• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017 Free Electrons
4  * Copyright (C) 2017 NextThing Co
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  */
8 
9 #include <linux/slab.h>
10 
11 #include "internals.h"
12 
13 /*
14  * Special Micron status bit 3 indicates that the block has been
15  * corrected by on-die ECC and should be rewritten.
16  */
17 #define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)
18 
19 /*
20  * On chips with 8-bit ECC and additional bit can be used to distinguish
21  * cases where a errors were corrected without needing a rewrite
22  *
23  * Bit 4 Bit 3 Bit 0 Description
24  * ----- ----- ----- -----------
25  * 0     0     0     No Errors
26  * 0     0     1     Multiple uncorrected errors
27  * 0     1     0     4 - 6 errors corrected, recommend rewrite
28  * 0     1     1     Reserved
29  * 1     0     0     1 - 3 errors corrected
30  * 1     0     1     Reserved
31  * 1     1     0     7 - 8 errors corrected, recommend rewrite
32  */
33 #define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
34 #define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
35 #define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
36 #define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
37 #define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
38 
39 struct nand_onfi_vendor_micron {
40 	u8 two_plane_read;
41 	u8 read_cache;
42 	u8 read_unique_id;
43 	u8 dq_imped;
44 	u8 dq_imped_num_settings;
45 	u8 dq_imped_feat_addr;
46 	u8 rb_pulldown_strength;
47 	u8 rb_pulldown_strength_feat_addr;
48 	u8 rb_pulldown_strength_num_settings;
49 	u8 otp_mode;
50 	u8 otp_page_start;
51 	u8 otp_data_prot_addr;
52 	u8 otp_num_pages;
53 	u8 otp_feat_addr;
54 	u8 read_retry_options;
55 	u8 reserved[72];
56 	u8 param_revision;
57 } __packed;
58 
59 struct micron_on_die_ecc {
60 	bool forced;
61 	bool enabled;
62 	void *rawbuf;
63 };
64 
65 struct micron_nand {
66 	struct micron_on_die_ecc ecc;
67 };
68 
micron_nand_setup_read_retry(struct nand_chip * chip,int retry_mode)69 static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
70 {
71 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
72 
73 	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
74 }
75 
76 /*
77  * Configure chip properties from Micron vendor-specific ONFI table
78  */
micron_nand_onfi_init(struct nand_chip * chip)79 static int micron_nand_onfi_init(struct nand_chip *chip)
80 {
81 	struct nand_parameters *p = &chip->parameters;
82 
83 	if (p->onfi) {
84 		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
85 
86 		chip->read_retries = micron->read_retry_options;
87 		chip->setup_read_retry = micron_nand_setup_read_retry;
88 	}
89 
90 	if (p->supports_set_get_features) {
91 		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
92 		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
93 		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
94 		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
95 	}
96 
97 	return 0;
98 }
99 
micron_nand_on_die_4_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)100 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
101 					      int section,
102 					      struct mtd_oob_region *oobregion)
103 {
104 	if (section >= 4)
105 		return -ERANGE;
106 
107 	oobregion->offset = (section * 16) + 8;
108 	oobregion->length = 8;
109 
110 	return 0;
111 }
112 
micron_nand_on_die_4_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)113 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
114 					       int section,
115 					       struct mtd_oob_region *oobregion)
116 {
117 	if (section >= 4)
118 		return -ERANGE;
119 
120 	oobregion->offset = (section * 16) + 2;
121 	oobregion->length = 6;
122 
123 	return 0;
124 }
125 
126 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
127 	.ecc = micron_nand_on_die_4_ooblayout_ecc,
128 	.free = micron_nand_on_die_4_ooblayout_free,
129 };
130 
micron_nand_on_die_8_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)131 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
