• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2014 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
31 
32 #define DRIVER_NAME	"xilinx_can"
33 
34 /* CAN registers set */
35 enum xcan_reg {
36 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
37 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
38 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
39 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
40 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
41 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
42 	XCAN_SR_OFFSET		= 0x18, /* Status */
43 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
44 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
45 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
46 
47 	/* not on CAN FD cores */
48 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
49 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
50 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
51 
52 	/* only on CAN FD cores */
53 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
54 					  * Prescalar
55 					  */
56 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
57 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
58 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
59 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
60 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
61 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
62 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
63 	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
64 	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
65 };
66 
67 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
68 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
69 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
70 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
71 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
72 
73 #define XCAN_CANFD_FRAME_SIZE		0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
75 					 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
77 					 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
79 					 XCAN_CANFD_FRAME_SIZE * (n))
80 
81 /* the single TX mailbox used by this driver on CAN FD HW */
82 #define XCAN_TX_MAILBOX_IDX		0
83 
84 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
86 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
87 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
88 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
89 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
90 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
91 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
92 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
93 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
94 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
95 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
96 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
97 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
98 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
99 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
100 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
101 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
102 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
103 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
104 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
105 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
106 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
107 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
108 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
109 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
110 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
111 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
112 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
113 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
114 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
115 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
116 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
117 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
118 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
119 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
120 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
121 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
122 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
123 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
124 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
125 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
126 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
127 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
128 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
129 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
130 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
131 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
132 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
133 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
134 
135 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
136 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
137 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
138 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
139 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
140 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
141 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
142 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
143 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
144 
145 /* CAN frame length constants */
146 #define XCAN_FRAME_MAX_DATA_LEN		8
147 #define XCANFD_DW_BYTES			4
148 #define XCAN_TIMEOUT			(1 * HZ)
149 
150 /* TX-FIFO-empty interrupt available */
151 #define XCAN_FLAG_TXFEMP	0x0001
152 /* RX Match Not Finished interrupt available */
153 #define XCAN_FLAG_RXMNF		0x0002
154 /* Extended acceptance filters with control at 0xE0 */
155 #define XCAN_FLAG_EXT_FILTERS	0x0004
156 /* TX mailboxes instead of TX FIFO */
157 #define XCAN_FLAG_TX_MAILBOXES	0x0008
158 /* RX FIFO with each buffer in separate registers at 0x1100
159  * instead of the regular FIFO at 0x50
160  */
161 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
162 #define XCAN_FLAG_CANFD_2	0x0020
163 
164 enum xcan_ip_type {
165 	XAXI_CAN = 0,
166 	XZYNQ_CANPS,
167 	XAXI_CANFD,
168 	XAXI_CANFD_2_0,
169 };
170 
171 struct xcan_devtype_data {
172 	enum xcan_ip_type cantype;
173 	unsigned int flags;
174 	const struct can_bittiming_const *bittiming_const;
175 	const char *bus_clk_name;
176 	unsigned int btr_ts2_shift;
177 	unsigned int btr_sjw_shift;
178 };
179 
180 /**
181  * struct xcan_priv - This definition define CAN driver instance
182  * @can:			CAN private data structure.
183  * @tx_lock:			Lock for synchronizing TX interrupt handling
184  * @tx_head:			Tx CAN packets ready to send on the queue
185  * @tx_tail:			Tx CAN packets successfully sended on the queue
186  * @tx_max:			Maximum number packets the driver can send
187  * @napi:			NAPI structure
188  * @read_reg:			For reading data from CAN registers
189  * @write_reg:			For writing data to CAN registers
190  * @dev:			Network device data structure
191  * @reg_base:			Ioremapped address to registers
192  * @irq_flags:			For request_irq()
193  * @bus_clk:			Pointer to struct clk
194  * @can_clk:			Pointer to struct clk
195  * @devtype:			Device type specific constants
196  */
197 struct xcan_priv {
198 	struct can_priv can;
199 	spinlock_t tx_lock;
200 	unsigned int tx_head;
201 	unsigned int tx_tail;
202 	unsigned int tx_max;
203 	struct napi_struct napi;
204 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
205 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
206 			  u32 val);
207 	struct device *dev;
208 	void __iomem *reg_base;
209 	unsigned long irq_flags;
210 	struct clk *bus_clk;
211 	struct clk *can_clk;
212 	struct xcan_devtype_data devtype;
213 };
214 
215 /* CAN Bittiming constants as per Xilinx CAN specs */
216 static const struct can_bittiming_const xcan_bittiming_const = {
217 	.name = DRIVER_NAME,
218 	.tseg1_min = 1,
219 	.tseg1_max = 16,
220 	.tseg2_min = 1,
221 	.tseg2_max = 8,
222 	.sjw_max = 4,
223 	.brp_min = 1,
224 	.brp_max = 256,
225 	.brp_inc = 1,
226 };
227 
228 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
229 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
230 	.name = DRIVER_NAME,
231 	.tseg1_min = 1,
232 	.tseg1_max = 64,
233 	.tseg2_min = 1,
234 	.tseg2_max = 16,
235 	.sjw_max = 16,
236 	.brp_min = 1,
237 	.brp_max = 256,
238 	.brp_inc = 1,
239 };
240 
241 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
242 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
243 	.name = DRIVER_NAME,
244 	.tseg1_min = 1,
245 	.tseg1_max = 16,
246 	.tseg2_min = 1,
247 	.tseg2_max = 8,
248 	.sjw_max = 8,
249 	.brp_min = 1,
250 	.brp_max = 256,
251 	.brp_inc = 1,
252 };
253 
254 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
255 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
256 	.name = DRIVER_NAME,
257 	.tseg1_min = 1,
258 	.tseg1_max = 256,
259 	.tseg2_min = 1,
260 	.tseg2_max = 128,
261 	.sjw_max = 128,
262 	.brp_min = 1,
263 	.brp_max = 256,
264 	.brp_inc = 1,
265 };
266 
267 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
268 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
269 	.name = DRIVER_NAME,
270 	.tseg1_min = 1,
271 	.tseg1_max = 32,
272 	.tseg2_min = 1,
273 	.tseg2_max = 16,
274 	.sjw_max = 16,
275 	.brp_min = 1,
276 	.brp_max = 256,
277 	.brp_inc = 1,
278 };
279 
280 /**
281  * xcan_write_reg_le - Write a value to the device register little endian
282  * @priv:	Driver private data structure
283  * @reg:	Register offset
284  * @val:	Value to write at the Register offset
285  *
286  * Write data to the paricular CAN register
287  */
xcan_write_reg_le(const struct xcan_priv * priv,enum xcan_reg reg,u32 val)288 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
289 			      u32 val)
290 {
291 	iowrite32(val, priv->reg_base + reg);
292 }
293 
294 /**
295  * xcan_read_reg_le - Read a value from the device register little endian
296  * @priv:	Driver private data structure
297  * @reg:	Register offset
298  *
299  * Read data from the particular CAN register
300  * Return: value read from the CAN register
301  */
xcan_read_reg_le(const struct xcan_priv * priv,enum xcan_reg reg)302 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
303 {
304 	return ioread32(priv->reg_base + reg);
305 }
306 
307 /**
308  * xcan_write_reg_be - Write a value to the device register big endian
309  * @priv:	Driver private data structure
310  * @reg:	Register offset
311  * @val:	Value to write at the Register offset
312  *
313  * Write data to the paricular CAN register
314  */
xcan_write_reg_be(const struct xcan_priv * priv,enum xcan_reg reg,u32 val)315 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
316 			      u32 val)
317 {
318 	iowrite32be(val, priv->reg_base + reg);
319 }
320 
321 /**
322  * xcan_read_reg_be - Read a value from the device register big endian
323  * @priv:	Driver private data structure
324  * @reg:	Register offset
325  *
326  * Read data from the particular CAN register
327  * Return: value read from the CAN register
328  */
xcan_read_reg_be(const struct xcan_priv * priv,enum xcan_reg reg)329 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
330 {
331 	return ioread32be(priv->reg_base + reg);
332 }
333 
334 /**
335  * xcan_rx_int_mask - Get the mask for the receive interrupt
336  * @priv:	Driver private data structure
337  *
338  * Return: The receive interrupt mask used by the driver on this HW
339  */
xcan_rx_int_mask(const struct xcan_priv * priv)340 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
341 {
342 	/* RXNEMP is better suited for our use case as it cannot be cleared
343 	 * while the FIFO is non-empty, but CAN FD HW does not have it
344 	 */
345 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
346 		return XCAN_IXR_RXOK_MASK;
347 	else
348 		return XCAN_IXR_RXNEMP_MASK;
349 }
350 
351 /**
352  * set_reset_mode - Resets the CAN device mode
353  * @ndev:	Pointer to net_device structure
354  *
355  * This is the driver reset mode routine.The driver
356  * enters into configuration mode.
