1771 	if (map_word_equal(map, oldd, datum)) {
1772 		pr_debug("MTD %s(): NOP\n", __func__);
1773 		return ret;
1774 	}
1775 
1776 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1777 	ENABLE_VPP(map);
1778 	xip_disable(map, chip, adr);
1779 
1780  retry:
1781 	ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1782 	if (ret) {
1783 		/* reset on all failures. */
1784 		map_write(map, CMD(0xF0), chip->start);
1785 		/* FIXME - should have reset delay before continuing */
1786 
1787 		if (++retry_cnt <= MAX_RETRIES) {
1788 			ret = 0;
1789 			goto retry;
1790 		}
1791 	}
1792 	xip_enable(map, chip, adr);
1793 
1794 	return ret;
1795 }
1796 
do_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1797 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1798 				     unsigned long adr, map_word datum,
1799 				     int mode)
1800 {
1801 	int ret = 0;
1802 
1803 	adr += chip->start;
1804 
1805 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1806 		 datum.x[0]);
1807 
1808 	ret = do_write_oneword_start(map, chip, adr, mode);
1809 	if (ret)
1810 		return ret;
1811 
1812 	ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1813 
1814 	do_write_oneword_done(map, chip, adr, mode);
1815 
1816 	return ret;
1817 }
1818 
1819 
cfi_amdstd_write_words(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1820 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1821 				  size_t *retlen, const u_char *buf)
1822 {
1823 	struct map_info *map = mtd->priv;
1824 	struct cfi_private *cfi = map->fldrv_priv;
1825 	int ret = 0;
1826 	int chipnum;
1827 	unsigned long ofs, chipstart;
1828 	DECLARE_WAITQUEUE(wait, current);
1829 
1830 	chipnum = to >> cfi->chipshift;
1831 	ofs = to  - (chipnum << cfi->chipshift);
1832 	chipstart = cfi->chips[chipnum].start;
1833 
1834 	/* If it's not bus-aligned, do the first byte write */
1835 	if (ofs & (map_bankwidth(map)-1)) {
1836 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1837 		int i = ofs - bus_ofs;
1838 		int n = 0;
1839 		map_word tmp_buf;
1840 
1841  retry:
1842 		mutex_lock(&cfi->chips[chipnum].mutex);
1843 
1844 		if (cfi->chips[chipnum].state != FL_READY) {
1845 			set_current_state(TASK_UNINTERRUPTIBLE);
1846 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1847 
1848 			mutex_unlock(&cfi->chips[chipnum].mutex);
1849 
1850 			schedule();
1851 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1852 			goto retry;
1853 		}
1854 
1855 		/* Load 'tmp_buf' with old contents of flash */
1856 		tmp_buf = map_read(map, bus_ofs+chipstart);
1857 
1858 		mutex_unlock(&cfi->chips[chipnum].mutex);
1859 
1860 		/* Number of bytes to copy from buffer */
1861 		n = min_t(int, len, map_bankwidth(map)-i);
1862 
1863 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1864 
1865 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1866 				       bus_ofs, tmp_buf, FL_WRITING);
1867 		if (ret)
1868 			return ret;
1869 
1870 		ofs += n;
1871 		buf += n;
1872 		(*retlen) += n;
1873 		len -= n;
1874 
1875 		if (ofs >> cfi->chipshift) {
1876 			chipnum ++;
1877 			ofs = 0;
1878 			if (chipnum == cfi->numchips)
1879 				return 0;
1880 		}
1881 	}
1882 
1883 	/* We are now aligned, write as much as possible */
1884 	while(len >= map_bankwidth(map)) {
1885 		map_word datum;
1886 
1887 		datum = map_word_load(map, buf);
1888 
1889 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1890 				       ofs, datum, FL_WRITING);
1891 		if (ret)
1892 			return ret;
1893 
1894 		ofs += map_bankwidth(map);
1895 		buf += map_bankwidth(map);
1896 		(*retlen) += map_bankwidth(map);
1897 		len -= map_bankwidth(map);
1898 
1899 		if (ofs >> cfi->chipshift) {
1900 			chipnum ++;
1901 			ofs = 0;
1902 			if (chipnum == cfi->numchips)
1903 				return 0;
1904 			chipstart = cfi->chips[chipnum].start;
1905 		}
1906 	}
1907 
1908 	/* Write the trailing bytes if any */
1909 	if (len & (map_bankwidth(map)-1)) {
1910 		map_word tmp_buf;
1911 
1912  retry1:
1913 		mutex_lock(&cfi->chips[chipnum].mutex);
1914 
1915 		if (cfi->chips[chipnum].state != FL_READY) {
1916 			set_current_state(TASK_UNINTERRUPTIBLE);
1917 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1918 
1919 			mutex_unlock(&cfi->chips[chipnum].mutex);
1920 
1921 			schedule();
1922 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1923 			goto retry1;
1924 		}
1925 
1926 		tmp_buf = map_read(map, ofs + chipstart);
1927 
1928 		mutex_unlock(&cfi->chips[chipnum].mutex);
1929 
1930 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1931 
1932 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1933 				       ofs, tmp_buf, FL_WRITING);
1934 		if (ret)
1935 			return ret;
1936 
1937 		(*retlen) += len;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 #if !FORCE_WORD_WRITE
do_write_buffer_wait(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)1944 static int __xipram do_write_buffer_wait(struct map_info *map,
1945 					 struct flchip *chip, unsigned long adr,
1946 					 map_word datum)
1947 {
1948 	unsigned long timeo;
1949 	unsigned long u_write_timeout;
1950 	int ret = 0;
1951 
1952 	/*
1953 	 * Timeout is calculated according to CFI data, if available.
