• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Simple MTD partitioning layer
4  *
5  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/list.h>
15 #include <linux/kmod.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/err.h>
19 #include <linux/of.h>
20 
21 #include "mtdcore.h"
22 
23 /* Our partition linked list */
24 static LIST_HEAD(mtd_partitions);
25 static DEFINE_MUTEX(mtd_partitions_mutex);
26 
27 /**
28  * struct mtd_part - our partition node structure
29  *
30  * @mtd: struct holding partition details
31  * @parent: parent mtd - flash device or another partition
32  * @offset: partition offset relative to the *flash device*
33  */
34 struct mtd_part {
35 	struct mtd_info mtd;
36 	struct mtd_info *parent;
37 	uint64_t offset;
38 	struct list_head list;
39 };
40 
41 /*
42  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
43  * the pointer to that structure.
44  */
mtd_to_part(const struct mtd_info * mtd)45 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
46 {
47 	return container_of(mtd, struct mtd_part, mtd);
48 }
49 
part_absolute_offset(struct mtd_info * mtd)50 static u64 part_absolute_offset(struct mtd_info *mtd)
51 {
52 	struct mtd_part *part = mtd_to_part(mtd);
53 
54 	if (!mtd_is_partition(mtd))
55 		return 0;
56 
57 	return part_absolute_offset(part->parent) + part->offset;
58 }
59 
60 /*
61  * MTD methods which simply translate the effective address and pass through
62  * to the _real_ device.
63  */
64 
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)65 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
66 		size_t *retlen, u_char *buf)
67 {
68 	struct mtd_part *part = mtd_to_part(mtd);
69 	struct mtd_ecc_stats stats;
70 	int res;
71 
72 	stats = part->parent->ecc_stats;
73 	res = part->parent->_read(part->parent, from + part->offset, len,
74 				  retlen, buf);
75 	if (unlikely(mtd_is_eccerr(res)))
76 		mtd->ecc_stats.failed +=
77 			part->parent->ecc_stats.failed - stats.failed;
78 	else
79 		mtd->ecc_stats.corrected +=
80 			part->parent->ecc_stats.corrected - stats.corrected;
81 	return res;
82 }
83 
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)84 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
85 		size_t *retlen, void **virt, resource_size_t *phys)
86 {
87 	struct mtd_part *part = mtd_to_part(mtd);
88 
89 	return part->parent->_point(part->parent, from + part->offset, len,
90 				    retlen, virt, phys);
91 }
92 
part_unpoint(struct mtd_info * mtd,loff_t from,size_t len)93 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
94 {
95 	struct mtd_part *part = mtd_to_part(mtd);
96 
97 	return part->parent->_unpoint(part->parent, from + part->offset, len);
98 }
99 
part_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)100 static int part_read_oob(struct mtd_info *mtd, loff_t from,
101 		struct mtd_oob_ops *ops)
102 {
103 	struct mtd_part *part = mtd_to_part(mtd);
104 	struct mtd_ecc_stats stats;
105 	int res;
106 
107 	stats = part->parent->ecc_stats;
108 	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
109 	if (unlikely(mtd_is_eccerr(res)))
110 		mtd->ecc_stats.failed +=
111 			part->parent->ecc_stats.failed - stats.failed;
112 	else
113 		mtd->ecc_stats.corrected +=
114 			part->parent->ecc_stats.corrected - stats.corrected;
115 	return res;
116 }
117 
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)118 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
119 		size_t len, size_t *retlen, u_char *buf)
120 {
121 	struct mtd_part *part = mtd_to_part(mtd);
122 	return part->parent->_read_user_prot_reg(part->parent, from, len,
123 						 retlen, buf);
124 }
125 
part_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)126 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
127 				   size_t *retlen, struct otp_info *buf)
128 {
129 	struct mtd_part *part = mtd_to_part(mtd);
130 	return part->parent->_get_user_prot_info(part->parent, len, retlen,
131 						 buf);
132 }
133 
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)134 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
135 		size_t len, size_t *retlen, u_char *buf)
136 {
137 	struct mtd_part *part = mtd_to_part(mtd);