357  *
358  * Return: 0 on success and failure value on error
359  */
set_reset_mode(struct net_device * ndev)360 static int set_reset_mode(struct net_device *ndev)
361 {
362 	struct xcan_priv *priv = netdev_priv(ndev);
363 	unsigned long timeout;
364 
365 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
366 
367 	timeout = jiffies + XCAN_TIMEOUT;
368 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
369 		if (time_after(jiffies, timeout)) {
370 			netdev_warn(ndev, "timed out for config mode\n");
371 			return -ETIMEDOUT;
372 		}
373 		usleep_range(500, 10000);
374 	}
375 
376 	/* reset clears FIFOs */
377 	priv->tx_head = 0;
378 	priv->tx_tail = 0;
379 
380 	return 0;
381 }
382 
383 /**
384  * xcan_set_bittiming - CAN set bit timing routine
385  * @ndev:	Pointer to net_device structure
386  *
387  * This is the driver set bittiming  routine.
388  * Return: 0 on success and failure value on error
389  */
xcan_set_bittiming(struct net_device * ndev)390 static int xcan_set_bittiming(struct net_device *ndev)
391 {
392 	struct xcan_priv *priv = netdev_priv(ndev);
393 	struct can_bittiming *bt = &priv->can.bittiming;
394 	struct can_bittiming *dbt = &priv->can.data_bittiming;
395 	u32 btr0, btr1;
396 	u32 is_config_mode;
397 
398 	/* Check whether Xilinx CAN is in configuration mode.
399 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
400 	 */
401 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
402 				XCAN_SR_CONFIG_MASK;
403 	if (!is_config_mode) {
404 		netdev_alert(ndev,
405 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
406 		return -EPERM;
407 	}
408 
409 	/* Setting Baud Rate prescalar value in BRPR Register */
410 	btr0 = (bt->brp - 1);
411 
412 	/* Setting Time Segment 1 in BTR Register */
413 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
414 
415 	/* Setting Time Segment 2 in BTR Register */
416 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
417 
418 	/* Setting Synchronous jump width in BTR Register */
419 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
420 
421 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
422 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
423 
424 	if (priv->devtype.cantype == XAXI_CANFD ||
425 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
426 		/* Setting Baud Rate prescalar value in F_BRPR Register */
427 		btr0 = dbt->brp - 1;
428 
429 		/* Setting Time Segment 1 in BTR Register */
430 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
431 
432 		/* Setting Time Segment 2 in BTR Register */
433 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
434 
435 		/* Setting Synchronous jump width in BTR Register */
436 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
437 
438 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
439 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
440 	}
441 
442 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
443 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
444 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
445 
446 	return 0;
447 }
448 
449 /**
450  * xcan_chip_start - This the drivers start routine
451  * @ndev:	Pointer to net_device structure
452  *
453  * This is the drivers start routine.
454  * Based on the State of the CAN device it puts
455  * the CAN device into a proper mode.
456  *
457  * Return: 0 on success and failure value on error
458  */
xcan_chip_start(struct net_device * ndev)459 static int xcan_chip_start(struct net_device *ndev)
460 {
461 	struct xcan_priv *priv = netdev_priv(ndev);
462 	u32 reg_msr;
463 	int err;
464 	u32 ier;
465 
466 	/* Check if it is in reset mode */
467 	err = set_reset_mode(ndev);
468 	if (err < 0)
469 		return err;
470 
471 	err = xcan_set_bittiming(ndev);
472 	if (err < 0)
473 		return err;
474 
475 	/* Enable interrupts */
476 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
477 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
478 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
479 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
480 
481 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
482 		ier |= XCAN_IXR_RXMNF_MASK;
483 
484 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
485 
486 	/* Check whether it is loopback mode or normal mode  */
487 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
488 		reg_msr = XCAN_MSR_LBACK_MASK;
489 	} else {
490 		reg_msr = 0x0;
491 	}
492 
493 	/* enable the first extended filter, if any, as cores with extended
494 	 * filtering default to non-receipt if all filters are disabled
495 	 */
496 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
497 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
498 
499 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
500 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
501 
502 	netdev_dbg(ndev, "status:#x%08x\n",
503 		   priv->read_reg(priv, XCAN_SR_OFFSET));
504 
505 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
506 	return 0;
507 }
508 
509 /**
510  * xcan_do_set_mode - This sets the mode of the driver
511  * @ndev:	Pointer to net_device structure
512  * @mode:	Tells the mode of the driver
513  *
514  * This check the drivers state and calls the
515  * the corresponding modes to set.