1954 	 * See more comments in cfi_cmdset_0002().
1955 	 */
1956 	u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1957 	timeo = jiffies + u_write_timeout;
1958 
1959 	for (;;) {
1960 		if (chip->state != FL_WRITING) {
1961 			/* Someone's suspended the write. Sleep */
1962 			DECLARE_WAITQUEUE(wait, current);
1963 
1964 			set_current_state(TASK_UNINTERRUPTIBLE);
1965 			add_wait_queue(&chip->wq, &wait);
1966 			mutex_unlock(&chip->mutex);
1967 			schedule();
1968 			remove_wait_queue(&chip->wq, &wait);
1969 			timeo = jiffies + (HZ / 2); /* FIXME */
1970 			mutex_lock(&chip->mutex);
1971 			continue;
1972 		}
1973 
1974 		/*
1975 		 * We check "time_after" and "!chip_good" before checking
1976 		 * "chip_good" to avoid the failure due to scheduling.
1977 		 */
1978 		if (time_after(jiffies, timeo) &&
1979 		    !chip_good(map, chip, adr, datum)) {
1980 			pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1981 			       __func__, adr);
1982 			ret = -EIO;
1983 			break;
1984 		}
1985 
1986 		if (chip_good(map, chip, adr, datum)) {
1987 			if (cfi_check_err_status(map, chip, adr))
1988 				ret = -EIO;
1989 			break;
1990 		}
1991 
1992 		/* Latency issues. Drop the lock, wait a while and retry */
1993 		UDELAY(map, chip, adr, 1);
1994 	}
1995 
1996 	return ret;
1997 }
1998 
do_write_buffer_reset(struct map_info * map,struct flchip * chip,struct cfi_private * cfi)1999 static void __xipram do_write_buffer_reset(struct map_info *map,
2000 					   struct flchip *chip,
2001 					   struct cfi_private *cfi)
2002 {
2003 	/*
2004 	 * Recovery from write-buffer programming failures requires
2005 	 * the write-to-buffer-reset sequence.  Since the last part
2006 	 * of the sequence also works as a normal reset, we can run
2007 	 * the same commands regardless of why we are here.
2008 	 * See e.g.
2009 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2010 	 */
2011 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2012 			 cfi->device_type, NULL);
2013 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2014 			 cfi->device_type, NULL);
2015 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2016 			 cfi->device_type, NULL);
2017 
2018 	/* FIXME - should have reset delay before continuing */
2019 }
2020 
2021 /*
2022  * FIXME: interleaved mode not tested, and probably not supported!
2023  */
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)2024 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2025 				    unsigned long adr, const u_char *buf,
2026 				    int len)
2027 {
2028 	struct cfi_private *cfi = map->fldrv_priv;
2029 	int ret = -EIO;
2030 	unsigned long cmd_adr;
2031 	int z, words;
2032 	map_word datum;
2033 
2034 	adr += chip->start;
2035 	cmd_adr = adr;
2036 
2037 	mutex_lock(&chip->mutex);
2038 	ret = get_chip(map, chip, adr, FL_WRITING);
2039 	if (ret) {
2040 		mutex_unlock(&chip->mutex);
2041 		return ret;
2042 	}
2043 
2044 	datum = map_word_load(map, buf);
2045 
2046 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2047 		 __func__, adr, datum.x[0]);
2048 
2049 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2050 	ENABLE_VPP(map);
2051 	xip_disable(map, chip, cmd_adr);
2052 
2053 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2054 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2055 
2056 	/* Write Buffer Load */
2057 	map_write(map, CMD(0x25), cmd_adr);
2058 
2059 	chip->state = FL_WRITING_TO_BUFFER;
2060 
2061 	/* Write length of data to come */
2062 	words = len / map_bankwidth(map);
2063 	map_write(map, CMD(words - 1), cmd_adr);
2064 	/* Write data */
2065 	z = 0;
2066 	while(z < words * map_bankwidth(map)) {
2067 		datum = map_word_load(map, buf);
2068 		map_write(map, datum, adr + z);
2069 
2070 		z += map_bankwidth(map);
2071 		buf += map_bankwidth(map);
2072 	}
2073 	z -= map_bankwidth(map);
2074 
2075 	adr += z;
2076 
2077 	/* Write Buffer Program Confirm: GO GO GO */
2078 	map_write(map, CMD(0x29), cmd_adr);
2079 	chip->state = FL_WRITING;
2080 
2081 	INVALIDATE_CACHE_UDELAY(map, chip,
2082 				adr, map_bankwidth(map),
2083 				chip->word_write_time);
2084 
2085 	ret = do_write_buffer_wait(map, chip, adr, datum);
2086 	if (ret)
2087 		do_write_buffer_reset(map, chip, cfi);
2088 
2089 	xip_enable(map, chip, adr);
2090 
2091 	chip->state = FL_READY;
2092 	DISABLE_VPP(map);
2093 	put_chip(map, chip, adr);
2094 	mutex_unlock(&chip->mutex);
2095 
2096 	return ret;
2097 }
2098 
2099 
cfi_amdstd_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2100 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2101 				    size_t *retlen, const u_char *buf)
2102 {
2103 	struct map_info *map = mtd->priv;
2104 	struct cfi_private *cfi = map->fldrv_priv;
2105 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2106 	int ret = 0;