138 	return part->parent->_read_fact_prot_reg(part->parent, from, len,
139 						 retlen, buf);
140 }
141 
part_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)142 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
143 				   size_t *retlen, struct otp_info *buf)
144 {
145 	struct mtd_part *part = mtd_to_part(mtd);
146 	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
147 						 buf);
148 }
149 
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)150 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
151 		size_t *retlen, const u_char *buf)
152 {
153 	struct mtd_part *part = mtd_to_part(mtd);
154 	return part->parent->_write(part->parent, to + part->offset, len,
155 				    retlen, buf);
156 }
157 
part_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)158 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
159 		size_t *retlen, const u_char *buf)
160 {
161 	struct mtd_part *part = mtd_to_part(mtd);
162 	return part->parent->_panic_write(part->parent, to + part->offset, len,
163 					  retlen, buf);
164 }
165 
part_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)166 static int part_write_oob(struct mtd_info *mtd, loff_t to,
167 		struct mtd_oob_ops *ops)
168 {
169 	struct mtd_part *part = mtd_to_part(mtd);
170 
171 	return part->parent->_write_oob(part->parent, to + part->offset, ops);
172 }
173 
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)174 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
175 		size_t len, size_t *retlen, u_char *buf)
176 {
177 	struct mtd_part *part = mtd_to_part(mtd);
178 	return part->parent->_write_user_prot_reg(part->parent, from, len,
179 						  retlen, buf);
180 }
181 
part_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)182 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
183 		size_t len)
184 {
185 	struct mtd_part *part = mtd_to_part(mtd);
186 	return part->parent->_lock_user_prot_reg(part->parent, from, len);
187 }
188 
part_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)189 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
190 		unsigned long count, loff_t to, size_t *retlen)
191 {
192 	struct mtd_part *part = mtd_to_part(mtd);
193 	return part->parent->_writev(part->parent, vecs, count,
194 				     to + part->offset, retlen);
195 }
196 
part_erase(struct mtd_info * mtd,struct erase_info * instr)197 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
198 {
199 	struct mtd_part *part = mtd_to_part(mtd);
200 	int ret;
201 
202 	instr->addr += part->offset;
203 	ret = part->parent->_erase(part->parent, instr);
204 	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
205 		instr->fail_addr -= part->offset;
206 	instr->addr -= part->offset;
207 
208 	return ret;
209 }
210 
part_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)211 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
212 {
213 	struct mtd_part *part = mtd_to_part(mtd);
214 	return part->parent->_lock(part->parent, ofs + part->offset, len);
215 }
216 
part_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)217 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
218 {
219 	struct mtd_part *part = mtd_to_part(mtd);
220 	return part->parent->_unlock(part->parent, ofs + part->offset, len);
221 }
222 
part_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)223 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
224 {
225 	struct mtd_part *part = mtd_to_part(mtd);
226 	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
227 }
228 
part_sync(struct mtd_info * mtd)229 static void part_sync(struct mtd_info *mtd)
230 {
231 	struct mtd_part *part = mtd_to_part(mtd);
232 	part->parent->_sync(part->parent);
233 }
234 
part_suspend(struct mtd_info * mtd)235 static int part_suspend(struct mtd_info *mtd)
236 {
237 	struct mtd_part *part = mtd_to_part(mtd);
238 	return part->parent->_suspend(part->parent);
239 }
240 
part_resume(struct mtd_info * mtd)241 static void part_resume(struct mtd_info *mtd)
242 {
243 	struct mtd_part *part = mtd_to_part(mtd);
244 	part->parent->_resume(part->parent);
245 }
246 
part_block_isreserved(struct mtd_info * mtd,loff_t ofs)247 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
248 {