516  *
517  * Return: 0 on success and failure value on error
518  */
xcan_do_set_mode(struct net_device * ndev,enum can_mode mode)519 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
520 {
521 	int ret;
522 
523 	switch (mode) {
524 	case CAN_MODE_START:
525 		ret = xcan_chip_start(ndev);
526 		if (ret < 0) {
527 			netdev_err(ndev, "xcan_chip_start failed!\n");
528 			return ret;
529 		}
530 		netif_wake_queue(ndev);
531 		break;
532 	default:
533 		ret = -EOPNOTSUPP;
534 		break;
535 	}
536 
537 	return ret;
538 }
539 
540 /**
541  * xcan_write_frame - Write a frame to HW
542  * @priv:		Driver private data structure
543  * @skb:		sk_buff pointer that contains data to be Txed
544  * @frame_offset:	Register offset to write the frame to
545  */
xcan_write_frame(struct xcan_priv * priv,struct sk_buff * skb,int frame_offset)546 static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
547 			     int frame_offset)
548 {
549 	u32 id, dlc, data[2] = {0, 0};
550 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
551 	u32 ramoff, dwindex = 0, i;
552 
553 	/* Watch carefully on the bit sequence */
554 	if (cf->can_id & CAN_EFF_FLAG) {
555 		/* Extended CAN ID format */
556 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
557 			XCAN_IDR_ID2_MASK;
558 		id |= (((cf->can_id & CAN_EFF_MASK) >>
559 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
560 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
561 
562 		/* The substibute remote TX request bit should be "1"
563 		 * for extended frames as in the Xilinx CAN datasheet
564 		 */
565 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
566 
567 		if (cf->can_id & CAN_RTR_FLAG)
568 			/* Extended frames remote TX request */
569 			id |= XCAN_IDR_RTR_MASK;
570 	} else {
571 		/* Standard CAN ID format */
572 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
573 			XCAN_IDR_ID1_MASK;
574 
575 		if (cf->can_id & CAN_RTR_FLAG)
576 			/* Standard frames remote TX request */
577 			id |= XCAN_IDR_SRR_MASK;
578 	}
579 
580 	dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
581 	if (can_is_canfd_skb(skb)) {
582 		if (cf->flags & CANFD_BRS)
583 			dlc |= XCAN_DLCR_BRS_MASK;
584 		dlc |= XCAN_DLCR_EDL_MASK;
585 	}
586 
587 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
588 	/* If the CAN frame is RTR frame this write triggers transmission
589 	 * (not on CAN FD)
590 	 */
591 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
592 	if (priv->devtype.cantype == XAXI_CANFD ||
593 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
594 		for (i = 0; i < cf->len; i += 4) {
595 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
596 					(dwindex * XCANFD_DW_BYTES);
597 			priv->write_reg(priv, ramoff,
598 					be32_to_cpup((__be32 *)(cf->data + i)));
599 			dwindex++;
600 		}
601 	} else {
602 		if (cf->len > 0)
603 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
604 		if (cf->len > 4)
605 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
606 
607 		if (!(cf->can_id & CAN_RTR_FLAG)) {
608 			priv->write_reg(priv,
609 					XCAN_FRAME_DW1_OFFSET(frame_offset),
610 					data[0]);
611 			/* If the CAN frame is Standard/Extended frame this
612 			 * write triggers transmission (not on CAN FD)
613 			 */
614 			priv->write_reg(priv,
615 					XCAN_FRAME_DW2_OFFSET(frame_offset),
616 					data[1]);
617 		}
618 	}
619 }
620 
621 /**
622  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
623  * @skb:	sk_buff pointer that contains data to be Txed
624  * @ndev:	Pointer to net_device structure
625  *
626  * Return: 0 on success, -ENOSPC if FIFO is full.
627  */
xcan_start_xmit_fifo(struct sk_buff * skb,struct net_device * ndev)628 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
629 {
630 	struct xcan_priv *priv = netdev_priv(ndev);
631 	unsigned long flags;
632 
633 	/* Check if the TX buffer is full */
634 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
635 			XCAN_SR_TXFLL_MASK))
636 		return -ENOSPC;
637 
638 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
639 
640 	spin_lock_irqsave(&priv->tx_lock, flags);
641 
642 	priv->tx_head++;
643 
644 	xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
645 
646 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
647 	if (priv->tx_max > 1)
648 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
649 
650 	/* Check if the TX buffer is full */
651 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
652 		netif_stop_queue(ndev);
653 
654 	spin_unlock_irqrestore(&priv->tx_lock, flags);
655 
656 	return 0;
657 }
658 
659 /**
660  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
661  * @skb:	sk_buff pointer that contains data to be Txed
662  * @ndev:	Pointer to net_device structure
663  *
664  * Return: 0 on success, -ENOSPC if there is no space
665  */
xcan_start_xmit_mailbox(struct sk_buff * skb,struct net_device * ndev)666 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
667 {
668 	struct xcan_priv *priv = netdev_priv(ndev);
669 	unsigned long flags;
670 
671 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
672 		     BIT(XCAN_TX_MAILBOX_IDX)))
673 		return -ENOSPC;
674 
675 	can_put_echo_skb(skb, ndev, 0);
676 
677 	spin_lock_irqsave(&priv->tx_lock, flags);
678 
679 	priv->tx_head++;
680 
681 	xcan_write_frame(priv, skb,
682 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
683 
684 	/* Mark buffer as ready for transmit */
685 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
686 
687 	netif_stop_queue(ndev);
688 
689 	spin_unlock_irqrestore(&priv->tx_lock, flags);
690 
691 	return 0;
692 }
693 
694 /**
695  * xcan_start_xmit - Starts the transmission
696  * @skb:	sk_buff pointer that contains data to be Txed
697  * @ndev:	Pointer to net_device structure
698  *
699  * This function is invoked from upper layers to initiate transmission.
700  *
701  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
702  */
xcan_start_xmit(struct sk_buff * skb,struct net_device * ndev)703 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
704 {
705 	struct xcan_priv *priv = netdev_priv(ndev);
706 	int ret;
707 
708 	if (can_dropped_invalid_skb(ndev, skb))
709 		return NETDEV_TX_OK;
710 
711 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
712 		ret = xcan_start_xmit_mailbox(skb, ndev);
713 	else
714 		ret = xcan_start_xmit_fifo(skb, ndev);
715 
716 	if (ret < 0) {
717 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
718 		netif_stop_queue(ndev);
719 		return NETDEV_TX_BUSY;
720 	}
721 
722 	return NETDEV_TX_OK;
723 }
724 
725 /**
726  * xcan_rx -  Is called from CAN isr to complete the received
727  *		frame  processing
728  * @ndev:	Pointer to net_device structure
729  * @frame_base:	Register offset to the frame to be read
730  *
731  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
732  * does minimal processing and invokes "netif_receive_skb" to complete further
733  * processing.
734  * Return: 1 on success and 0 on failure.
735  */
xcan_rx(struct net_device * ndev,int frame_base)736 static int xcan_rx(struct net_device *ndev, int frame_base)
737 {
738 	struct xcan_priv *priv = netdev_priv(ndev);
739 	struct net_device_stats *stats = &ndev->stats;
740 	struct can_frame *cf;
741 	struct sk_buff *skb;
742 	u32 id_xcan, dlc, data[2] = {0, 0};
743 
744 	skb = alloc_can_skb(ndev, &cf);
745 	if (unlikely(!skb)) {
746 		stats->rx_dropped++;
747 		return 0;
748 	}
749 
750 	/* Read a frame from Xilinx zynq CANPS */
751 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
752 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
753 				   XCAN_DLCR_DLC_SHIFT;
754 
755 	/* Change Xilinx CAN data length format to socketCAN data format */
756 	cf->can_dlc = get_can_dlc(dlc);
757 
758 	/* Change Xilinx CAN ID format to socketCAN ID format */
759 	if (id_xcan & XCAN_IDR_IDE_MASK) {
760 		/* The received frame is an Extended format frame */
761 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
762 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
763 				XCAN_IDR_ID2_SHIFT;
764 		cf->can_id |= CAN_EFF_FLAG;
765 		if (id_xcan & XCAN_IDR_RTR_MASK)
766 			cf->can_id |= CAN_RTR_FLAG;
767 	} else {
768 		/* The received frame is a standard format frame */
769 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
770 				XCAN_IDR_ID1_SHIFT;
771 		if (id_xcan & XCAN_IDR_SRR_MASK)
772 			cf->can_id |= CAN_RTR_FLAG;
773 	}
774 
775 	/* DW1/DW2 must always be read to remove message from RXFIFO */
776 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
777 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
778 
779 	if (!(cf->can_id & CAN_RTR_FLAG)) {
780 		/* Change Xilinx CAN data format to socketCAN data format */
781 		if (cf->can_dlc > 0)
782 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
783 		if (cf->can_dlc > 4)
784 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
785 	}
786 
787 	stats->rx_bytes += cf->can_dlc;
788 	stats->rx_packets++;
789 	netif_receive_skb(skb);
790 
791 	return 1;
792 }
793 
794 /**
795  * xcanfd_rx -  Is called from CAN isr to complete the received
796  *		frame  processing
797  * @ndev:	Pointer to net_device structure
798  * @frame_base:	Register offset to the frame to be read
799  *
800  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
801  * does minimal processing and invokes "netif_receive_skb" to complete further
802  * processing.