2107 	int chipnum;
2108 	unsigned long ofs;
2109 
2110 	chipnum = to >> cfi->chipshift;
2111 	ofs = to  - (chipnum << cfi->chipshift);
2112 
2113 	/* If it's not bus-aligned, do the first word write */
2114 	if (ofs & (map_bankwidth(map)-1)) {
2115 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2116 		if (local_len > len)
2117 			local_len = len;
2118 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2119 					     local_len, retlen, buf);
2120 		if (ret)
2121 			return ret;
2122 		ofs += local_len;
2123 		buf += local_len;
2124 		len -= local_len;
2125 
2126 		if (ofs >> cfi->chipshift) {
2127 			chipnum ++;
2128 			ofs = 0;
2129 			if (chipnum == cfi->numchips)
2130 				return 0;
2131 		}
2132 	}
2133 
2134 	/* Write buffer is worth it only if more than one word to write... */
2135 	while (len >= map_bankwidth(map) * 2) {
2136 		/* We must not cross write block boundaries */
2137 		int size = wbufsize - (ofs & (wbufsize-1));
2138 
2139 		if (size > len)
2140 			size = len;
2141 		if (size % map_bankwidth(map))
2142 			size -= size % map_bankwidth(map);
2143 
2144 		ret = do_write_buffer(map, &cfi->chips[chipnum],
2145 				      ofs, buf, size);
2146 		if (ret)
2147 			return ret;
2148 
2149 		ofs += size;
2150 		buf += size;
2151 		(*retlen) += size;
2152 		len -= size;
2153 
2154 		if (ofs >> cfi->chipshift) {
2155 			chipnum ++;
2156 			ofs = 0;
2157 			if (chipnum == cfi->numchips)
2158 				return 0;
2159 		}
2160 	}
2161 
2162 	if (len) {
2163 		size_t retlen_dregs = 0;
2164 
2165 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2166 					     len, &retlen_dregs, buf);
2167 
2168 		*retlen += retlen_dregs;
2169 		return ret;
2170 	}
2171 
2172 	return 0;
2173 }
2174 #endif /* !FORCE_WORD_WRITE */
2175 
2176 /*
2177  * Wait for the flash chip to become ready to write data
2178  *
2179  * This is only called during the panic_write() path. When panic_write()
2180  * is called, the kernel is in the process of a panic, and will soon be
2181  * dead. Therefore we don't take any locks, and attempt to get access
2182  * to the chip as soon as possible.
2183  */
cfi_amdstd_panic_wait(struct map_info * map,struct flchip * chip,unsigned long adr)2184 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2185 				 unsigned long adr)
2186 {
2187 	struct cfi_private *cfi = map->fldrv_priv;
2188 	int retries = 10;
2189 	int i;
2190 
2191 	/*
2192 	 * If the driver thinks the chip is idle, and no toggle bits
2193 	 * are changing, then the chip is actually idle for sure.
2194 	 */
2195 	if (chip->state == FL_READY && chip_ready(map, chip, adr))
2196 		return 0;
2197 
2198 	/*
2199 	 * Try several times to reset the chip and then wait for it
2200 	 * to become idle. The upper limit of a few milliseconds of
2201 	 * delay isn't a big problem: the kernel is dying anyway. It
2202 	 * is more important to save the messages.
2203 	 */
2204 	while (retries > 0) {
2205 		const unsigned long timeo = (HZ / 1000) + 1;
2206 
2207 		/* send the reset command */
2208 		map_write(map, CMD(0xF0), chip->start);
2209 
2210 		/* wait for the chip to become ready */
2211 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2212 			if (chip_ready(map, chip, adr))
2213 				return 0;
2214 
2215 			udelay(1);
2216 		}
2217 
2218 		retries--;
2219 	}
2220 
2221 	/* the chip never became ready */
2222 	return -EBUSY;
2223 }
2224 
2225 /*
2226  * Write out one word of data to a single flash chip during a kernel panic
2227  *
2228  * This is only called during the panic_write() path. When panic_write()
2229  * is called, the kernel is in the process of a panic, and will soon be
2230  * dead. Therefore we don't take any locks, and attempt to get access
2231  * to the chip as soon as possible.
2232  *
2233  * The implementation of this routine is intentionally similar to
2234  * do_write_oneword(), in order to ease code maintenance.
2235  */
do_panic_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)2236 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2237 				  unsigned long adr, map_word datum)
2238 {
2239 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2240 	struct cfi_private *cfi = map->fldrv_priv;
2241 	int retry_cnt = 0;
2242 	map_word oldd;
2243 	int ret = 0;
2244 	int i;
2245 
2246 	adr += chip->start;
2247 
2248 	ret = cfi_amdstd_panic_wait(map, chip, adr);
2249 	if (ret)
2250 		return ret;
2251 
2252 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2253 			__func__, adr, datum.x[0]);
2254 
2255 	/*
2256 	 * Check for a NOP for the case when the datum to write is already
2257 	 * present - it saves time and works around buggy chips that corrupt
2258 	 * data at other locations when 0xff is written to a location that
2259 	 * already contains 0xff.