132 					      int section,
133 					      struct mtd_oob_region *oobregion)
134 {
135 	struct nand_chip *chip = mtd_to_nand(mtd);
136 
137 	if (section)
138 		return -ERANGE;
139 
140 	oobregion->offset = mtd->oobsize - chip->ecc.total;
141 	oobregion->length = chip->ecc.total;
142 
143 	return 0;
144 }
145 
micron_nand_on_die_8_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)146 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
147 					       int section,
148 					       struct mtd_oob_region *oobregion)
149 {
150 	struct nand_chip *chip = mtd_to_nand(mtd);
151 
152 	if (section)
153 		return -ERANGE;
154 
155 	oobregion->offset = 2;
156 	oobregion->length = mtd->oobsize - chip->ecc.total - 2;
157 
158 	return 0;
159 }
160 
161 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
162 	.ecc = micron_nand_on_die_8_ooblayout_ecc,
163 	.free = micron_nand_on_die_8_ooblayout_free,
164 };
165 
micron_nand_on_die_ecc_setup(struct nand_chip * chip,bool enable)166 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
167 {
168 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
169 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
170 	int ret;
171 
172 	if (micron->ecc.forced)
173 		return 0;
174 
175 	if (micron->ecc.enabled == enable)
176 		return 0;
177 
178 	if (enable)
179 		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
180 
181 	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
182 	if (!ret)
183 		micron->ecc.enabled = enable;
184 
185 	return ret;
186 }
187 
micron_nand_on_die_ecc_status_4(struct nand_chip * chip,u8 status,void * buf,int page,int oob_required)188 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
189 					   void *buf, int page,
190 					   int oob_required)
191 {
192 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
193 	struct mtd_info *mtd = nand_to_mtd(chip);
194 	unsigned int step, max_bitflips = 0;
195 	int ret;
196 
197 	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
198 		if (status & NAND_STATUS_FAIL)
199 			mtd->ecc_stats.failed++;
200 
201 		return 0;
202 	}
203 
204 	/*
205 	 * The internal ECC doesn't tell us the number of bitflips that have
206 	 * been corrected, but tells us if it recommends to rewrite the block.
207 	 * If it's the case, we need to read the page in raw mode and compare
208 	 * its content to the corrected version to extract the actual number of
209 	 * bitflips.
210 	 * But before we do that, we must make sure we have all OOB bytes read
211 	 * in non-raw mode, even if the user did not request those bytes.
212 	 */
213 	if (!oob_required) {
214 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
215 					false);
216 		if (ret)
217 			return ret;
218 	}
219 
220 	micron_nand_on_die_ecc_setup(chip, false);
221 
222 	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
223 				mtd->writesize + mtd->oobsize);
224 	if (ret)
225 		return ret;
226 
227 	for (step = 0; step < chip->ecc.steps; step++) {
228 		unsigned int offs, i, nbitflips = 0;
229 		u8 *rawbuf, *corrbuf;
230 
231 		offs = step * chip->ecc.size;
232 		rawbuf = micron->ecc.rawbuf + offs;
233 		corrbuf = buf + offs;
234 
235 		for (i = 0; i < chip->ecc.size; i++)
236 			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
237 
238 		offs = (step * 16) + 4;
239 		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
240 		corrbuf = chip->oob_poi + offs;
241 
242 		for (i = 0; i < chip->ecc.bytes + 4; i++)
243 			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
244 
245 		if (WARN_ON(nbitflips > chip->ecc.strength))
246 			return -EINVAL;
247 
248 		max_bitflips = max(nbitflips, max_bitflips);
249 		mtd->ecc_stats.corrected += nbitflips;
250 	}
251 
252 	return max_bitflips;
253 }
254 
micron_nand_on_die_ecc_status_8(struct nand_chip * chip,u8 status)255 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
256 {
257 	struct mtd_info *mtd = nand_to_mtd(chip);
258 
259 	/*
260 	 * With 8/512 we have more information but still don't know precisely
261 	 * how many bit-flips were seen.