803  * Return: 1 on success and 0 on failure.
804  */
xcanfd_rx(struct net_device * ndev,int frame_base)805 static int xcanfd_rx(struct net_device *ndev, int frame_base)
806 {
807 	struct xcan_priv *priv = netdev_priv(ndev);
808 	struct net_device_stats *stats = &ndev->stats;
809 	struct canfd_frame *cf;
810 	struct sk_buff *skb;
811 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
812 
813 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
814 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
815 	if (dlc & XCAN_DLCR_EDL_MASK)
816 		skb = alloc_canfd_skb(ndev, &cf);
817 	else
818 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
819 
820 	if (unlikely(!skb)) {
821 		stats->rx_dropped++;
822 		return 0;
823 	}
824 
825 	/* Change Xilinx CANFD data length format to socketCAN data
826 	 * format
827 	 */
828 	if (dlc & XCAN_DLCR_EDL_MASK)
829 		cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
830 				  XCAN_DLCR_DLC_SHIFT);
831 	else
832 		cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
833 					  XCAN_DLCR_DLC_SHIFT);
834 
835 	/* Change Xilinx CAN ID format to socketCAN ID format */
836 	if (id_xcan & XCAN_IDR_IDE_MASK) {
837 		/* The received frame is an Extended format frame */
838 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
839 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
840 				XCAN_IDR_ID2_SHIFT;
841 		cf->can_id |= CAN_EFF_FLAG;
842 		if (id_xcan & XCAN_IDR_RTR_MASK)
843 			cf->can_id |= CAN_RTR_FLAG;
844 	} else {
845 		/* The received frame is a standard format frame */
846 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
847 				XCAN_IDR_ID1_SHIFT;
848 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
849 					XCAN_IDR_SRR_MASK))
850 			cf->can_id |= CAN_RTR_FLAG;
851 	}
852 
853 	/* Check the frame received is FD or not*/
854 	if (dlc & XCAN_DLCR_EDL_MASK) {
855 		for (i = 0; i < cf->len; i += 4) {
856 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
857 					(dwindex * XCANFD_DW_BYTES);
858 			data[0] = priv->read_reg(priv, dw_offset);
859 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
860 			dwindex++;
861 		}
862 	} else {
863 		for (i = 0; i < cf->len; i += 4) {
864 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
865 			data[0] = priv->read_reg(priv, dw_offset + i);
866 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
867 		}
868 	}
869 	stats->rx_bytes += cf->len;
870 	stats->rx_packets++;
871 	netif_receive_skb(skb);
872 
873 	return 1;
874 }
875 
876 /**
877  * xcan_current_error_state - Get current error state from HW
878  * @ndev:	Pointer to net_device structure
879  *
880  * Checks the current CAN error state from the HW. Note that this
881  * only checks for ERROR_PASSIVE and ERROR_WARNING.
882  *
883  * Return:
884  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
885  * otherwise.
886  */
xcan_current_error_state(struct net_device * ndev)887 static enum can_state xcan_current_error_state(struct net_device *ndev)
888 {
889 	struct xcan_priv *priv = netdev_priv(ndev);
890 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
891 
892 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
893 		return CAN_STATE_ERROR_PASSIVE;
894 	else if (status & XCAN_SR_ERRWRN_MASK)
895 		return CAN_STATE_ERROR_WARNING;
896 	else
897 		return CAN_STATE_ERROR_ACTIVE;
898 }
899 
900 /**
901  * xcan_set_error_state - Set new CAN error state
902  * @ndev:	Pointer to net_device structure
903  * @new_state:	The new CAN state to be set
904  * @cf:		Error frame to be populated or NULL
905  *
906  * Set new CAN error state for the device, updating statistics and
907  * populating the error frame if given.
908  */
xcan_set_error_state(struct net_device * ndev,enum can_state new_state,struct can_frame * cf)909 static void xcan_set_error_state(struct net_device *ndev,
910 				 enum can_state new_state,
911 				 struct can_frame *cf)
912 {
913 	struct xcan_priv *priv = netdev_priv(ndev);
914 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
915 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
916 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
917 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
918 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
919 
920 	/* non-ERROR states are handled elsewhere */
921 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
922 		return;
923 
924 	can_change_state(ndev, cf, tx_state, rx_state);
925 
926 	if (cf) {
927 		cf->data[6] = txerr;
928 		cf->data[7] = rxerr;
929 	}
930 }
931 
932 /**
933  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
934  * @ndev:	Pointer to net_device structure
935  *
936  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
937  * the performed RX/TX has caused it to drop to a lesser state and set
938  * the interface state accordingly.
939  */
xcan_update_error_state_after_rxtx(struct net_device * ndev)940 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
941 {
942 	struct xcan_priv *priv = netdev_priv(ndev);
943 	enum can_state old_state = priv->can.state;
944 	enum can_state new_state;
945 
946 	/* changing error state due to successful frame RX/TX can only
947 	 * occur from these states
948 	 */
949 	if (old_state != CAN_STATE_ERROR_WARNING &&
950 	    old_state != CAN_STATE_ERROR_PASSIVE)
951 		return;
952 
953 	new_state = xcan_current_error_state(ndev);
954 
955 	if (new_state != old_state) {
956 		struct sk_buff *skb;
957 		struct can_frame *cf;
958 
959 		skb = alloc_can_err_skb(ndev, &cf);
960 
961 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
962 
963 		if (skb) {
964 			struct net_device_stats *stats = &ndev->stats;
965 
966 			stats->rx_packets++;
967 			stats->rx_bytes += cf->can_dlc;
968 			netif_rx(skb);
969 		}
970 	}
971 }
972 
973 /**
974  * xcan_err_interrupt - error frame Isr
975  * @ndev:	net_device pointer
976  * @isr:	interrupt status register value
977  *
978  * This is the CAN error interrupt and it will
979  * check the the type of error and forward the error
980  * frame to upper layers.