2260 	 */
2261 	oldd = map_read(map, adr);
2262 	if (map_word_equal(map, oldd, datum)) {
2263 		pr_debug("MTD %s(): NOP\n", __func__);
2264 		goto op_done;
2265 	}
2266 
2267 	ENABLE_VPP(map);
2268 
2269 retry:
2270 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2271 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2272 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2273 	map_write(map, datum, adr);
2274 
2275 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2276 		if (chip_ready(map, chip, adr))
2277 			break;
2278 
2279 		udelay(1);
2280 	}
2281 
2282 	if (!chip_good(map, chip, adr, datum) ||
2283 	    cfi_check_err_status(map, chip, adr)) {
2284 		/* reset on all failures. */
2285 		map_write(map, CMD(0xF0), chip->start);
2286 		/* FIXME - should have reset delay before continuing */
2287 
2288 		if (++retry_cnt <= MAX_RETRIES)
2289 			goto retry;
2290 
2291 		ret = -EIO;
2292 	}
2293 
2294 op_done:
2295 	DISABLE_VPP(map);
2296 	return ret;
2297 }
2298 
2299 /*
2300  * Write out some data during a kernel panic
2301  *
2302  * This is used by the mtdoops driver to save the dying messages from a
2303  * kernel which has panic'd.
2304  *
2305  * This routine ignores all of the locking used throughout the rest of the
2306  * driver, in order to ensure that the data gets written out no matter what
2307  * state this driver (and the flash chip itself) was in when the kernel crashed.
2308  *
2309  * The implementation of this routine is intentionally similar to
2310  * cfi_amdstd_write_words(), in order to ease code maintenance.
2311  */
cfi_amdstd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2312 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2313 				  size_t *retlen, const u_char *buf)
2314 {
2315 	struct map_info *map = mtd->priv;
2316 	struct cfi_private *cfi = map->fldrv_priv;
2317 	unsigned long ofs, chipstart;
2318 	int ret = 0;
2319 	int chipnum;
2320 
2321 	chipnum = to >> cfi->chipshift;
2322 	ofs = to - (chipnum << cfi->chipshift);
2323 	chipstart = cfi->chips[chipnum].start;
2324 
2325 	/* If it's not bus aligned, do the first byte write */
2326 	if (ofs & (map_bankwidth(map) - 1)) {
2327 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2328 		int i = ofs - bus_ofs;
2329 		int n = 0;
2330 		map_word tmp_buf;
2331 
2332 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2333 		if (ret)
2334 			return ret;
2335 
2336 		/* Load 'tmp_buf' with old contents of flash */
2337 		tmp_buf = map_read(map, bus_ofs + chipstart);
2338 
2339 		/* Number of bytes to copy from buffer */
2340 		n = min_t(int, len, map_bankwidth(map) - i);
2341 
2342 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2343 
2344 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2345 					     bus_ofs, tmp_buf);
2346 		if (ret)
2347 			return ret;
2348 
2349 		ofs += n;
2350 		buf += n;
2351 		(*retlen) += n;
2352 		len -= n;
2353 
2354 		if (ofs >> cfi->chipshift) {
2355 			chipnum++;
2356 			ofs = 0;
2357 			if (chipnum == cfi->numchips)
2358 				return 0;
2359 		}
2360 	}
2361 
2362 	/* We are now aligned, write as much as possible */
2363 	while (len >= map_bankwidth(map)) {
2364 		map_word datum;
2365 
2366 		datum = map_word_load(map, buf);
2367 
2368 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2369 					     ofs, datum);
2370 		if (ret)
2371 			return ret;
2372 
2373 		ofs += map_bankwidth(map);
2374 		buf += map_bankwidth(map);
2375 		(*retlen) += map_bankwidth(map);
2376 		len -= map_bankwidth(map);
2377 
2378 		if (ofs >> cfi->chipshift) {
2379 			chipnum++;
2380 			ofs = 0;
2381 			if (chipnum == cfi->numchips)
2382 				return 0;
2383 
2384 			chipstart = cfi->chips[chipnum].start;
2385 		}
2386 	}
2387 
2388 	/* Write the trailing bytes if any */
2389 	if (len & (map_bankwidth(map) - 1)) {
2390 		map_word tmp_buf;
2391 
2392 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2393 		if (ret)
2394 			return ret;
2395 
2396 		tmp_buf = map_read(map, ofs + chipstart);
2397 
2398 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2399 
2400 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2401 					     ofs, tmp_buf);
2402 		if (ret)
2403 			return ret;
2404 
2405 		(*retlen) += len;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 
2412 /*
2413  * Handle devices with one erase region, that only implement
2414  * the chip erase command.