249 	struct mtd_part *part = mtd_to_part(mtd);
250 	ofs += part->offset;
251 	return part->parent->_block_isreserved(part->parent, ofs);
252 }
253 
part_block_isbad(struct mtd_info * mtd,loff_t ofs)254 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
255 {
256 	struct mtd_part *part = mtd_to_part(mtd);
257 	ofs += part->offset;
258 	return part->parent->_block_isbad(part->parent, ofs);
259 }
260 
part_block_markbad(struct mtd_info * mtd,loff_t ofs)261 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
262 {
263 	struct mtd_part *part = mtd_to_part(mtd);
264 	int res;
265 
266 	ofs += part->offset;
267 	res = part->parent->_block_markbad(part->parent, ofs);
268 	if (!res)
269 		mtd->ecc_stats.badblocks++;
270 	return res;
271 }
272 
part_get_device(struct mtd_info * mtd)273 static int part_get_device(struct mtd_info *mtd)
274 {
275 	struct mtd_part *part = mtd_to_part(mtd);
276 	return part->parent->_get_device(part->parent);
277 }
278 
part_put_device(struct mtd_info * mtd)279 static void part_put_device(struct mtd_info *mtd)
280 {
281 	struct mtd_part *part = mtd_to_part(mtd);
282 	part->parent->_put_device(part->parent);
283 }
284 
part_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)285 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
286 			      struct mtd_oob_region *oobregion)
287 {
288 	struct mtd_part *part = mtd_to_part(mtd);
289 
290 	return mtd_ooblayout_ecc(part->parent, section, oobregion);
291 }
292 
part_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)293 static int part_ooblayout_free(struct mtd_info *mtd, int section,
294 			       struct mtd_oob_region *oobregion)
295 {
296 	struct mtd_part *part = mtd_to_part(mtd);
297 
298 	return mtd_ooblayout_free(part->parent, section, oobregion);
299 }
300 
301 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
302 	.ecc = part_ooblayout_ecc,
303 	.free = part_ooblayout_free,
304 };
305 
part_max_bad_blocks(struct mtd_info * mtd,loff_t ofs,size_t len)306 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
307 {
308 	struct mtd_part *part = mtd_to_part(mtd);
309 
310 	return part->parent->_max_bad_blocks(part->parent,
311 					     ofs + part->offset, len);
312 }
313 
free_partition(struct mtd_part * p)314 static inline void free_partition(struct mtd_part *p)
315 {
316 	kfree(p->mtd.name);
317 	kfree(p);
318 }
319 
allocate_partition(struct mtd_info * parent,const struct mtd_partition * part,int partno,uint64_t cur_offset)320 static struct mtd_part *allocate_partition(struct mtd_info *parent,
321 			const struct mtd_partition *part, int partno,
322 			uint64_t cur_offset)
323 {
324 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
325 							    parent->erasesize;
326 	struct mtd_part *slave;
327 	u32 remainder;
328 	char *name;
329 	u64 tmp;
330 
331 	/* allocate the partition structure */
332 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
333 	name = kstrdup(part->name, GFP_KERNEL);
334 	if (!name || !slave) {
335 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
336 		       parent->name);
337 		kfree(name);
338 		kfree(slave);
339 		return ERR_PTR(-ENOMEM);
340 	}
341 
342 	/* set up the MTD object for this partition */
343 	slave->mtd.type = parent->type;
344 	slave->mtd.flags = parent->orig_flags & ~part->mask_flags;
345 	slave->mtd.orig_flags = slave->mtd.flags;
346 	slave->mtd.size = part->size;
347 	slave->mtd.writesize = parent->writesize;
348 	slave->mtd.writebufsize = parent->writebufsize;
349 	slave->mtd.oobsize = parent->oobsize;
350 	slave->mtd.oobavail = parent->oobavail;
351 	slave->mtd.subpage_sft = parent->subpage_sft;
352 	slave->mtd.pairing = parent->pairing;
353 
354 	slave->mtd.name = name;
355 	slave->mtd.owner = parent->owner;
356 
357 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
358 	 * concern for showing the same data in multiple partitions.
359 	 * However, it is very useful to have the master node present,
360 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
361 	 * will have device nodes etc only if this is set, so make the
362 	 * parent conditional on that option. Note, this is a way to
363 	 * distinguish between the master and the partition in sysfs.