981  */
xcan_err_interrupt(struct net_device * ndev,u32 isr)982 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
983 {
984 	struct xcan_priv *priv = netdev_priv(ndev);
985 	struct net_device_stats *stats = &ndev->stats;
986 	struct can_frame *cf;
987 	struct sk_buff *skb;
988 	u32 err_status;
989 
990 	skb = alloc_can_err_skb(ndev, &cf);
991 
992 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
993 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
994 
995 	if (isr & XCAN_IXR_BSOFF_MASK) {
996 		priv->can.state = CAN_STATE_BUS_OFF;
997 		priv->can.can_stats.bus_off++;
998 		/* Leave device in Config Mode in bus-off state */
999 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1000 		can_bus_off(ndev);
1001 		if (skb)
1002 			cf->can_id |= CAN_ERR_BUSOFF;
1003 	} else {
1004 		enum can_state new_state = xcan_current_error_state(ndev);
1005 
1006 		if (new_state != priv->can.state)
1007 			xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1008 	}
1009 
1010 	/* Check for Arbitration lost interrupt */
1011 	if (isr & XCAN_IXR_ARBLST_MASK) {
1012 		priv->can.can_stats.arbitration_lost++;
1013 		if (skb) {
1014 			cf->can_id |= CAN_ERR_LOSTARB;
1015 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
1016 		}
1017 	}
1018 
1019 	/* Check for RX FIFO Overflow interrupt */
1020 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1021 		stats->rx_over_errors++;
1022 		stats->rx_errors++;
1023 		if (skb) {
1024 			cf->can_id |= CAN_ERR_CRTL;
1025 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1026 		}
1027 	}
1028 
1029 	/* Check for RX Match Not Finished interrupt */
1030 	if (isr & XCAN_IXR_RXMNF_MASK) {
1031 		stats->rx_dropped++;
1032 		stats->rx_errors++;
1033 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1034 		if (skb) {
1035 			cf->can_id |= CAN_ERR_CRTL;
1036 			cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
1037 		}
1038 	}
1039 
1040 	/* Check for error interrupt */
1041 	if (isr & XCAN_IXR_ERROR_MASK) {
1042 		if (skb)
1043 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1044 
1045 		/* Check for Ack error interrupt */
1046 		if (err_status & XCAN_ESR_ACKER_MASK) {
1047 			stats->tx_errors++;
1048 			if (skb) {
1049 				cf->can_id |= CAN_ERR_ACK;
1050 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1051 			}
1052 		}
1053 
1054 		/* Check for Bit error interrupt */
1055 		if (err_status & XCAN_ESR_BERR_MASK) {
1056 			stats->tx_errors++;
1057 			if (skb) {
1058 				cf->can_id |= CAN_ERR_PROT;
1059 				cf->data[2] = CAN_ERR_PROT_BIT;
1060 			}
1061 		}
1062 
1063 		/* Check for Stuff error interrupt */
1064 		if (err_status & XCAN_ESR_STER_MASK) {
1065 			stats->rx_errors++;
1066 			if (skb) {
1067 				cf->can_id |= CAN_ERR_PROT;
1068 				cf->data[2] = CAN_ERR_PROT_STUFF;
1069 			}
1070 		}
1071 
1072 		/* Check for Form error interrupt */
1073 		if (err_status & XCAN_ESR_FMER_MASK) {
1074 			stats->rx_errors++;
1075 			if (skb) {
1076 				cf->can_id |= CAN_ERR_PROT;
1077 				cf->data[2] = CAN_ERR_PROT_FORM;
1078 			}
1079 		}
1080 
1081 		/* Check for CRC error interrupt */
1082 		if (err_status & XCAN_ESR_CRCER_MASK) {
1083 			stats->rx_errors++;
1084 			if (skb) {
1085 				cf->can_id |= CAN_ERR_PROT;
1086 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1087 			}
1088 		}
1089 		priv->can.can_stats.bus_error++;
1090 	}
1091 
1092 	if (skb) {
1093 		stats->rx_packets++;
1094 		stats->rx_bytes += cf->can_dlc;
1095 		netif_rx(skb);
1096 	}
1097 
1098 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1099 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1100 }
1101 
1102 /**
1103  * xcan_state_interrupt - It will check the state of the CAN device
1104  * @ndev:	net_device pointer
1105  * @isr:	interrupt status register value
1106  *
1107  * This will checks the state of the CAN device
1108  * and puts the device into appropriate state.
1109  */
xcan_state_interrupt(struct net_device * ndev,u32 isr)1110 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1111 {
1112 	struct xcan_priv *priv = netdev_priv(ndev);
1113 
1114 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1115 	if (isr & XCAN_IXR_SLP_MASK)
1116 		priv->can.state = CAN_STATE_SLEEPING;
1117 
1118 	/* Check for Wake up interrupt if set put CAN device in Active state */
1119 	if (isr & XCAN_IXR_WKUP_MASK)
1120 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1121 }
1122 
1123 /**
1124  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1125  * @priv:	Driver private data structure
1126  *
1127  * Return: Register offset of the next frame in RX FIFO.
1128  */
xcan_rx_fifo_get_next_frame(struct xcan_priv * priv)1129 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1130 {
1131 	int offset;
1132 
1133 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1134 		u32 fsr, mask;
1135 
1136 		/* clear RXOK before the is-empty check so that any newly
1137 		 * received frame will reassert it without a race
1138 		 */
1139 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1140 
1141 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1142 
1143 		/* check if RX FIFO is empty */
1144 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1145 			mask = XCAN_2_FSR_FL_MASK;
1146 		else
1147 			mask = XCAN_FSR_FL_MASK;
1148 
1149 		if (!(fsr & mask))
1150 			return -ENOENT;
1151 
1152 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1153 			offset =
1154 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1155 		else
1156 			offset =
1157 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1158 
1159 	} else {
1160 		/* check if RX FIFO is empty */
1161 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1162 		      XCAN_IXR_RXNEMP_MASK))
1163 			return -ENOENT;
1164 
1165 		/* frames are read from a static offset */
1166 		offset = XCAN_RXFIFO_OFFSET;
1167 	}
1168 
1169 	return offset;
1170 }
1171 
1172 /**
1173  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1174  * @napi:	napi structure pointer
1175  * @quota:	Max number of rx packets to be processed.
1176  *
1177  * This is the poll routine for rx part.
1178  * It will process the packets maximux quota value.