262 	 */
263 	switch (status & NAND_ECC_STATUS_MASK) {
264 	case NAND_ECC_STATUS_UNCORRECTABLE:
265 		mtd->ecc_stats.failed++;
266 		return 0;
267 	case NAND_ECC_STATUS_1_3_CORRECTED:
268 		mtd->ecc_stats.corrected += 3;
269 		return 3;
270 	case NAND_ECC_STATUS_4_6_CORRECTED:
271 		mtd->ecc_stats.corrected += 6;
272 		/* rewrite recommended */
273 		return 6;
274 	case NAND_ECC_STATUS_7_8_CORRECTED:
275 		mtd->ecc_stats.corrected += 8;
276 		/* rewrite recommended */
277 		return 8;
278 	default:
279 		return 0;
280 	}
281 }
282 
283 static int
micron_nand_read_page_on_die_ecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)284 micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
285 				 int oob_required, int page)
286 {
287 	struct mtd_info *mtd = nand_to_mtd(chip);
288 	u8 status;
289 	int ret, max_bitflips = 0;
290 
291 	ret = micron_nand_on_die_ecc_setup(chip, true);
292 	if (ret)
293 		return ret;
294 
295 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
296 	if (ret)
297 		goto out;
298 
299 	ret = nand_status_op(chip, &status);
300 	if (ret)
301 		goto out;
302 
303 	ret = nand_exit_status_op(chip);
304 	if (ret)
305 		goto out;
306 
307 	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
308 	if (!ret && oob_required)
309 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
310 					false);
311 
312 	if (chip->ecc.strength == 4)
313 		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
314 							       buf, page,
315 							       oob_required);
316 	else
317 		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
318 
319 out:
320 	micron_nand_on_die_ecc_setup(chip, false);
321 
322 	return ret ? ret : max_bitflips;
323 }
324 
325 static int
micron_nand_write_page_on_die_ecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)326 micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
327 				  int oob_required, int page)
328 {
329 	int ret;
330 
331 	ret = micron_nand_on_die_ecc_setup(chip, true);
332 	if (ret)
333 		return ret;
334 
335 	ret = nand_write_page_raw(chip, buf, oob_required, page);
336 	micron_nand_on_die_ecc_setup(chip, false);
337 
338 	return ret;
339 }
340 
341 enum {
342 	/* The NAND flash doesn't support on-die ECC */
343 	MICRON_ON_DIE_UNSUPPORTED,
344 
345 	/*
346 	 * The NAND flash supports on-die ECC and it can be
347 	 * enabled/disabled by a set features command.
348 	 */
349 	MICRON_ON_DIE_SUPPORTED,
350 
351 	/*
352 	 * The NAND flash supports on-die ECC, and it cannot be
353 	 * disabled.
354 	 */
355 	MICRON_ON_DIE_MANDATORY,
356 };
357 
358 #define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
359 #define MICRON_ID_ECC_ENABLED		BIT(7)
360 
361 /*
362  * Try to detect if the NAND support on-die ECC. To do this, we enable
363  * the feature, and read back if it has been enabled as expected. We
364  * also check if it can be disabled, because some Micron NANDs do not
365  * allow disabling the on-die ECC and we don't support such NANDs for
366  * now.
367  *
368  * This function also has the side effect of disabling on-die ECC if
369  * it had been left enabled by the firmware/bootloader.
370  */
micron_supports_on_die_ecc(struct nand_chip * chip)371 static int micron_supports_on_die_ecc(struct nand_chip *chip)
372 {
373 	u8 id[5];
374 	int ret;
375 
376 	if (!chip->parameters.onfi)
377 		return MICRON_ON_DIE_UNSUPPORTED;
378 
379 	if (nanddev_bits_per_cell(&chip->base) != 1)
380 		return MICRON_ON_DIE_UNSUPPORTED;
381 
382 	/*
383 	 * We only support on-die ECC of 4/512 or 8/512
384 	 */
385 	if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
386 		return MICRON_ON_DIE_UNSUPPORTED;
387 
388 	/* 0x2 means on-die ECC is available. */
389 	if (chip->id.len != 5 ||
390 	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
391 		return MICRON_ON_DIE_UNSUPPORTED;
392 
393 	/*
394 	 * It seems that there are devices which do not support ECC officially.
395 	 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
396 	 * enabling the ECC feature but don't reflect that to the READ_ID table.
397 	 * So we have to guarantee that we disable the ECC feature directly
398 	 * after we did the READ_ID table command. Later we can evaluate the
399 	 * ECC_ENABLE support.