2415  */
do_erase_chip(struct map_info * map,struct flchip * chip)2416 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2417 {
2418 	struct cfi_private *cfi = map->fldrv_priv;
2419 	unsigned long timeo = jiffies + HZ;
2420 	unsigned long int adr;
2421 	DECLARE_WAITQUEUE(wait, current);
2422 	int ret = 0;
2423 	int retry_cnt = 0;
2424 
2425 	adr = cfi->addr_unlock1;
2426 
2427 	mutex_lock(&chip->mutex);
2428 	ret = get_chip(map, chip, adr, FL_ERASING);
2429 	if (ret) {
2430 		mutex_unlock(&chip->mutex);
2431 		return ret;
2432 	}
2433 
2434 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2435 	       __func__, chip->start);
2436 
2437 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2438 	ENABLE_VPP(map);
2439 	xip_disable(map, chip, adr);
2440 
2441  retry:
2442 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2443 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2444 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2445 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2446 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2447 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2448 
2449 	chip->state = FL_ERASING;
2450 	chip->erase_suspended = 0;
2451 	chip->in_progress_block_addr = adr;
2452 	chip->in_progress_block_mask = ~(map->size - 1);
2453 
2454 	INVALIDATE_CACHE_UDELAY(map, chip,
2455 				adr, map->size,
2456 				chip->erase_time*500);
2457 
2458 	timeo = jiffies + (HZ*20);
2459 
2460 	for (;;) {
2461 		if (chip->state != FL_ERASING) {
2462 			/* Someone's suspended the erase. Sleep */
2463 			set_current_state(TASK_UNINTERRUPTIBLE);
2464 			add_wait_queue(&chip->wq, &wait);
2465 			mutex_unlock(&chip->mutex);
2466 			schedule();
2467 			remove_wait_queue(&chip->wq, &wait);
2468 			mutex_lock(&chip->mutex);
2469 			continue;
2470 		}
2471 		if (chip->erase_suspended) {
2472 			/* This erase was suspended and resumed.
2473 			   Adjust the timeout */
2474 			timeo = jiffies + (HZ*20); /* FIXME */
2475 			chip->erase_suspended = 0;
2476 		}
2477 
2478 		if (chip_good(map, chip, adr, map_word_ff(map))) {
2479 			if (cfi_check_err_status(map, chip, adr))
2480 				ret = -EIO;
2481 			break;
2482 		}
2483 
2484 		if (time_after(jiffies, timeo)) {
2485 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2486 			       __func__);
2487 			ret = -EIO;
2488 			break;
2489 		}
2490 
2491 		/* Latency issues. Drop the lock, wait a while and retry */
2492 		UDELAY(map, chip, adr, 1000000/HZ);
2493 	}
2494 	/* Did we succeed? */
2495 	if (ret) {
2496 		/* reset on all failures. */
2497 		map_write(map, CMD(0xF0), chip->start);
2498 		/* FIXME - should have reset delay before continuing */
2499 
2500 		if (++retry_cnt <= MAX_RETRIES) {
2501 			ret = 0;
2502 			goto retry;
2503 		}
2504 	}
2505 
2506 	chip->state = FL_READY;
2507 	xip_enable(map, chip, adr);
2508 	DISABLE_VPP(map);
2509 	put_chip(map, chip, adr);
2510 	mutex_unlock(&chip->mutex);
2511 
2512 	return ret;
2513 }
2514 
2515 
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2516 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2517 {
2518 	struct cfi_private *cfi = map->fldrv_priv;
2519 	unsigned long timeo = jiffies + HZ;
2520 	DECLARE_WAITQUEUE(wait, current);
2521 	int ret = 0;
2522 	int retry_cnt = 0;
2523 
2524 	adr += chip->start;
2525 
2526 	mutex_lock(&chip->mutex);
2527 	ret = get_chip(map, chip, adr, FL_ERASING);
2528 	if (ret) {
2529 		mutex_unlock(&chip->mutex);
2530 		return ret;
2531 	}
2532 
2533 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2534 		 __func__, adr);
2535 
2536 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2537 	ENABLE_VPP(map);
2538 	xip_disable(map, chip, adr);
2539 
2540  retry:
2541 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2542 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2543 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2544 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2545 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2546 	map_write(map, cfi->sector_erase_cmd, adr);
2547 
2548 	chip->state = FL_ERASING;
2549 	chip->erase_suspended = 0;
2550 	chip->in_progress_block_addr = adr;
2551 	chip->in_progress_block_mask = ~(len - 1);
2552 
2553 	INVALIDATE_CACHE_UDELAY(map, chip,
2554 				adr, len,
2555 				chip->erase_time*500);
2556 
2557 	timeo = jiffies + (HZ*20);
2558 
2559 	for (;;) {
2560 		if (chip->state != FL_ERASING) {
2561 			/* Someone's suspended the erase. Sleep */
2562 			set_current_state(TASK_UNINTERRUPTIBLE);
2563 			add_wait_queue(&chip->wq, &wait);
2564 			mutex_unlock(&chip->mutex);
2565 			schedule();
2566 			remove_wait_queue(&chip->wq, &wait);
2567 			mutex_lock(&chip->mutex);
2568 			continue;
2569 		}
2570 		if (chip->erase_suspended) {
2571 			/* This erase was suspended and resumed.