1179  *
1180  * Return: number of packets received
1181  */
xcan_rx_poll(struct napi_struct * napi,int quota)1182 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1183 {
1184 	struct net_device *ndev = napi->dev;
1185 	struct xcan_priv *priv = netdev_priv(ndev);
1186 	u32 ier;
1187 	int work_done = 0;
1188 	int frame_offset;
1189 
1190 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1191 	       (work_done < quota)) {
1192 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1193 			work_done += xcanfd_rx(ndev, frame_offset);
1194 		else
1195 			work_done += xcan_rx(ndev, frame_offset);
1196 
1197 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1198 			/* increment read index */
1199 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1200 					XCAN_FSR_IRI_MASK);
1201 		else
1202 			/* clear rx-not-empty (will actually clear only if
1203 			 * empty)
1204 			 */
1205 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1206 					XCAN_IXR_RXNEMP_MASK);
1207 	}
1208 
1209 	if (work_done) {
1210 		can_led_event(ndev, CAN_LED_EVENT_RX);
1211 		xcan_update_error_state_after_rxtx(ndev);
1212 	}
1213 
1214 	if (work_done < quota) {
1215 		napi_complete_done(napi, work_done);
1216 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1217 		ier |= xcan_rx_int_mask(priv);
1218 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1219 	}
1220 	return work_done;
1221 }
1222 
1223 /**
1224  * xcan_tx_interrupt - Tx Done Isr
1225  * @ndev:	net_device pointer
1226  * @isr:	Interrupt status register value
1227  */
xcan_tx_interrupt(struct net_device * ndev,u32 isr)1228 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1229 {
1230 	struct xcan_priv *priv = netdev_priv(ndev);
1231 	struct net_device_stats *stats = &ndev->stats;
1232 	unsigned int frames_in_fifo;
1233 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1234 	unsigned long flags;
1235 	int retries = 0;
1236 
1237 	/* Synchronize with xmit as we need to know the exact number
1238 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1239 	 * handling.
1240 	 * This also prevents a race between netif_wake_queue() and
1241 	 * netif_stop_queue().
1242 	 */
1243 	spin_lock_irqsave(&priv->tx_lock, flags);
1244 
1245 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1246 
1247 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1248 		/* clear TXOK anyway to avoid getting back here */
1249 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1250 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1251 		return;
1252 	}
1253 
1254 	/* Check if 2 frames were sent (TXOK only means that at least 1
1255 	 * frame was sent).
1256 	 */
1257 	if (frames_in_fifo > 1) {
1258 		WARN_ON(frames_in_fifo > priv->tx_max);
1259 
1260 		/* Synchronize TXOK and isr so that after the loop:
1261 		 * (1) isr variable is up-to-date at least up to TXOK clear
1262 		 *     time. This avoids us clearing a TXOK of a second frame
1263 		 *     but not noticing that the FIFO is now empty and thus
1264 		 *     marking only a single frame as sent.
1265 		 * (2) No TXOK is left. Having one could mean leaving a
1266 		 *     stray TXOK as we might process the associated frame
1267 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1268 		 *     clear to satisfy (1).
1269 		 */
1270 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1271 		       !WARN_ON(++retries == 100)) {
1272 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1273 					XCAN_IXR_TXOK_MASK);
1274 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1275 		}
1276 
1277 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1278 			/* nothing in FIFO anymore */
1279 			frames_sent = frames_in_fifo;
1280 		}
1281 	} else {
1282 		/* single frame in fifo, just clear TXOK */
1283 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1284 	}
1285 
1286 	while (frames_sent--) {
1287 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1288 						    priv->tx_max);
1289 		priv->tx_tail++;
1290 		stats->tx_packets++;
1291 	}
1292 
1293 	netif_wake_queue(ndev);
1294 
1295 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1296 
1297 	can_led_event(ndev, CAN_LED_EVENT_TX);
1298 	xcan_update_error_state_after_rxtx(ndev);
1299 }
1300 
1301 /**
1302  * xcan_interrupt - CAN Isr
1303  * @irq:	irq number
1304  * @dev_id:	device id poniter
1305  *
1306  * This is the xilinx CAN Isr. It checks for the type of interrupt
1307  * and invokes the corresponding ISR.
1308  *
1309  * Return:
1310  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1311  */
xcan_interrupt(int irq,void * dev_id)1312 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1313 {
1314 	struct net_device *ndev = (struct net_device *)dev_id;
1315 	struct xcan_priv *priv = netdev_priv(ndev);
1316 	u32 isr, ier;
1317 	u32 isr_errors;
1318 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1319 
1320 	/* Get the interrupt status from Xilinx CAN */
1321 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1322 	if (!isr)
1323 		return IRQ_NONE;
1324 
1325 	/* Check for the type of interrupt and Processing it */
1326 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1327 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1328 				XCAN_IXR_WKUP_MASK));
1329 		xcan_state_interrupt(ndev, isr);
1330 	}
1331 
1332 	/* Check for Tx interrupt and Processing it */
1333 	if (isr & XCAN_IXR_TXOK_MASK)
1334 		xcan_tx_interrupt(ndev, isr);
1335 
1336 	/* Check for the type of error interrupt and Processing it */
1337 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1338 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1339 			    XCAN_IXR_RXMNF_MASK);
1340 	if (isr_errors) {
1341 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1342 		xcan_err_interrupt(ndev, isr);
1343 	}
1344 
1345 	/* Check for the type of receive interrupt and Processing it */
1346 	if (isr & rx_int_mask) {
1347 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1348 		ier &= ~rx_int_mask;
1349 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1350 		napi_schedule(&priv->napi);
1351 	}
1352 	return IRQ_HANDLED;
1353 }
1354 
1355 /**
1356  * xcan_chip_stop - Driver stop routine
1357  * @ndev:	Pointer to net_device structure
1358  *
1359  * This is the drivers stop routine. It will disable the
1360  * interrupts and put the device into configuration mode.
1361  */
xcan_chip_stop(struct net_device * ndev)1362 static void xcan_chip_stop(struct net_device *ndev)
1363 {
1364 	struct xcan_priv *priv = netdev_priv(ndev);
1365 
1366 	/* Disable interrupts and leave the can in configuration mode */
1367 	set_reset_mode(ndev);
1368 	priv->can.state = CAN_STATE_STOPPED;
1369 }
1370 
1371 /**
1372  * xcan_open - Driver open routine
1373  * @ndev:	Pointer to net_device structure
1374  *
1375  * This is the driver open routine.
1376  * Return: 0 on success and failure value on error
1377  */
xcan_open(struct net_device * ndev)1378 static int xcan_open(struct net_device *ndev)
1379 {
1380 	struct xcan_priv *priv = netdev_priv(ndev);
1381 	int ret;
1382 
1383 	ret = pm_runtime_get_sync(priv->dev);
1384 	if (ret < 0) {
1385 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1386 			   __func__, ret);
1387 		return ret;
1388 	}
1389 
1390 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1391 			  ndev->name, ndev);
1392 	if (ret < 0) {
1393 		netdev_err(ndev, "irq allocation for CAN failed\n");
1394 		goto err;
1395 	}
1396 
1397 	/* Set chip into reset mode */
1398 	ret = set_reset_mode(ndev);
1399 	if (ret < 0) {
1400 		netdev_err(ndev, "mode resetting failed!\n");
1401 		goto err_irq;
1402 	}
1403 
1404 	/* Common open */
1405 	ret = open_candev(ndev);
1406 	if (ret)
1407 		goto err_irq;
1408 
1409 	ret = xcan_chip_start(ndev);
1410 	if (ret < 0) {
1411 		netdev_err(ndev, "xcan_chip_start failed!\n");
1412 		goto err_candev;
1413 	}
1414 
1415 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1416 	napi_enable(&priv->napi);
1417 	netif_start_queue(ndev);
1418 
1419 	return 0;
1420 
1421 err_candev:
1422 	close_candev(ndev);
1423 err_irq:
1424 	free_irq(ndev->irq, ndev);
1425 err:
1426 	pm_runtime_put(priv->dev);
1427 
1428 	return ret;
1429 }
1430 
1431 /**
1432  * xcan_close - Driver close routine
1433  * @ndev:	Pointer to net_device structure
1434  *
1435  * Return: 0 always
1436  */
xcan_close(struct net_device * ndev)1437 static int xcan_close(struct net_device *ndev)
1438 {
1439 	struct xcan_priv *priv = netdev_priv(ndev);
1440 
1441 	netif_stop_queue(ndev);
1442 	napi_disable(&priv->napi);
1443 	xcan_chip_stop(ndev);
1444 	free_irq(ndev->irq, ndev);
1445 	close_candev(ndev);
1446 
1447 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1448 	pm_runtime_put(priv->dev);
1449 
1450 	return 0;
1451 }
1452 
1453 /**
1454  * xcan_get_berr_counter - error counter routine
1455  * @ndev:	Pointer to net_device structure
1456  * @bec:	Pointer to can_berr_counter structure
1457  *
1458  * This is the driver error counter routine.