364 	 */
365 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
366 				&parent->dev :
367 				parent->dev.parent;
368 	slave->mtd.dev.of_node = part->of_node;
369 
370 	if (parent->_read)
371 		slave->mtd._read = part_read;
372 	if (parent->_write)
373 		slave->mtd._write = part_write;
374 
375 	if (parent->_panic_write)
376 		slave->mtd._panic_write = part_panic_write;
377 
378 	if (parent->_point && parent->_unpoint) {
379 		slave->mtd._point = part_point;
380 		slave->mtd._unpoint = part_unpoint;
381 	}
382 
383 	if (parent->_read_oob)
384 		slave->mtd._read_oob = part_read_oob;
385 	if (parent->_write_oob)
386 		slave->mtd._write_oob = part_write_oob;
387 	if (parent->_read_user_prot_reg)
388 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
389 	if (parent->_read_fact_prot_reg)
390 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
391 	if (parent->_write_user_prot_reg)
392 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
393 	if (parent->_lock_user_prot_reg)
394 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
395 	if (parent->_get_user_prot_info)
396 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
397 	if (parent->_get_fact_prot_info)
398 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
399 	if (parent->_sync)
400 		slave->mtd._sync = part_sync;
401 	if (!partno && !parent->dev.class && parent->_suspend &&
402 	    parent->_resume) {
403 		slave->mtd._suspend = part_suspend;
404 		slave->mtd._resume = part_resume;
405 	}
406 	if (parent->_writev)
407 		slave->mtd._writev = part_writev;
408 	if (parent->_lock)
409 		slave->mtd._lock = part_lock;
410 	if (parent->_unlock)
411 		slave->mtd._unlock = part_unlock;
412 	if (parent->_is_locked)
413 		slave->mtd._is_locked = part_is_locked;
414 	if (parent->_block_isreserved)
415 		slave->mtd._block_isreserved = part_block_isreserved;
416 	if (parent->_block_isbad)
417 		slave->mtd._block_isbad = part_block_isbad;
418 	if (parent->_block_markbad)
419 		slave->mtd._block_markbad = part_block_markbad;
420 	if (parent->_max_bad_blocks)
421 		slave->mtd._max_bad_blocks = part_max_bad_blocks;
422 
423 	if (parent->_get_device)
424 		slave->mtd._get_device = part_get_device;
425 	if (parent->_put_device)
426 		slave->mtd._put_device = part_put_device;
427 
428 	slave->mtd._erase = part_erase;
429 	slave->parent = parent;
430 	slave->offset = part->offset;
431 
432 	if (slave->offset == MTDPART_OFS_APPEND)
433 		slave->offset = cur_offset;
434 	if (slave->offset == MTDPART_OFS_NXTBLK) {
435 		tmp = cur_offset;
436 		slave->offset = cur_offset;
437 		remainder = do_div(tmp, wr_alignment);
438 		if (remainder) {
439 			slave->offset += wr_alignment - remainder;
440 			printk(KERN_NOTICE "Moving partition %d: "
441 			       "0x%012llx -> 0x%012llx\n", partno,
442 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
443 		}
444 	}
445 	if (slave->offset == MTDPART_OFS_RETAIN) {
446 		slave->offset = cur_offset;
447 		if (parent->size - slave->offset >= slave->mtd.size) {
448 			slave->mtd.size = parent->size - slave->offset
449 							- slave->mtd.size;
450 		} else {
451 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
452 				part->name, parent->size - slave->offset,
453 				slave->mtd.size);
454 			/* register to preserve ordering */
455 			goto out_register;
456 		}
457 	}
458 	if (slave->mtd.size == MTDPART_SIZ_FULL)
459 		slave->mtd.size = parent->size - slave->offset;
460 
461 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
462 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
463 
464 	/* let's do some sanity checks */
465 	if (slave->offset >= parent->size) {
466 		/* let's register it anyway to preserve ordering */
467 		slave->offset = 0;
468 		slave->mtd.size = 0;
469 
470 		/* Initialize ->erasesize to make add_mtd_device() happy. */
471 		slave->mtd.erasesize = parent->erasesize;
472 
473 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
474 			part->name);
475 		goto out_register;
476 	}
477 	if (slave->offset + slave->mtd.size > parent->size) {
478 		slave->mtd.size = parent->size - slave->offset;
479 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
480 			part->name, parent->name, (unsigned long long)slave->mtd.size);
481 	}
482 	if (parent->numeraseregions > 1) {
483 		/* Deal with variable erase size stuff */
484 		int i, max = parent->numeraseregions;
485 		u64 end = slave->offset + slave->mtd.size;
486 		struct mtd_erase_region_info *regions = parent->eraseregions;
487 
488 		/* Find the first erase regions which is part of this
489 		 * partition. */
490 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
491 			;
492 		/* The loop searched for the region _behind_ the first one */
493 		if (i > 0)
494 			i--;
495 
496 		/* Pick biggest erasesize */
497 		for (; i < max && regions[i].offset < end; i++) {
498 			if (slave->mtd.erasesize < regions[i].erasesize) {
499 				slave->mtd.erasesize = regions[i].erasesize;
500 			}
501 		}
502 		BUG_ON(slave->mtd.erasesize == 0);
503 	} else {
504 		/* Single erase size */
505 		slave->mtd.erasesize = parent->erasesize;
506 	}
507 
508 	/*
509 	 * Slave erasesize might differ from the master one if the master
510 	 * exposes several regions with different erasesize. Adjust
511 	 * wr_alignment accordingly.