2572 			   Adjust the timeout */
2573 			timeo = jiffies + (HZ*20); /* FIXME */
2574 			chip->erase_suspended = 0;
2575 		}
2576 
2577 		if (chip_good(map, chip, adr, map_word_ff(map))) {
2578 			if (cfi_check_err_status(map, chip, adr))
2579 				ret = -EIO;
2580 			break;
2581 		}
2582 
2583 		if (time_after(jiffies, timeo)) {
2584 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2585 			       __func__);
2586 			ret = -EIO;
2587 			break;
2588 		}
2589 
2590 		/* Latency issues. Drop the lock, wait a while and retry */
2591 		UDELAY(map, chip, adr, 1000000/HZ);
2592 	}
2593 	/* Did we succeed? */
2594 	if (ret) {
2595 		/* reset on all failures. */
2596 		map_write(map, CMD(0xF0), chip->start);
2597 		/* FIXME - should have reset delay before continuing */
2598 
2599 		if (++retry_cnt <= MAX_RETRIES) {
2600 			ret = 0;
2601 			goto retry;
2602 		}
2603 	}
2604 
2605 	chip->state = FL_READY;
2606 	xip_enable(map, chip, adr);
2607 	DISABLE_VPP(map);
2608 	put_chip(map, chip, adr);
2609 	mutex_unlock(&chip->mutex);
2610 	return ret;
2611 }
2612 
2613 
cfi_amdstd_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)2614 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2615 {
2616 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2617 				instr->len, NULL);
2618 }
2619 
2620 
cfi_amdstd_erase_chip(struct mtd_info * mtd,struct erase_info * instr)2621 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2622 {
2623 	struct map_info *map = mtd->priv;
2624 	struct cfi_private *cfi = map->fldrv_priv;
2625 
2626 	if (instr->addr != 0)
2627 		return -EINVAL;
2628 
2629 	if (instr->len != mtd->size)
2630 		return -EINVAL;
2631 
2632 	return do_erase_chip(map, &cfi->chips[0]);
2633 }
2634 
do_atmel_lock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2635 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2636 			 unsigned long adr, int len, void *thunk)
2637 {
2638 	struct cfi_private *cfi = map->fldrv_priv;
2639 	int ret;
2640 
2641 	mutex_lock(&chip->mutex);
2642 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2643 	if (ret)
2644 		goto out_unlock;
2645 	chip->state = FL_LOCKING;
2646 
2647 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2648 
2649 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2650 			 cfi->device_type, NULL);
2651 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2652 			 cfi->device_type, NULL);
2653 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2654 			 cfi->device_type, NULL);
2655 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2656 			 cfi->device_type, NULL);
2657 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2658 			 cfi->device_type, NULL);
2659 	map_write(map, CMD(0x40), chip->start + adr);
2660 
2661 	chip->state = FL_READY;
2662 	put_chip(map, chip, adr + chip->start);
2663 	ret = 0;
2664 
2665 out_unlock:
2666 	mutex_unlock(&chip->mutex);
2667 	return ret;
2668 }
2669 
do_atmel_unlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2670 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2671 			   unsigned long adr, int len, void *thunk)
2672 {
2673 	struct cfi_private *cfi = map->fldrv_priv;
2674 	int ret;
2675 
2676 	mutex_lock(&chip->mutex);
2677 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2678 	if (ret)
2679 		goto out_unlock;
2680 	chip->state = FL_UNLOCKING;
2681 
2682 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2683 
2684 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2685 			 cfi->device_type, NULL);
2686 	map_write(map, CMD(0x70), adr);
2687 
2688 	chip->state = FL_READY;
2689 	put_chip(map, chip, adr + chip->start);
2690 	ret = 0;
2691 
2692 out_unlock:
2693 	mutex_unlock(&chip->mutex);
2694 	return ret;
2695 }
2696 
cfi_atmel_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2697 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2698 {
2699 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2700 }
2701 
cfi_atmel_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2702 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2703 {
2704 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2705 }
2706 
2707 /*
2708  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2709  */
2710 
2711 struct ppb_lock {
2712 	struct flchip *chip;
2713 	unsigned long adr;
2714 	int locked;
2715 };
2716 
2717 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2718 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2719 #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2720 
do_ppb_xxlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2721 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2722 					struct flchip *chip,
2723 					unsigned long adr, int len, void *thunk)
2724 {
2725 	struct cfi_private *cfi = map->fldrv_priv;
2726 	unsigned long timeo;
2727 	int ret;
2728 
2729 	adr += chip->start;
2730 	mutex_lock(&chip->mutex);
2731 	ret = get_chip(map, chip, adr, FL_LOCKING);
2732 	if (ret) {
2733 		mutex_unlock(&chip->mutex);
2734 		return ret;
2735 	}
2736 
2737 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2738 
2739 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2740 			 cfi->device_type, NULL);
2741 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2742 			 cfi->device_type, NULL);
2743 	/* PPB entry command */
2744 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2745 			 cfi->device_type, NULL);
2746 
2747 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2748 		chip->state = FL_LOCKING;
2749 		map_write(map, CMD(0xA0), adr);
2750 		map_write(map, CMD(0x00), adr);
2751 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2752 		/*
2753 		 * Unlocking of one specific sector is not supported, so we
2754 		 * have to unlock all sectors of this device instead
2755 		 */
2756 		chip->state = FL_UNLOCKING;
2757 		map_write(map, CMD(0x80), chip->start);
2758 		map_write(map, CMD(0x30), chip->start);
2759 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2760 		chip->state = FL_JEDEC_QUERY;
2761 		/* Return locked status: 0->locked, 1->unlocked */
2762 		ret = !cfi_read_query(map, adr);
2763 	} else
2764 		BUG();
2765 
2766 	/*
2767 	 * Wait for some time as unlocking of all sectors takes quite long
2768 	 */
2769 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2770 	for (;;) {
2771 		if (chip_ready(map, chip, adr))
2772 			break;
2773 
2774 		if (time_after(jiffies, timeo)) {
2775 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2776 			ret = -EIO;
2777 			break;
2778 		}
2779 
2780 		UDELAY(map, chip, adr, 1);
2781 	}
2782 
2783 	/* Exit BC commands */
2784 	map_write(map, CMD(0x90), chip->start);
2785 	map_write(map, CMD(0x00), chip->start);
2786 
2787 	chip->state = FL_READY;
2788 	put_chip(map, chip, adr);
2789 	mutex_unlock(&chip->mutex);
2790 
2791 	return ret;
2792 }
2793 
cfi_ppb_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2794 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2795 				       uint64_t len)
2796 {
2797 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2798 				DO_XXLOCK_ONEBLOCK_LOCK);
2799 }
2800 
cfi_ppb_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2801 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2802 					 uint64_t len)
2803 {
2804 	struct mtd_erase_region_info *regions = mtd->eraseregions;
2805 	struct map_info *map = mtd->priv;
2806 	struct cfi_private *cfi = map->fldrv_priv;
2807 	struct ppb_lock *sect;
2808 	unsigned long adr;
2809 	loff_t offset;
2810 	uint64_t length;
2811 	int chipnum;
2812 	int i;
2813 	int sectors;
2814 	int ret;
2815 	int max_sectors;
2816 
2817 	/*
2818 	 * PPB unlocking always unlocks all sectors of the flash chip.