1459  * Return: 0 on success and failure value on error
1460  */
xcan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1461 static int xcan_get_berr_counter(const struct net_device *ndev,
1462 				 struct can_berr_counter *bec)
1463 {
1464 	struct xcan_priv *priv = netdev_priv(ndev);
1465 	int ret;
1466 
1467 	ret = pm_runtime_get_sync(priv->dev);
1468 	if (ret < 0) {
1469 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1470 			   __func__, ret);
1471 		return ret;
1472 	}
1473 
1474 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1475 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1476 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1477 
1478 	pm_runtime_put(priv->dev);
1479 
1480 	return 0;
1481 }
1482 
1483 static const struct net_device_ops xcan_netdev_ops = {
1484 	.ndo_open	= xcan_open,
1485 	.ndo_stop	= xcan_close,
1486 	.ndo_start_xmit	= xcan_start_xmit,
1487 	.ndo_change_mtu	= can_change_mtu,
1488 };
1489 
1490 /**
1491  * xcan_suspend - Suspend method for the driver
1492  * @dev:	Address of the device structure
1493  *
1494  * Put the driver into low power mode.
1495  * Return: 0 on success and failure value on error
1496  */
xcan_suspend(struct device * dev)1497 static int __maybe_unused xcan_suspend(struct device *dev)
1498 {
1499 	struct net_device *ndev = dev_get_drvdata(dev);
1500 
1501 	if (netif_running(ndev)) {
1502 		netif_stop_queue(ndev);
1503 		netif_device_detach(ndev);
1504 		xcan_chip_stop(ndev);
1505 	}
1506 
1507 	return pm_runtime_force_suspend(dev);
1508 }
1509 
1510 /**
1511  * xcan_resume - Resume from suspend
1512  * @dev:	Address of the device structure
1513  *
1514  * Resume operation after suspend.
1515  * Return: 0 on success and failure value on error
1516  */
xcan_resume(struct device * dev)1517 static int __maybe_unused xcan_resume(struct device *dev)
1518 {
1519 	struct net_device *ndev = dev_get_drvdata(dev);
1520 	int ret;
1521 
1522 	ret = pm_runtime_force_resume(dev);
1523 	if (ret) {
1524 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1525 		return ret;
1526 	}
1527 
1528 	if (netif_running(ndev)) {
1529 		ret = xcan_chip_start(ndev);
1530 		if (ret) {
1531 			dev_err(dev, "xcan_chip_start failed on resume\n");
1532 			return ret;
1533 		}
1534 
1535 		netif_device_attach(ndev);
1536 		netif_start_queue(ndev);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /**
1543  * xcan_runtime_suspend - Runtime suspend method for the driver
1544  * @dev:	Address of the device structure
1545  *
1546  * Put the driver into low power mode.
1547  * Return: 0 always
1548  */
xcan_runtime_suspend(struct device * dev)1549 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1550 {
1551 	struct net_device *ndev = dev_get_drvdata(dev);
1552 	struct xcan_priv *priv = netdev_priv(ndev);
1553 
1554 	clk_disable_unprepare(priv->bus_clk);
1555 	clk_disable_unprepare(priv->can_clk);
1556 
1557 	return 0;
1558 }
1559 
1560 /**
1561  * xcan_runtime_resume - Runtime resume from suspend
1562  * @dev:	Address of the device structure
1563  *
1564  * Resume operation after suspend.
1565  * Return: 0 on success and failure value on error
1566  */
xcan_runtime_resume(struct device * dev)1567 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1568 {
1569 	struct net_device *ndev = dev_get_drvdata(dev);
1570 	struct xcan_priv *priv = netdev_priv(ndev);
1571 	int ret;
1572 
1573 	ret = clk_prepare_enable(priv->bus_clk);
1574 	if (ret) {
1575 		dev_err(dev, "Cannot enable clock.\n");
1576 		return ret;
1577 	}
1578 	ret = clk_prepare_enable(priv->can_clk);
1579 	if (ret) {
1580 		dev_err(dev, "Cannot enable clock.\n");
1581 		clk_disable_unprepare(priv->bus_clk);
1582 		return ret;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 static const struct dev_pm_ops xcan_dev_pm_ops = {
1589 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1590 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1591 };
1592 
1593 static const struct xcan_devtype_data xcan_zynq_data = {
1594 	.cantype = XZYNQ_CANPS,
1595 	.flags = XCAN_FLAG_TXFEMP,
1596 	.bittiming_const = &xcan_bittiming_const,
1597 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1598 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1599 	.bus_clk_name = "pclk",
1600 };
1601 
1602 static const struct xcan_devtype_data xcan_axi_data = {
1603 	.cantype = XAXI_CAN,
1604 	.bittiming_const = &xcan_bittiming_const,
1605 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1606 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1607 	.bus_clk_name = "s_axi_aclk",
1608 };
1609 
1610 static const struct xcan_devtype_data xcan_canfd_data = {
1611 	.cantype = XAXI_CANFD,
1612 	.flags = XCAN_FLAG_EXT_FILTERS |
1613 		 XCAN_FLAG_RXMNF |
1614 		 XCAN_FLAG_TX_MAILBOXES |
1615 		 XCAN_FLAG_RX_FIFO_MULTI,
1616 	.bittiming_const = &xcan_bittiming_const_canfd,
1617 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1618 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1619 	.bus_clk_name = "s_axi_aclk",
1620 };
1621 
1622 static const struct xcan_devtype_data xcan_canfd2_data = {
1623 	.cantype = XAXI_CANFD_2_0,
1624 	.flags = XCAN_FLAG_EXT_FILTERS |
1625 		 XCAN_FLAG_RXMNF |
1626 		 XCAN_FLAG_TX_MAILBOXES |
1627 		 XCAN_FLAG_CANFD_2 |
1628 		 XCAN_FLAG_RX_FIFO_MULTI,
1629 	.bittiming_const = &xcan_bittiming_const_canfd2,
1630 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1631 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1632 	.bus_clk_name = "s_axi_aclk",
1633 };
1634 
1635 /* Match table for OF platform binding */
1636 static const struct of_device_id xcan_of_match[] = {
1637 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1638 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1639 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1640 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1641 	{ /* end of list */ },
1642 };
1643 MODULE_DEVICE_TABLE(of, xcan_of_match);
1644 
1645 /**
1646  * xcan_probe - Platform registration call
1647  * @pdev:	Handle to the platform device structure
1648  *
1649  * This function does all the memory allocation and registration for the CAN
1650  * device.