512 	 */
513 	if (!(slave->mtd.flags & MTD_NO_ERASE))
514 		wr_alignment = slave->mtd.erasesize;
515 
516 	tmp = part_absolute_offset(parent) + slave->offset;
517 	remainder = do_div(tmp, wr_alignment);
518 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
519 		/* Doesn't start on a boundary of major erase size */
520 		/* FIXME: Let it be writable if it is on a boundary of
521 		 * _minor_ erase size though */
522 		slave->mtd.flags &= ~MTD_WRITEABLE;
523 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
524 			part->name);
525 	}
526 
527 	tmp = part_absolute_offset(parent) + slave->mtd.size;
528 	remainder = do_div(tmp, wr_alignment);
529 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
530 		slave->mtd.flags &= ~MTD_WRITEABLE;
531 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
532 			part->name);
533 	}
534 
535 	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
536 	slave->mtd.ecc_step_size = parent->ecc_step_size;
537 	slave->mtd.ecc_strength = parent->ecc_strength;
538 	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
539 
540 	if (parent->_block_isbad) {
541 		uint64_t offs = 0;
542 
543 		while (offs < slave->mtd.size) {
544 			if (mtd_block_isreserved(parent, offs + slave->offset))
545 				slave->mtd.ecc_stats.bbtblocks++;
546 			else if (mtd_block_isbad(parent, offs + slave->offset))
547 				slave->mtd.ecc_stats.badblocks++;
548 			offs += slave->mtd.erasesize;
549 		}
550 	}
551 
552 out_register:
553 	return slave;
554 }
555 
mtd_partition_offset_show(struct device * dev,struct device_attribute * attr,char * buf)556 static ssize_t mtd_partition_offset_show(struct device *dev,
557 		struct device_attribute *attr, char *buf)
558 {
559 	struct mtd_info *mtd = dev_get_drvdata(dev);
560 	struct mtd_part *part = mtd_to_part(mtd);
561 	return snprintf(buf, PAGE_SIZE, "%llu\n", part->offset);
562 }
563 
564 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
565 
566 static const struct attribute *mtd_partition_attrs[] = {
567 	&dev_attr_offset.attr,
568 	NULL
569 };
570 
mtd_add_partition_attrs(struct mtd_part * new)571 static int mtd_add_partition_attrs(struct mtd_part *new)
572 {
573 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
574 	if (ret)
575 		printk(KERN_WARNING
576 		       "mtd: failed to create partition attrs, err=%d\n", ret);
577 	return ret;
578 }
579 
mtd_add_partition(struct mtd_info * parent,const char * name,long long offset,long long length)580 int mtd_add_partition(struct mtd_info *parent, const char *name,
581 		      long long offset, long long length)
582 {
583 	struct mtd_partition part;
584 	struct mtd_part *new;
585 	int ret = 0;
586 
587 	/* the direct offset is expected */
588 	if (offset == MTDPART_OFS_APPEND ||
589 	    offset == MTDPART_OFS_NXTBLK)
590 		return -EINVAL;
591 
592 	if (length == MTDPART_SIZ_FULL)
593 		length = parent->size - offset;
594 
595 	if (length <= 0)
596 		return -EINVAL;
597 
598 	memset(&part, 0, sizeof(part));
599 	part.name = name;
600 	part.size = length;
601 	part.offset = offset;
602 
603 	new = allocate_partition(parent, &part, -1, offset);
604 	if (IS_ERR(new))
605 		return PTR_ERR(new);
606 
607 	mutex_lock(&mtd_partitions_mutex);
608 	list_add(&new->list, &mtd_partitions);
609 	mutex_unlock(&mtd_partitions_mutex);
610 
611 	ret = add_mtd_device(&new->mtd);
612 	if (ret)
613 		goto err_remove_part;
614 
615 	mtd_add_partition_attrs(new);
616 
617 	return 0;
618 
619 err_remove_part:
620 	mutex_lock(&mtd_partitions_mutex);
621 	list_del(&new->list);
622 	mutex_unlock(&mtd_partitions_mutex);
623 
624 	free_partition(new);
625 
626 	return ret;
627 }
628 EXPORT_SYMBOL_GPL(mtd_add_partition);
629 
630 /**
631  * __mtd_del_partition - delete MTD partition
632  *
633  * @priv: internal MTD struct for partition to be deleted
634  *
635  * This function must be called with the partitions mutex locked.