2819 	 * We need to re-lock all previously locked sectors. So lets
2820 	 * first check the locking status of all sectors and save
2821 	 * it for future use.
2822 	 */
2823 	max_sectors = 0;
2824 	for (i = 0; i < mtd->numeraseregions; i++)
2825 		max_sectors += regions[i].numblocks;
2826 
2827 	sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2828 	if (!sect)
2829 		return -ENOMEM;
2830 
2831 	/*
2832 	 * This code to walk all sectors is a slightly modified version
2833 	 * of the cfi_varsize_frob() code.
2834 	 */
2835 	i = 0;
2836 	chipnum = 0;
2837 	adr = 0;
2838 	sectors = 0;
2839 	offset = 0;
2840 	length = mtd->size;
2841 
2842 	while (length) {
2843 		int size = regions[i].erasesize;
2844 
2845 		/*
2846 		 * Only test sectors that shall not be unlocked. The other
2847 		 * sectors shall be unlocked, so lets keep their locking
2848 		 * status at "unlocked" (locked=0) for the final re-locking.
2849 		 */
2850 		if ((offset < ofs) || (offset >= (ofs + len))) {
2851 			sect[sectors].chip = &cfi->chips[chipnum];
2852 			sect[sectors].adr = adr;
2853 			sect[sectors].locked = do_ppb_xxlock(
2854 				map, &cfi->chips[chipnum], adr, 0,
2855 				DO_XXLOCK_ONEBLOCK_GETLOCK);
2856 		}
2857 
2858 		adr += size;
2859 		offset += size;
2860 		length -= size;
2861 
2862 		if (offset == regions[i].offset + size * regions[i].numblocks)
2863 			i++;
2864 
2865 		if (adr >> cfi->chipshift) {
2866 			if (offset >= (ofs + len))
2867 				break;
2868 			adr = 0;
2869 			chipnum++;
2870 
2871 			if (chipnum >= cfi->numchips)
2872 				break;
2873 		}
2874 
2875 		sectors++;
2876 		if (sectors >= max_sectors) {
2877 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2878 			       max_sectors);
2879 			kfree(sect);
2880 			return -EINVAL;
2881 		}
2882 	}
2883 
2884 	/* Now unlock the whole chip */
2885 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2886 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2887 	if (ret) {
2888 		kfree(sect);
2889 		return ret;
2890 	}
2891 
2892 	/*
2893 	 * PPB unlocking always unlocks all sectors of the flash chip.
2894 	 * We need to re-lock all previously locked sectors.
2895 	 */
2896 	for (i = 0; i < sectors; i++) {
2897 		if (sect[i].locked)
2898 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2899 				      DO_XXLOCK_ONEBLOCK_LOCK);
2900 	}
2901 
2902 	kfree(sect);
2903 	return ret;
2904 }
2905 
cfi_ppb_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2906 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2907 					    uint64_t len)
2908 {
2909 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2910 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2911 }
2912 
cfi_amdstd_sync(struct mtd_info * mtd)2913 static void cfi_amdstd_sync (struct mtd_info *mtd)
2914 {
2915 	struct map_info *map = mtd->priv;
2916 	struct cfi_private *cfi = map->fldrv_priv;
2917 	int i;
2918 	struct flchip *chip;
2919 	int ret = 0;
2920 	DECLARE_WAITQUEUE(wait, current);
2921 
2922 	for (i=0; !ret && i<cfi->numchips; i++) {
2923 		chip = &cfi->chips[i];
2924 
2925 	retry:
2926 		mutex_lock(&chip->mutex);
2927 
2928 		switch(chip->state) {
2929 		case FL_READY:
2930 		case FL_STATUS:
2931 		case FL_CFI_QUERY:
2932 		case FL_JEDEC_QUERY:
2933 			chip->oldstate = chip->state;
2934 			chip->state = FL_SYNCING;
2935 			/* No need to wake_up() on this state change -
2936 			 * as the whole point is that nobody can do anything
2937 			 * with the chip now anyway.