1651  *
1652  * Return: 0 on success and failure value on error
1653  */
xcan_probe(struct platform_device * pdev)1654 static int xcan_probe(struct platform_device *pdev)
1655 {
1656 	struct resource *res; /* IO mem resources */
1657 	struct net_device *ndev;
1658 	struct xcan_priv *priv;
1659 	const struct of_device_id *of_id;
1660 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1661 	void __iomem *addr;
1662 	int ret;
1663 	int rx_max, tx_max;
1664 	int hw_tx_max, hw_rx_max;
1665 	const char *hw_tx_max_property;
1666 
1667 	/* Get the virtual base address for the device */
1668 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669 	addr = devm_ioremap_resource(&pdev->dev, res);
1670 	if (IS_ERR(addr)) {
1671 		ret = PTR_ERR(addr);
1672 		goto err;
1673 	}
1674 
1675 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1676 	if (of_id && of_id->data)
1677 		devtype = of_id->data;
1678 
1679 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1680 			     "tx-mailbox-count" : "tx-fifo-depth";
1681 
1682 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1683 				   &hw_tx_max);
1684 	if (ret < 0) {
1685 		dev_err(&pdev->dev, "missing %s property\n",
1686 			hw_tx_max_property);
1687 		goto err;
1688 	}
1689 
1690 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1691 				   &hw_rx_max);
1692 	if (ret < 0) {
1693 		dev_err(&pdev->dev,
1694 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1695 		goto err;
1696 	}
1697 
1698 	/* With TX FIFO:
1699 	 *
1700 	 * There is no way to directly figure out how many frames have been
1701 	 * sent when the TXOK interrupt is processed. If TXFEMP
1702 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1703 	 * to determine if 1 or 2 frames have been sent.
1704 	 * Theoretically we should be able to use TXFWMEMP to determine up
1705 	 * to 3 frames, but it seems that after putting a second frame in the
1706 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1707 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1708 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1709 	 * completely synchronized with the rest of the bits?
1710 	 *
1711 	 * With TX mailboxes:
1712 	 *
1713 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1714 	 * we submit frames one at a time.
1715 	 */
1716 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1717 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1718 		tx_max = min(hw_tx_max, 2);
1719 	else
1720 		tx_max = 1;
1721 
1722 	rx_max = hw_rx_max;
1723 
1724 	/* Create a CAN device instance */
1725 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1726 	if (!ndev)
1727 		return -ENOMEM;
1728 
1729 	priv = netdev_priv(ndev);
1730 	priv->dev = &pdev->dev;
1731 	priv->can.bittiming_const = devtype->bittiming_const;
1732 	priv->can.do_set_mode = xcan_do_set_mode;
1733 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1734 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1735 					CAN_CTRLMODE_BERR_REPORTING;
1736 
1737 	if (devtype->cantype == XAXI_CANFD)
1738 		priv->can.data_bittiming_const =
1739 			&xcan_data_bittiming_const_canfd;
1740 
1741 	if (devtype->cantype == XAXI_CANFD_2_0)
1742 		priv->can.data_bittiming_const =
1743 			&xcan_data_bittiming_const_canfd2;
1744 
1745 	if (devtype->cantype == XAXI_CANFD ||
1746 	    devtype->cantype == XAXI_CANFD_2_0)
1747 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1748 
1749 	priv->reg_base = addr;
1750 	priv->tx_max = tx_max;
1751 	priv->devtype = *devtype;
1752 	spin_lock_init(&priv->tx_lock);
1753 
1754 	/* Get IRQ for the device */
1755 	ndev->irq = platform_get_irq(pdev, 0);
1756 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1757 
1758 	platform_set_drvdata(pdev, ndev);
1759 	SET_NETDEV_DEV(ndev, &pdev->dev);
1760 	ndev->netdev_ops = &xcan_netdev_ops;
1761 
1762 	/* Getting the CAN can_clk info */
1763 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1764 	if (IS_ERR(priv->can_clk)) {
1765 		if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1766 			dev_err(&pdev->dev, "Device clock not found.\n");
1767 		ret = PTR_ERR(priv->can_clk);
1768 		goto err_free;
1769 	}
1770 
1771 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1772 	if (IS_ERR(priv->bus_clk)) {
1773 		dev_err(&pdev->dev, "bus clock not found\n");
1774 		ret = PTR_ERR(priv->bus_clk);
1775 		goto err_free;
1776 	}
1777 
1778 	priv->write_reg = xcan_write_reg_le;
1779 	priv->read_reg = xcan_read_reg_le;
1780 
1781 	pm_runtime_enable(&pdev->dev);
1782 	ret = pm_runtime_get_sync(&pdev->dev);
1783 	if (ret < 0) {
1784 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1785 			   __func__, ret);
1786 		goto err_pmdisable;
1787 	}
1788 
1789 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1790 		priv->write_reg = xcan_write_reg_be;
1791 		priv->read_reg = xcan_read_reg_be;
1792 	}
1793 
1794 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1795 
1796 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1797 
1798 	ret = register_candev(ndev);
1799 	if (ret) {
1800 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1801 		goto err_disableclks;
1802 	}
1803 
1804 	devm_can_led_init(ndev);
1805 
1806 	pm_runtime_put(&pdev->dev);
1807 
1808 	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1809 		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1810 		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1811 	}
1812 
1813 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1814 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1815 		   hw_tx_max, priv->tx_max);
1816 
1817 	return 0;
1818 
1819 err_disableclks:
1820 	pm_runtime_put(priv->dev);
1821 err_pmdisable:
1822 	pm_runtime_disable(&pdev->dev);
1823 err_free:
1824 	free_candev(ndev);
1825 err:
1826 	return ret;
1827 }
1828 
1829 /**
1830  * xcan_remove - Unregister the device after releasing the resources
1831  * @pdev:	Handle to the platform device structure
1832  *
1833  * This function frees all the resources allocated to the device.
1834  * Return: 0 always
1835  */
xcan_remove(struct platform_device * pdev)1836 static int xcan_remove(struct platform_device *pdev)
1837 {
1838 	struct net_device *ndev = platform_get_drvdata(pdev);
1839 	struct xcan_priv *priv = netdev_priv(ndev);
1840 
1841 	unregister_candev(ndev);
1842 	pm_runtime_disable(&pdev->dev);
1843 	netif_napi_del(&priv->napi);
1844 	free_candev(ndev);
1845 
1846 	return 0;
1847 }
1848 
1849 static struct platform_driver xcan_driver = {
1850 	.probe = xcan_probe,
1851 	.remove	= xcan_remove,
1852 	.driver	= {
1853 		.name = DRIVER_NAME,
1854 		.pm = &xcan_dev_pm_ops,
1855 		.of_match_table	= xcan_of_match,
1856 	},
1857 };
1858 
1859 module_platform_driver(xcan_driver);
1860 
1861 MODULE_LICENSE("GPL");
1862 MODULE_AUTHOR("Xilinx Inc");
1863 MODULE_DESCRIPTION("Xilinx CAN interface");
1864