636  */
__mtd_del_partition(struct mtd_part * priv)637 static int __mtd_del_partition(struct mtd_part *priv)
638 {
639 	struct mtd_part *child, *next;
640 	int err;
641 
642 	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
643 		if (child->parent == &priv->mtd) {
644 			err = __mtd_del_partition(child);
645 			if (err)
646 				return err;
647 		}
648 	}
649 
650 	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
651 
652 	err = del_mtd_device(&priv->mtd);
653 	if (err)
654 		return err;
655 
656 	list_del(&priv->list);
657 	free_partition(priv);
658 
659 	return 0;
660 }
661 
662 /*
663  * This function unregisters and destroy all slave MTD objects which are
664  * attached to the given MTD object.
665  */
del_mtd_partitions(struct mtd_info * mtd)666 int del_mtd_partitions(struct mtd_info *mtd)
667 {
668 	struct mtd_part *slave, *next;
669 	int ret, err = 0;
670 
671 	mutex_lock(&mtd_partitions_mutex);
672 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
673 		if (slave->parent == mtd) {
674 			ret = __mtd_del_partition(slave);
675 			if (ret < 0)
676 				err = ret;
677 		}
678 	mutex_unlock(&mtd_partitions_mutex);
679 
680 	return err;
681 }
682 
mtd_del_partition(struct mtd_info * mtd,int partno)683 int mtd_del_partition(struct mtd_info *mtd, int partno)
684 {
685 	struct mtd_part *slave, *next;
686 	int ret = -EINVAL;
687 
688 	mutex_lock(&mtd_partitions_mutex);
689 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
690 		if ((slave->parent == mtd) &&
691 		    (slave->mtd.index == partno)) {
692 			ret = __mtd_del_partition(slave);
693 			break;
694 		}
695 	mutex_unlock(&mtd_partitions_mutex);
696 
697 	return ret;
698 }
699 EXPORT_SYMBOL_GPL(mtd_del_partition);
700 
701 /*
702  * This function, given a master MTD object and a partition table, creates
703  * and registers slave MTD objects which are bound to the master according to
704  * the partition definitions.
705  *
706  * For historical reasons, this function's caller only registers the master
707  * if the MTD_PARTITIONED_MASTER config option is set.
708  */
709 
add_mtd_partitions(struct mtd_info * master,const struct mtd_partition * parts,int nbparts)710 int add_mtd_partitions(struct mtd_info *master,
711 		       const struct mtd_partition *parts,
712 		       int nbparts)
713 {
714 	struct mtd_part *slave;
715 	uint64_t cur_offset = 0;
716 	int i, ret;
717 
718 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
719 
720 	for (i = 0; i < nbparts; i++) {
721 		slave = allocate_partition(master, parts + i, i, cur_offset);
722 		if (IS_ERR(slave)) {
723 			ret = PTR_ERR(slave);
724 			goto err_del_partitions;
725 		}
726 
727 		mutex_lock(&mtd_partitions_mutex);
728 		list_add(&slave->list, &mtd_partitions);
729 		mutex_unlock(&mtd_partitions_mutex);
730 
731 		ret = add_mtd_device(&slave->mtd);
732 		if (ret) {
733 			mutex_lock(&mtd_partitions_mutex);
734 			list_del(&slave->list);
735 			mutex_unlock(&mtd_partitions_mutex);
736 
737 			free_partition(slave);
738 			goto err_del_partitions;
739 		}
740 
741 		mtd_add_partition_attrs(slave);
742 		/* Look for subpartitions */
743 		parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
744 
745 		cur_offset = slave->offset + slave->mtd.size;
746 	}
747 
748 	return 0;
749 
750 err_del_partitions:
751 	del_mtd_partitions(master);
752 
753 	return ret;
754 }
755 
756 static DEFINE_SPINLOCK(part_parser_lock);
757 static LIST_HEAD(part_parsers);
758 
mtd_part_parser_get(const char * name)759 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
760 {
761 	struct mtd_part_parser *p, *ret = NULL;
762 
763 	spin_lock(&part_parser_lock);
764 
765 	list_for_each_entry(p, &part_parsers, list)
766 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
767 			ret = p;
768 			break;
769 		}
770 
771 	spin_unlock(&part_parser_lock);
772 
773 	return ret;
774 }
775 
mtd_part_parser_put(const struct mtd_part_parser * p)776 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
777 {
778 	module_put(p->owner);
779 }
780 
781 /*
782  * Many partition parsers just expected the core to kfree() all their data in
783  * one chunk. Do that by default.