400 	 */
401 	ret = micron_nand_on_die_ecc_setup(chip, true);
402 	if (ret)
403 		return MICRON_ON_DIE_UNSUPPORTED;
404 
405 	ret = nand_readid_op(chip, 0, id, sizeof(id));
406 	if (ret)
407 		return MICRON_ON_DIE_UNSUPPORTED;
408 
409 	ret = micron_nand_on_die_ecc_setup(chip, false);
410 	if (ret)
411 		return MICRON_ON_DIE_UNSUPPORTED;
412 
413 	if (!(id[4] & MICRON_ID_ECC_ENABLED))
414 		return MICRON_ON_DIE_UNSUPPORTED;
415 
416 	ret = nand_readid_op(chip, 0, id, sizeof(id));
417 	if (ret)
418 		return MICRON_ON_DIE_UNSUPPORTED;
419 
420 	if (id[4] & MICRON_ID_ECC_ENABLED)
421 		return MICRON_ON_DIE_MANDATORY;
422 
423 	/*
424 	 * We only support on-die ECC of 4/512 or 8/512
425 	 */
426 	if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
427 		return MICRON_ON_DIE_UNSUPPORTED;
428 
429 	return MICRON_ON_DIE_SUPPORTED;
430 }
431 
micron_nand_init(struct nand_chip * chip)432 static int micron_nand_init(struct nand_chip *chip)
433 {
434 	struct mtd_info *mtd = nand_to_mtd(chip);
435 	struct micron_nand *micron;
436 	int ondie;
437 	int ret;
438 
439 	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
440 	if (!micron)
441 		return -ENOMEM;
442 
443 	nand_set_manufacturer_data(chip, micron);
444 
445 	ret = micron_nand_onfi_init(chip);
446 	if (ret)
447 		goto err_free_manuf_data;
448 
449 	chip->options |= NAND_BBM_FIRSTPAGE;
450 
451 	if (mtd->writesize == 2048)
452 		chip->options |= NAND_BBM_SECONDPAGE;
453 
454 	ondie = micron_supports_on_die_ecc(chip);
455 
456 	if (ondie == MICRON_ON_DIE_MANDATORY &&
457 	    chip->ecc.mode != NAND_ECC_ON_DIE) {
458 		pr_err("On-die ECC forcefully enabled, not supported\n");
459 		ret = -EINVAL;
460 		goto err_free_manuf_data;
461 	}
462 
463 	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
464 		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
465 			pr_err("On-die ECC selected but not supported\n");
466 			ret = -EINVAL;
467 			goto err_free_manuf_data;
468 		}
469 
470 		if (ondie == MICRON_ON_DIE_MANDATORY) {
471 			micron->ecc.forced = true;
472 			micron->ecc.enabled = true;
473 		}
474 
475 		/*
476 		 * In case of 4bit on-die ECC, we need a buffer to store a
477 		 * page dumped in raw mode so that we can compare its content
478 		 * to the same page after ECC correction happened and extract
479 		 * the real number of bitflips from this comparison.
480 		 * That's not needed for 8-bit ECC, because the status expose
481 		 * a better approximation of the number of bitflips in a page.
482 		 */
483 		if (chip->base.eccreq.strength == 4) {
484 			micron->ecc.rawbuf = kmalloc(mtd->writesize +
485 						     mtd->oobsize,
486 						     GFP_KERNEL);
487 			if (!micron->ecc.rawbuf) {
488 				ret = -ENOMEM;
489 				goto err_free_manuf_data;
490 			}
491 		}
492 
493 		if (chip->base.eccreq.strength == 4)
494 			mtd_set_ooblayout(mtd,
495 					  &micron_nand_on_die_4_ooblayout_ops);
496 		else
497 			mtd_set_ooblayout(mtd,
498 					  &micron_nand_on_die_8_ooblayout_ops);
499 
500 		chip->ecc.bytes = chip->base.eccreq.strength * 2;
501 		chip->ecc.size = 512;
502 		chip->ecc.strength = chip->base.eccreq.strength;
503 		chip->ecc.algo = NAND_ECC_BCH;
504 		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
505 		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
506 
507 		if (ondie == MICRON_ON_DIE_MANDATORY) {
508 			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
509 			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
510 		} else {
511 			chip->ecc.read_page_raw = nand_read_page_raw;
512 			chip->ecc.write_page_raw = nand_write_page_raw;
513 		}
514 	}
515 
516 	return 0;
517 
518 err_free_manuf_data:
519 	kfree(micron->ecc.rawbuf);
520 	kfree(micron);
521 
522 	return ret;
523 }
524 
micron_nand_cleanup(struct nand_chip * chip)525 static void micron_nand_cleanup(struct nand_chip *chip)
526 {
527 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
528 
529 	kfree(micron->ecc.rawbuf);
530 	kfree(micron);
531 }
532 
micron_fixup_onfi_param_page(struct nand_chip * chip,struct nand_onfi_params * p)533 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
534 					 struct nand_onfi_params *p)
535 {
536 	/*
537 	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
538 	 * revision number field of the ONFI parameter page. Assume ONFI
539 	 * version 1.0 if the revision number is 00 00.
540 	 */
541 	if (le16_to_cpu(p->revision) == 0)
542 		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
543 }
544 
545 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
546 	.init = micron_nand_init,
547 	.cleanup = micron_nand_cleanup,
548 	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
549 };
550