2938 			 */
2939 			/* fall through */
2940 		case FL_SYNCING:
2941 			mutex_unlock(&chip->mutex);
2942 			break;
2943 
2944 		default:
2945 			/* Not an idle state */
2946 			set_current_state(TASK_UNINTERRUPTIBLE);
2947 			add_wait_queue(&chip->wq, &wait);
2948 
2949 			mutex_unlock(&chip->mutex);
2950 
2951 			schedule();
2952 
2953 			remove_wait_queue(&chip->wq, &wait);
2954 
2955 			goto retry;
2956 		}
2957 	}
2958 
2959 	/* Unlock the chips again */
2960 
2961 	for (i--; i >=0; i--) {
2962 		chip = &cfi->chips[i];
2963 
2964 		mutex_lock(&chip->mutex);
2965 
2966 		if (chip->state == FL_SYNCING) {
2967 			chip->state = chip->oldstate;
2968 			wake_up(&chip->wq);
2969 		}
2970 		mutex_unlock(&chip->mutex);
2971 	}
2972 }
2973 
2974 
cfi_amdstd_suspend(struct mtd_info * mtd)2975 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2976 {
2977 	struct map_info *map = mtd->priv;
2978 	struct cfi_private *cfi = map->fldrv_priv;
2979 	int i;
2980 	struct flchip *chip;
2981 	int ret = 0;
2982 
2983 	for (i=0; !ret && i<cfi->numchips; i++) {
2984 		chip = &cfi->chips[i];
2985 
2986 		mutex_lock(&chip->mutex);
2987 
2988 		switch(chip->state) {
2989 		case FL_READY:
2990 		case FL_STATUS:
2991 		case FL_CFI_QUERY:
2992 		case FL_JEDEC_QUERY:
2993 			chip->oldstate = chip->state;
2994 			chip->state = FL_PM_SUSPENDED;
2995 			/* No need to wake_up() on this state change -
2996 			 * as the whole point is that nobody can do anything
2997 			 * with the chip now anyway.
2998 			 */
2999 		case FL_PM_SUSPENDED:
3000 			break;
3001 
3002 		default:
3003 			ret = -EAGAIN;
3004 			break;
3005 		}
3006 		mutex_unlock(&chip->mutex);
3007 	}
3008 
3009 	/* Unlock the chips again */
3010 
3011 	if (ret) {
3012 		for (i--; i >=0; i--) {
3013 			chip = &cfi->chips[i];
3014 
3015 			mutex_lock(&chip->mutex);
3016 
3017 			if (chip->state == FL_PM_SUSPENDED) {
3018 				chip->state = chip->oldstate;
3019 				wake_up(&chip->wq);
3020 			}
3021 			mutex_unlock(&chip->mutex);
3022 		}
3023 	}
3024 
3025 	return ret;
3026 }
3027 
3028 
cfi_amdstd_resume(struct mtd_info * mtd)3029 static void cfi_amdstd_resume(struct mtd_info *mtd)
3030 {
3031 	struct map_info *map = mtd->priv;
3032 	struct cfi_private *cfi = map->fldrv_priv;
3033 	int i;
3034 	struct flchip *chip;
3035 
3036 	for (i=0; i<cfi->numchips; i++) {
3037 
3038 		chip = &cfi->chips[i];
3039 
3040 		mutex_lock(&chip->mutex);
3041 
3042 		if (chip->state == FL_PM_SUSPENDED) {
3043 			chip->state = FL_READY;
3044 			map_write(map, CMD(0xF0), chip->start);
3045 			wake_up(&chip->wq);
3046 		}
3047 		else
3048 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3049 
3050 		mutex_unlock(&chip->mutex);
3051 	}
3052 }
3053 
3054 
3055 /*
3056  * Ensure that the flash device is put back into read array mode before
3057  * unloading the driver or rebooting.  On some systems, rebooting while
3058  * the flash is in query/program/erase mode will prevent the CPU from
3059  * fetching the bootloader code, requiring a hard reset or power cycle.
3060  */
cfi_amdstd_reset(struct mtd_info * mtd)3061 static int cfi_amdstd_reset(struct mtd_info *mtd)
3062 {
3063 	struct map_info *map = mtd->priv;
3064 	struct cfi_private *cfi = map->fldrv_priv;
3065 	int i, ret;
3066 	struct flchip *chip;
3067 
3068 	for (i = 0; i < cfi->numchips; i++) {
3069 
3070 		chip = &cfi->chips[i];
3071 
3072 		mutex_lock(&chip->mutex);
3073 
3074 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3075 		if (!ret) {
3076 			map_write(map, CMD(0xF0), chip->start);
3077 			chip->state = FL_SHUTDOWN;
3078 			put_chip(map, chip, chip->start);
3079 		}
3080 
3081 		mutex_unlock(&chip->mutex);
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 
cfi_amdstd_reboot(struct notifier_block * nb,unsigned long val,void * v)3088 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3089 			       void *v)
3090 {
3091 	struct mtd_info *mtd;
3092 
3093 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
3094 	cfi_amdstd_reset(mtd);
3095 	return NOTIFY_DONE;
3096 }
3097 
3098 
cfi_amdstd_destroy(struct mtd_info * mtd)3099 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3100 {
3101 	struct map_info *map = mtd->priv;
3102 	struct cfi_private *cfi = map->fldrv_priv;
3103 
3104 	cfi_amdstd_reset(mtd);
3105 	unregister_reboot_notifier(&mtd->reboot_notifier);
3106 	kfree(cfi->cmdset_priv);
3107 	kfree(cfi->cfiq);
3108 	kfree(cfi);
3109 	kfree(mtd->eraseregions);
3110 }
3111 
3112 MODULE_LICENSE("GPL");
3113 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3114 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3115 MODULE_ALIAS("cfi_cmdset_0006");
3116 MODULE_ALIAS("cfi_cmdset_0701");
3117