784  */
mtd_part_parser_cleanup_default(const struct mtd_partition * pparts,int nr_parts)785 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
786 					    int nr_parts)
787 {
788 	kfree(pparts);
789 }
790 
__register_mtd_parser(struct mtd_part_parser * p,struct module * owner)791 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
792 {
793 	p->owner = owner;
794 
795 	if (!p->cleanup)
796 		p->cleanup = &mtd_part_parser_cleanup_default;
797 
798 	spin_lock(&part_parser_lock);
799 	list_add(&p->list, &part_parsers);
800 	spin_unlock(&part_parser_lock);
801 
802 	return 0;
803 }
804 EXPORT_SYMBOL_GPL(__register_mtd_parser);
805 
deregister_mtd_parser(struct mtd_part_parser * p)806 void deregister_mtd_parser(struct mtd_part_parser *p)
807 {
808 	spin_lock(&part_parser_lock);
809 	list_del(&p->list);
810 	spin_unlock(&part_parser_lock);
811 }
812 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
813 
814 /*
815  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
816  * are changing this array!
817  */
818 static const char * const default_mtd_part_types[] = {
819 	"cmdlinepart",
820 	"ofpart",
821 	NULL
822 };
823 
824 /* Check DT only when looking for subpartitions. */
825 static const char * const default_subpartition_types[] = {
826 	"ofpart",
827 	NULL
828 };
829 
mtd_part_do_parse(struct mtd_part_parser * parser,struct mtd_info * master,struct mtd_partitions * pparts,struct mtd_part_parser_data * data)830 static int mtd_part_do_parse(struct mtd_part_parser *parser,
831 			     struct mtd_info *master,
832 			     struct mtd_partitions *pparts,
833 			     struct mtd_part_parser_data *data)
834 {
835 	int ret;
836 
837 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
838 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
839 	if (ret <= 0)
840 		return ret;
841 
842 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
843 		  parser->name, master->name);
844 
845 	pparts->nr_parts = ret;
846 	pparts->parser = parser;
847 
848 	return ret;
849 }
850 
851 /**
852  * mtd_part_get_compatible_parser - find MTD parser by a compatible string
853  *
854  * @compat: compatible string describing partitions in a device tree
855  *
856  * MTD parsers can specify supported partitions by providing a table of
857  * compatibility strings. This function finds a parser that advertises support
858  * for a passed value of "compatible".
859  */
mtd_part_get_compatible_parser(const char * compat)860 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
861 {
862 	struct mtd_part_parser *p, *ret = NULL;
863 
864 	spin_lock(&part_parser_lock);
865 
866 	list_for_each_entry(p, &part_parsers, list) {
867 		const struct of_device_id *matches;
868 
869 		matches = p->of_match_table;
870 		if (!matches)
871 			continue;
872 
873 		for (; matches->compatible[0]; matches++) {
874 			if (!strcmp(matches->compatible, compat) &&
875 			    try_module_get(p->owner)) {
876 				ret = p;
877 				break;
878 			}
879 		}
880 
881 		if (ret)
882 			break;
883 	}
884 
885 	spin_unlock(&part_parser_lock);
886 
887 	return ret;
888 }
889 
mtd_part_of_parse(struct mtd_info * master,struct mtd_partitions * pparts)890 static int mtd_part_of_parse(struct mtd_info *master,
891 			     struct mtd_partitions *pparts)
892 {
893 	struct mtd_part_parser *parser;
894 	struct device_node *np;
895 	struct property *prop;
896 	const char *compat;
897 	const char *fixed = "fixed-partitions";
898 	int ret, err = 0;
899 
900 	np = mtd_get_of_node(master);
901 	if (mtd_is_partition(master))
902 		of_node_get(np);
903 	else
904 		np = of_get_child_by_name(np, "partitions");
905 
906 	of_property_for_each_string(np, "compatible", prop, compat) {
907 		parser = mtd_part_get_compatible_parser(compat);
908 		if (!parser)
909 			continue;
910 		ret = mtd_part_do_parse(parser, master, pparts, NULL);
911 		if (ret > 0) {
912 			of_node_put(np);
913 			return ret;
914 		}
915 		mtd_part_parser_put(parser);
916 		if (ret < 0 && !err)
917 			err = ret;
918 	}
919 	of_node_put(np);
920 
921 	/*
922 	 * For backward compatibility we have to try the "fixed-partitions"
923 	 * parser. It supports old DT format with partitions specified as a
924 	 * direct subnodes of a flash device DT node without any compatibility
925 	 * specified we could match.
926 	 */
927 	parser = mtd_part_parser_get(fixed);
928 	if (!parser && !request_module("%s", fixed))
929 		parser = mtd_part_parser_get(fixed);
930 	if (parser) {
931 		ret = mtd_part_do_parse(parser, master, pparts, NULL);
932 		if (ret > 0)
933 			return ret;
934 		mtd_part_parser_put(parser);
935 		if (ret < 0 && !err)
936 			err = ret;
937 	}
938 
939 	return err;
940 }
941 
942 /**
943  * parse_mtd_partitions - parse and register MTD partitions
944  *
945  * @master: the master partition (describes whole MTD device)
946  * @types: names of partition parsers to try or %NULL
947  * @data: MTD partition parser-specific data
948  *
949  * This function tries to find & register partitions on MTD device @master. It
950  * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
951  * then the default list of parsers is used. The default list contains only the
952  * "cmdlinepart" and "ofpart" parsers ATM.
953  * Note: If there are more then one parser in @types, the kernel only takes the
954  * partitions parsed out by the first parser.
955  *
956  * This function may return:
957  * o a negative error code in case of failure
958  * o number of found partitions otherwise
959  */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_part_parser_data * data)960 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
961 			 struct mtd_part_parser_data *data)
962 {
963 	struct mtd_partitions pparts = { };
964 	struct mtd_part_parser *parser;
965 	int ret, err = 0;
966 
967 	if (!types)
968 		types = mtd_is_partition(master) ? default_subpartition_types :
969 			default_mtd_part_types;
970 
971 	for ( ; *types; types++) {
972 		/*
973 		 * ofpart is a special type that means OF partitioning info
974 		 * should be used. It requires a bit different logic so it is
975 		 * handled in a separated function.
976 		 */
977 		if (!strcmp(*types, "ofpart")) {
978 			ret = mtd_part_of_parse(master, &pparts);
979 		} else {
980 			pr_debug("%s: parsing partitions %s\n", master->name,
981 				 *types);
982 			parser = mtd_part_parser_get(*types);
983 			if (!parser && !request_module("%s", *types))
984 				parser = mtd_part_parser_get(*types);
985 			pr_debug("%s: got parser %s\n", master->name,
986 				parser ? parser->name : NULL);
987 			if (!parser)
988 				continue;
989 			ret = mtd_part_do_parse(parser, master, &pparts, data);
990 			if (ret <= 0)
991 				mtd_part_parser_put(parser);
992 		}
993 		/* Found partitions! */
994 		if (ret > 0) {
995 			err = add_mtd_partitions(master, pparts.parts,
996 						 pparts.nr_parts);
997 			mtd_part_parser_cleanup(&pparts);
998 			return err ? err : pparts.nr_parts;
999 		}
1000 		/*
1001 		 * Stash the first error we see; only report it if no parser
1002 		 * succeeds
1003 		 */
1004 		if (ret < 0 && !err)
1005 			err = ret;
1006 	}
1007 	return err;
1008 }
1009 
mtd_part_parser_cleanup(struct mtd_partitions * parts)1010 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
1011 {
1012 	const struct mtd_part_parser *parser;
1013 
1014 	if (!parts)
1015 		return;
1016 
1017 	parser = parts->parser;
1018 	if (parser) {
1019 		if (parser->cleanup)
1020 			parser->cleanup(parts->parts, parts->nr_parts);
1021 
1022 		mtd_part_parser_put(parser);
1023 	}
1024 }
1025 
mtd_is_partition(const struct mtd_info * mtd)1026 int mtd_is_partition(const struct mtd_info *mtd)
1027 {
1028 	struct mtd_part *part;
1029 	int ispart = 0;
1030 
1031 	mutex_lock(&mtd_partitions_mutex);
1032 	list_for_each_entry(part, &mtd_partitions, list)
1033 		if (&part->mtd == mtd) {
1034 			ispart = 1;
1035 			break;
1036 		}
1037 	mutex_unlock(&mtd_partitions_mutex);
1038 
1039 	return ispart;
1040 }
1041 EXPORT_SYMBOL_GPL(mtd_is_partition);
1042 
1043 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)1044 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1045 {
1046 	if (!mtd_is_partition(mtd))
1047 		return mtd->size;
1048 
1049 	return mtd_get_device_size(mtd_to_part(mtd)->parent);
1050 }
1051 EXPORT_SYMBOL_GPL(mtd_get_device_size);
1052